
Name CWID

Exam
1

March 20th, 2017

CS525 - Midterm Exam
Solutions

Please leave this empty! 1 2 3 4 Sum

Instructions
• Things that you are not allowed to use

– Personal notes
– Textbook
– Printed lecture notes
– Phone

• The exam is 75 minutes long

• Multiple choice questions are graded in the following way: You get points for correct answers and points
subtracted for wrong answers. The minimum points for each questions is 0. For example, assume there
is a multiple choice question with 6 answers - each may be correct or incorrect - and each answer gives
1 point. If you answer 3 questions correct and 3 incorrect you get 0 points. If you answer 4 questions
correct and 2 incorrect you get 2 points. . . .

• For your convenience the number of points for each part and questions are shown in parenthesis.

• There are 4 parts in this exam

1. SQL (32)
2. Relational Algebra (26)
3. Index Structures (24)
4. I/O Estimation (18)

DB - Spring 2017: Page 2 (of 16)

Part 1 SQL (Total: 32 Points)

Consider the following database schema and instance storing information about cities, points of interest (POI)
and user reviews of points of interest. The x and y coordinates are geographical locations of POI. For cities
we record the geographical extend of the city as a rectangle represented as two points: the lower left corner
(xLow,yLow) and the upper right corner (xHigh,yHigh).

POI
pName x y category

Cloud Gate 1010 915 Sculpture
Pizza Joe 1014 915 Restaurant

Fields Museum 1016 916 Museum
Moma 1340 830 Museum

city
cName xLow xHigh yLow yHigh
Chicago 950 1060 900 940
New York 1250 1400 790 850

reviews
poi user rating review

Could Gate Alice 4 looks cool
Pizza Joe Peter 1 seriously overrated
Pizza Joe Alice 3 my personal favourite

Hints:

• When writing queries do only take the schema into account and not the example data given here. That
is your queries should return correct results for all potential instances of this schema.

• Attributes with black background form the primary key of an relation. For example, pName is the
primary key of relation POI (points of interest).

• The attribute poi of relation reviews is a foreign key to relation POI.

DB - Spring 2017: Page 3 (of 16)

Question 1.1 (6 Points)

Write an SQL query that returns the names of all restaurants (POIs with category equal to “Restaurant”)
that are in “Chicago” their coordinate (x,y) lies within the bounds of the rectangle stored for Chicago.

Solution

SELECT pName
FROM POI p , c i t y c
WHERE x BETWEEN xLow AND xHigh

AND y BETWEEN yLow AND yHigh
AND cName = ’ Chicago ’
AND category = ’ Restaurant ’ ;

DB - Spring 2017: Page 4 (of 16)

Question 1.2 (10 Points)

Write an SQL query that returns the POI category with the highest number of POIs relative to its extend.
That is normalize the number of POIs within each city by the area of the rectangle (xLow,yLow,xHigh,yHigh).

Solution

WITH poiCity AS (
SELECT cName , (xHigh − xLow) ∗ (yHigh − yLow) AS area
FROM POI p , c i t y c

x BETWEEN xLow AND xHigh
AND y BETWEEN yLow AND yHigh

) ,

poiNum AS (
SELECT cName , count (∗) / area AS relPOI
FROM poiCity

)

SELECT cName
FROM poiNum p
WHERE relPOI = (SELECT max(relPOI) FROM poiNum) ;

DB - Spring 2017: Page 5 (of 16)

Question 1.3 (7 Points)

Write an SQL query that returns the number of POI categories with an average rating of POIs in this category
that is higher than 4.

Solution

SELECT count (∗) AS numC
FROM

(SELECT category
FROM POI p , rev i ews r
WHERE pName = poi
GROUP BY category
HAVING AVG(ra t i ng) > 4) AS avgR

DB - Spring 2017: Page 6 (of 16)

Question 1.4 (9 Points)

Find the closest point of interest (POI) to geographical location (x=500, y=600) that belongs to category
’Restaurant’ and where at least 25% of ratings for this POI are higher than 3. Use euclidian distance to
compute distance d(p1, p2) =

√
(p1.x− p2.x)2 + (p1.y − p2.y)2. You can assume that the database system

supports a function sqrt that computes the square root of a number.

Solution

WITH AS r e s t (
SELECT pName , x , y
FROM POI p JOIN rev i ews r ON (pName = poi)
WHERE category = ’ Restaurant ’
GROUP BY pName , x , y
HAVING count (1) AS tota lCount / sum (CASE WHEN r a t i ng > 3 THEN 1 ELSE 0) <= 4.0

) ,

SELECT c i ty , s q r t ((x − 500) ∗ (x − 500) + (y − 600) ∗ (y − 600)) AS d i s t
FROM r e s t
ORDER BY d i s t
LIMIT 1 ;

DB - Spring 2017: Page 7 (of 16)

Part 2 Relational Algebra (Total: 26 Points)

Question 2.1 Relational Algebra (10 Points)

Write an relational algebra expression over the schema from the SQL part that returns the name of the user
which has written the most reviews. Use the bag semantics version of relational algebra.

Solution

rewPerUser = userαa←count(1)(reviews)
q = πuser(rewPerUser Xa=b αb←max(a)(rewPerUser))

DB - Spring 2017: Page 8 (of 16)

Question 2.2 Relational Algebra (10 Points)

Write an relational algebra expression over the schema from the SQL part that returns the distance between
all pairs of POIs in New York. Ensure that each pair is only returned once. For example, return only one of
(Cloud Gate, Pizza Joe) and (Pizza Joe, Cloud Gate). Also do not pair a point with itself, e.g., (Cloud
Gate, Cloud Gate). Similar to the SQL case assume the existence of a function sqrt for computing the square
root of a number. Use the bag semantics version of relational algebra.

Solution

nyPoi = πpName,x,y(POI ./xLow≤x∧x≤xHigh∧yLow≤y∧y≤yHigh σpName=′NewY ork′(city))
q = πpName,oName,sqrt((x1−x2)·(x1−x2)+(y1−y2)·(y1−y2))(ρoName,x2,y2(nyPoi) ./pName<oName ρoName,x1,y1(nyPoi)

DB - Spring 2017: Page 9 (of 16)

Question 2.3 Relational Algebra (6 Points)

Write an relational algebra expression over the schema from the SQL part that returns for each POI the highest
and lowest rating. Use the bag semantics version of relational algebra.

Solution

q = poiαmin(rating),max(rating)(reviews)

DB - Spring 2017: Page 10 (of 16)

Part 3 Index Structures (Total: 24 Points)

Question 3.1 B+-tree Operations (24 Points)

Given is the B+-tree shown below (n = 3). Execute the following operations and write down the resulting
B+-tree after each step:

insert(88),insert(99),insert(6),delete(3)

When splitting or merging nodes follow these conventions:

• Leaf Split: In case a leaf node needs to be split, the left node should get the extra key if the keys cannot
be split evenly.

• Non-Leaf Split: In case a non-leaf node is split evenly, the “middle” value should be taken from the
right node.

• Node Underflow: In case of a node underflow you should first try to redistribute and only if this fails
merge. Both approaches should prefer the left sibling.

10 40 60

3 4 5 15 22 45 48 61 62

Solution

DB - Spring 2017: Page 11 (of 16)

insert(88)

10 40 60

3 4 5 15 22 45 48 61 62 88

insert(99)
60

10 40 88

3 4 5 15 22 45 48 61 62 88 99

insert(6)

60

5 10 40 88

3 4 5 6 15 22 45 48 61 62 88 99

delete(3)
60

10 40 88

4 5 6 15 22 45 48 61 62 88 99

DB - Spring 2017: Page 12 (of 16)

Part 4 I/O Estimation (Total: 18 Points)

Question 4.1 I/O Cost Estimation (12 = 4 + 4 + 4 Points)

Consider two relations R and S with B(R) = 300 and B(S) = 20, 000. You have M = 201 memory pages
available. Compute the number of I/O operations needed to join these two relations using block-nested-loop
join,merge-join (the inputs are not sorted), and hash-join. You can assume that the hash function distributes
keys evenly across buckets. Justify you result by showing the I/O cost estimation for each join method.

Solution
Block Nested-loop:
Use smaller table R as the inner. We only have two chunks of size 200. Thus, we get 2× (200 +B(S)) = 40,400
I/Os.
Merge-join:
Relation R can be sorted with one merge phase memory resulting in 2 ∗ 2 ∗ B(R) = 1, 200 I/Os. Relation S
requires one merge phase, merging 100 runs in the last phase: 2 × 2 × B(S) = 80, 000 I/Os. The last merge
phase of relation S can be combined with the last merge phase of R (3 + 100 = 103 blocks of memory required).
The merge join can be execute during these merge phases avoiding on read of relations R and S. Without
optimizations we get 5 ∗ (B(R) +B(S)) = 101, 500. If we execute the merge-join during the last merge phases
we get 3 ∗ (B(R) +B(S)) = 60, 900.
Hash-join:
We need one partitioning phase for the partitions of Relation R to fit into memory. Thus, the hash-join requires
3 ∗ (B(R) +B(S)) = 60, 900 I/O.

Question 4.2 External Sorting (6 Points)

Consider a relation R with B(R) = 64, 000, 000. Assume that M = 33 memory pages are available for sorting.
How many I/O operations are needed to sort this relation using no more than M memory pages.

Solution

External sorting requires 2× (1 + dlogM−1(B(R)
M)e)×B(R) = 2× 6× 64, 000, 000 = 728, 000, 000 I/Os.

DB - Spring 2017: Page 13 (of 16)

DB - Spring 2017: Page 14 (of 16)

DB - Spring 2017: Page 15 (of 16)

DB - Spring 2017: Page 16 (of 16)

