
CS 525 Notes 14 - Concurrency Control 1 

CS 525: Advanced Database 
Organization 

14: Concurrency 
 Control 
Boris Glavic 

Slides: adapted from a course taught by  

Hector Garcia-Molina, Stanford InfoLab  



CS 525 Notes 14 - Concurrency Control 2 

Chapter 18 [18] Concurrency Control 

     T1  T2  …  Tn 

DB 
(consistency 
constraints) 
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Example: 

T1:  Read(A)   T2:  Read(A) 
  A ← A+100   A ← A×2 
  Write(A)    Write(A) 
  Read(B)    Read(B) 
  B ← B+100   B ← B×2 
  Write(B)    Write(B) 

Constraint:  A=B 
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Schedule A 

T1     T2 
Read(A); A ← A+100 
Write(A); 
Read(B); B ←  B+100; 
Write(B); 

     Read(A);A ←  A×2; 
     Write(A); 

         Read(B);B ←  B×2; 
     Write(B); 
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Schedule A 

T1     T2 
Read(A); A ← A+100 
Write(A); 
Read(B); B ←  B+100; 
Write(B); 

     Read(A);A ←  A×2; 
     Write(A); 

         Read(B);B ←  B×2; 
     Write(B); 

    

A  B 
25  25 
 
125 
 

 125 
 
250 
 

 250 
250  250 
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Schedule B 

T1     T2 

     Read(A);A ←  A×2; 
     Write(A); 

     Read(B);B ←  B×2; 
     Write(B); 

Read(A); A ← A+100 
Write(A); 
Read(B); B ←  B+100; 
Write(B); 
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Schedule B 

T1     T2 

     Read(A);A ←  A×2; 
     Write(A); 

     Read(B);B ←  B×2; 
     Write(B); 

Read(A); A ← A+100 
Write(A); 
Read(B); B ←  B+100; 
Write(B); 

       
  

A  B 
25  25 
 
50 
 

 50 
 
150 
 

 150 
150  150 
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Schedule C 

T1     T2 
Read(A); A ← A+100 
Write(A); 

     Read(A);A ←  A×2; 
     Write(A); 

Read(B); B ←  B+100; 
Write(B); 

         Read(B);B ←  B×2; 
     Write(B); 
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Schedule C 

T1     T2 
Read(A); A ← A+100 
Write(A); 

     Read(A);A ←  A×2; 
     Write(A); 

Read(B); B ←  B+100; 
Write(B); 

         Read(B);B ←  B×2; 
     Write(B); 

    

A  B 
25  25 
 
125 
 
250 
 

 125 
 

 250 
250  250 
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Schedule D 

T1     T2 
Read(A); A ← A+100 
Write(A); 

     Read(A);A ←  A×2; 
     Write(A); 

         Read(B);B ←  B×2; 
     Write(B); 

Read(B); B ←  B+100; 
Write(B); 
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Schedule D 

T1     T2 
Read(A); A ← A+100 
Write(A); 

     Read(A);A ←  A×2; 
     Write(A); 

         Read(B);B ←  B×2; 
     Write(B); 

Read(B); B ←  B+100; 
Write(B); 
 

    

A  B 
25  25 
 
125 
 
250 
 

 50 
 

 150 
250  150 
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Schedule E 

T1     T2’ 
Read(A); A ← A+100 
Write(A); 

     Read(A);A ←  A×1; 
     Write(A); 

         Read(B);B ←  B×1; 
     Write(B); 

Read(B); B ←  B+100; 
Write(B); 
 

    

Same as Schedule D 
but with new T2’ 
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Schedule E 

T1     T2’ 
Read(A); A ← A+100 
Write(A); 

     Read(A);A ←  A×1; 
     Write(A); 

         Read(B);B ←  B×1; 
     Write(B); 

Read(B); B ←  B+100; 
Write(B); 
 

    

A  B 
25  25 
 
125 
 
125 
 

 25 
 

 125 
125  125 

Same as Schedule D 
but with new T2’ 



Serial Schedules 

•  As long as we do not execute 
transactions in parallel and each 
transaction does not violate the 
constraints we are good 
– All schedules with no interleaving of 

transaction operations are called serial 
schedules 
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Definition: Serial Schedule 

•  No transactions are interleaved 
– There exists no two operations from 

transactions Ti and Tj so that both 
operations are executed before either 
transaction commits 

CS 525 Notes 14 - Concurrency Control 15 



CS 525 Notes 12 - Transaction 
Management 

16 

T1 = r1(A),w1(A),r1(B),w1(B),c1 !

T2 = r2(A),w2(A),r2(B),w2(B),c2 !

Serial Schedule 
S1 = r2(A),w2(A),r2(B),w2(B),c2,r1(A),w1(A),r1(B),w1(B),c1 !

S2 = r2(A),w2(A),r1(A),w1(A),r2(B),w2(B),c2,r1(B),w1(B),c1 !
!

Nonserial Schedule 



Compare Classes 

S ⊂ ST ⊂ CL ⊂ RC ⊂ ALL 
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•  Abbreviations 
– S = Serial 
– ST = Strict 
– CL = Cascadeless 
– RC = Recoverable 
– ALL = all possible schedules 
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Strict (ST) 

Cascadeless (CL) 

Recoverable (RC) 

All schedules (ALL) 

Serial (S) 



Why not serial schedules? 

•  No concurrency! L 
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•  Want schedules that are “good”,  
 regardless of 

–  initial state and 
–  transaction semantics 

•  Only look at order of read and writes 

Example:  
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 



Outline 
•  Since serial schedules have good 

properties we would like our schedules 
to behave like (be equivalent to) serial 
schedules 
1.  Need to define equivalence based solely 

on order of operations 
2.  Need to define class of schedules which is 

equivalent to serial schedule 
3.  Need to design scheduler that guarantees 

that we only get these good schedules 
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Sc‘=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B) 
 

        T1           T2 

Example:  
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 
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However, for Sd: 
Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B) 

•  as a matter of fact, 
       T2 must precede T1  

        in any equivalent schedule, 
        i.e.,  T2 → T1 
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T1    T2   Sd cannot be rearranged 
     into a serial schedule 
    Sd is not “equivalent” to 
     any serial schedule 
    Sd is “bad” 

•    T2 → T1  

•    Also, T1 → T2 
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Returning to Sc 

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 
 
    T1 → T2     T1 → T2 
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Returning to Sc 

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B) 
 
    T1 → T2     T1 → T2 

E no cycles ⇒ Sc is “equivalent” to a 
    serial schedule 
    (in this case T1,T2) 
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Concepts 

Transaction: sequence of ri(x), wi(x) actions 
Conflicting actions:  r1(A)    w2(A)    w1(A) 

             w2(A)   r1(A)     w2(A) 

Schedule: represents chronological order
  in which actions are executed 

Serial schedule: no interleaving of actions
     or transactions 
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What about concurrent actions? 

Ti issues  System  Input(X)     t ← x 
read(x,t)  issues  completes 
   input(x) 

time 
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What about concurrent actions? 

Ti issues  System  Input(X)     t ← x 
read(x,t)  issues  completes 
   input(x) 

time 

T2 issues 
write(B,S) 

System 
issues 

input(B) 

input(B) 
completes 

B ← S 

System 
issues 

output(B) 
output(B) 
completes 
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So net effect is either 
•   S=…r1(x)…w2(b)…  or 
•   S=…w2(B)…r1(x)… 
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What about conflicting, concurrent actions 
on same object? 
  start r1(A)    end r1(A) 

 

start w2(A)    end w2(A) 
 
 

time 
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•  Assume equivalent to either r1(A) w2(A) 
     or  w2(A) r1(A) 

• ⇒ low level synchronization mechanism 
•  Assumption called “atomic actions” 

What about conflicting, concurrent actions 
on same object? 
  start r1(A)    end r1(A) 

 

start w2(A)    end w2(A) 
 
 

time 



Outline 
•  Since serial schedules have good 

properties we would like our schedules 
to behave like (be equivalent to) serial 
schedules 
1.  Need to define equivalence based solely 

on order of operations 
2.  Need to define class of schedules which is 

equivalent to serial schedule 
3.  Need to design scheduler that guarantees 

that we only get these good schedules 
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Conflict Equivalence 

•  Define equivalence based on the order 
of conflicting actions 
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Definition 

S1, S2 are conflict equivalent schedules 
 if S1 can be transformed into S2 by a 
series of swaps on non-conflicting 
actions. 

 

Alternatively: 
If the order of conflicting actions in S1 

and S2 is the same 



Outline 
•  Since serial schedules have good 

properties we would like our schedules 
to behave like (be equivalent to) serial 
schedules 
1.  Need to define equivalence based solely 

on order of operations 
2.  Need to define class of schedules which is 

equivalent to serial schedule 
3.  Need to design scheduler that guarantees 

that we only get these good schedules 
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Definition 

A schedule is conflict serializable (CSR) if 
it is conflict equivalent to some serial 
schedule. 



How to check? 
•  Compare orders of all conflicting 

operations 
•  Can be simplified because there is some 

redundant information here, e.g., 

– W2(A) conflicts with R1(A) 
– W2(B) conflicts with W1(B) 
– Both imply that T2 has to be executed 

before T1 in any equivalent serial schedule 
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S1 = w2(A),w2(B),r1(A),w1(B) !
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Nodes: transactions in S 
Arcs:  Ti → Tj whenever 
   - pi(A), qj(A) are actions in S 
   - pi(A) <S  qj(A) 
   - at least one of pi, qj is a  write 

Conflict graph P(S)  (S is schedule) 
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Exercise: 

•  What is P(S) for 
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D) 

•  Is S serializable? 
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Exercise: 

•  What is P(S) for 
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D) 

•  Is S serializable? 

T1 T2 

T3 T4 
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Exercise: 

•  What is P(S) for 
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D) 

•  Is S serializable? 

T1 T2 

T3 T4 
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Another Exercise: 

•  What is P(S) for 
S = w1(A) r2(A)  r3(A) w4(A) ? 
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Another Exercise: 

•  What is P(S) for 
S = w1(A) r2(A)  r3(A) w4(A) ? 

 
 
 

T1 T2 

T3 T4 
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Lemma 

S1, S2 conflict equivalent ⇒ P(S1)=P(S2) 
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Lemma 

S1, S2 conflict equivalent ⇒ P(S1)=P(S2) 
Proof: (a → b same as ¬b → ¬a) 
Assume P(S1) ≠ P(S2) 
⇒ ∃ Ti: Ti → Tj in S1 and not in S2 

⇒ S1 = …pi(A)... qj(A)…   pi, qj 
   S2 = …qj(A)…pi(A)...   conflict 

 
⇒ S1, S2 not conflict equivalent  
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Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent 
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Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent 

Counter example: 
 
S1=w1(A) r2(A)     w2(B) r1(B) 
  
S2=r2(A) w1(A)     r1(B) w2(B)  
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Theorem 

P(S1) acyclic ⇐⇒ S1 conflict serializable 

(⇐) Assume S1 is conflict serializable 
⇒ ∃ Ss: Ss, S1 conflict equivalent 
⇒ P(Ss) = P(S1)  

⇒ P(S1) acyclic since P(Ss) is acyclic 
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(⇒) Assume P(S1) is acyclic 
Transform S1 as follows: 
(1) Take T1 to be transaction with no incident arcs 
(2) Move all T1 actions to the front 

  S1 = …….  qj(A)…….p1(A)….. 

 
(3) we now have S1 = < T1 actions ><... rest ...> 
(4) repeat above steps to serialize rest! 

T1 

T2    T3 

   T4 

Theorem 
P(S1) acyclic ⇐⇒ S1 conflict serializable 



What’s the damage? 

•  Classification of “bad” things that can 
happen in “bad” schedules 
– Dirty reads 
– Non-repeatable reads 
– Phantom reads (later) 
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Dirty Read 

•  A transaction T1 read a value that has 
been updated by an uncommitted 
transaction T2 

•  If T2 aborts then the value read by T1 is 
invalid 
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Dirty Read 

T1     T2 

Read(A), A += 100 
Write(A);  

     Read(A), A +=200 
Abort 

     Write(A); 
  

    

S1 = r1(A),w1(A),r2(A),a1,w2(A) !

T1 T2 

A=50 
T1: A = 150 
A = 150 
T2: A = 350 
 
 



Non-repeatable Read 

•  A transaction T1 reads items; some 
before and some after an update of 
these item by a transaction T2 

•  Problem 
– Repeated reads of the same item see 

different values 
– Some values are modified and some are 

not 
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Inconsistent Read 

T1     T2 

Read(A)      
     Read(A), A /= 2 
     Write(A) 
     Commit 

Read(A) 
Commit   

     

S1 = r1(A),r2(A),w2(A),c2,r1(A),c1 !

T1 T2 

A = 100 
 
A = 50 
 
 
A = 50 
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How to enforce serializable schedules? 

Option 1:  run system, recording P(S);  
   at end of day, check for P(S)  
   cycles and declare if execution
   was good 
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How to enforce serializable schedules? 

Option 1:  run system, recording P(S);  
   at end of day, check for P(S)  
   cycles and declare if execution
   was good 

 
This is called optimistic concurrency 

control 
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Option 2:  prevent P(S) cycles from  
   occurring  

    T1  T2 …..   Tn 

Scheduler 

DB 

How to enforce serializable schedules? 
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Option 2:  prevent P(S) cycles from  
   occurring  

 
 
This is called pessimistic concurrency 

control 
     

How to enforce serializable schedules? 
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A locking protocol 

Two new actions: 
 lock (exclusive):  li (A) 

   unlock:   ui (A) 
 
 

scheduler 

T1     T2 
lock 
table 
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Rule #1:  Well-formed transactions 

Ti:  … li(A) … pi(A) … ui(A) ... 
 
1)  Transaction has to lock A before it can 

access A 
2)  Transaction has to unlock A eventually 
3)  Transaction cannot access A after 

unlock 
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Rule #2    Legal scheduler 

S = …….. li(A) ………... ui(A) ……... 
 
 
4) Only one transaction can hold a lock 

on A at the same time 

 no lj(A) 
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•  What schedules are legal? 
What transactions are well-formed? 
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B) 
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 

S2 = l1(A)r1(A)w1(B)u1(A)u1(B) 
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B) 

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B) 
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 

Exercise: 
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•  What schedules are legal? 
What transactions are well-formed? 
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B) 
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 

S2 = l1(A)r1(A)w1(B)u1(A)u1(B) 
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B) 

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B) 
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) 

Exercise: 
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Schedule F 

T1          T2 
l1(A);Read(A) 
A   A+100;Write(A);u1(A)    

     l2(A);Read(A) 
     A   Ax2;Write(A);u2(A) 
     l2(B);Read(B) 
     B   Bx2;Write(B);u2(B)  

l1(B);Read(B) 
B   B+100;Write(B);u1(B)  
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Schedule F 

T1          T2           25   25   
l1(A);Read(A) 
A   A+100;Write(A);u1(A)           125 

     l2(A);Read(A) 
     A   Ax2;Write(A);u2(A)   250 
     l2(B);Read(B) 
     B   Bx2;Write(B);u2(B)     50 

l1(B);Read(B) 
B   B+100;Write(B);u1(B)        150 

              250 150 
     

 
 

A   B 
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Rule #3  Two phase locking (2PL) 
     for transactions 

Ti = ……. li(A) ………... ui(A) ……... 
 
 
 
5) A transaction does not require new 

locks after its first unlock operation 

no unlocks      no locks 
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# locks 
held by 
Ti 
 
 

        Time 
         Growing   Shrinking 
           Phase     Phase 
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Schedule G 

T1      T2 
l1(A);Read(A) 
A   A+100;Write(A) 
l1(B); u1(A)            

      l2(A);Read(A) 
      A   Ax2;Write(A);l2(B)    

delayed 
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Schedule G 

T1        T2 
l1(A);Read(A) 
A   A+100;Write(A) 
l1(B); u1(A)            

        l2(A);Read(A) 
        A   Ax2;Write(A);l2(B) 

Read(B);B    B+100 
Write(B); u1(B)  
 

delayed 



CS 525 Notes 14 - Concurrency Control 71 

Schedule G 

T1        T2 
l1(A);Read(A) 
A   A+100;Write(A) 
l1(B); u1(A)            

        l2(A);Read(A) 
        A   Ax2;Write(A);l2(B) 

Read(B);B    B+100 
Write(B); u1(B)   

        l2(B); u2(A);Read(B) 
        B    Bx2;Write(B);u2(B);  

 

delayed 
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Schedule H    (T2 reversed) 

T1     T2 
l1(A); Read(A)    l2(B);Read(B) 
A   A+100;Write(A)    B   Bx2;Write(B) 
l1(B)      l2(A) 
 delayed delayed 



Deadlock 
•  Two or more transactions are waiting 

for each other to release a lock 
•  In the example 

– T1 is waiting for T2 and is making no 
progress 

– T2 is waiting for T1 and is making no 
progress 

–  -> if we do not do anything they would 
wait forever 
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•  Assume deadlocked transactions are 
rolled back 
– They have no effect 
– They do not appear in schedule 
– Come back to that later 

E.g., Schedule H = 
     This space intentionally 
     left blank! 
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Next step: 

Show that rules #1,2,3 ⇒ conflict- 
         serializable 
         schedules 
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Conflict rules for  li(A), ui(A): 
 
•  li(A), lj(A) conflict  
•  li(A), uj(A) conflict 

Note: no conflict < ui(A), uj(A)>, < li(A), rj(A)>,... 
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Theorem  Rules #1,2,3  ⇒  conflict 
        (2PL)       serializable 
          schedule   
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Theorem  Rules #1,2,3  ⇒  conflict 
        (2PL)       serializable 
          schedule   

To help in proof: 
Definition    Shrink(Ti) = SH(Ti) =

     first unlock       
                                    action of Ti 
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Lemma 
Ti → Tj in S ⇒ SH(Ti) <S  SH(Tj) 
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Lemma 
Ti → Tj in S ⇒ SH(Ti) <S  SH(Tj) 

Proof of lemma: 
Ti → Tj means that 
 S = … pi(A) …  qj(A) …;    p,q conflict 

By rules 1,2: 
 S = … pi(A) … ui(A) … lj(A) ... qj(A) … 
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Lemma 
Ti → Tj in S ⇒ SH(Ti) <S  SH(Tj) 

Proof of lemma: 
Ti → Tj means that 
 S = … pi(A) …  qj(A) …;    p,q conflict 

By rules 1,2: 
 S = … pi(A) … ui(A) … lj(A) ... qj(A) … 

By rule 3:    SH(Ti)         SH(Tj) 
So,  SH(Ti) <S SH(Tj) 



CS 525 Notes 14 - Concurrency Control 82 

Proof: 
(1) Assume P(S) has cycle  
   T1 → T2 →…. Tn → T1 

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1) 

(3) Impossible, so P(S) acyclic 
(4) ⇒ S is conflict serializable 

Theorem  Rules #1,2,3  ⇒ conflict 
        (2PL)       serializable 
          schedule   
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2PL subset of Serializable 

S ⊂ 2PL⊂ CSR⊂ ALL 
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2PL (2PL) 

Conflict Serializable (CSR) 

All schedules (ALL) 

Serial (S) 
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S1: w1(x)  w3(x)  w2(y)  w1(y) 

•  S1 cannot be achieved via 2PL: 
The lock by T1 for y must occur after w2(y), 
so the unlock by T1 for x must occur after 
this point (and before w1(x)). Thus, w3(x) 
cannot occur under 2PL where shown in S1 
because T1 holds the x lock at that point. 

•  However, S1 is serializable 
(equivalent to T2, T1, T3). 
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SC: w1(A)  w2(A)  w1(B)  w2(B) 

If you need a bit more practice: 

Are our schedules SC and SD 2PL schedules? 

SD:  w1(A)  w2(A)  w2(B)  w1(B)  
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•  Beyond this simple 2PL protocol, it is all 
a matter of improving performance and 
allowing more concurrency…. 
– Shared locks 
– Multiple granularity 
– Avoid Deadlocks 
–  Inserts, deletes and phantoms 
– Other types of C.C. mechanisms 

• Multiversioning concurrency control 
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Shared locks 

So far: 
S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) … 
 
    Do not conflict 
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Shared locks 

So far: 
S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) … 
 
    Do not conflict 

 
Instead: 
S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)  
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Lock actions 
l-ti(A): lock A in t mode (t is S or X) 
u-ti(A): unlock t mode (t is S or X) 
 
Shorthand: 
ui(A): unlock whatever modes  
   Ti has locked A 
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Rule #1    Well formed transactions 

Ti =... l-S1(A) … r1(A) …  u1 (A) … 

Ti =... l-X1(A) … w1(A) …  u1 (A) … 
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•  What about transactions that read and 
write same object? 

Option 1:  Request exclusive lock 
Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) … 
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Option 2:  Upgrade   
(E.g.,  need to read, but don’t know if will write…) 
 

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)… 
 
 

Think of 
- Get 2nd lock on A, or 
- Drop S, get X lock 

•  What about transactions that read and 
   write same object? 
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Rule #2   Legal scheduler 

S = ....l-Si(A) …  … ui(A) … 
 
    no l-Xj(A) 

 
S = ... l-Xi(A) …    … ui(A) … 
 
     no l-Xj(A) 
     no l-Sj(A) 
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A way to summarize Rule #2 

Compatibility matrix 
 

Comp      S    X 
    S     true       false 
    X  false      false 
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Rule # 3     2PL transactions 

No change except for upgrades: 
(I)  If upgrade gets more locks 
  (e.g., S → {S, X})  then no change! 

(II) If upgrade releases read (shared)  
 lock (e.g., S → X) 

  - can be allowed in growing phase 
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Proof:  similar to X locks case 

Detail: 
l-ti(A), l-rj(A) do not conflict if comp(t,r) 
l-ti(A), u-rj(A) do not conflict if comp(t,r) 
 

Theorem  Rules 1,2,3 ⇒  Conf.serializable 
   for S/X locks           schedules 
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Lock types beyond S/X 

Examples: 
   (1) increment lock 
   (2) update lock 
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Example (1): increment lock 

•  Atomic increment action: INi(A) 
   {Read(A); A ← A+k; Write(A)} 

•  INi(A), INj(A) do not conflict! 
    A=7 

A=5      A=17 
    A=15 

 

INi(A) 
+2 

INj(A) 
+10 

+10 

INj(A) 
+2 

INi(A) 
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Comp    S  X  I 
    S   
    X   
    I   
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Comp    S  X  I 
    S  T  F  F 
    X  F  F  F 
    I  F  F  T 
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Update locks 

A common deadlock problem with upgrades: 
T1     T2 
l-S1(A) 
      l-S2(A) 

l-X1(A) 
      l-X2(A) 
     --- Deadlock --- 
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Solution 

If Ti wants to read A and knows it 
may later want to write A, it requests 
update lock (not shared) 
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Comp    S  X  U 
    S   
    X   
    U    

 
         

             New request 

Lock  
already 
held in 
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Comp    S  X  U 
    S  T  F  T 
    X  F  F  F 
    U   TorF  F  F 

 
        -> symmetric table? 

             New request 

Lock  
already 
held in 
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Note: object A may be locked in different 
   modes at the same time... 

 
S1=...l-S1(A)…l-S2(A)…l-U3(A)…  l-S4(A)…? 
          l-U4(A)…?  
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Note: object A may be locked in different 
   modes at the same time... 

 
S1=...l-S1(A)…l-S2(A)…l-U3(A)…  l-S4(A)…? 
          l-U4(A)…?  

•  To grant a lock in mode t, mode t must 
be compatible with all currently held 
locks on object 
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How does locking work in practice? 

•  Every system is different 
 (E.g., may not even provide  
    CONFLICT-SERIALIZABLE schedules) 

•  But here is one (simplified) way ... 
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(1) Don’t trust transactions to   
  request/release locks 

(2) Hold all locks until transaction   
  commits 

# 
locks 

time 

Sample Locking System: 



Strict Strong 2PL (SS2PL) 

•  2PL + (2) from the last slide 
•  All locks are held until transaction end 
•  Compare with schedule class strict 

(ST) we defined for recovery 
– A transaction never reads or writes items 

written by an uncommitted transactions 

•  SS2PL = (ST ∩ 2PL) 
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2PL (2PL) 

Conflict Serializable (CSR) 

All schedules (ALL) 

Serial (S) 

SS2PL (SS2PL) 
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   Ti 
      Read(A),Write(B) 

 
 
      l(A),Read(A),l(B),Write(B)… 

 
 
 
      Read(A),Write(B) 

Scheduler, part I 

Scheduler, part II 

DB 

lock 
table 
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Lock table    Conceptually 

  A Λ 

B 
C 

Λ 

... 

Lock info for B 

Lock info for C 

If null, object is unlocked 

Ev
er

y 
po

ss
ib

le
 o

bj
ec

t 
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But use hash table: 

A 

If object not found in hash table, it is 
unlocked 

Lock info for A A 

... 
... 

H 
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Lock info for A - example 

             tran mode wait? Nxt T_link 
Object:A 
Group mode:U 
Waiting:yes 
List: 

T1 S no 

T2 U no 

T3 X yes Λ 

To other T3  
records 
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What are the objects we lock? 

         
 
 
        ? 

 

Relation A 

Relation B 

... 

Tuple A 
Tuple B 
Tuple C 

... 

Disk  
block 

A 

Disk  
block 

B 

... 

DB DB DB 
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•  Locking works in any case, but should 
we choose small or large objects? 



CS 525 Notes 14 - Concurrency Control 118 

•  Locking works in any case, but should 
we choose small or large objects? 

•  If we lock large objects (e.g., Relations) 
– Need few locks 
– Low concurrency 

•  If we lock small objects (e.g., tuples,fields) 
– Need more locks 
– More concurrency 
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We can have it both ways!! 

Ask any janitor to give you the solution... 

hall 

Stall 1 Stall 2 Stall 3 Stall 4 

restroom 
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Example 

  R1 

t1 
t2 t3 t4 
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Example 

  R1 

t1 
t2 t3 t4 

T1(IS) 

T1(S) 
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Example 

  R1 

t1 
t2 t3 t4 

T1(IS) 

T1(S) 

, T2(S) 
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Example (b) 

  R1 

t1 
t2 t3 t4 

T1(IS) 

T1(S) 
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Example 

  R1 

t1 
t2 t3 t4 

T1(IS) 

T1(S) 

, T2(IX) 

T2(IX) 
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Multiple granularity 

Comp    Requestor 
      IS   IX  S   SIX  X 
       IS 

      Holder   IX 
        S 

     SIX 

        X 
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Multiple granularity 

Comp    Requestor 
      IS   IX  S   SIX  X 
       IS 

      Holder   IX 
        S 

     SIX 

        X 

T T T T F 
F 
F 
F 
F F F F F 

F F F T 
F T F T 
F F T T 
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Parent   Child can be 
locked in   locked in 
 
 IS 
 IX 
 S 
 SIX 
 X 

P 

C 
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Parent   Child can be locked 
locked in   by same transaction in 
 
 IS 
 IX 
 S 
 SIX 
 X 

P 

C 

IS, S 
IS, S, IX, X, SIX 
none 
X, IX, [SIX] 
none 

not necessary 
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Rules 

(1) Follow multiple granularity comp function 
(2) Lock root of tree first, any mode 
(3) Node Q can be locked by Ti in S or IS only if       
     parent(Q) locked by Ti in IX or IS 
(4) Node Q can be locked by Ti in X,SIX,IX only  
     if parent(Q) locked by Ti in IX,SIX 
(5) Ti is two-phase 
(6) Ti can unlock node Q only if none of Q’s       
     children are locked by Ti 
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Exercise: 
•  Can T2 access object f2.2 in X mode? 

What locks will T2 get? 

R1 

t1 
t2 t3 t4 T1(IX) 

f2.1 f2.2 f3.1 f3.2 

T1(IX) 

T1(X) 
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Exercise: 
•  Can T2 access object f2.2 in X mode? 

What locks will T2 get? 

R1 

t1 
t2 t3 t4 T1(X) 

f2.1 f2.2 f3.1 f3.2 

T1(IX) 
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Exercise: 
•  Can T2 access object f3.1 in X mode? 

What locks will T2 get? 

R1 

t1 
t2 t3 t4 T1(S) 

f2.1 f2.2 f3.1 f3.2 

T1(IS) 



CS 525 Notes 14 - Concurrency Control 133 

Exercise: 
•  Can T2 access object f2.2 in S mode? 

What locks will T2 get? 

R1 

t1 
t2 t3 t4 T1(IX) 

f2.1 f2.2 f3.1 f3.2 

T1(SIX) 

T1(X) 
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Exercise: 
•  Can T2 access object f2.2 in X mode? 

What locks will T2 get? 

R1 

t1 
t2 t3 t4 T1(IX) 

f2.1 f2.2 f3.1 f3.2 

T1(SIX) 

T1(X) 
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Insert + delete operations 

 
 
 
 
         Insert 

A 

Z 
α	



... 
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Modifications to locking rules: 

(1) Get exclusive lock on A before 
deleting A 

(2) At insert A operation by Ti, 
 Ti is given exclusive lock on A 
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Still have a problem: Phantoms 

Example: relation R (E#,name,…) 
   constraint: E# is key 
   use tuple locking 

 
R   E#  Name  …. 
  o1  55  Smith   
  o2  75  Jones   
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T1: Insert <08,Obama,…> into R 
T2: Insert <08,McCain,…> into R 

   T1            T2 

S1(o1)           S2(o1) 

S1(o2)           S2(o2) 

Check Constraint       Check Constraint 
 
Insert o3[08,Obama,..] 
          Insert o4[08,McCain,..] 

 

... ... 
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Solution 

•  Use multiple granularity tree 
•  Before insert of node Q, 
   lock parent(Q) in 
   X mode R1 

t1 
t2 t3 
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Back to example 
T1: Insert<04,Kerry>   T2: Insert<04,Bush> 

  T1       T2 

X1(R) 
      

 
Check constraint    
Insert<04,Kerry> 
U(R) 

     X2(R) 
     Check constraint 
     Oops! e# = 04 already in R! 
      

X2(R) delayed 
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Instead of using R, can use index on R: 

Example: R 

Index 
0<E#<100 

Index 
100<E#<200 

E#=2 E#=5 E#=107 E#=109 ... 

... 

... 
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•  This approach can be generalized to 
multiple indexes... 
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Next: 

•  Tree-based concurrency control 
•  Validation concurrency control 
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Example 

A 

B C 

D 

E F 

•  all objects accessed 
  through root, 
  following pointers 
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Example 

A 

B C 

D 

E F 

•  all objects accessed 
  through root, 
  following pointers 

T1 lock 

T1 lock T1 lock 
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Example 

A 

B C 

D 

E F 

•  all objects accessed 
  through root, 
  following pointers 

T1 lock 

T1 lock T1 lock 

E can we release A lock 
    if we no longer need A?? 
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Idea: traverse like “Monkey Bars” 

A 

B C 

D 

E F 
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Idea: traverse like “Monkey Bars” 

A 

B C 

D 

E F 

T1 lock 

T1 lock 
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Idea: traverse like “Monkey Bars” 

A 

B C 

D 

E F 

T1 lock 

T1 lock 
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Why does this work? 

•  Assume all Ti start at root; exclusive lock 
•  Ti → Tj  ⇒ Ti locks root before Tj 

 

•  Actually works if we don’t always 
   start at root 

Root 

Q   Ti → Tj 
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Rules: tree protocol (exclusive locks) 

(1) First lock by Ti may be on any item 
(2) After that, item Q can be locked by Ti 

 only if parent(Q) locked by Ti 

(3) Items may be unlocked at any time 
(4) After Ti unlocks Q, it cannot relock Q 



CS 525 Notes 14 - Concurrency Control 152 

•  Tree-like protocols are used typically for 
B-tree concurrency control 

E.g., during insert, do not release parent lock, until you 
are certain child does not have to split 

Root 
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Tree Protocol with Shared Locks 

•  Rules for shared & exclusive locks? 

A 

B C 

D 

E F 

T1 S lock(released) 

T1 S lock (held) 

T1 X lock (released) 

T1 X lock (will get) 
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Tree Protocol with Shared Locks 

•  Rules for shared & exclusive locks? 

A 

B C 

D 

E F 

T1 S lock(released) 

T1 S lock (held) 

T1 X lock (released) 

T1 X lock (will get) 

T2 reads: 
•  B modified by T1 

•  F not yet modified by T1 
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•  Need more restrictive protocol 
•  Will this work?? 

– Once T1 locks one object in X mode, 
all further locks down the tree must be 
in X mode 

Tree Protocol with Shared Locks 



Deadlocks (again) 

•  Before we assumed that we are able to 
detect deadlocks and resolve them 

•  Now two options 
–  (1) Deadlock detection (and resolving) 
–  (2) Deadlock prevention 
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Deadlock Prevention 

•  Option 1: 
– 2PL + transaction has to acquire all locks 

at transaction start following a global order 
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# 
locks 

time 



Deadlock Prevention 

•  Option 1: 
– Long lock durations L 
– Transaction has to know upfront what data 

items it will access L 
• E.g.,  
UPDATE R SET a = a + 1 WHERE b < 15 
• We don’t know what tuples are in R! 
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Deadlock Prevention 

•  Option 2: 
– Define some global order of data items O 
– Transactions have to acquire locks 

according to this order 

•  Example (X < Y < Z) 
l1(X), l1(Z) (OK) 
l1(Y), l1(X) (NOT OK) 
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Deadlock Prevention 

•  Option 2: 
– Accessed data items have to be known 

upfront L 
– or access to data has to follow the order L 
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Deadlock Prevention 

•  Option 3 (Preemption) 
– Roll-back transactions that wait for locks 

under certain conditions 
– 3 a) wait-die 

• Assign timestamp to each transaction 
•  If transaction Ti waits for Tj to release a lock 

–  Timestamp Ti < Tj -> wait 
–  Timestamp Ti > Tj -> roll-back Ti 
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Deadlock Prevention 

•  Option 3 (Preemption) 
– Roll-back transactions that wait for locks 

under certain conditions 
– 3 a) wound-wait 

• Assign timestamp to each transaction 
•  If transaction Ti waits for Tj to release a lock 

–  Timestamp Ti < Tj -> roll-back Tj 

–  Timestamp Ti > Tj -> wait 
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Deadlock Prevention 

•  Option 3: 
– Additional transaction roll-backs L 
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Timeout-based Scheme 

•  Option 4: 
– After waiting for a lock longer than X, a 

transaction is rolled back 
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Timeout-based Scheme 

•  Option 4: 
– Simple scheme J 
– Hard to find a good value of X 

• To high: long wait times for a transaction 
before it gets eventually aborted 

• To low: to many transaction that are not 
deadlock get aborted 
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Deadlock Detection and 
Resolution 

•  Data structure to detect deadlocks: 
wait-for graph 
– One node for each transaction 
– Edge Ti->Tj if Ti is waiting for Tj 

– Cycle -> Deadlock 
• Abort one of the transaction in cycle to resolve 

deadlock 
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Deadlock Detection and 
Resolution 

•  When do we run the detection? 
•  How to choose the victim? 
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T1 T2 

T3 T4 T5 
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Optimistic Concurrency Control: 
Validation 
Transactions have 3 phases: 
(1) Read 

– all DB values read 
– writes to temporary storage 
– no locking 

(2) Validate 
– check if schedule so far is serializable 

(3) Write 
–  if validate ok, write to DB 
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Key idea 

•  Make validation atomic 
•  If T1, T2, T3, … is validation order, then 

resulting schedule will be conflict 
equivalent to Ss = T1 T2 T3... 
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To implement validation, system keeps 
two sets: 

•  FIN = transactions that have finished  
  phase 3 (and are all done) 

•  VAL = transactions that have   
  successfully finished phase 2   
 (validation) 
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Example of what validation must prevent: 

  RS(T2)={B}    RS(T3)={A,B} 
  WS(T2)={B,D}   WS(T3)={C} 

time 

T2 
start 

T2 
validated 

T3 
validated 

T3 
start 

∩ = φ 
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T2 
finish 

phase 3 

Example of what validation must prevent: 

  RS(T2)={B}    RS(T3)={A,B} 
  WS(T2)={B,D}   WS(T3)={C} 

time 

T2 
start 

T2 
validated 

T3 
validated 

T3 
start 

∩ = φ 

allow 

T3 
start 
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Another thing validation must prevent: 

  RS(T2)={A}      RS(T3)={A,B} 
  WS(T2)={D,E}  WS(T3)={C,D} 

time 

T2 
validated 

T3 
validated 

finish 
T2 
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Another thing validation must prevent: 

  RS(T2)={A}      RS(T3)={A,B} 
  WS(T2)={D,E}  WS(T3)={C,D} 

time 

T2 
validated 

T3 
validated 

finish 
T2 

BAD:  w3(D)  w2(D) 
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finish 
T2 

Another thing validation must prevent: 

  RS(T2)={A}      RS(T3)={A,B} 
  WS(T2)={D,E}  WS(T3)={C,D} 

time 

T2 
validated 

T3 
validated 

allow 

finish 
T2 
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Validation rules for Tj: 

(1) When Tj starts phase 1:  
  ignore(Tj) ← FIN 

(2) at Tj Validation: 
   if check (Tj) then   
    [ VAL ← VAL U {Tj}; 
      do write phase; 
      FIN  ←FIN U {Tj}  ] 
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Check (Tj): 

  For Ti ∈ VAL - IGNORE (Tj)  DO 

   IF [ WS(Ti) ∩  RS(Tj) ≠ ∅ OR 

   Ti ∉ FIN ] THEN RETURN false; 
  RETURN true; 
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Check (Tj): 

  For Ti ∈ VAL - IGNORE (Tj)  DO 

   IF [ WS(Ti) ∩  RS(Tj) ≠ ∅ OR 

   Ti ∉ FIN ] THEN RETURN false; 
  RETURN true; 

 
   Is this check too restrictive ? 
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Improving Check(Tj) 

For Ti ∈ VAL - IGNORE (Tj)  DO  
 IF [ WS(Ti) ∩  RS(Tj) ≠ ∅ OR 
  (Ti ∉ FIN  AND WS(Ti) ∩ WS(Tj) ≠ ∅)] 
   THEN RETURN false; 

RETURN true; 



CS 525 Notes 14 - Concurrency Control 180 

Exercise: 

T: RS(T)={A,B} 
     WS(T)={A,C} 

V: RS(V)={B} 
     WS(V)={D,E} 

U: RS(U)={B} 
        WS(U)={D} 

W: RS(W)={A,D} 
       WS(W)={A,C} 

start 
validate 
finish 
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Is Validation = 2PL? 

2PL 
Val 

2PL 
Val 

2PL 
Val 

Val 
2PL 
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S2:  w2(y)  w1(x)  w2(x) 

•  S2 can be achieved with 2PL: 
l2(y) w2(y) l1(x) w1(x) u1(x)  l2(x) w2(x) u2(y) u2(x) 

•  S2 cannot be achieved by validation: 
The validation point of T2, val2 must occur before 
w2(y) since transactions do not write to the database 
until after validation. Because of the conflict on x, 
val1 < val2, so we must have something like 
      S2:  val1  val2  w2(y)  w1(x)  w2(x) 
With the validation protocol, the writes of T2 should 
not start until T1 is all done with its writes, which is 
not the case.  
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Validation subset of 2PL? 

•  Possible proof (Check!): 
– Let S be validation schedule 
– For each T in S insert lock/unlocks, get S’: 

• At T start: request read locks for all of RS(T) 
• At T validation: request write locks for WS(T); 

release read locks for read-only objects 
• At T end: release all write locks 

– Clearly transactions well-formed and 2PL 
– Must show S’ is legal (next page) 
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•  Say S’ not legal: 
S’: ... l1(x)     w2(x)  r1(x)   val1 u2(x) ... 
–  At val1: T2 not in Ignore(T1); T2 in VAL 

–  T1 does not validate: WS(T2) ∩  RS(T1) ≠ ∅ 
–  contradiction! 

•  Say S’ not legal: 
S’: ... val1 l1(x)     w2(x)  w1(x)   u2(x) ... 
–  Say T2 validates first (proof similar in other case) 
–  At val1: T2 not in Ignore(T1); T2 in VAL 
–  T1 does not validate: 

T2 ∉ FIN  AND WS(T1) ∩ WS(T2) ≠ ∅) 
–  contradiction! 
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Validation (also called optimistic 
concurrency control) is useful in 
some cases: 
  - Conflicts rare 
  - System resources plentiful 
  - Have real time constraints 



Multiversioning Concurrency 
Control (MVCC) 

•  Keep old versions of data item and use 
this to increase concurrency 

•  Each write creates a new version of the 
written data item 

•  Use version numbers of timestamps to 
identify versions 
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Multiversioning Concurrency 
Control (MVCC) 

•  Different transactions operate over 
different versions of data items 

•  -> readers never have to wait for writers 
•  -> great for combined workloads 

–  OLTP workload (writes, only access small number 
of tuples, short) 

–  OLAP workload (reads, access large portions of 
database, long running) 
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MVCC schemes 

•  MVCC timestamp ordering 
•  MVCC 2PL 
•  Snapshot isolation (SI) 

–  We will only cover this one 
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Snapshot Isolation (SI) 
•  Each transaction T is assigned a timestamp 

S(T) when it starts 
•  Each write creates a new data item version 

timestamped with the current timestamp 
•  When a transaction commits, then the latest 

versions created by the transaction get a 
timestamp C(T) as of the commit 
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Snapshot Isolation (SI) 

•  Under snapshot isolation each 
transaction T sees a consistent 
snapshot of the database as of S(T) 
–  It only sees data item versions of 

transactions that committed before T 
started 

–  It also sees its own changes 
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First Updater Wins Rule (FUW) 

•  Two transactions Ti and Tj may update 
the same data item A 
– To avoid lost updates only one of the two 

can be safely committed 

•  First Updater Wins Rules 
– The transaction that updated A first is 

allowed to commit 
– The other transaction is aborted 
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First Committer Wins Rule 
(FCW) 

•  Two transactions Ti and Tj may update 
the same data item A 
– To avoid lost updates only one of the two 

can be safely committed 

•  First Committer Wins Rules 
– The transaction that attempts to commit 

first is allowed to commit 
– The other transaction is aborted 
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T1! T2! T3!

W(Y := 1)"
Commit"

Start"
R(X) à 0"
R(Y)à 1"

W(X:=2)"
W(Z:=3)"
Commit"

R(Z) à 5"
R(Y) à 1"
W(X:=3)"
Commit-Req"
Abort"

Concurrent updates not visible"
"

Not first-committer of X"
Serialization error, T2 is rolled back"

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

X! Y! Z!

0"
0"
"
"
"
"
2"
2"
"
"
"
"
3"

1"
"
"
"
"
"
"

5"
"
"
"
"
"
3"
3"

©Silberschatz, Korth and Sudarshan!

Update not visible outside of T1"
Update becomes visible to"

 future transactions"



Why does that work? 

•  Since all transactions see a consistent 
snapshot and their changes are only 
made “public” once they commit 
–  It looks like the transactions have been 

executed in the order of their commits* 

* Recall the writes to the same data item 
are disallowed for concurrent transactions 
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Is that serializable? 

•  Almost ;-) 
•  There is still one type of conflict which 

cannot occur in serialize schedules 
called write-skew 
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Write Skew 

•  Consider two data items A and B 
– A = 5, B = 5 

•  Concurrent Transactions T1 and T2 
– T1: A = A + B 
– T2: B = A + B 

•  Final result under SI 
– A = 10, B = 10 
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Write Skew 

•  Consider serial schedules: 
– T1, T2: A=10, B=15 
– T2, T1: A=15, B=10 

•  What is the problem 
– Under SI both T1 and T2 do not see each 

others changes 
–  In any serial schedule one of the two 

would see the others changes 
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Example: Oracle 
•  Tuples are updated in place 
•  Old versions in separate ROLLBACK segment 

–  GC once nobody needs them anymore 

•  How to implement the FCW or FUW? 
–  Oracle uses write locks to block concurrent writes 
–  Transaction waiting for a write lock aborts if 

transaction holding the lock commits 
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SI Discussion 
•  Advantages 

–  Readers and writers do not block each other 
–  If we do not GC old row versions we can go back 

to previous versions of the database -> Time 
travel 

•  E.g., show me the customer table as it was yesterday 

•  Disadvantages 
–  Storage overhead to keep old row versions 
–  GC overhead 
–  Not strictly serializable 
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Summary 
Have studied CC mechanisms used in practice 

 - 2 PL variants 
 - Multiple lock granularity 
 - Deadlocks 
 - Tree (index) protocols 
 - Optimistic CC (Validation) 
 - Multiversioning Concurrency Control (MVCC) 

 
 

  


