
CS 525 Notes 14 - Concurrency Control 1

CS 525: Advanced Database
Organization

14: Concurrency
 Control
Boris Glavic

Slides: adapted from a course taught by

Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 14 - Concurrency Control 2

Chapter 18 [18] Concurrency Control

 T1 T2 … Tn

DB
(consistency
constraints)

CS 525 Notes 14 - Concurrency Control 3

Example:

T1: Read(A) T2: Read(A)
 A ← A+100 A ← A×2
 Write(A) Write(A)
 Read(B) Read(B)
 B ← B+100 B ← B×2
 Write(B) Write(B)

Constraint: A=B

CS 525 Notes 14 - Concurrency Control 4

Schedule A

T1 T2
Read(A); A ← A+100
Write(A);
Read(B); B ← B+100;
Write(B);

 Read(A);A ← A×2;
 Write(A);

 Read(B);B ← B×2;
 Write(B);

CS 525 Notes 14 - Concurrency Control 5

Schedule A

T1 T2
Read(A); A ← A+100
Write(A);
Read(B); B ← B+100;
Write(B);

 Read(A);A ← A×2;
 Write(A);

 Read(B);B ← B×2;
 Write(B);

A B
25 25

125

 125

250

 250
250 250

CS 525 Notes 14 - Concurrency Control 6

Schedule B

T1 T2

 Read(A);A ← A×2;
 Write(A);

 Read(B);B ← B×2;
 Write(B);

Read(A); A ← A+100
Write(A);
Read(B); B ← B+100;
Write(B);

CS 525 Notes 14 - Concurrency Control 7

Schedule B

T1 T2

 Read(A);A ← A×2;
 Write(A);

 Read(B);B ← B×2;
 Write(B);

Read(A); A ← A+100
Write(A);
Read(B); B ← B+100;
Write(B);

A B
25 25

50

 50

150

 150
150 150

CS 525 Notes 14 - Concurrency Control 8

Schedule C

T1 T2
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×2;
 Write(A);

Read(B); B ← B+100;
Write(B);

 Read(B);B ← B×2;
 Write(B);

CS 525 Notes 14 - Concurrency Control 9

Schedule C

T1 T2
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×2;
 Write(A);

Read(B); B ← B+100;
Write(B);

 Read(B);B ← B×2;
 Write(B);

A B
25 25

125

250

 125

 250
250 250

CS 525 Notes 14 - Concurrency Control 10

Schedule D

T1 T2
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×2;
 Write(A);

 Read(B);B ← B×2;
 Write(B);

Read(B); B ← B+100;
Write(B);

CS 525 Notes 14 - Concurrency Control 11

Schedule D

T1 T2
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×2;
 Write(A);

 Read(B);B ← B×2;
 Write(B);

Read(B); B ← B+100;
Write(B);

A B
25 25

125

250

 50

 150
250 150

CS 525 Notes 14 - Concurrency Control 12

Schedule E

T1 T2’
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×1;
 Write(A);

 Read(B);B ← B×1;
 Write(B);

Read(B); B ← B+100;
Write(B);

Same as Schedule D
but with new T2’

CS 525 Notes 14 - Concurrency Control 13

Schedule E

T1 T2’
Read(A); A ← A+100
Write(A);

 Read(A);A ← A×1;
 Write(A);

 Read(B);B ← B×1;
 Write(B);

Read(B); B ← B+100;
Write(B);

A B
25 25

125

125

 25

 125
125 125

Same as Schedule D
but with new T2’

Serial Schedules

•  As long as we do not execute
transactions in parallel and each
transaction does not violate the
constraints we are good
– All schedules with no interleaving of

transaction operations are called serial
schedules

CS 525 Notes 14 - Concurrency Control 14

Definition: Serial Schedule

•  No transactions are interleaved
– There exists no two operations from

transactions Ti and Tj so that both
operations are executed before either
transaction commits

CS 525 Notes 14 - Concurrency Control 15

CS 525 Notes 12 - Transaction
Management

16

T1 = r1(A),w1(A),r1(B),w1(B),c1 !

T2 = r2(A),w2(A),r2(B),w2(B),c2 !

Serial Schedule
S1 = r2(A),w2(A),r2(B),w2(B),c2,r1(A),w1(A),r1(B),w1(B),c1 !

S2 = r2(A),w2(A),r1(A),w1(A),r2(B),w2(B),c2,r1(B),w1(B),c1 !
!

Nonserial Schedule

Compare Classes

S ⊂ ST ⊂ CL ⊂ RC ⊂ ALL

CS 525 Notes 13 - Failure and Recovery 17

•  Abbreviations
– S = Serial
– ST = Strict
– CL = Cascadeless
– RC = Recoverable
– ALL = all possible schedules

CS 525 Notes 13 - Failure and Recovery 18

Strict (ST)

Cascadeless (CL)

Recoverable (RC)

All schedules (ALL)

Serial (S)

Why not serial schedules?

•  No concurrency! L

CS 525 Notes 14 - Concurrency Control 19

CS 525 Notes 14 - Concurrency Control 20

•  Want schedules that are “good”,
 regardless of

–  initial state and
–  transaction semantics

•  Only look at order of read and writes

Example:
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Outline
•  Since serial schedules have good

properties we would like our schedules
to behave like (be equivalent to) serial
schedules
1.  Need to define equivalence based solely

on order of operations
2.  Need to define class of schedules which is

equivalent to serial schedule
3.  Need to design scheduler that guarantees

that we only get these good schedules

CS 525 Notes 14 - Concurrency Control 21

CS 525 Notes 14 - Concurrency Control 22

Sc‘=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

 T1 T2

Example:
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

CS 525 Notes 14 - Concurrency Control 23

However, for Sd:
Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

•  as a matter of fact,
 T2 must precede T1

 in any equivalent schedule,
 i.e., T2 → T1

CS 525 Notes 14 - Concurrency Control 24

T1 T2 Sd cannot be rearranged
 into a serial schedule
 Sd is not “equivalent” to
 any serial schedule
 Sd is “bad”

•  T2 → T1

•  Also, T1 → T2

CS 525 Notes 14 - Concurrency Control 25

Returning to Sc

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

 T1 → T2 T1 → T2

CS 525 Notes 14 - Concurrency Control 26

Returning to Sc

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

 T1 → T2 T1 → T2

E no cycles ⇒ Sc is “equivalent” to a
 serial schedule
 (in this case T1,T2)

CS 525 Notes 14 - Concurrency Control 27

Concepts

Transaction: sequence of ri(x), wi(x) actions
Conflicting actions: r1(A) w2(A) w1(A)

 w2(A) r1(A) w2(A)

Schedule: represents chronological order
 in which actions are executed

Serial schedule: no interleaving of actions
 or transactions

CS 525 Notes 14 - Concurrency Control 28

What about concurrent actions?

Ti issues System Input(X) t ← x
read(x,t) issues completes
 input(x)

time

CS 525 Notes 14 - Concurrency Control 29

What about concurrent actions?

Ti issues System Input(X) t ← x
read(x,t) issues completes
 input(x)

time

T2 issues
write(B,S)

System
issues

input(B)

input(B)
completes

B ← S

System
issues

output(B)
output(B)
completes

CS 525 Notes 14 - Concurrency Control 30

So net effect is either
•  S=…r1(x)…w2(b)… or
•  S=…w2(B)…r1(x)…

CS 525 Notes 14 - Concurrency Control 31

What about conflicting, concurrent actions
on same object?
 start r1(A) end r1(A)

start w2(A) end w2(A)

time

CS 525 Notes 14 - Concurrency Control 32

•  Assume equivalent to either r1(A) w2(A)
 or w2(A) r1(A)

• ⇒ low level synchronization mechanism
•  Assumption called “atomic actions”

What about conflicting, concurrent actions
on same object?
 start r1(A) end r1(A)

start w2(A) end w2(A)

time

Outline
•  Since serial schedules have good

properties we would like our schedules
to behave like (be equivalent to) serial
schedules
1.  Need to define equivalence based solely

on order of operations
2.  Need to define class of schedules which is

equivalent to serial schedule
3.  Need to design scheduler that guarantees

that we only get these good schedules

CS 525 Notes 14 - Concurrency Control 33

Conflict Equivalence

•  Define equivalence based on the order
of conflicting actions

CS 525 Notes 14 - Concurrency Control 34

CS 525 Notes 14 - Concurrency Control 35

Definition

S1, S2 are conflict equivalent schedules
 if S1 can be transformed into S2 by a
series of swaps on non-conflicting
actions.

Alternatively:
If the order of conflicting actions in S1

and S2 is the same

Outline
•  Since serial schedules have good

properties we would like our schedules
to behave like (be equivalent to) serial
schedules
1.  Need to define equivalence based solely

on order of operations
2.  Need to define class of schedules which is

equivalent to serial schedule
3.  Need to design scheduler that guarantees

that we only get these good schedules

CS 525 Notes 14 - Concurrency Control 36

CS 525 Notes 14 - Concurrency Control 37

Definition

A schedule is conflict serializable (CSR) if
it is conflict equivalent to some serial
schedule.

How to check?
•  Compare orders of all conflicting

operations
•  Can be simplified because there is some

redundant information here, e.g.,

– W2(A) conflicts with R1(A)
– W2(B) conflicts with W1(B)
– Both imply that T2 has to be executed

before T1 in any equivalent serial schedule

CS 525 Notes 14 - Concurrency Control 38

S1 = w2(A),w2(B),r1(A),w1(B) !

CS 525 Notes 14 - Concurrency Control 39

Nodes: transactions in S
Arcs: Ti → Tj whenever
 - pi(A), qj(A) are actions in S
 - pi(A) <S qj(A)
 - at least one of pi, qj is a write

Conflict graph P(S) (S is schedule)

CS 525 Notes 14 - Concurrency Control 40

Exercise:

•  What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

•  Is S serializable?

CS 525 Notes 14 - Concurrency Control 41

Exercise:

•  What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

•  Is S serializable?

T1 T2

T3 T4

CS 525 Notes 14 - Concurrency Control 42

Exercise:

•  What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

•  Is S serializable?

T1 T2

T3 T4

CS 525 Notes 14 - Concurrency Control 43

Another Exercise:

•  What is P(S) for
S = w1(A) r2(A) r3(A) w4(A) ?

CS 525 Notes 14 - Concurrency Control 44

Another Exercise:

•  What is P(S) for
S = w1(A) r2(A) r3(A) w4(A) ?

T1 T2

T3 T4

CS 525 Notes 14 - Concurrency Control 45

Lemma

S1, S2 conflict equivalent ⇒ P(S1)=P(S2)

CS 525 Notes 14 - Concurrency Control 46

Lemma

S1, S2 conflict equivalent ⇒ P(S1)=P(S2)
Proof: (a → b same as ¬b → ¬a)
Assume P(S1) ≠ P(S2)
⇒ ∃ Ti: Ti → Tj in S1 and not in S2

⇒ S1 = …pi(A)... qj(A)… pi, qj
 S2 = …qj(A)…pi(A)... conflict

⇒ S1, S2 not conflict equivalent

CS 525 Notes 14 - Concurrency Control 47

Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent

CS 525 Notes 14 - Concurrency Control 48

Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent

Counter example:

S1=w1(A) r2(A) w2(B) r1(B)

S2=r2(A) w1(A) r1(B) w2(B)

CS 525 Notes 14 - Concurrency Control 49

Theorem

P(S1) acyclic ⇐⇒ S1 conflict serializable

(⇐) Assume S1 is conflict serializable
⇒ ∃ Ss: Ss, S1 conflict equivalent
⇒ P(Ss) = P(S1)

⇒ P(S1) acyclic since P(Ss) is acyclic

CS 525 Notes 14 - Concurrency Control 50

(⇒) Assume P(S1) is acyclic
Transform S1 as follows:
(1) Take T1 to be transaction with no incident arcs
(2) Move all T1 actions to the front

 S1 = ……. qj(A)…….p1(A)…..

(3) we now have S1 = < T1 actions ><... rest ...>
(4) repeat above steps to serialize rest!

T1

T2 T3

 T4

Theorem
P(S1) acyclic ⇐⇒ S1 conflict serializable

What’s the damage?

•  Classification of “bad” things that can
happen in “bad” schedules
– Dirty reads
– Non-repeatable reads
– Phantom reads (later)

CS 525 Notes 14 - Concurrency Control 51

Dirty Read

•  A transaction T1 read a value that has
been updated by an uncommitted
transaction T2

•  If T2 aborts then the value read by T1 is
invalid

CS 525 Notes 14 - Concurrency Control 52

CS 525 Notes 14 - Concurrency Control 53

Dirty Read

T1 T2

Read(A), A += 100
Write(A);

 Read(A), A +=200
Abort

 Write(A);

S1 = r1(A),w1(A),r2(A),a1,w2(A) !

T1 T2

A=50
T1: A = 150
A = 150
T2: A = 350

Non-repeatable Read

•  A transaction T1 reads items; some
before and some after an update of
these item by a transaction T2

•  Problem
– Repeated reads of the same item see

different values
– Some values are modified and some are

not

CS 525 Notes 14 - Concurrency Control 54

CS 525 Notes 14 - Concurrency Control 55

Inconsistent Read

T1 T2

Read(A)
 Read(A), A /= 2
 Write(A)
 Commit

Read(A)
Commit

S1 = r1(A),r2(A),w2(A),c2,r1(A),c1 !

T1 T2

A = 100

A = 50

A = 50

CS 525 Notes 14 - Concurrency Control 56

How to enforce serializable schedules?

Option 1: run system, recording P(S);
 at end of day, check for P(S)
 cycles and declare if execution
 was good

CS 525 Notes 14 - Concurrency Control 57

How to enforce serializable schedules?

Option 1: run system, recording P(S);
 at end of day, check for P(S)
 cycles and declare if execution
 was good

This is called optimistic concurrency

control

CS 525 Notes 14 - Concurrency Control 58

Option 2: prevent P(S) cycles from
 occurring

 T1 T2 ….. Tn

Scheduler

DB

How to enforce serializable schedules?

CS 525 Notes 14 - Concurrency Control 59

Option 2: prevent P(S) cycles from
 occurring

This is called pessimistic concurrency

control

How to enforce serializable schedules?

CS 525 Notes 14 - Concurrency Control 60

A locking protocol

Two new actions:
 lock (exclusive): li (A)

 unlock: ui (A)

scheduler

T1 T2
lock
table

CS 525 Notes 14 - Concurrency Control 61

Rule #1: Well-formed transactions

Ti: … li(A) … pi(A) … ui(A) ...

1)  Transaction has to lock A before it can

access A
2)  Transaction has to unlock A eventually
3)  Transaction cannot access A after

unlock

CS 525 Notes 14 - Concurrency Control 62

Rule #2 Legal scheduler

S = …….. li(A) ………... ui(A) ……...

4) Only one transaction can hold a lock

on A at the same time

 no lj(A)

CS 525 Notes 14 - Concurrency Control 63

•  What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

CS 525 Notes 14 - Concurrency Control 64

•  What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

CS 525 Notes 14 - Concurrency Control 65

Schedule F

T1 T2
l1(A);Read(A)
A A+100;Write(A);u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);u2(A)
 l2(B);Read(B)
 B Bx2;Write(B);u2(B)

l1(B);Read(B)
B B+100;Write(B);u1(B)

CS 525 Notes 14 - Concurrency Control 66

Schedule F

T1 T2 25 25
l1(A);Read(A)
A A+100;Write(A);u1(A) 125

 l2(A);Read(A)
 A Ax2;Write(A);u2(A) 250
 l2(B);Read(B)
 B Bx2;Write(B);u2(B) 50

l1(B);Read(B)
B B+100;Write(B);u1(B) 150

 250 150

A B

CS 525 Notes 14 - Concurrency Control 67

Rule #3 Two phase locking (2PL)
 for transactions

Ti = ……. li(A) ………... ui(A) ……...

5) A transaction does not require new

locks after its first unlock operation

no unlocks no locks

CS 525 Notes 14 - Concurrency Control 68

locks
held by
Ti

 Time
 Growing Shrinking
 Phase Phase

CS 525 Notes 14 - Concurrency Control 69

Schedule G

T1 T2
l1(A);Read(A)
A A+100;Write(A)
l1(B); u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);l2(B)

delayed

CS 525 Notes 14 - Concurrency Control 70

Schedule G

T1 T2
l1(A);Read(A)
A A+100;Write(A)
l1(B); u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);l2(B)

Read(B);B B+100
Write(B); u1(B)

delayed

CS 525 Notes 14 - Concurrency Control 71

Schedule G

T1 T2
l1(A);Read(A)
A A+100;Write(A)
l1(B); u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);l2(B)

Read(B);B B+100
Write(B); u1(B)

 l2(B); u2(A);Read(B)
 B Bx2;Write(B);u2(B);

delayed

CS 525 Notes 14 - Concurrency Control 72

Schedule H (T2 reversed)

T1 T2
l1(A); Read(A) l2(B);Read(B)
A A+100;Write(A) B Bx2;Write(B)
l1(B) l2(A)
 delayed delayed

Deadlock
•  Two or more transactions are waiting

for each other to release a lock
•  In the example

– T1 is waiting for T2 and is making no
progress

– T2 is waiting for T1 and is making no
progress

–  -> if we do not do anything they would
wait forever

CS 525 Notes 14 - Concurrency Control 73

CS 525 Notes 14 - Concurrency Control 74

•  Assume deadlocked transactions are
rolled back
– They have no effect
– They do not appear in schedule
– Come back to that later

E.g., Schedule H =
 This space intentionally
 left blank!

CS 525 Notes 14 - Concurrency Control 75

Next step:

Show that rules #1,2,3 ⇒ conflict-
 serializable
 schedules

CS 525 Notes 14 - Concurrency Control 76

Conflict rules for li(A), ui(A):

•  li(A), lj(A) conflict
•  li(A), uj(A) conflict

Note: no conflict < ui(A), uj(A)>, < li(A), rj(A)>,...

CS 525 Notes 14 - Concurrency Control 77

Theorem Rules #1,2,3 ⇒ conflict
 (2PL) serializable
 schedule

CS 525 Notes 14 - Concurrency Control 78

Theorem Rules #1,2,3 ⇒ conflict
 (2PL) serializable
 schedule

To help in proof:
Definition Shrink(Ti) = SH(Ti) =

 first unlock
 action of Ti

CS 525 Notes 14 - Concurrency Control 79

Lemma
Ti → Tj in S ⇒ SH(Ti) <S SH(Tj)

CS 525 Notes 14 - Concurrency Control 80

Lemma
Ti → Tj in S ⇒ SH(Ti) <S SH(Tj)

Proof of lemma:
Ti → Tj means that
 S = … pi(A) … qj(A) …; p,q conflict

By rules 1,2:
 S = … pi(A) … ui(A) … lj(A) ... qj(A) …

CS 525 Notes 14 - Concurrency Control 81

Lemma
Ti → Tj in S ⇒ SH(Ti) <S SH(Tj)

Proof of lemma:
Ti → Tj means that
 S = … pi(A) … qj(A) …; p,q conflict

By rules 1,2:
 S = … pi(A) … ui(A) … lj(A) ... qj(A) …

By rule 3: SH(Ti) SH(Tj)
So, SH(Ti) <S SH(Tj)

CS 525 Notes 14 - Concurrency Control 82

Proof:
(1) Assume P(S) has cycle
 T1 → T2 →…. Tn → T1

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1)

(3) Impossible, so P(S) acyclic
(4) ⇒ S is conflict serializable

Theorem Rules #1,2,3 ⇒ conflict
 (2PL) serializable
 schedule

CS 525 Notes 14 - Concurrency Control 83

2PL subset of Serializable

S ⊂ 2PL⊂ CSR⊂ ALL

CS 525 Notes 13 - Failure and Recovery 84

2PL (2PL)

Conflict Serializable (CSR)

All schedules (ALL)

Serial (S)

CS 525 Notes 14 - Concurrency Control 85

S1: w1(x) w3(x) w2(y) w1(y)

•  S1 cannot be achieved via 2PL:
The lock by T1 for y must occur after w2(y),
so the unlock by T1 for x must occur after
this point (and before w1(x)). Thus, w3(x)
cannot occur under 2PL where shown in S1
because T1 holds the x lock at that point.

•  However, S1 is serializable
(equivalent to T2, T1, T3).

CS 525 Notes 14 - Concurrency Control 86

SC: w1(A) w2(A) w1(B) w2(B)

If you need a bit more practice:

Are our schedules SC and SD 2PL schedules?

SD: w1(A) w2(A) w2(B) w1(B)

CS 525 Notes 14 - Concurrency Control 87

•  Beyond this simple 2PL protocol, it is all
a matter of improving performance and
allowing more concurrency….
– Shared locks
– Multiple granularity
– Avoid Deadlocks
–  Inserts, deletes and phantoms
– Other types of C.C. mechanisms

• Multiversioning concurrency control

CS 525 Notes 14 - Concurrency Control 88

Shared locks

So far:
S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

 Do not conflict

CS 525 Notes 14 - Concurrency Control 89

Shared locks

So far:
S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

 Do not conflict

Instead:
S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)

CS 525 Notes 14 - Concurrency Control 90

Lock actions
l-ti(A): lock A in t mode (t is S or X)
u-ti(A): unlock t mode (t is S or X)

Shorthand:
ui(A): unlock whatever modes
 Ti has locked A

CS 525 Notes 14 - Concurrency Control 91

Rule #1 Well formed transactions

Ti =... l-S1(A) … r1(A) … u1 (A) …

Ti =... l-X1(A) … w1(A) … u1 (A) …

CS 525 Notes 14 - Concurrency Control 92

•  What about transactions that read and
write same object?

Option 1: Request exclusive lock
Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

CS 525 Notes 14 - Concurrency Control 93

Option 2: Upgrade
(E.g., need to read, but don’t know if will write…)

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)…

Think of
- Get 2nd lock on A, or
- Drop S, get X lock

•  What about transactions that read and
 write same object?

CS 525 Notes 14 - Concurrency Control 94

Rule #2 Legal scheduler

S =l-Si(A) … … ui(A) …

 no l-Xj(A)

S = ... l-Xi(A) … … ui(A) …

 no l-Xj(A)
 no l-Sj(A)

CS 525 Notes 14 - Concurrency Control 95

A way to summarize Rule #2

Compatibility matrix

Comp S X
 S true false
 X false false

CS 525 Notes 14 - Concurrency Control 96

Rule # 3 2PL transactions

No change except for upgrades:
(I) If upgrade gets more locks
 (e.g., S → {S, X}) then no change!

(II) If upgrade releases read (shared)
 lock (e.g., S → X)

 - can be allowed in growing phase

CS 525 Notes 14 - Concurrency Control 97

Proof: similar to X locks case

Detail:
l-ti(A), l-rj(A) do not conflict if comp(t,r)
l-ti(A), u-rj(A) do not conflict if comp(t,r)

Theorem Rules 1,2,3 ⇒ Conf.serializable
 for S/X locks schedules

CS 525 Notes 14 - Concurrency Control 98

Lock types beyond S/X

Examples:
 (1) increment lock
 (2) update lock

CS 525 Notes 14 - Concurrency Control 99

Example (1): increment lock

•  Atomic increment action: INi(A)
 {Read(A); A ← A+k; Write(A)}

•  INi(A), INj(A) do not conflict!
 A=7

A=5 A=17
 A=15

INi(A)
+2

INj(A)
+10

+10

INj(A)
+2

INi(A)

CS 525 Notes 14 - Concurrency Control 100

Comp S X I
 S
 X
 I

CS 525 Notes 14 - Concurrency Control 101

Comp S X I
 S T F F
 X F F F
 I F F T

CS 525 Notes 14 - Concurrency Control 102

Update locks

A common deadlock problem with upgrades:
T1 T2
l-S1(A)
 l-S2(A)

l-X1(A)
 l-X2(A)
 --- Deadlock ---

CS 525 Notes 14 - Concurrency Control 103

Solution

If Ti wants to read A and knows it
may later want to write A, it requests
update lock (not shared)

CS 525 Notes 14 - Concurrency Control 104

Comp S X U
 S
 X
 U

 New request

Lock
already
held in

CS 525 Notes 14 - Concurrency Control 105

Comp S X U
 S T F T
 X F F F
 U TorF F F

 -> symmetric table?

 New request

Lock
already
held in

CS 525 Notes 14 - Concurrency Control 106

Note: object A may be locked in different
 modes at the same time...

S1=...l-S1(A)…l-S2(A)…l-U3(A)… l-S4(A)…?
 l-U4(A)…?

CS 525 Notes 14 - Concurrency Control 107

Note: object A may be locked in different
 modes at the same time...

S1=...l-S1(A)…l-S2(A)…l-U3(A)… l-S4(A)…?
 l-U4(A)…?

•  To grant a lock in mode t, mode t must
be compatible with all currently held
locks on object

CS 525 Notes 14 - Concurrency Control 108

How does locking work in practice?

•  Every system is different
 (E.g., may not even provide
 CONFLICT-SERIALIZABLE schedules)

•  But here is one (simplified) way ...

CS 525 Notes 14 - Concurrency Control 109

(1) Don’t trust transactions to
 request/release locks

(2) Hold all locks until transaction
 commits

locks

time

Sample Locking System:

Strict Strong 2PL (SS2PL)

•  2PL + (2) from the last slide
•  All locks are held until transaction end
•  Compare with schedule class strict

(ST) we defined for recovery
– A transaction never reads or writes items

written by an uncommitted transactions

•  SS2PL = (ST ∩ 2PL)

CS 525 Notes 14 - Concurrency Control 110

CS 525 Notes 13 - Failure and Recovery 111

2PL (2PL)

Conflict Serializable (CSR)

All schedules (ALL)

Serial (S)

SS2PL (SS2PL)

CS 525 Notes 14 - Concurrency Control 112

 Ti
 Read(A),Write(B)

 l(A),Read(A),l(B),Write(B)…

 Read(A),Write(B)

Scheduler, part I

Scheduler, part II

DB

lock
table

CS 525 Notes 14 - Concurrency Control 113

Lock table Conceptually

 A Λ

B
C

Λ

...

Lock info for B

Lock info for C

If null, object is unlocked

Ev
er

y
po

ss
ib

le
 o

bj
ec

t

CS 525 Notes 14 - Concurrency Control 114

But use hash table:

A

If object not found in hash table, it is
unlocked

Lock info for A A

...
...

H

CS 525 Notes 14 - Concurrency Control 115

Lock info for A - example

 tran mode wait? Nxt T_link
Object:A
Group mode:U
Waiting:yes
List:

T1 S no

T2 U no

T3 X yes Λ

To other T3
records

CS 525 Notes 14 - Concurrency Control 116

What are the objects we lock?

 ?

Relation A

Relation B

...

Tuple A
Tuple B
Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB

CS 525 Notes 14 - Concurrency Control 117

•  Locking works in any case, but should
we choose small or large objects?

CS 525 Notes 14 - Concurrency Control 118

•  Locking works in any case, but should
we choose small or large objects?

•  If we lock large objects (e.g., Relations)
– Need few locks
– Low concurrency

•  If we lock small objects (e.g., tuples,fields)
– Need more locks
– More concurrency

CS 525 Notes 14 - Concurrency Control 119

We can have it both ways!!

Ask any janitor to give you the solution...

hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom

CS 525 Notes 14 - Concurrency Control 120

Example

 R1

t1
t2 t3 t4

CS 525 Notes 14 - Concurrency Control 121

Example

 R1

t1
t2 t3 t4

T1(IS)

T1(S)

CS 525 Notes 14 - Concurrency Control 122

Example

 R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(S)

CS 525 Notes 14 - Concurrency Control 123

Example (b)

 R1

t1
t2 t3 t4

T1(IS)

T1(S)

CS 525 Notes 14 - Concurrency Control 124

Example

 R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(IX)

T2(IX)

CS 525 Notes 14 - Concurrency Control 125

Multiple granularity

Comp Requestor
 IS IX S SIX X
 IS

 Holder IX
 S

 SIX

 X

CS 525 Notes 14 - Concurrency Control 126

Multiple granularity

Comp Requestor
 IS IX S SIX X
 IS

 Holder IX
 S

 SIX

 X

T T T T F
F
F
F
F F F F F

F F F T
F T F T
F F T T

CS 525 Notes 14 - Concurrency Control 127

Parent Child can be
locked in locked in

 IS
 IX
 S
 SIX
 X

P

C

CS 525 Notes 14 - Concurrency Control 128

Parent Child can be locked
locked in by same transaction in

 IS
 IX
 S
 SIX
 X

P

C

IS, S
IS, S, IX, X, SIX
none
X, IX, [SIX]
none

not necessary

CS 525 Notes 14 - Concurrency Control 129

Rules

(1) Follow multiple granularity comp function
(2) Lock root of tree first, any mode
(3) Node Q can be locked by Ti in S or IS only if
 parent(Q) locked by Ti in IX or IS
(4) Node Q can be locked by Ti in X,SIX,IX only
 if parent(Q) locked by Ti in IX,SIX
(5) Ti is two-phase
(6) Ti can unlock node Q only if none of Q’s
 children are locked by Ti

CS 525 Notes 14 - Concurrency Control 130

Exercise:
•  Can T2 access object f2.2 in X mode?

What locks will T2 get?

R1

t1
t2 t3 t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(IX)

T1(X)

CS 525 Notes 14 - Concurrency Control 131

Exercise:
•  Can T2 access object f2.2 in X mode?

What locks will T2 get?

R1

t1
t2 t3 t4 T1(X)

f2.1 f2.2 f3.1 f3.2

T1(IX)

CS 525 Notes 14 - Concurrency Control 132

Exercise:
•  Can T2 access object f3.1 in X mode?

What locks will T2 get?

R1

t1
t2 t3 t4 T1(S)

f2.1 f2.2 f3.1 f3.2

T1(IS)

CS 525 Notes 14 - Concurrency Control 133

Exercise:
•  Can T2 access object f2.2 in S mode?

What locks will T2 get?

R1

t1
t2 t3 t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

CS 525 Notes 14 - Concurrency Control 134

Exercise:
•  Can T2 access object f2.2 in X mode?

What locks will T2 get?

R1

t1
t2 t3 t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

CS 525 Notes 14 - Concurrency Control 135

Insert + delete operations

 Insert

A

Z
α	

...

CS 525 Notes 14 - Concurrency Control 136

Modifications to locking rules:

(1) Get exclusive lock on A before
deleting A

(2) At insert A operation by Ti,
 Ti is given exclusive lock on A

CS 525 Notes 14 - Concurrency Control 137

Still have a problem: Phantoms

Example: relation R (E#,name,…)
 constraint: E# is key
 use tuple locking

R E# Name ….
 o1 55 Smith
 o2 75 Jones

CS 525 Notes 14 - Concurrency Control 138

T1: Insert <08,Obama,…> into R
T2: Insert <08,McCain,…> into R

 T1 T2

S1(o1) S2(o1)

S1(o2) S2(o2)

Check Constraint Check Constraint

Insert o3[08,Obama,..]
 Insert o4[08,McCain,..]

... ...

CS 525 Notes 14 - Concurrency Control 139

Solution

•  Use multiple granularity tree
•  Before insert of node Q,
 lock parent(Q) in
 X mode R1

t1
t2 t3

CS 525 Notes 14 - Concurrency Control 140

Back to example
T1: Insert<04,Kerry> T2: Insert<04,Bush>

 T1 T2

X1(R)

Check constraint
Insert<04,Kerry>
U(R)

 X2(R)
 Check constraint
 Oops! e# = 04 already in R!

X2(R) delayed

CS 525 Notes 14 - Concurrency Control 141

Instead of using R, can use index on R:

Example: R

Index
0<E#<100

Index
100<E#<200

E#=2 E#=5 E#=107 E#=109 ...

...

...

CS 525 Notes 14 - Concurrency Control 142

•  This approach can be generalized to
multiple indexes...

CS 525 Notes 14 - Concurrency Control 143

Next:

•  Tree-based concurrency control
•  Validation concurrency control

CS 525 Notes 14 - Concurrency Control 144

Example

A

B C

D

E F

•  all objects accessed
 through root,
 following pointers

CS 525 Notes 14 - Concurrency Control 145

Example

A

B C

D

E F

•  all objects accessed
 through root,
 following pointers

T1 lock

T1 lock T1 lock

CS 525 Notes 14 - Concurrency Control 146

Example

A

B C

D

E F

•  all objects accessed
 through root,
 following pointers

T1 lock

T1 lock T1 lock

E can we release A lock
 if we no longer need A??

CS 525 Notes 14 - Concurrency Control 147

Idea: traverse like “Monkey Bars”

A

B C

D

E F

CS 525 Notes 14 - Concurrency Control 148

Idea: traverse like “Monkey Bars”

A

B C

D

E F

T1 lock

T1 lock

CS 525 Notes 14 - Concurrency Control 149

Idea: traverse like “Monkey Bars”

A

B C

D

E F

T1 lock

T1 lock

CS 525 Notes 14 - Concurrency Control 150

Why does this work?

•  Assume all Ti start at root; exclusive lock
•  Ti → Tj ⇒ Ti locks root before Tj

•  Actually works if we don’t always
 start at root

Root

Q Ti → Tj

CS 525 Notes 14 - Concurrency Control 151

Rules: tree protocol (exclusive locks)

(1) First lock by Ti may be on any item
(2) After that, item Q can be locked by Ti

 only if parent(Q) locked by Ti

(3) Items may be unlocked at any time
(4) After Ti unlocks Q, it cannot relock Q

CS 525 Notes 14 - Concurrency Control 152

•  Tree-like protocols are used typically for
B-tree concurrency control

E.g., during insert, do not release parent lock, until you
are certain child does not have to split

Root

CS 525 Notes 14 - Concurrency Control 153

Tree Protocol with Shared Locks

•  Rules for shared & exclusive locks?

A

B C

D

E F

T1 S lock(released)

T1 S lock (held)

T1 X lock (released)

T1 X lock (will get)

CS 525 Notes 14 - Concurrency Control 154

Tree Protocol with Shared Locks

•  Rules for shared & exclusive locks?

A

B C

D

E F

T1 S lock(released)

T1 S lock (held)

T1 X lock (released)

T1 X lock (will get)

T2 reads:
•  B modified by T1

•  F not yet modified by T1

CS 525 Notes 14 - Concurrency Control 155

•  Need more restrictive protocol
•  Will this work??

– Once T1 locks one object in X mode,
all further locks down the tree must be
in X mode

Tree Protocol with Shared Locks

Deadlocks (again)

•  Before we assumed that we are able to
detect deadlocks and resolve them

•  Now two options
–  (1) Deadlock detection (and resolving)
–  (2) Deadlock prevention

CS 525 Notes 14 - Concurrency Control 156

Deadlock Prevention

•  Option 1:
– 2PL + transaction has to acquire all locks

at transaction start following a global order

CS 525 Notes 14 - Concurrency Control 157

locks

time

Deadlock Prevention

•  Option 1:
– Long lock durations L
– Transaction has to know upfront what data

items it will access L
• E.g.,
UPDATE R SET a = a + 1 WHERE b < 15
• We don’t know what tuples are in R!

CS 525 Notes 14 - Concurrency Control 158

Deadlock Prevention

•  Option 2:
– Define some global order of data items O
– Transactions have to acquire locks

according to this order

•  Example (X < Y < Z)
l1(X), l1(Z) (OK)
l1(Y), l1(X) (NOT OK)

CS 525 Notes 14 - Concurrency Control 159

Deadlock Prevention

•  Option 2:
– Accessed data items have to be known

upfront L
– or access to data has to follow the order L

CS 525 Notes 14 - Concurrency Control 160

Deadlock Prevention

•  Option 3 (Preemption)
– Roll-back transactions that wait for locks

under certain conditions
– 3 a) wait-die

• Assign timestamp to each transaction
•  If transaction Ti waits for Tj to release a lock

–  Timestamp Ti < Tj -> wait
–  Timestamp Ti > Tj -> roll-back Ti

CS 525 Notes 14 - Concurrency Control 161

Deadlock Prevention

•  Option 3 (Preemption)
– Roll-back transactions that wait for locks

under certain conditions
– 3 a) wound-wait

• Assign timestamp to each transaction
•  If transaction Ti waits for Tj to release a lock

–  Timestamp Ti < Tj -> roll-back Tj

–  Timestamp Ti > Tj -> wait

CS 525 Notes 14 - Concurrency Control 162

Deadlock Prevention

•  Option 3:
– Additional transaction roll-backs L

CS 525 Notes 14 - Concurrency Control 163

Timeout-based Scheme

•  Option 4:
– After waiting for a lock longer than X, a

transaction is rolled back

CS 525 Notes 14 - Concurrency Control 164

Timeout-based Scheme

•  Option 4:
– Simple scheme J
– Hard to find a good value of X

• To high: long wait times for a transaction
before it gets eventually aborted

• To low: to many transaction that are not
deadlock get aborted

CS 525 Notes 14 - Concurrency Control 165

Deadlock Detection and
Resolution

•  Data structure to detect deadlocks:
wait-for graph
– One node for each transaction
– Edge Ti->Tj if Ti is waiting for Tj

– Cycle -> Deadlock
• Abort one of the transaction in cycle to resolve

deadlock

CS 525 Notes 14 - Concurrency Control 166

Deadlock Detection and
Resolution

•  When do we run the detection?
•  How to choose the victim?

CS 525 Notes 14 - Concurrency Control 167

T1 T2

T3 T4 T5

CS 525 Notes 14 - Concurrency Control 168

Optimistic Concurrency Control:
Validation
Transactions have 3 phases:
(1) Read

– all DB values read
– writes to temporary storage
– no locking

(2) Validate
– check if schedule so far is serializable

(3) Write
–  if validate ok, write to DB

CS 525 Notes 14 - Concurrency Control 169

Key idea

•  Make validation atomic
•  If T1, T2, T3, … is validation order, then

resulting schedule will be conflict
equivalent to Ss = T1 T2 T3...

CS 525 Notes 14 - Concurrency Control 170

To implement validation, system keeps
two sets:

•  FIN = transactions that have finished
 phase 3 (and are all done)

•  VAL = transactions that have
 successfully finished phase 2
 (validation)

CS 525 Notes 14 - Concurrency Control 171

Example of what validation must prevent:

 RS(T2)={B} RS(T3)={A,B}
 WS(T2)={B,D} WS(T3)={C}

time

T2
start

T2
validated

T3
validated

T3
start

∩ = φ

CS 525 Notes 14 - Concurrency Control 172

T2
finish

phase 3

Example of what validation must prevent:

 RS(T2)={B} RS(T3)={A,B}
 WS(T2)={B,D} WS(T3)={C}

time

T2
start

T2
validated

T3
validated

T3
start

∩ = φ

allow

T3
start

CS 525 Notes 14 - Concurrency Control 173

Another thing validation must prevent:

 RS(T2)={A} RS(T3)={A,B}
 WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

CS 525 Notes 14 - Concurrency Control 174

Another thing validation must prevent:

 RS(T2)={A} RS(T3)={A,B}
 WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

BAD: w3(D) w2(D)

CS 525 Notes 14 - Concurrency Control 175

finish
T2

Another thing validation must prevent:

 RS(T2)={A} RS(T3)={A,B}
 WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

allow

finish
T2

CS 525 Notes 14 - Concurrency Control 176

Validation rules for Tj:

(1) When Tj starts phase 1:
 ignore(Tj) ← FIN

(2) at Tj Validation:
 if check (Tj) then
 [VAL ← VAL U {Tj};
 do write phase;
 FIN ←FIN U {Tj}]

CS 525 Notes 14 - Concurrency Control 177

Check (Tj):

 For Ti ∈ VAL - IGNORE (Tj) DO

 IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR

 Ti ∉ FIN] THEN RETURN false;
 RETURN true;

CS 525 Notes 14 - Concurrency Control 178

Check (Tj):

 For Ti ∈ VAL - IGNORE (Tj) DO

 IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR

 Ti ∉ FIN] THEN RETURN false;
 RETURN true;

 Is this check too restrictive ?

CS 525 Notes 14 - Concurrency Control 179

Improving Check(Tj)

For Ti ∈ VAL - IGNORE (Tj) DO
 IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR
 (Ti ∉ FIN AND WS(Ti) ∩ WS(Tj) ≠ ∅)]
 THEN RETURN false;

RETURN true;

CS 525 Notes 14 - Concurrency Control 180

Exercise:

T: RS(T)={A,B}
 WS(T)={A,C}

V: RS(V)={B}
 WS(V)={D,E}

U: RS(U)={B}
 WS(U)={D}

W: RS(W)={A,D}
 WS(W)={A,C}

start
validate
finish

CS 525 Notes 14 - Concurrency Control 181

Is Validation = 2PL?

2PL
Val

2PL
Val

2PL
Val

Val
2PL

CS 525 Notes 14 - Concurrency Control 182

S2: w2(y) w1(x) w2(x)

•  S2 can be achieved with 2PL:
l2(y) w2(y) l1(x) w1(x) u1(x) l2(x) w2(x) u2(y) u2(x)

•  S2 cannot be achieved by validation:
The validation point of T2, val2 must occur before
w2(y) since transactions do not write to the database
until after validation. Because of the conflict on x,
val1 < val2, so we must have something like
 S2: val1 val2 w2(y) w1(x) w2(x)
With the validation protocol, the writes of T2 should
not start until T1 is all done with its writes, which is
not the case.

CS 525 Notes 14 - Concurrency Control 183

Validation subset of 2PL?

•  Possible proof (Check!):
– Let S be validation schedule
– For each T in S insert lock/unlocks, get S’:

• At T start: request read locks for all of RS(T)
• At T validation: request write locks for WS(T);

release read locks for read-only objects
• At T end: release all write locks

– Clearly transactions well-formed and 2PL
– Must show S’ is legal (next page)

CS 525 Notes 14 - Concurrency Control 184

•  Say S’ not legal:
S’: ... l1(x) w2(x) r1(x) val1 u2(x) ...
–  At val1: T2 not in Ignore(T1); T2 in VAL

–  T1 does not validate: WS(T2) ∩ RS(T1) ≠ ∅
–  contradiction!

•  Say S’ not legal:
S’: ... val1 l1(x) w2(x) w1(x) u2(x) ...
–  Say T2 validates first (proof similar in other case)
–  At val1: T2 not in Ignore(T1); T2 in VAL
–  T1 does not validate:

T2 ∉ FIN AND WS(T1) ∩ WS(T2) ≠ ∅)
–  contradiction!

CS 525 Notes 14 - Concurrency Control 185

Validation (also called optimistic
concurrency control) is useful in
some cases:
 - Conflicts rare
 - System resources plentiful
 - Have real time constraints

Multiversioning Concurrency
Control (MVCC)

•  Keep old versions of data item and use
this to increase concurrency

•  Each write creates a new version of the
written data item

•  Use version numbers of timestamps to
identify versions

CS 525 Notes 14 - Concurrency Control 186

Multiversioning Concurrency
Control (MVCC)

•  Different transactions operate over
different versions of data items

•  -> readers never have to wait for writers
•  -> great for combined workloads

–  OLTP workload (writes, only access small number
of tuples, short)

–  OLAP workload (reads, access large portions of
database, long running)

CS 525 Notes 14 - Concurrency Control 187

MVCC schemes

•  MVCC timestamp ordering
•  MVCC 2PL
•  Snapshot isolation (SI)

–  We will only cover this one

CS 525 Notes 14 - Concurrency Control 188

Snapshot Isolation (SI)
•  Each transaction T is assigned a timestamp

S(T) when it starts
•  Each write creates a new data item version

timestamped with the current timestamp
•  When a transaction commits, then the latest

versions created by the transaction get a
timestamp C(T) as of the commit

CS 525 Notes 14 - Concurrency Control 189

Snapshot Isolation (SI)

•  Under snapshot isolation each
transaction T sees a consistent
snapshot of the database as of S(T)
–  It only sees data item versions of

transactions that committed before T
started

–  It also sees its own changes

CS 525 Notes 14 - Concurrency Control 190

First Updater Wins Rule (FUW)

•  Two transactions Ti and Tj may update
the same data item A
– To avoid lost updates only one of the two

can be safely committed

•  First Updater Wins Rules
– The transaction that updated A first is

allowed to commit
– The other transaction is aborted

CS 525 Notes 14 - Concurrency Control 191

First Committer Wins Rule
(FCW)

•  Two transactions Ti and Tj may update
the same data item A
– To avoid lost updates only one of the two

can be safely committed

•  First Committer Wins Rules
– The transaction that attempts to commit

first is allowed to commit
– The other transaction is aborted

CS 525 Notes 14 - Concurrency Control 192

CS 525 Notes 14 - Concurrency Control 193

T1! T2! T3!

W(Y := 1)"
Commit"

Start"
R(X) à 0"
R(Y)à 1"

W(X:=2)"
W(Z:=3)"
Commit"

R(Z) à 5"
R(Y) à 1"
W(X:=3)"
Commit-Req"
Abort"

Concurrent updates not visible"
"

Not first-committer of X"
Serialization error, T2 is rolled back"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

X! Y! Z!

0"
0"
"
"
"
"
2"
2"
"
"
"
"
3"

1"
"
"
"
"
"
"

5"
"
"
"
"
"
3"
3"

©Silberschatz, Korth and Sudarshan!

Update not visible outside of T1"
Update becomes visible to"

 future transactions"

Why does that work?

•  Since all transactions see a consistent
snapshot and their changes are only
made “public” once they commit
–  It looks like the transactions have been

executed in the order of their commits*

* Recall the writes to the same data item
are disallowed for concurrent transactions
CS 525 Notes 14 - Concurrency Control 194

Is that serializable?

•  Almost ;-)
•  There is still one type of conflict which

cannot occur in serialize schedules
called write-skew

CS 525 Notes 14 - Concurrency Control 195

Write Skew

•  Consider two data items A and B
– A = 5, B = 5

•  Concurrent Transactions T1 and T2
– T1: A = A + B
– T2: B = A + B

•  Final result under SI
– A = 10, B = 10

CS 525 Notes 14 - Concurrency Control 196

Write Skew

•  Consider serial schedules:
– T1, T2: A=10, B=15
– T2, T1: A=15, B=10

•  What is the problem
– Under SI both T1 and T2 do not see each

others changes
–  In any serial schedule one of the two

would see the others changes
CS 525 Notes 14 - Concurrency Control 197

Example: Oracle
•  Tuples are updated in place
•  Old versions in separate ROLLBACK segment

–  GC once nobody needs them anymore

•  How to implement the FCW or FUW?
–  Oracle uses write locks to block concurrent writes
–  Transaction waiting for a write lock aborts if

transaction holding the lock commits

CS 525 Notes 14 - Concurrency Control 198

SI Discussion
•  Advantages

–  Readers and writers do not block each other
–  If we do not GC old row versions we can go back

to previous versions of the database -> Time
travel

•  E.g., show me the customer table as it was yesterday

•  Disadvantages
–  Storage overhead to keep old row versions
–  GC overhead
–  Not strictly serializable

CS 525 Notes 14 - Concurrency Control 199

CS 525 Notes 14 - Concurrency Control 200

Summary
Have studied CC mechanisms used in practice

 - 2 PL variants
 - Multiple lock granularity
 - Deadlocks
 - Tree (index) protocols
 - Optimistic CC (Validation)
 - Multiversioning Concurrency Control (MVCC)

