
1 

CS 525 Notes 10 - Query Execution 1 

CS 525: Advanced Database 
Organization 

10: Query Execution 
Boris Glavic 

Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  

CS 525 Notes 10 - Query Execution 2 

parse 

convert 

apply laws 

estimate result sizes 

consider physical plans estimate costs 

pick best 

execute 

{P1,P2,…..} 

{(P1,C1),(P2,C2)...} 

Pi 

   answer 

SQL query 

parse tree 

logical query plan 

“improved” l.q.p 

l.q.p. +sizes 

statistics 

Query Execution 

•  Here only:  
– how to implement operators 
– what are the costs of implementations 
– how to implement queries 

• Data flow between operators  

•  Next part: 
– How to choose good plan 

CS 525 Notes 10 - Query Execution 3 

Execution Plan 

•  A tree (DAG) of physical operators that 
implement a query 

•  May use indices 
•  May create temporary relations 
•  May create indices on the fly 
•  May use auxiliary operations such as 

sorting 

CS 525 Notes 10 - Query Execution 4 

How to estimate costs 

•  If everything fits into memory 
– Standard computational complexity 

•  If not 
– Assume fixed memory available for 

buffering pages 
– Count I/O operations 
– Real systems combine this with CPU 

estimations 
CS 525 Notes 10 - Query Execution 5 CS 525 Notes 10 - Query Execution 6 

Estimating IOs: 

•  Count # of disk blocks that must be 
read (or written) to execute query plan 



2 

CS 525 Notes 10 - Query Execution 7 

To estimate costs, we may have 
additional parameters: 

B(R) = # of blocks containing R tuples 
f(R)  = max # of tuples of R per block 
M   = # memory blocks available 

CS 525 Notes 10 - Query Execution 8 

To estimate costs, we may have 
additional parameters: 

B(R) = # of blocks containing R tuples 
f(R)  = max # of tuples of R per block 
M   = # memory blocks available 

HT(i) = # levels in index i 
LB(i) = # of leaf blocks in index i 

CS 525 Notes 10 - Query Execution 9 

Clustered index 

Index that allows tuples to be read in an 
order that corresponds to physical order 
      A 

 
A 

index 

10 
15 
17 

19 
35 
37 

Operators Overview 

•  (External) Sorting 
•  Joins (Nested Loop, Merge, Hash, …) 
•  Aggregation (Sorting, Hash) 
•  Selection, Projection (Index, Scan) 
•  Union, Set Difference 
•  Intersection 
•  Duplicate Elimination 
CS 525 Notes 10 - Query Execution 10 

Operator Profiles 
•  Algorithm 
•  In-memory complexity: e.g., O(n2) 
•  Memory requirements 

– Runtime based on available memory 

•  #I/O if operation needs to go to disk 
•  Disk space needed 
•  Prerequisites 

– Conditions under which the operator can 
be applied 

CS 525 Notes 10 - Query Execution 11 

Execution Strategies 

•  Compiled 
– Translate into C/C++/Assembler code 
– Compile, link, and execute code 

•  Interpreted 
– Generic operator implementations 
– Generic executor 

•  Interprets query plan 

CS 525 Notes 10 - Query Execution 12 



3 

Virtual Machine Approach 

•  Implement virtual machine of low-level 
DBMS operations 

•  Compile query into machine-code for 
that machine 

CS 525 Notes 10 - Query Execution 13 

Iterator Model 

•  Need to be able to combine operators in 
different ways 
– E.g., join inputs may be scans, or outputs 

of other joins, … 
–  -> define generic interface for operators  
– be able to arbitrarily compose complex 

plans from a small set of operators 

CS 525 Notes 10 - Query Execution 14 

Iterator Model - Interface 

•  Open 
– Prepare operator to read inputs 

•  Close 
– Close operator and clean up 

•  Next 
– Return next result tuple 

CS 525 Notes 10 - Query Execution 15 

Query Execution – Iterator 
Model  

CS 525 Notes 10 - Query Execution 16 

Iterator 
open close next 

Iterator 
open close next 

Iterator 
open close next 

Iterator 
open close next 

Query Execution – Iterator 
Model  

CS 525 Notes 10 - Query Execution 17 

Iterator 
open close next 

Iterator 
open close next 

Iterator 
open close next 

Iterator 
open close next 

Key 
 Call 
 

Query Execution – Iterator 
Model  

CS 525 Notes 10 - Query Execution 18 

Iterator 
open close next 

Iterator 
open close next 

Key 
 

Iterator 
open close next 

Iterator 
open close next 

Return Tuple 
Call 
 



4 

Parallelism 

•  Iterator Model 
– Pull-based query execution 

•  Potential types of parallelism 
–  Inter-query (every multiuser system) 
–  Intra-operator 
–  Inter-operator 

CS 525 Notes 10 - Query Execution 19 

Intra-Operator Parallelism 

•  Execute portions of an operator in 
parallel 
– Merge-Sort 

• Assign a processor to each merge phase 

– Scan 
• Partition tables 
• Each process scans one partition 

CS 525 Notes 10 - Query Execution 20 

Inter-Operator Parallelism 

•  Each process executes one or more 
operators 

•  Pipelining 
– Push-based query execution 
– Chain operators to directly produce results 
– Pipeline-breakers 

• Operators that need to consume the whole 
input (or large parts) before producing outputs 

CS 525 Notes 10 - Query Execution 21 

Pipelining Communication 

•  Queues 
– Operators push their results to queues 
– Operators read their inputs from queues 

•  Direct call 
– Operator calls its parent in the tree with 

results 
– Within one process 

CS 525 Notes 10 - Query Execution 22 

Pipelines 

CS 525 Notes 10 - Query Execution 23 

Key 
 Append to queue 

Dequeue 
Direct Call 
 

Pipeline-breakers 

•  Sorting 
– All operators that apply sorting 

•  Aggregation 
•  Set Difference 
•  Some implementations of 

– Join 
– Union 

CS 525 Notes 10 - Query Execution 24 



5 

Operators Overview 

•  (External) Sorting 
•  Joins (Nested Loop, Merge, Hash, …) 
•  Aggregation (Sorting, Hash) 
•  Selection, Projection (Index, Scan) 
•  Union, Set Difference 
•  Intersection 
•  Duplicate Elimination 
CS 525 Notes 10 - Query Execution 25 

Sorting 

•  Why do we want/need to sort 
– Query requires sorting (ORDER BY) 
– Operators require sorted input 

• Merge-join 
• Aggregation by sorting 
• Duplicate removal using sorting 

CS 525 Notes 10 - Query Execution 26 

In-memory sorting 

•  Algorithms from data structures 101 
– Quick sort 
– Merge sort 
– Heap sort 
–  Intro sort 
– … 

CS 525 Notes 10 - Query Execution 27 

External sorting 

•  Problem: 
– Sort N pages of data with M pages of 

memory 

•  Solutions? 

CS 525 Notes 10 - Query Execution 28 

First Idea 

•  Split data into runs of size M 
•  Sort each run in memory and write back 

to disk 
–  ⌈N/M⌉  sorted runs of size M 

•  Now what? 
  

CS 525 Notes 10 - Query Execution 29 

M M M

Merging Runs 

•  Need to create bigger sorted runs out of 
sorted smaller runs 
– Divide and Conquer 
– Merge Sort? 

•  How to merge two runs that are bigger 
than M? 

CS 525 Notes 10 - Query Execution 30 



6 

Merging Runs using 3 pages 
•  Merging sorted runs R1 and R2 

•  Need 3 pages 
– One page to buffer pages from R1 

– One page to buffer pages from R2 

– One page to buffer the result 
• Whenever this buffer is full, write it to disk 

CS 525 Notes 10 - Query Execution 31 

Merging Runs 

CS 525 Notes 10 - Query Execution 32 

R1 

R2 

read 

read 

merge 

write 

2-Way External Mergesort 

•  Repeat process until we have one 
sorted run 

•  Each iteration (pass) reads and writes 
the whole table once: 2 B(R) I/Os 

•  Each pass doubles the run size 
–  1 + ⌈log2 (B(R) / M)  ⌉  runs 
–  2 B(R) * (1 + ⌈log2 (B(R) / M)  ⌉)  I/Os 

CS 525 Notes 10 - Query Execution 33 CS 525 Notes 10 - Query Execution 34 

2 
3 

5 
6 

4 
7 

10 
1 

11 
12 

13 
14 

20 
40 

21 
22 

2 3 5 6 1 4 7 10 
11 12 13  

14 
20 21 22  

40 

1 2 3 4 5 6 7 10 11 12 13 14 20 21 22 40 

1 2 3 4 5 6 7 10 11 12 13 14 20 21 22 40 

Input 

Pass 0 

Pass 1 

Pass 2 

Pass 3 

2 3 6 5 7 4 10 1 11 12 13 14 20 40 22 21 

N-Way External Mergesort 

•  How to utilize M buffer during merging? 
•  Each pass merges M-1 runs at once 

– One memory page as buffer for each run 

•  #I/Os 
 1 + ⌈logM-1 (B(R) / M)  ⌉    runs 
 2 B(R) *(1 + ⌈logM-1 (B(R) / M)  ⌉)    I/Os 

CS 525 Notes 10 - Query Execution 35 

Merging Runs 

CS 525 Notes 10 - Query Execution 36 

R1 

R2 

read 

read 

merge 

write 

RM-1 
read 



7 

How many passes do we 
need? 

CS 525 Notes 10 - Query Execution 37 

N M=17 M=129 M=257 M=513 M=1025 

100 2 1 1 1 1 

1,000 3 2 2 2 1 

10,000 4 2 2 2 2 

100,000 5 3 3 2 2 

1,000,000 5 3 3 3 2 

10,000,000 6 4 3 3 3 

100,000,000 7 4 4 3 3 

1,000,000,000 8 5 4 4 3 

To put into perspective 

•  Scenario 
– Page size 4KB 
– 1TB of data (250,000,000) 
– 10MB of buffer for sorting (250) 

•  Passes 
– 4 passes 

CS 525 Notes 10 - Query Execution 38 

Merge 

•  In practice would want larger I/O buffer 
for each run 

•  Trade-off between number of runs and 
efficiency of I/O 

CS 525 Notes 10 - Query Execution 39 

Improving in-memory merging 

•  Merging M runs 
– To choose next element to output 
– Have to compare M elements 
–  -> complexity linear in M: O(M) 

•  How to improve that? 
– Use priority queue to store current element 

from each run 
–  -> O(log2(M)) 

CS 525 Notes 10 - Query Execution 40 

Priority Queue 

•  Queue for accessing elements in some 
given order 
– pop-smallest = return and remove 

smallest element in set 
– Insert(e) = insert element into queue 

CS 525 Notes 10 - Query Execution 41 

Min-Heap 

•  Implementation of priority queue 
– Store elements in a binary tree 
– All levels are full (except leaf level) 
– Heap property 

• Parent is smaller than child 

•  Example: { 1, 4, 7, 10 } 

CS 525 Notes 10 - Query Execution 42 

1 

4 10 

7 



8 

Min-Heap Insertion 

• insert(e) !
1.  Add element at next free leaf node 

• This may invalidate heap property 

2.  If node smaller than parent then 
• Switch node with parent 

3.  Repeat until 2) cannot be applied 
anymore 

CS 525 Notes 10 - Query Execution 43 

Min-Heap Dequeue 

CS 525 Notes 10 - Query Execution 44 

• pop-smallest !
1.  Return Root and use right-most leaf as 

new root 
• This may invalidate heap property 

2.  If node smaller than child then 
• Switch node with smaller child 

3.  Repeat until 2) cannot be applied 
anymore 

Insertion 

CS 525 Notes 10 - Query Execution 45 

1 

4 10 

7 

•  Insert 3 

3 

1 

3 10 

7 4 

Insert at first free position Restore heap property 

Dequeue 

CS 525 Notes 10 - Query Execution 46 

1 

4 10 

7 3 

3 

4 10 

7 

Dequeue 

CS 525 Notes 10 - Query Execution 47 

3 

4 10 

7 

7 

4 10 

4 

7 10 

Min/Max-Heap Complexity 
•  Heap is a complete tree 

– Height is O(log2(n)) 

•  Insertion 
– Maximal height of the tree switches 
–  -> O(log2(n))   

•  Dequeue 
– Maximal height of the tree switches 
–  -> O(log2(n)) 

CS 525 Notes 10 - Query Execution 48 



9 

Min-Heap Implementation 
•  Full tree 

– Use array to implement tree 

•  Compute positions 
– Parent(n) = ⌊  (n-­‐1)  /  2  ⌋ 
– Children(n) = 2n + 1, 2n + 2 

CS 525 Notes 10 - Query Execution 49 

1 

4 10 

7 1 4 10 7 

1 2 3 

Merging with Priority Queue 

CS 525 Notes 10 - Query Execution 50 

1 
8 
9 

7 
10 
12 

6 
11 
13 

1 

7 6 

Merging with Priority Queue 

CS 525 Notes 10 - Query Execution 51 

9 

10 
12 

11 
13 

1 
6 

7 8 

Merging with Priority Queue 

CS 525 Notes 10 - Query Execution 52 

9 

10 
12 

13 

1 
6 7 

11 8 

Using a heap to generate runs 

•  Read inputs into heap 
– Until available memory is full 

•  Replace elements 
– Remove smallest element from heap 

•  If larger then last element written of current 
run then write to current run 

• Else create a new run 

– Add new element from input to heap 

CS 525 Notes 10 - Query Execution 53 

Using a heap to generate runs 

CS 525 Notes 10 - Query Execution 54 

5 
7 
2 
3 
4 
12 
15 
1 

2 

7 5 



10 

Using a heap to generate runs 

CS 525 Notes 10 - Query Execution 55 

5 
7 
2 
3 
4 
15 
12 
1 

2 
3 

7 5 

1 

2 

Using a heap to generate runs 

CS 525 Notes 10 - Query Execution 56 

5 
7 
2 
3 
4 
15 
12 
1 

2 
3 4 

7 5 

1 

2 

Using a heap to generate runs 

CS 525 Notes 10 - Query Execution 57 

5 
7 
2 
3 
4 
15 
12 
1 

2 
3 
4 

5 

7 15 

1 

2 

Using a heap to generate runs 

CS 525 Notes 10 - Query Execution 58 

5 
7 
2 
3 
4 
15 
12 
1 

2 
3 
4 
5 

7 

12 15 

1 

2 

Using a heap to generate runs 

CS 525 Notes 10 - Query Execution 59 

5 
7 
2 
3 
4 
15 
12 
1 

2 
3 
4 
5 
7 

1 

12 15 

1 

2 

Using a heap to generate runs 

CS 525 Notes 10 - Query Execution 60 

5 
7 
2 
3 
4 
15 
12 
1 

2 
3 
4 
5 
7 

12 

15 

1 

1 



11 

Using a heap to generate runs 

•  Increases the run-length 
– On average by a factor of 2 (see Knuth) 

CS 525 Notes 10 - Query Execution 61 

Use clustered B+-tree 
•  Keys in the B+-tree I are in sort order 

–  If B+-tree is clustered traversing the leaf 
nodes is sequential I/O! 

– K = #keys/leaf node 

•  Approach 
– Traverse from root to first leaf: HT(I)  
– Follow sibling pointers: |R| / K 
– Read data blocks: B(R) 

 
CS 525 Notes 10 - Query Execution 62 

I/O Operations 

•  HT(I) + |R| / K + B(R) I/Os 
•  Less than 2 B(R) = 1 pass external 

mergesort 
•  ->Better than external merge-sort! 

CS 525 Notes 10 - Query Execution 63 

Unclustered B+-tree? 
•  Each entry in a leaf node may point to 

different page of relation R 
– For each leaf page we may read up to K 

pages from relation R 
– Random I/O 

•  In worst-case we have 
– K * B(R) 
– K = 500  

• 500 * B(R) = 250 merge passes 

CS 525 Notes 10 - Query Execution 64 

Sorting Comparison 

CS 525 Notes 10 - Query Execution 65 

Property Ext. Mergesort B+ (clustered) B+ (unclustered) 

Runtime O (N logM-1 (N)) O(N) O(N) 

#I/O (random) 2 B(R) * (1 + 
⌈logM-1 (B(R) / M)  ⌉)   

HT + |R| / K + 
B(R)  

HT + |R| / K + K * 
#RB 

Memory M 1 (better HT + X) 1 (better HT + X) 

Disk Space 2 B(R) 0 0 

Variants 1)  Merge with 
heap 

2)  Run generation 
with heap 

3)  Larger Buffer 

B(R) = number of block of R 
M = number of available memory blocks 
#RB = records per page 
HT = height of B+-tree (logarithmic) 
K = number of keys per leaf node 

Operators Overview 
•  (External) Sorting 
•  Joins (Nested Loop, Merge, Hash, …) 
•  Aggregation (Sorting, Hash) 
•  Selection, Projection (Index, Scan) 
•  Union, Set Difference 
•  Intersection 
•  Duplicate Elimination 

CS 525 Notes 10 - Query Execution 66 



12 

Scan 

•  Implements access to a table 
– Combined with selection 
– Probably projection too 

•  Variants 
– Sequential 

• Scan through all tuples of relation 

– Index 
• Use index to find tuples that match selection  

CS 525 Notes 10 - Query Execution 67 

Operators Overview 
•  (External) Sorting 
•  Joins (Nested Loop, Merge, Hash, …) 
•  Aggregation (Sorting, Hash) 
•  Selection, Projection (Index, Scan) 
•  Union, Set Difference 
•  Intersection 
•  Duplicate Elimination 

CS 525 Notes 10 - Query Execution 68 

CS 525 Notes 10 - Query Execution 69 

Options 

•  Transformations: R1      c R2,  R2      c R1 

•  Joint algorithms: 
– Nested loop 
– Merge join 
– Join with index 
– Hash join 

•  Outer join algorithms 

CS 525 Notes 10 - Query Execution 70 

Nested Loop Join (conceptually) 
  for each r ∈ R1 do 
      for each s ∈ R2 do 
   if (r,s) ⊨ C then output (r,s) 

Applicable to: 
•  Any join condition C 
•  Cross-product 
 

CS 525 Notes 10 - Query Execution 71 

•  Merge Join (conceptually) 
(1) if R1 and R2 not sorted, sort them 
(2) i ← 1; j ← 1; 
  While (i ≤ T(R1)) ∧  (j ≤ T(R2)) do 
      if R1{ i }.C = R2{ j }.C then outputTuples 
      else if R1{ i }.C > R2{ j }.C then j ← j+1 
      else if R1{ i }.C < R2{ j }.C then i ← i+1 

Applicable to: 
•  C is conjunction of equalities or </>: 

 A1 = B1 AND … AND An = Bn 

CS 525 Notes 10 - Query Execution 72 

Procedure Output-Tuples 
 While (R1{ i }.C = R2{ j }.C) ∧ (i ≤ T(R1)) do 

  [jj ← j; 

         while (R1{ i }.C = R2{ jj }.C) ∧ (jj ≤ T(R2)) do 
          [output pair R1{ i }, R2{ jj };  

    jj ← jj+1  ] 

       i ← i+1  ] 
   



13 

CS 525 Notes 10 - Query Execution 73 

Example 

i      R1{i}.C   R2{j}.C   j 
1   10        5    1 
2   20       20   2 
3   20       20   3 
4   30       30   4 
5   40       30   5 

         50   6 
         52   7   

CS 525 Notes 10 - Query Execution 74 

Index nested loop (Conceptually)     
     

For each r ∈ R1 do 

 [ X  ←  index (R2, C, r.C) 

  for each s ∈ X do  
   output (r,s) pair] 

Assume R2.C index 

Note:  X ← index(rel, attr, value) 

  then X = set of rel tuples with attr = value 

CS 525 Notes 10 - Query Execution 75 

Hash join (conceptual) 
Hash function h, range 0 → k 
Buckets for R1: G0, G1, ... Gk 

Buckets for R2: H0, H1, ... Hk 

Applicable to: 
•  C is conjunction of equalities 

 A1 = B1 AND … AND An = Bn 

CS 525 Notes 10 - Query Execution 76 

Algorithm 
(1) Hash R1 tuples into G buckets 
(2) Hash R2 tuples into H buckets 
(3) For i = 0 to k do 
  match tuples in Gi, Hi buckets 

Hash join (conceptual) 
Hash function h, range 0 → k 
Buckets for R1: G0, G1, ... Gk 

Buckets for R2: H0, H1, ... Hk 

CS 525 Notes 10 - Query Execution 77 

Simple example     hash: even/odd 

R1  R2     Buckets 
2  5   Even:  
4  4         R1    R2 
3     12   Odd:  
5  3 
8  13 
9  8 
  11 
  14 

2 4 8 4 12 8 14 

3 5 9 5 3 13 11 

CS 525 Notes 10 - Query Execution 78 

Factors that affect performance 

(1)  Tuples of relation stored 
   physically together? 

 
(2)  Relations sorted by join attribute? 
 
(3)  Indexes exist? 



14 

CS 525 Notes 10 - Query Execution 79 

Example 1(a)   NL Join R1     R2 

•  Relations not contiguous 
•  Recall    T(R1) = 10,000     T(R2)  = 5,000 
          S(R1) = S(R2) =1/10 block  

               MEM=101 blocks 

CS 525 Notes 10 - Query Execution 80 

Example 1(a)    
 Nested Loop Join R1     R2 

•  Relations not contiguous 
•  Recall    T(R1) = 10,000     T(R2)  = 5,000 
          S(R1) = S(R2) =1/10 block  

               MEM=101 blocks 

Cost: for each R1 tuple: 
            [Read tuple + Read R2] 
Total =10,000 [1+500]=5,010,000 IOs 

CS 525 Notes 10 - Query Execution 81 

•   Can we do better? 

CS 525 Notes 10 - Query Execution 82 

•   Can we do better? 
Use our memory 

(1)  Read 100 blocks of R1 

(2)  Read all of R2 (using 1 block) + join 
(3)  Repeat until done 

CS 525 Notes 10 - Query Execution 83 

Cost: for each R1 chunk: 
   Read chunk: 100 IOs 
   Read R2:       500 IOs 
          600 

CS 525 Notes 10 - Query Execution 84 

Cost: for each R1 chunk: 
   Read chunk: 100 IOs 
   Read R2:       500 IOs 
          600 

Total = 1,000  x 600 = 6,000 IOs 
            100 



15 

CS 525 Notes 10 - Query Execution 85 

•   Can we do better? 

CS 525 Notes 10 - Query Execution 86 

•   Can we do better? 

E Reverse join order:  R2      R1 
 
Total = 500  x (100 + 1,000) = 
           100 
 

  5 x 1,100 = 5,500 IOs 

CS 525 Notes 10 - Query Execution 87 

Cost of Block Nested Loop 

E Reverse join order:  R1      R2 
 
Total = B(R1) x (min(B(R1), M-1) + B(R2))  
            M-1 
 

CS 525 Notes 10 - Query Execution 88 

Block-Nested Loop Join (conceptual) 
for each M-1 blocks of R1 do 
  read M-1 blocks of R1 into buffer 
  for each block of R2 do 
   read next block of R2 

      for each tuple r in R1 block 
       for each tuple s in R2 block 

    if (r,s) ⊨ C then output (r,s) 

Note 

•  How much memory for buffering inner 
and for outer chunks? 
– 1 for inner would minimize I/O 
– But, larger buffer better for I/O 

CS 525 Notes 10 - Query Execution 89 CS 525 Notes 10 - Query Execution 90 

M - k M - k M - k 

k k k k k k 

R1 

R2 



16 

CS 525 Notes 10 - Query Execution 91 

Example 1(b)   Merge Join 

•  Both R1, R2 ordered by C; relations contiguous 
Memory 

R1 

R2 

….. 

….. 

R1 

R2 

CS 525 Notes 10 - Query Execution 92 

Example 1(b)   Merge Join 

•  Both R1, R2 ordered by C; relations contiguous 
Memory 

R1 

R2 

….. 

….. 

R1 

R2 

Total cost: Read R1 cost + read R2 cost 
   = 1000 + 500 = 1,500 IOs 

Merge Join Example 

CS 525 Notes 10 - Query Execution 93 

R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR ZS 

Output: (a,1,1,X)  

Merge Join Example 

CS 525 Notes 10 - Query Execution 94 

R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

Output: (b,1,1,X)  

Merge Join Example 

CS 525 Notes 10 - Query Execution 95 

R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

R.B > S.C: advance ZS 

Merge Join Example 

CS 525 Notes 10 - Query Execution 96 

R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

Output: (a,2,2,y) 



17 

Merge Join Example 

CS 525 Notes 10 - Query Execution 97 

R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 
ZS 

Output: (a,2,2,e) 

Merge Join Example 

CS 525 Notes 10 - Query Execution 98 

R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

R.B > S.C: advance ZS 

Merge Join Example 

CS 525 Notes 10 - Query Execution 99 

R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 
ZS 

R.B < S.C: advance ZR 

Merge Join Example 

CS 525 Notes 10 - Query Execution 100 

R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

R.B < S.C: advance ZR 

Merge Join Example 

CS 525 Notes 10 - Query Execution 101 

R      B=C S 

A B 

a 1 

b 1 

a 2 

c 3 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

R.B < S.C: DONE 

CS 525 Notes 10 - Query Execution 102 

Example 1(c)   Merge Join 

•  R1, R2 not ordered, but contiguous 

--> Need to sort R1, R2 first 



18 

CS 525 Notes 10 - Query Execution 103 

One way to sort:  Merge Sort 

(i) For each 100 blk chunk of R: 
  - Read chunk 
  - Sort in memory 
  - Write to disk   
        sorted 
        chunks 

 
     Memory 

R1 

R2 

...
 

CS 525 Notes 10 - Query Execution 104 

(ii) Read all chunks + merge + write out 
 
Sorted file     Memory        Sorted 

        Chunks 

...
 ...
 

CS 525 Notes 10 - Query Execution 105 

Cost:  Sort 
    Each tuple is read,written, 
     read, written 

so... 
Sort cost R1:  4 x 1,000 = 4,000 
Sort cost R2:  4 x 500   =  2,000 

CS 525 Notes 10 - Query Execution 106 

Example 1(d)  Merge Join (continued) 

R1,R2 contiguous, but unordered 
 
Total cost = sort cost + join cost 
   =  6,000 + 1,500  = 7,500  IOs 

CS 525 Notes 10 - Query Execution 107 

Example 1(c)  Merge Join (continued) 

R1,R2 contiguous, but unordered 
 
Total cost = sort cost + join cost 
   =  6,000 + 1,500  = 7,500  IOs 

But:  Iteration cost = 5,500 
   so merge joint does not pay off! 

CS 525 Notes 10 - Query Execution 108 

But say  R1 = 10,000 blocks    contiguous 
   R2 = 5,000 blocks      not ordered 

 
Iterate:  5000 x (100+10,000) = 50 x 10,100 
        100 

                   = 505,000 IOs 
  
Merge join:  5(10,000+5,000) = 75,000 IOs 
 
       Merge Join (with sort) WINS! 



19 

CS 525 Notes 10 - Query Execution 109 

How much memory do we need for
   merge sort? 

E.g:   Say I have 10 memory blocks 
       10 
    

...
 

100 chunks ⇒ to merge, need 
                      100 blocks! R1 

CS 525 Notes 10 - Query Execution 110 

In general:    

Say  k blocks in memory 
  x blocks for relation sort 

# chunks = (x/k)      size of chunk = k 

CS 525 Notes 10 - Query Execution 111 

In general:    

Say  k blocks in memory 
  x blocks for relation sort 

# chunks = (x/k)      size of chunk = k 

# chunks < buffers available for merge 

CS 525 Notes 10 - Query Execution 112 

In general:    

Say  k blocks in memory 
  x blocks for relation sort 

# chunks = (x/k)      size of chunk = k 

# chunks < buffers available for merge 

so...   (x/k)  ≤  k 
or  k2 ≥ x    or  k ≥  √x 

CS 525 Notes 10 - Query Execution 113 

In our example 
R1 is 1000 blocks,  k ≥ 31.62 
R2 is 500 blocks,    k ≥ 22.36 
  
 Need at least 32 buffers 

 
Again: in practice we would not want to 

use only one buffer per run! 

CS 525 Notes 10 - Query Execution 114 

Can we improve on merge join? 

Hint: do we really need the fully sorted 
files? 

 
 

R1 

R2 

Join? 

sorted runs 



20 

CS 525 Notes 10 - Query Execution 115 

Cost of improved merge join: 

C = Read R1 + write R1 into runs 
 + read R2 + write R2 into runs 
 + join 
 = 2,000 + 1,000 + 1,500 = 4,500 

 
--> Memory requirement? 

CS 525 Notes 10 - Query Execution 116 

Example 1(d)   Index Join 

•  Assume R1.C index exists; 2 levels 
•  Assume R2 contiguous, unordered 

•  Assume R1.C index fits in memory 

CS 525 Notes 10 - Query Execution 117 

Cost: Reads: 500 IOs   
   for each R2 tuple: 
   - probe index - free 
   - if match, read R1 tuple: 1 IO 

 

CS 525 Notes 10 - Query Execution 118 

What is expected # of matching 
tuples? 

(a) say R1.C is key, R2.C is foreign key 
  then expect = 1 

 (b) say V(R1,C) = 5000,  T(R1) = 10,000 
 with uniform assumption 
 expect = 10,000/5,000   = 2 

CS 525 Notes 10 - Query Execution 119 

(c) Say DOM(R1, C)=1,000,000 
           T(R1) = 10,000 
 with alternate assumption 
  Expect =   10,000    =  1 
         1,000,000     100 

What is expected # of matching 
tuples? 

CS 525 Notes 10 - Query Execution 120 

Total cost with index join 

(a)  Total cost = 500+5000(1)1 = 5,500 
 
(b)  Total cost = 500+5000(2)1 = 10,500 
 
(c)  Total cost = 500+5000(1/100)1=550 



21 

CS 525 Notes 10 - Query Execution 121 

What if index does not fit in memory? 

Example: say R1.C index is 201 blocks 
 
•  Keep root + 99 leaf nodes in memory 
•  Expected cost of each probe is 
  E = (0)99 + (1)101  ≈ 0.5 
      200   200 

CS 525 Notes 10 - Query Execution 122 

Total cost (including probes) 
 
 = 500+5000 [Probe + get records] 
 = 500+5000 [0.5+2]     uniform assumption 

 = 500+12,500 = 13,000     (case b) 

CS 525 Notes 10 - Query Execution 123 

Total cost (including probes) 
 
 = 500+5000 [Probe + get records] 
 = 500+5000 [0.5+2]     uniform assumption 

 = 500+12,500 = 13,000     (case b) 

For case (c): 
= 500+5000[0.5 × 1 + (1/100) × 1] 
= 500+2500+50 = 3050 IOs  

CS 525 Notes 10 - Query Execution 124 

So far 
 

   Nested Loop     5500 
   Merge join      1500 
   Sort+Merge Join    7500 → 4500 
   R1.C Index      5500 → 3050 → 550 
   R2.C Index      ________ 

CS 525 Notes 10 - Query Execution 125 

•  R1, R2 contiguous (un-ordered) 
→ Use 100 buckets 
→ Read R1, hash, + write buckets 
 
R1 → 

Example 1(e)   Partition Hash Join 

...
 

...
 

10 blocks 

100 

CS 525 Notes 10 - Query Execution 126 

-> Same for R2 

-> Read one R1 bucket; build memory hash table 
 -using different hash function h’ 

-> Read corresponding R2 bucket + hash probe 
 
 
R1 

R2 

...
 

R1 

memory ...
 

✏ Then repeat for all buckets 



22 

CS 525 Notes 10 - Query Execution 127 

Cost: 
“Bucketize:”  Read R1 + write 

      Read R2 + write 

Join:   Read R1, R2 

 

Total cost = 3 x [1000+500] = 4500 

CS 525 Notes 10 - Query Execution 128 

Cost: 
“Bucketize:”  Read R1 + write 

      Read R2 + write 

Join:   Read R1, R2 

 

Total cost = 3 x [1000+500] = 4500 

Note: this is an approximation since   
buckets will vary in size and  
we have to round up to blocks 

Why is Hash Join good? 

CS 525 Notes 10 - Query Execution 129 

R 

S S 

R 

CS 525 Notes 10 - Query Execution 130 

Minimum memory requirements: 

Size of R1 bucket =  (x/k) 
  k = number of memory buffers 
  x = number of R1 blocks 

 
So...  (x/k) < k 
 
k > √x           need: k+1 total memory 
       buffers 

CS 525 Notes 10 - Query Execution 131 

Can we use Hash-join when buckets 
do not fit into memory?: 

•  Treat buckets as relations and apply 
Hash-join recursively 

join 

Duality Hashing-Sorting 

•  Both partition inputs 
•  Until input fits into memory 
•  Logarithmic number of phases in 

memory size 

CS 525 Notes 10 - Query Execution 132 



23 

CS 525 Notes 10 - Query Execution 133 

Trick:  keep some buckets in memory 
E.g., k’=33     R1 buckets = 31 blocks 
        keep 2 in memory           

 
memory 

G0 

G1 

in 
...

 

31 

33-2=31 

R1 

called hybrid hash-join 

CS 525 Notes 10 - Query Execution 134 

Trick:  keep some buckets in memory 
E.g., k’=33     R1 buckets = 31 blocks 
        keep 2 in memory           

 
memory 

G0 

G1 

in 

...
 

31 

33-2=31 

R1 

Memory use: 
G0   31 buffers 
G1   31 buffers 
Output   33-2 buffers 
R1 input 1 
Total   94 buffers 

 6 buffers to spare!! 

called hybrid hash-join 

CS 525 Notes 10 - Query Execution 135 

Next: Bucketize R2 
– R2 buckets =500/33= 16 blocks 
– Two of the R2 buckets joined immediately 

with G0,G1           
 memory 

G0 

G1 

in 

...
 

16 

33-2=31 

R2 

...
 

31 

33-2=31 

R2 buckets R1 buckets 

CS 525 Notes 10 - Query Execution 136 

Finally: Join remaining buckets 
–  for each bucket pair: 

•  read one of the buckets into memory 
•  join with second bucket          

 
memory 

Gi 
out 

...
 

16 

33-2=31 

ans 

...
 

31 

33-2=31 

R2 buckets R1 buckets one full R2 
bucket 

one R1 
buffer 

CS 525 Notes 10 - Query Execution 137 

Cost 
•  Bucketize R1 = 1000+31×31=1961 
•  To bucketize R2, only write 31 buckets:

 so, cost = 500+31×16=996 
•  To compare join (2 buckets already done)

   read 31×31+31×16=1457 

Total cost = 1961+996+1457 = 4414 

CS 525 Notes 10 - Query Execution 138 

•  How many buckets in memory? 

memory 

G0 

G1 

in R1 

memory 

G0 
in R1 

OR... 

☛ See textbook for answer... 

? 



24 

CS 525 Notes 10 - Query Execution 139 

Another hash join trick: 

•  Only write into buckets    
 <val,ptr> pairs 

•  When we get a match in join phase,  
 must fetch tuples 

CS 525 Notes 10 - Query Execution 140 

•  To illustrate cost computation, assume: 
– 100 <val,ptr> pairs/block 
– expected number of result tuples is 100 

 

CS 525 Notes 10 - Query Execution 141 

•  To illustrate cost computation, assume: 
– 100 <val,ptr> pairs/block 
– expected number of result tuples is 100 

 •  Build hash table for R2 in memory  
 5000 tuples → 5000/100 = 50 blocks 

•  Read R1 and match 
•  Read ~ 100 R2 tuples 

CS 525 Notes 10 - Query Execution 142 

•  To illustrate cost computation, assume: 
– 100 <val,ptr> pairs/block 
– expected number of result tuples is 100 

 •  Build hash table for R2 in memory  
 5000 tuples → 5000/100 = 50 blocks 

•  Read R1 and match 
•  Read ~ 100 R2 tuples 

Total cost =  Read R2:   500 
   Read R1:   1000 
   Get tuples:  100 
      1600 

CS 525 Notes 10 - Query Execution 143 

So far: 
  Iterate    5500 
  Merge join    1500 
  Sort+merge joint  7500 
  R1.C index    5500 → 550 
  R2.C index    _____ 
  Build R1.C index   _____ 
  Build R2.C index   _____ 
  Hash join    4500+ 
     with trick,R1 first  4414 
     with trick,R2 first  _____ 
  Hash join, pointers  1600 

CS 525 Notes 10 - Query Execution 144 

Yet another hash join trick: 
•  Combine the ideas of  

– block nested-loop with hash join 

•  Use memory to build hash-table for one 
chunk of relation 

•  Find join partners in O(1) instead of 
O(M) 

•  Trade-off 
– Space-overhead of hash-table 
– Time savings from look-up 



25 

CS 525 Notes 10 - Query Execution 145 

Summary 

•  Nested Loop ok for “small” relations  
  (relative to memory size) 

– Need for complex join condition 

•  For equi-join, where relations not  
 sorted and no indexes exist,
   hash join usually best 

CS 525 Notes 10 - Query Execution 146 

•  Sort + merge join good for    
 non-equi-join (e.g., R1.C > R2.C) 

•  If relations already sorted, use   
 merge join 

•  If index exists, it could be useful 
   (depends on expected result size) 

  

Join Comparison 

CS 525 Notes 10 - Query Execution 147 

Ni= number of tuples in Ri 
B(Ri) = number of blocks of Ri 
#P = number of partition steps for hash join 
Pij = average number of join partners 

Algorithm #I/O Memory Disk Space 

Nested Loop 
(block) 

B(R1) / (M-1) * !
[min(B(R),M-1) 
+ B(R2)] 

3 0 

Index Nested Loop B(R1) + N1 * P12 B(Index) + 2  0 

Merge (sorted) B(R1) + B(R2) Max tuples =  0 

Merge (unsorted) B(R1) + B(R2)+ 
(sort – 1 pass) 

sort  
 

B(R1) + B(R2) 
 

Hash (2#P + 1) (B(R1) + 
B(R2)) 

root(max(B(R1), 
B(R2)), #P + 1) 

~B(R1) + B(R2) 

Why do we need nested loop? 

•  Remember not all join implementations 
work for all types of join conditions 
 

CS 525 Notes 10 - Query Execution 148 

Algorithm Type of Condition Example 
Nested Loop any a LIKE ‘%hello%’ 

Index Nested Loop Supported by index: 
Equi-join (hash) 
Equi or range (B-tree) 

a = b 
a < b 

Merge Equalities and ranges a < b, a = b AND c = d 

Hash Equi-join a = b 

Outer Joins 

•  How to implement (left) outer joins? 
•  Nested Loop and Merge 

– Use a flag that is set to true if we find a 
match for an outer tuple 

–  If flag is false fill with NULL 

•  Hash 
–  If no matching tuple fill with NULL 
 

CS 525 Notes 10 - Query Execution 149 

Merge Left Outer Join 

CS 525 Notes 10 - Query Execution 150 

R      B=C S 

A B 

a 1 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR ZS 

Output: (a,1,1,X)  



26 

Merge Left Outer Join 

CS 525 Notes 10 - Query Execution 151 

R      B=C S 

A B 

a 1 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 

ZS 

No match for (d,4) 
Output: (d,4,NULL,NULL)  

Merge Left Outer Join 

CS 525 Notes 10 - Query Execution 152 

R      B=C S 

A B 

a 1 

d 4 

e 5 

C D 

1 x 

2 y 

2 e 

6 q 

7 d 

R S 

ZR 
ZS 

No match for (e,5) 
Output: (e,5,NULL,NULL)  

Operators Overview 
•  (External) Sorting 
•  Joins (Nested Loop, Merge, Hash, …) 
•  Aggregation (Sorting, Hash) 
•  Selection, Projection (Index, Scan) 
•  Union, Set Difference 
•  Intersection 
•  Duplicate Elimination 

CS 525 Notes 10 - Query Execution 153 

Aggregation 

•  Have to compute aggregation functions 
–  for each group of tuples from input 

•  Groups 
– Determined by equality of group-by 

attributes 

CS 525 Notes 10 - Query Execution 154 

Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 

CS 525 Notes 10 - Query Execution 155 

SELECT sum(a),b !
FROM R !
GROUP BY b !

sum(a) b 

6 1 

6 2 

Aggregation Function 
Interface 

• init() !
–  Initialize state 

• update(tuple) !
– Update state with information from tuple 

• close() !
– Return result and clean-up 

CS 525 Notes 10 - Query Execution 156 



27 

Implementation SUM(A) 

• init() !
– sum := 0 !

• update(tuple) !
– sum += tuple.A!

• close() !
– return sum !

 

CS 525 Notes 10 - Query Execution 157 

Aggregation Implementations 

•  Sorting 
– Sort input on group-by attributes 
– On group boundaries output tuple 

•  Hashing 
– Store current aggregated values for each 

group in hash table 
– Update with newly arriving tuples 
– Output result after processing all inputs 

CS 525 Notes 10 - Query Execution 158 

Grouping by sorting 

•  Similar to Merge join 
•  Sort R on group-by attribute 
•  Scan through sorted input 

–  If group-by values change 
• Output using close() and call init() 

– Otherwise 
• Call update() 

CS 525 Notes 10 - Query Execution 159 CS 525 Notes 10 - Query Execution 160 

Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 

SELECT sum(a),b !
FROM R !
GROUP BY b !

a b 

3 1 

3 1 

4 2 

1 2 

1 2 

sort init() 

0 

CS 525 Notes 10 - Query Execution 161 

Aggregation Example 
SELECT sum(a),b !
FROM R !
GROUP BY b !

a b 

3 1 

3 1 

4 2 

1 2 

1 2 

update(3,1) 

3 

CS 525 Notes 10 - Query Execution 162 

Aggregation Example 
SELECT sum(a),b !
FROM R !
GROUP BY b !

a b 

3 1 

3 1 

4 2 

1 2 

1 2 

update(3,1) 

6 



28 

CS 525 Notes 10 - Query Execution 163 

Aggregation Example 
SELECT sum(a),b !
FROM R !
GROUP BY b !

a b 

3 1 

3 1 

4 2 

1 2 

1 2 

Group by changed! 
close(), init(), update(4,2) 

4 

6 
output 

0 

1 

2 

3 

Grouping by Hashing 
•  Create in-memory hash-table 
•  For each input tuple probe hash table 

with group by values 
–  If no entry exists then call init(), update(), 

and add entry 
– Otherwise call update() for entry 

•  Loop through all entries in hash-table 
and ouput calling close() 

CS 525 Notes 10 - Query Execution 164 

CS 525 Notes 10 - Query Execution 165 

Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 

SELECT sum(a),b !
FROM R !
GROUP BY b !

CS 525 Notes 10 - Query Execution 166 

Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 

SELECT sum(a),b !
FROM R !
GROUP BY b !

3 

Init() and update(3,1) 

CS 525 Notes 10 - Query Execution 167 

Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 

SELECT sum(a),b !
FROM R !
GROUP BY b !

3 

Init() and update(4,2) 

4 

CS 525 Notes 10 - Query Execution 168 

Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 

SELECT sum(a),b !
FROM R !
GROUP BY b !

6 

update(3,1) 

4 



29 

CS 525 Notes 10 - Query Execution 169 

Aggregation Example 

a b 

3 1 

4 2 

3 1 

1 2 

1 2 

SELECT sum(a),b !
FROM R !
GROUP BY b !

6 

•  Loop through hash table entries 
•  Output tuples 

6 

Aggregation Summary 
•  Hashing 

– No sorting -> no extra I/O 
– Hash table has to fit into memory 
– No outputs before all inputs have been 

processed 

•  Sorting 
– No memory required 
– Output one group at a time 

CS 525 Notes 10 - Query Execution 170 

Operators Overview 
•  (External) Sorting 
•  Joins (Nested Loop, Merge, Hash, …) 
•  Aggregation (Sorting, Hash) 
•  Selection, Projection (Index, Scan) 
•  Union, Set Difference 
•  Intersection 
•  Duplicate Elimination 

CS 525 Notes 10 - Query Execution 171 

Duplicate Elimination 
•  Equivalent to group-by on all attributes 
•  -> Can use aggregation 

implementations 
•  Optimization 

– Hash 
• Directly output tuple and use hash table only to 

avoid outputting duplicates 

 

CS 525 Notes 10 - Query Execution 172 

Operators Overview 
•  (External) Sorting 
•  Joins (Nested Loop, Merge, Hash, …) 
•  Aggregation (Sorting, Hash) 
•  Selection, Projection (Index, Scan) 
•  Union, Set Difference 
•  Intersection 
•  Duplicate Elimination 

CS 525 Notes 10 - Query Execution 173 

Set Operations 

•  Can be modeled as join  
– with different output requirements 

•  As aggregation/group by on all columns 
– with different output requirements 

CS 525 Notes 10 - Query Execution 174 



30 

Union 

•  Bag union 
– Append the two inputs 
– E.g., using three buffers 

•  Set union 
– Apply duplicate removal to result 

CS 525 Notes 10 - Query Execution 175 

Intersection 
•  Set version 

– Equivalent to join + project + duplicate 
removal  

– 3-state aggregate function (found left, 
found right, found both) 

•  Bag version 
– Join + project + min(i,j) 
– Aggegate min(count(i),count(j)) 

CS 525 Notes 10 - Query Execution 176 

Set Difference 

•  Using join methods 
– Find matching tuples 
–  If no match found, then output 

•  Using aggregation 
– count(i) – count(j) (bag) 
–  true(i) AND false(j) (set) 

CS 525 Notes 10 - Query Execution 177 

Summary 
•  Operator implementations 

– Joins! 
– Other operators 

•  Cost estimations 
–  I/O 
– memory 

•  Query processing architectures 

CS 525 Notes 10 - Query Execution 178 

Next 

•  Query Optimization Physical 
•  -> How to efficiently choose an 

efficient plan 

CS 525 Notes 10 - Query Execution 179 


