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CS 525: Advanced Database 
Organisation 

09: Query Optimization - 
Logical 

Boris Glavic 
Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  



CS 525 Notes 8 - Parsing and Analysis 2 

parse 

convert 

apply laws 

estimate result sizes 

consider physical plans estimate costs 

pick best 

execute 

{P1,P2,…..} 

{(P1,C1),(P2,C2)...} 

Pi 

   answer 

SQL query 

parse tree 

logical query plan 

“improved” l.q.p 

l.q.p. +sizes 

statistics 
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Query Optimization 

•  Relational algebra level 
•  Detailed query plan level 
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Query Optimization 

•  Relational algebra level 
•  Detailed query plan level 

– Estimate Costs 
• without indexes 
• with indexes 

– Generate and compare plans 
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Relational algebra optimization 

•  Transformation rules 
 (preserve equivalence) 

•  What are good transformations? 
– Heuristic application of transformations 



Query Equivalence 

•  Two queries q and q’ are equivalent:  
–  If for every database instance I 

• Contents of all the tables 

– Both queries have the same result 

q≡q’ iff ∀I: q(I) = q’(I) 
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Rules: Natural joins & cross products & union 

R   S  =  S  R 
(R   S)    T  = R     (S      T)  
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Note: 

•  Carry attribute names in results, so  
 order is not important 

•  Can also write as trees, e.g.: 
  

         T    R    

R     S     S  T 
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R x S = S x R 
(R x S) x T = R x (S x T) 
 
R U S = S U R 
R U (S U T) = (R U S) U T 

Rules: Natural joins & cross products & union 

R   S  =  S  R 
(R   S)    T  = R     (S      T)  
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Rules: Selects 

σp1∧p2(R) = 

σp1vp2(R) =  
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Rules: Selects 

σp1∧p2(R) = 

σp1vp2(R) =  

σp1  [ σp2 (R)] 

[ σp1 (R)] U  [ σp2 (R)] 
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Bags vs. Sets 

R = {a,a,b,b,b,c} 
S = {b,b,c,c,d} 
RUS = ? 
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Bags vs. Sets 

R = {a,a,b,b,b,c} 
S = {b,b,c,c,d} 
RUS = ? 

•  Option 1    SUM 
 RUS = {a,a,b,b,b,b,b,c,c,c,d} 

•  Option 2    MAX 
 RUS = {a,a,b,b,b,c,c,d} 
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Option 2 (MAX) makes this rule work: 

σp1vp2 (R) = σp1(R)  U σp2(R)  

Example: R={a,a,b,b,b,c} 
 P1 satisfied by a,b;  P2 satisfied by b,c 



CS 525 Notes 9 - Logical Optimization 15 

Option 2 (MAX) makes this rule work: 

σp1vp2 (R) = σp1(R)  U σp2(R)  

Example: R={a,a,b,b,b,c} 
 P1 satisfied by a,b;  P2 satisfied by b,c 

  σp1vp2 (R) = {a,a,b,b,b,c} 

σp1(R) = {a,a,b,b,b} 

σp2(R) = {b,b,b,c} 

σp1(R) U σp2 (R) = {a,a,b,b,b,c} 
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“Sum” option makes more sense: 

Senators (……)   Rep (……) 

T1 = πyr,state Senators;   T2 = πyr,state Reps 
T1   Yr   State         T2   Yr   State 
   97   CA      99   CA 
   99   CA      99   CA 
   98   AZ      98   CA 

  
Union? 
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Executive Decision 

-> Use “SUM” option for bag unions 
-> Some rules cannot be used for bags 
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Rules: Project 

Let: X = set of attributes 
  Y = set of attributes 
  XY = X U Y 

πxy (R) =  
 



CS 525 Notes 9 - Logical Optimization 19 

Rules: Project 

Let: X = set of attributes 
  Y = set of attributes 
  XY = X U Y 

πxy (R) =  
 

πx [πy (R)]  
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Rules: Project 

Let: X = set of attributes 
  Y = set of attributes 
  XY = X U Y 

πxy (R) =  
 

πx [πy (R)]  
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Let p = predicate with only R attribs 
   q = predicate with only S attribs 
   m = predicate with only R,S attribs 

 

σp (R      S) =  

σq (R      S) =    

Rules:  σ +      combined  
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Let p = predicate with only R attribs 
   q = predicate with only S attribs 
   m = predicate with only R,S attribs 

 

σp (R      S) =  

σq (R      S) =    

Rules:  σ +      combined  

 [σp (R)]      S 

  R      [σq (S)]   
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Some Rules can be Derived: 

σp∧q (R      S) = 

σp∧q∧m (R      S) = 

σpvq (R      S) = 

 

Rules:  σ +      combined  (continued)  
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Do one: 

σp∧q (R      S)  = [σp (R)]      [σq (S)] 

σp∧q∧m (R      S) =  

   σm [(σp R)      (σq S)] 

σpvq (R      S) =  

  [(σp R)     S] U [R    (σq S)]  
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--> Derivation for first one: 

σp∧q (R      S)  = 

σp [σq (R      S) ] = 

σp [ R      σq (S) ] = 

[σp (R)]      [σq (S)] 
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Rules:   π,σ  combined 

Let x = subset of R attributes 
    z = attributes in predicate P   

  (subset of R attributes) 
 

πx[σp (R) ] =   
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Rules:   π,σ  combined 

Let x = subset of R attributes 
    z = attributes in predicate P   

  (subset of R attributes) 
 

πx[σp (R) ] =   
 

     {σp [ πx  (R) ]}  
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Rules:   π,σ  combined 

Let x = subset of R attributes 
    z = attributes in predicate P   

  (subset of R attributes) 
 

πx[σp (R) ] =   
 

     {σp [ πx  (R) ]}  
 
 πx  
 

 πxz 
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Rules:   π,      combined 

Let  x = subset of R attributes 
      y = subset of S attributes 
     z = intersection of R,S attributes 

πxy (R      S)  =  
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Rules:   π,      combined 

Let  x = subset of R attributes 
      y = subset of S attributes 
     z = intersection of R,S attributes 

πxy (R      S)  =  

πxy{[πxz (R) ]     [πyz (S) ]}  
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πxy {σp (R      S)}  = 
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πxy {σp (R      S)}  = 

πxy {σp [πxz’ (R)     πyz’ (S)]}  
 z’ = z U {attributes used in P } 
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Rules   for σ, π combined with X  

    similar... 

e.g.,    σp (R X S) =  ?	
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σp(R U S) = σp(R) U σp(S)  

σp(R - S) = σp(R) - S = σp(R) - σp(S)  

Rules    σ, U  combined: 
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σp1∧p2 (R) → σp1 [σp2 (R)]  

σp (R     S) → [σp (R)]       S 

R      S  →   S       R 

πx [σp (R)] → πx {σp [πxz (R)]} 

Which are “good” transformations? 
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Conventional wisdom:  
   do projects early 

Example: R(A,B,C,D,E)    x={E}   
           P: (A=3) ∧ (B=“cat”) 

 

πx {σp (R)}    vs.   πE {σp{πABE(R)}}   
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 What if we have A, B indexes? 

B = “cat”                                A=3 
 
 
 
    Intersect pointers to get 
    pointers to matching tuples 
    e.g., using bitmaps 

But 
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Bottom line: 

•  No transformation is always good 
•  Usually good: early selections 

– Exception: expensive selection conditions 
– E.g., UDFs 
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More transformations 

•  Eliminate common sub-expressions 
•  Detect constant expressions 
•  Other operations: duplicate elimination 



Pushing Selections 

•  Idea: 
– Join conditions equate attributes 
– For parts of algebra tree (scope) store 

which attributes have to be the same 
• Called Equivalence classes 

•  Example: R(a,b), S(c,d) 

σb=3 (R     b=c S) = σb=3 (R)     b=c σc=3 (S)  
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Outer-Joins 

•  Not commutative 
– R ⟕ S ≠ S ⟕ R 

•  p – condition over attributes in A 
•  A list of attributes from R 
σp (R ⟕A=B S) ≣ σp (R) ⟕A=B S   
Not σp (R ⟕A=B S) ≣ R ⟕A=B σp (S)   
 
CS 525 Notes 9 - Logical Optimization 41 



Summary Equivalences 

•  Associativity:  (R ⊙ S) ⊙ T ≣ R ⊙ (S ⊙ T) 
•  Commutativity: R ⊙ S ≣ S ⊙ R 
•  Distributivity: (R ⊙ S) ⊗ T ≣ (R ⊗ T) ⊙ (S ⊗ T) 
•  Difference between Set and Bag Equivalences 
•  Only some equivalence are useful 
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Outline  -  Query Processing 

•  Relational algebra level 
–  transformations 
– good transformations 

•  Detailed query plan level 
– estimate costs 
– generate and compare plans 
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•  Estimating cost of query plan 

(1) Estimating size of results 
(2) Estimating # of IOs 
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Estimating result size 

•  Keep statistics for relation R 
– T(R) : # tuples in R 
– S(R) : # of bytes in each R tuple 
– B(R): # of blocks to hold all R tuples 
– V(R, A) : # distinct values in R 
    for attribute A 
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Example 
        R     A: 20 byte string 
      B: 4 byte integer 
      C: 8 byte date 
      D: 5 byte string 

A B C D 
cat 1 10 a 
cat 1 20 b 
dog 1 30 a 
dog 1 40 c 
bat 1 50 d 
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Example 
        R     A: 20 byte string 
      B: 4 byte integer 
      C: 8 byte date 
      D: 5 byte string 

A B C D 
cat 1 10 a 
cat 1 20 b 
dog 1 30 a 
dog 1 40 c 
bat 1 50 d 

T(R) = 5     S(R) = 37 
V(R,A) = 3   V(R,C) = 5 
V(R,B) = 1   V(R,D) = 4 
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Size estimates  for W = R1 x R2 

T(W) = 
 
S(W) = 
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Size estimates  for W = R1 x R2 

T(W) = 
 
S(W) = 

T(R1) × T(R2) 
 
S(R1) + S(R2) 
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S(W) = S(R) 
 
T(W) = ? 

Size estimate  for W = σA=a (R) 
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Example 
         R      V(R,A)=3 
       V(R,B)=1 
       V(R,C)=5 
       V(R,D)=4 

 
 

W = σz=val(R)    T(W) =  
 

A B C D 
cat 1 10 a 
cat 1 20 b 
dog 1 30 a 
dog 1 40 c 
bat 1 50 d 
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Example 
         R      V(R,A)=3 
       V(R,B)=1 
       V(R,C)=5 
       V(R,D)=4 

 
 

W = σz=val(R)    T(W) =  
 

A B C D 
cat 1 10 a 
cat 1 20 b 
dog 1 30 a 
dog 1 40 c 
bat 1 50 d 

T(R) 
V(R,Z) 
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Assumption: 

Values in select expression Z = val 
are  uniformly distributed 
over possible V(R,Z) values. 
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Alternate Assumption: 

Values in select expression Z = val 
are uniformly distributed 
over domain with DOM(R,Z) values. 
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Example 
        R     Alternate assumption 

     V(R,A)=3  DOM(R,A)=10 
     V(R,B)=1  DOM(R,B)=10 
     V(R,C)=5  DOM(R,C)=10 
     V(R,D)=4  DOM(R,D)=10 

 
 

A B C D 
cat 1 10 a 
cat 1 20 b 
dog 1 30 a 
dog 1 40 c 
bat 1 50 d 

W = σz=val(R)    T(W) = ?  
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C=val ⇒ T(W) = (1/10)1 + (1/10)1 + ... 
                      = (5/10) = 0.5 
 
B=val ⇒ T(W)= (1/10)5 + 0 + 0 = 0.5 
 
A=val ⇒ T(W)= (1/10)2 + (1/10)2 + (1/10)1 

                    = 0.5 
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Example 
        R     Alternate assumption 

     V(R,A)=3  DOM(R,A)=10 
     V(R,B)=1  DOM(R,B)=10 
     V(R,C)=5  DOM(R,C)=10 
     V(R,D)=4  DOM(R,D)=10 

 
 

A B C D 
cat 1 10 a 
cat 1 20 b 
dog 1 30 a 
dog 1 40 c 
bat 1 50 d 

W = σz=val(R)    T(W) =  
T(R) 

DOM(R,Z) 
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Selection cardinality 

SC(R,A) = average # records that satisfy 
   equality condition on R.A 

                 T(R) 

      V(R,A) 
SC(R,A) = 
        T(R) 

      DOM(R,A) 
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What about W = σz ≥ val (R)   ? 

  T(W) = ?     
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What about W = σz ≥ val (R)   ? 

  T(W) = ?     

•   Solution # 1: 
  T(W) =  T(R)/2      
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What about W = σz ≥ val (R)   ? 

  T(W) = ?     

•   Solution # 1: 
  T(W) =  T(R)/2      

•   Solution # 2: 
  T(W) =  T(R)/3      
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•  Solution # 3:   Estimate values in range 
 
Example  R Z 

Min=1      V(R,Z)=10 

      W= σz ≥ 15 (R) 

Max=20 
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•  Solution # 3:   Estimate values in range 
 
Example  R Z 

Min=1      V(R,Z)=10 

      W= σz ≥ 15 (R) 

Max=20 

f = 20-15+1 = 6      (fraction of range) 
      20-1+1     20 
 
T(W) = f × T(R) 
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Equivalently: 
      f×V(R,Z) = fraction of distinct values 
T(W)  = [f × V(Z,R)] ×T(R)    =  f × T(R)  
                  V(Z,R) 
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Size estimate  for W = R1      R2 

Let x = attributes of R1 
     y = attributes of R2 
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Size estimate  for W = R1      R2 

Let x = attributes of R1 
     y = attributes of R2 

    X ∩ Y = ∅ 

   Same as R1 x R2 

Case 1 
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   W = R1      R2      X ∩ Y = A 
R1    A     B     C        R2    A   D 

Case 2 
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   W = R1      R2      X ∩ Y = A 
R1    A     B     C        R2    A   D 

Case 2 

Assumption: 
V(R1,A)  ≤ V(R2,A)  ⇒  Every A value in R1 is in R2 
V(R2,A)  ≤ V(R1,A)  ⇒  Every A value in R2 is in R1 
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R1    A    B     C        R2    A   D 

Computing T(W)   when V(R1,A) ≤ V(R2,A) 

Take  
1 tuple Match 
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R1    A    B     C        R2    A   D 

Computing T(W)   when V(R1,A) ≤ V(R2,A) 

Take  
1 tuple Match 

1 tuple matches with   T(R2)        tuples... 
         V(R2,A)  

so     T(W)   =     T(R2)   × T(R1) 

            V(R2, A)  
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•  V(R1,A)  ≤ V(R2,A)   T(W) = T(R2) T(R1) 

                 V(R2,A) 
 

•  V(R2,A)  ≤ V(R1,A)   T(W)  =  T(R2) T(R1) 

                   V(R1,A) 
 
[A is common attribute] 
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T(W)  =           T(R2) T(R1) 
   max{ V(R1,A), V(R2,A) } 

In general    W = R1      R2 
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  with alternate assumption 

Values uniformly distributed over domain 
 
R1    A  B  C          R2   A     D 
 
  This tuple matches T(R2)/DOM(R2,A) so 

T(W) =  T(R2) T(R1)   =   T(R2) T(R1) 

             DOM(R2, A)         DOM(R1, A)  

 
   

Case 2 

Assume the same 



CS 525 Notes 9 - Logical Optimization 74 

In all cases:  
 
S(W) = S(R1) + S(R2) - S(A) 

           size of attribute A 



CS 525 Notes 9 - Logical Optimization 75 

Using similar ideas, 
we can estimate sizes of: 

ΠAB (R)  

σA=a∧B=b (R)  
R       S  with common attribs. A,B,C   
Union, intersection, diff, 	
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Note: for complex expressions, need 
    intermediate T,S,V results. 

E.g.  W = [σA=a (R1) ]       R2 
 
   Treat as relation U 

T(U) = T(R1)/V(R1,A)      S(U) = S(R1) 
 

   Also need V (U, *) !!  
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To estimate Vs 

E.g., U = σA=a (R1)   
          Say R1 has attribs A,B,C,D 
  V(U, A) =  
  V(U, B) = 
  V(U, C) =  
  V(U, D) =  
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Example 
     R 1     V(R1,A)=3 
      V(R1,B)=1 
      V(R1,C)=5 
      V(R1,D)=3 

                                    U = σA=a (R1) 
 

A B C D 
cat 1 10 10 
cat 1 20 20 
dog 1 30 10 
dog 1 40 30 
bat 1 50 10 
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Example 
     R 1     V(R1,A)=3 
      V(R1,B)=1 
      V(R1,C)=5 
      V(R1,D)=3 

                                    U = σA=a (R1) 
 

A B C D 
cat 1 10 10 
cat 1 20 20 
dog 1 30 10 
dog 1 40 30 
bat 1 50 10 

V(U,A) =1   V(U,B) =1   V(U,C) =    T(R1) 

                V(R1,A) 

V(D,U) ... somewhere in between 
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Possible Guess    U = σA=a (R) 

V(U,A)  = 1 
V(U,B)  = V(R,B) 
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For Joins    U = R1(A,B)      R2(A,C)  

V(U,A) = min { V(R1, A), V(R2, A) } 
V(U,B) = V(R1, B) 
V(U,C) = V(R2, C) 
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Example: 

Z = R1(A,B)      R2(B,C)        R3(C,D) 
 
  T(R1) = 1000  V(R1,A)=50   V(R1,B)=100 
  T(R2) = 2000  V(R2,B)=200 V(R2,C)=300 
  T(R3) = 3000  V(R3,C)=90   V(R3,D)=500 

R1 

R2 

R3 
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T(U) = 1000×2000      V(U,A) = 50 
        200       V(U,B) = 100 
         V(U,C) = 300 

Partial Result:   U = R1      R2 
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Z = U      R3 

T(Z) = 1000×2000×3000   V(Z,A) = 50 
   200×300     V(Z,B) = 100 
        V(Z,C) = 90 
        V(Z,D) = 500 



Approximating Distributions 

•  Summarize the distribution 
– Used to better estimate result sizes 
– Without the need to look at all the data 

•  Concerns 
– Error metric: How to measure preciseness 
– Memory consumption 
– Computational Complexity 
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Approximating Distributions 

•  Parameterized distribution 
– E.g., gauss distribution 
– Adapt parameters to fit data 

•  Histograms 
– Divide domain into ranges (buckets) 
– Store the number of tuples per bucket 

•  Both need to be maintained 
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Histograms 
Parameterized 
Distribution 



Maintaining Statistics 

•  Use separate command that triggers 
statistics collection 
– Postgres: ANALYZE !

•  During query processing 
– Overhead for queries 

•  Use Sampling? 
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Estimating Result Size using 
Histograms 

10 20 30 40 

10 

20 

30 

40 

number of tuples 
in R with A value 
in given range 

 σA=val(R) = ? 



Estimating Result Size using 
Histograms 
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• σA=val(R) = ? 
•  |B| - number of values per bucket 
•  #B – number of records in bucket 
 

 #B 
 |B| 



Join Size using Histograms 
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•  R ⋈ S 
•  Use  

•  Apply for each bucket 
  
  

T(W)  =           T(R2) T(R1) 
   max{ V(R1,A), V(R2,A) } 



Join Size using Histograms 
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•  V(R1,A) = V(R2,A) = bucket size |B| 

  
  

T(W)  =              #B(R2) #B(R1) 
                       |B| Σbuckets 



Equi-width vs. Equi-depth 
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•  Equi-width 
– All buckets contain the same number of 

values 
– Easy, but inaccurate 

•  Equi-depth (used by most DBMS) 
– All buckets contain the same number of 

tuples 
– Better accuracy, need to sort data to 

compute 



Equi-width vs. Equi-depth 
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Construct Equi-depth 
Histograms 
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•  Sort input 
•  Determine size of buckets 

– #bucket / #tuples 

•  Example 3 buckets 
1, 5,44, 6,10,12, 3, 6, 7 !
1, 3, 5, 6, 6, 7,10,12,44 !
[1-5][6-8][9-44] !



Advanced Techniques 
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•  Wavelets 
•  Approximate Histograms 
•  Sampling Techniques 
•  Compressed Histograms 
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Summary 

•  Estimating size of results is an “art” 

•  Don’t forget: 
  Statistics must be kept up to date… 
     (cost?) 
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Outline 

•  Estimating cost of query plan 
– Estimating size of results             done! 
– Estimating # of IOs    next… 
– Operator Implementations 
 

•  Generate and compare plans 


