
CS 525 Notes 8 - Parsing and Analysis 1

CS 525: Advanced Database
Organisation

08: Query Processing
Parsing and Analysis

Boris Glavic
Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 8 - Parsing and Analysis 2

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1,P2,…..}

{(P1,C1),(P2,C2)...}

Pi

 answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

CS 525 Notes 8 - Parsing and Analysis 3

Parsing, Analysis, Conversion
1.  Parsing

–  Transform SQL text into syntax tree

2.  Analysis
–  Check for semantic correctness
–  Use database catalog
–  E.g., unfold views, lookup functions and

attributes, check scopes

3.  Conversion
–  Transform into internal representation
–  Relational algebra or QBM

Analysis and Conversion

•  Usually intertwined
•  The internal representation is used to

store analysis information
•  Create an initial representation and

complete during analysis

CS 525 Notes 8 - Parsing and Analysis 4

CS 525 Notes 8 - Parsing and Analysis 5

Parsing, Analysis, Conversion
1.  Parsing
2.  Analysis
3.  Conversion

Parsing

•  SQL -> Parse Tree
•  Covered in compiler courses and books
•  Here only short overview

CS 525 Notes 8 - Parsing and Analysis 6

SQL Standard

•  Standardized language
– 86, 89, 92, 99, 03, 06, 08, 11

•  DBMS vendors developed their own
dialects

CS 525 Notes 8 - Parsing and Analysis 7

CS 525 Notes 8 - Parsing and Analysis 8

Example: SQL query
SELECT title !
FROM StarsIn!
WHERE starName IN (!
" "SELECT name !
" "FROM MovieStar!
" "WHERE birthdate LIKE ‘%1960’!
); !

(Find the movies with stars born in 1960)

CS 525 Notes 8 - Parsing and Analysis 9

Example: Parse Tree
<Query>

<Query Block>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Tuple> IN <Query>

title StarsIn <Attribute> (<Query>)

starName <Query Block>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Attribute> LIKE <Pattern>

name MovieStar birthDate ‘%1960’

SQL Query Structure

•  Organized in Query blocks
SELECT <select_list> !
FROM <from_list> !
WHERE <where_condition> !
GROUP BY <group_by_expressions> !
HAVING <having_condition> !
ORDER BY <order_by_expressions> !
CS 525 Notes 8 - Parsing and Analysis 10

Query Blocks

•  Only SELECT clause is mandatory
– Some DBMS require FROM

SELECT (1 + 2) AS result

CS 525 Notes 8 - Parsing and Analysis 11

result

3

SELECT clause

•  List of expressions and optional name
assignment + optional DISTINCT
– Attribute references: R.a, b
– Constants: 1, ‘hello’, ‘2008-01-20’
– Operators: (R.a + 3) * 2
– Functions (maybe UDF): substr(R.a, 1,3)

• Single result or set functions

– Renaming: (R.a + 2) AS x
CS 525 Notes 8 - Parsing and Analysis 12

SELECT clause - example

SELECT substring(p.name,1,1) AS initial !
 p.name!
FROM person p !

!
" !

CS 525 Notes 8 - Parsing and Analysis 13

name gender

Joe male

Jim male

person
initial name

J Joe

J Jim

result

SELECT clause – set functions

•  Function extrChar(string) !

SELECT extrChar(p.name) AS n !
FROM person p !

CS 525 Notes 8 - Parsing and Analysis 14

name gender

Joe male

Jim male

person

n

J

o

e

J

i

m

result

SELECT clause – DISTINCT

SELECT DISTINCT gender !
FROM person p !

CS 525 Notes 8 - Parsing and Analysis 15

name gender

Joe male

Jim male

person
gender

male

result

FROM clause

•  List of table expressions
– Access to relations
– Subqueries (need alias)
– Join expressions
– Table functions
– Renaming of relations and columns

CS 525 Notes 8 - Parsing and Analysis 16

FROM clause examples

FROM R !
 -access table R

FROM R, S !
 -access tables R and S

FROM R JOIN S ON (R.a = S.b) !
 -join tables R and S on condition (R.a = S.b)

FROM R x !
FROM R AS x !

 -Access table R and assign alias ‘x’

CS 525 Notes 8 - Parsing and Analysis 17

FROM clause examples

FROM R x(c,d) !
FROM R AS x(c,d) !

 -using aliases x for R and c,d for its attribues
FROM (R JOIN S t ON (R.a = t.b)), T !

 -join R and S, and access T
FROM (R JOIN S ON (R.a = S.b)) JOIN T !

 -join tables R and S and result with T
FROM create_sequence(1,100) AS seq(a) !

 -call table function

CS 525 Notes 8 - Parsing and Analysis 18

FROM clause examples

FROM !
"(SELECT count(*) FROM employee)
"AS empcnt(cnt) !

-count number of employee in subquery

CS 525 Notes 8 - Parsing and Analysis 19

FROM clause examples

SELECT * !
FROM create_sequence(1,3) AS seq(a) !

CS 525 Notes 8 - Parsing and Analysis 20

a

1

2

3

result

FROM clause examples
SELECT dep, headcnt!
FROM (SELECT count(*) AS headcnt, dep!

"FROM employee !
"GROUP BY dep) !

WHERE headcnt > 100 !

CS 525 Notes 8 - Parsing and Analysis 21

result

name dep

Joe IT

Jim Marketing

… …

employee dep headcnt

IT 103

Support 2506

… …

FROM clause - correlation

•  Correlation
– Reference attributes from other FROM

clause item
– Attributes of ith entry only available in j > i
– Semantics:

•  For each row in result of ith entry:
• Substitute correlated attributes with value from

current row and evaluate query

CS 525 Notes 8 - Parsing and Analysis 22

Correlation - Example

CS 525 Notes 8 - Parsing and Analysis 23

SELECT name, chr!
FROM employee AS e, !

"extrChar(e.name) AS c(chr) !
 result

name dep

Joe IT

Jim Marketing

… …

employee

name chr

Joe J

Joe o

Joe e

Jim J

Jim i

… …

Correlation - Example

CS 525 Notes 8 - Parsing and Analysis 24

SELECT name !
FROM (SELECT max(salary) maxsal!

" FROM employee) AS m, !
" (SELECT name !
" FROM employee x !
" WHERE x.salary = m.maxsal) AS e !

result

name salary

Joe 20,000

Jim 30,000

… …

employee

name

Jim

WHERE clause

•  A condition
– Attribute references
– Constants
– Operators (boolean)
– Functions
– Nested subquery expressions

•  Result has to be boolean

CS 525 Notes 8 - Parsing and Analysis 25

WHERE clause examples

WHERE R.a = 3 !
 -comparison between attribute and constant

WHERE (R.a > 5) AND (R.a < 10) !
 -range query using boolean AND

WHERE R.a = S.b!
 -comparison between two attributes

WHERE (R.a * 2) > (S.b – 3) !
 -using operators

CS 525 Notes 8 - Parsing and Analysis 26

Nested Subqueries

•  Nesting a query within an expression
•  Correlation allowed

– Access FROM clause attributes

•  Different types of nesting
– Scalar subquery
– Existential quantification
– Universal quantification

CS 525 Notes 8 - Parsing and Analysis 27

Nested Subqueries Semantics

•  For each tuple produced by the FROM
clause execute the subquery
–  If correlated attributes replace them with

tuple values

CS 525 Notes 8 - Parsing and Analysis 28

Scalar subquery

•  Subquery that returns one result tuple
– How to check?
–  -> Runtime error

!
SELECT * !
FROM R !
WHERE R.a = (SELECT count(*) FROM S) !

CS 525 Notes 8 - Parsing and Analysis 29

Existential Quantification

• <expr> IN <subquery> !
– Evaluates to true if <expr> equal to at

least one of the results of the subquery

SELECT * !
FROM users !
WHERE name IN (SELECT name FROM !
 blacklist) !

CS 525 Notes 8 - Parsing and Analysis 30

Existential Quantification

• EXISTS <subquery> !
– Evaluates to true if <subquery> returns at

least one tuple

SELECT * !
FROM users u !
WHERE EXISTS (SELECT * FROM !
 blacklist b !
 WHERE b.name = u.name) !

 CS 525 Notes 8 - Parsing and Analysis 31

Existential Quantification

• <expr> <op> ANY <subquery> !
– Evaluates to true if <expr> <op> <tuple>

evaluates to true for at least one result
tuple

– Op is any comparison operator: =, <, >, …
SELECT * !
FROM users !
WHERE name = ANY (SELECT name FROM !
 blacklist) !

 CS 525 Notes 8 - Parsing and Analysis 32

Universal Quantification

• <expr> <op> ALL <subquery> !
– Evaluates to true if <expr> <op> <tuple>

evaluates to true for all result tuples
– Op is any comparison operator: =, <, >, …

SELECT * !
FROM nation !
WHERE nname = ALL (SELECT nation FROM !
 blacklist) !

CS 525 Notes 8 - Parsing and Analysis 33

Nested Subqueries Example

SELECT dep,name!
FROM employee e !
WHERE salary >= ALL (SELECT salary !
 FROM employee d !

" WHERE e.dep = d.dep) !

CS 525 Notes 8 - Parsing and Analysis 34

name dep salary

Joe IT 2000

Jim IT 300

Bob HR 100

Alice HR 10000

Patrice HR 10000

employee

dep Name

IT Joe

HR Alice

HR Patrice

result

GROUP BY clause

•  A list of expressions
– Same as WHERE
– No restriction to boolean
– DBMS has to know how to compare = for

data type

•  Results are grouped by values of the
expressions

•  -> usually used for aggregation
CS 525 Notes 8 - Parsing and Analysis 35

GROUP BY restrictions

•  If group-by is used then
– SELECT clause can only use group by

expressions or aggregation functions

CS 525 Notes 8 - Parsing and Analysis 36

GROUP BY clause examples

GROUP BY R.a!
 -group on single attribute

GROUP BY (1+2) !
 -allowed but useless (single group)

GROUP BY salary / 1000 !
 -groups of salary values in buckets of 1000

GROUP BY R.a, R.b !
 -group on two attributes

CS 525 Notes 8 - Parsing and Analysis 37

SELECT count(*) AS numP, !
"(SELECT count(*) !

 FROM friends o !
"WHERE o.with = f.name) AS numF!

FROM (SELECT DISTINCT name FROM friends) f !
GROUP BY (SELECT count(*) !
 FROM friends o !
 WHERE o.with = f.name)

CS 525 Notes 8 - Parsing and Analysis 38

numP numF

1 1

2 2

result

name with

Joe Jim

Joe Peter

Jim Joe

Jim Peter

Peter Joe

friends

HAVING clause

•  A boolean expression
•  Applied after grouping and aggregation

– Only references aggregation expressions
and group by expressions

CS 525 Notes 8 - Parsing and Analysis 39

HAVING clause examples

… !
HAVING sum(R.a) > 100 !

"-only return tuples with sum bigger than 100!
!
… !
GROUP BY dep!
HAVING dep = ‘IT’ AND sum(salary) > 1000000

 -only return group ‘IT’ and sum threshold

CS 525 Notes 8 - Parsing and Analysis 40

ORDER BY clause

•  A list of expressions
•  Semantics: Order the result on these

expressions

CS 525 Notes 8 - Parsing and Analysis 41

ORDER BY clause examples

ORDER BY R.a ASC !
ORDER BY R.a!

 -order ascending on R.a
ORDER BY R.a DESC !

 -order descending on R.a
ORDER BY salary + bonus !

 -order by sum of salary and bonus

CS 525 Notes 8 - Parsing and Analysis 42

New and Non-standard
SQL features (excerpt)

•  LIMIT / OFFSET
– Only return a fix maximum number of rows
– FETCH FIRST n ROWS ONLY (DB2)
–  row_number() (Oracle)

•  Window functions
– More flexible grouping
– Return both aggregated results and input

values
CS 525 Notes 8 - Parsing and Analysis 43

CS 525 Notes 8 - Parsing and Analysis 44

Parsing, Analysis, Conversion
1.  Parsing
2.  Analysis
3.  Conversion

Analysis Goals

•  Semantic checks
– Table column exists
– Operator, function exists
– Determine type casts
– Scope checks

•  Rewriting
– Unfolding views

CS 525 Notes 8 - Parsing and Analysis 45

Semantic checks
SELECT * !
FROM R !
WHERE R.a + 3 > 5 !
•  Table R exists?
•  Expand *: which attributes in R?
•  R.a is a column?
•  Type of constants 3, 5?
•  Operator + for types of R.a and 3 exists?
•  Operator > for types of result of + and 5 exists?

CS 525 Notes 8 - Parsing and Analysis 46

Database Catalog

•  Stores information about database
objects

•  Aliases:
–  Information Schema
– System tables
– Data Dictionary

CS 525 Notes 8 - Parsing and Analysis 47

Typical Catalog Information
•  Tables

– Name, attributes + data types, constraints

•  Schema, DB
– Hierarchical structuring of data

•  Data types
– Comparison operators
– physical representation
– Functions to (de)serialize to string

CS 525 Notes 8 - Parsing and Analysis 48

Typical Catalog Information

•  Functions (including aggregate/set)
– Build-in
– User defined (UDF)

•  Triggers
•  Stored Procedures
•  …

CS 525 Notes 8 - Parsing and Analysis 49

Type Casts
•  Similar to automatic type conversion in

programming languages
•  Expression: R.a + 3.0

– Say R.a is of type integer
• Search for a function +(int,float)

– Does not exist?
• Try to find a way to cast R.a, 3.0 or both to

new data type
• So that a function + exists for new types

CS 525 Notes 8 - Parsing and Analysis 50

Scope checks

•  Check that references are in correct
scope

•  E.g., if GROUP BY is present then
SELECT clause expression can only
reference group by expressions or
aggregated values

CS 525 Notes 8 - Parsing and Analysis 51

View Unfolding

•  SQL allows for stored queries using
CREATE VIEW

•  Afterwards a view can be used in
queries

•  If view is not materialized, then need to
replace view with its definition

CS 525 Notes 8 - Parsing and Analysis 52

View Unfolding Example

CREATE VIEW totalSalary AS !
SELECT name, salary + bonus AS total !
FROM employee !
!
SELECT * !
FROM totalSalary!
WHERE total > 10000 !

CS 525 Notes 8 - Parsing and Analysis 53

View Unfolding Example

CREATE VIEW totalSalary AS !
SELECT name, salary + bonus AS total !
FROM employee !
!
SELECT * !
FROM (SELECT name, !

" " salary + bonus AS total !
 FROM employee) AS totalSalary!
WHERE total > 10000 !

CS 525 Notes 8 - Parsing and Analysis 54

Analysis Summary

•  Perform semantic checks
– Catalog lookups (tables, functions, types)
– Scope checks

•  View unfolding
•  Generate internal representation during

analysis

CS 525 Notes 8 - Parsing and Analysis 55

CS 525 Notes 8 - Parsing and Analysis 56

Parsing, Analysis, Conversion
1.  Parsing
2.  Analysis
3.  Conversion

Conversion

•  Create an internal representation
– Should be useful for analysis
– Should be useful optimization

•  Internal representation
– Relational algebra
– Query tree/graph models

• E.g., QGM (Query Graph Model) in Starburst

CS 525 Notes 8 - Parsing and Analysis 57

Relational Alegbra

•  Formal language
•  Good for studying logical optimization

and query equivalence (containment)
•  Not informative enough for analysis

– No datatype representation in algebra
expressions

– No meta-data

CS 525 Notes 8 - Parsing and Analysis 58

Other Internal
Representations

•  Practical implementations
– Mostly following structure of SQL query

blocks
– Store data type and meta-data (where

necessary)

CS 525 Notes 8 - Parsing and Analysis 59

Canonical Translation to
Relational Algebra

•  TEXTBOOK version of conversion
•  Given an SQL query
•  Return an equivalent relational algebra

expression

CS 525 Notes 8 - Parsing and Analysis 60

Relational Algebra Recap

•  Formal query language
•  Consists of operators

–  Input(s): relation
– Output: relation
–  -> Composable

•  Set and Bag semantics version

CS 525 Notes 8 - Parsing and Analysis 61

•  Relation Schema
– A set of attribute name-datatype pairs

•  Relation (instance)
– A (multi-)set of tuples with the same

schema

•  Tuple
– List of attribute value pairs (or function

from attribute name to value)
CS 525 Notes 8 - Parsing and Analysis 62

Set- vs. Bag semantics

•  Set semantics:
– Relations are Sets
– Used in most theoretical work

•  Bag semantics
– Relations are Multi-Sets

• Each element (tuple) can appear more than
once

– SQL uses bag semantics

CS 525 Notes 8 - Parsing and Analysis 63

Bag semantics notation

•  We use tm to denote tuple t appears
with multiplicity m

CS 525 Notes 8 - Parsing and Analysis 64

Set- vs. Bag semantics

CS 525 Notes 8 - Parsing and Analysis 65

Name Purchase

Peter Guitar

Peter Guitar

Joe Drum

Alice Bass

Alice Bass

Name Purchase

Peter Guitar

Joe Drum

Alice Bass

Set Bag

Operators
•  Selection
•  Renaming
•  Projection
•  Joins

– Theta, natural, cross-product, outer, anti

•  Aggregation
•  Duplicate removal
•  Set operations
CS 525 Notes 8 - Parsing and Analysis 66

Selection

–  Syntax:σc (R)
•  R is input
•  C is a condition

– Semantics:
•  Return all tuples that match condition C
•  Set: { t | t εR AND t fulfills C }
•  Bag: { tn | tnεR AND t fulfills C }

CS 525 Notes 8 - Parsing and Analysis 67

Selection Example

•  σa>5 (R)

CS 525 Notes 8 - Parsing and Analysis 68

a b

1 13

3 12

6 14

R Result
a b

6 14

Renaming

–  Syntax:ρA (R)
•  R is input
•  A is list of attribute renamings b ← a

– Semantics:
•  Applies renaming from A to inputs
•  Set: { t.A | t εR }
•  Bag: { (t.A)n | tnεR }

CS 525 Notes 8 - Parsing and Analysis 69

Renaming Example

•  ρc ← a (R)

CS 525 Notes 8 - Parsing and Analysis 70

a b

1 13

3 12

6 14

R Result
c b

1 13

3 12

6 14

Projection

–  Syntax:ΠA (R)
•  R is input
•  A is list of projection expressions
•  Standard: only attributes in A

– Semantics:
•  Project all inputs on projection expressions
•  Set: { t.A | t εR }
•  Bag: { (t.A)n | tnεR }

CS 525 Notes 8 - Parsing and Analysis 71

Projection Example

•  Πb (R)

CS 525 Notes 8 - Parsing and Analysis 72

a b

1 13

3 12

6 14

R Result
b

13

12

14

Cross Product

–  Syntax: R X S
•  R and S are inputs

– Semantics:
•  All combinations of tuples from R and S
•  = mathematical definition of cross product
•  Set: { (t,s) | t εR AND sεS }
•  Bag: { (t,s)n*m | tnεR AND smεS }

CS 525 Notes 8 - Parsing and Analysis 73

Cross Product Example

•  R X S

CS 525 Notes 8 - Parsing and Analysis 74

a b

1 13

3 12

R Result
c d

a 5

b 3

c 4

S
a b c d

1 13 a 5

1 13 b 3

1 13 c 4

3 12 a 5

3 12 b 3

3 12 c 4

Join
–  Syntax: R C S

•  R and S are inputs
•  C is a condition

– Semantics:
•  All combinations of tuples from R and S that

match C
•  Set: { (t,s) | t εR AND sεS AND (t,s) matches C}
•  Bag: { (t,s)n*m | tnεR AND smεS AND (t,s)
 matches C}

CS 525 Notes 8 - Parsing and Analysis 75

Join Example

•  R a=d S

CS 525 Notes 8 - Parsing and Analysis 76

a b

1 13

3 12

R Result
c d

a 5

b 3

c 4

S
a b c d

3 12 b 3

Natural Join
–  Syntax: R S

•  R and S are inputs

– Semantics:
•  All combinations of tuples from R and S that

match on common attributes
•  A = common attributes of R and S
•  C = exclusive attributes of S
•  Set: { (t,s.C) | t εR AND sεS AND t.A=s.A}
•  Bag: { (t,s.C)n*m | tnεR AND smεS AND t.A=s.A}

CS 525 Notes 8 - Parsing and Analysis 77

Natural Join Example

•  R S

CS 525 Notes 8 - Parsing and Analysis 78

a b

1 13

3 12

R Result
c a

a 5

b 3

c 4

S
a b c

3 12 b

Left-outer Join
–  Syntax: R C S

•  R and S are inputs
•  C is condition

– Semantics:
•  R join S
•  t εR without match, fill S attributes with NULL
{ (t,s) | t εR AND sεS AND (t,s) matches C}
union
{ (t, NULL(S)) | t εR AND NOT exists sεS: (t,s)
matches C }

CS 525 Notes 8 - Parsing and Analysis 79

Left-outer Join Example

•  R a=d S

CS 525 Notes 8 - Parsing and Analysis 80

a b

1 13

3 12

R Result
c d

a 5

b 3

c 4

S
a b c d

1 13 NULL NULL

3 12 b 3

Right-outer Join
–  Syntax: R C S

•  R and S are inputs
•  C is condition

– Semantics:
•  R join S
•  s εS without match, fill R attributes with NULL
{ (t,s) | t εR AND sεS AND (t,s) matches C}
union
{ (NULL(R),s) | s εS AND NOT exists tεR: (t,s)
matches C }

CS 525 Notes 8 - Parsing and Analysis 81

Right-outer Join Example

CS 525 Notes 8 - Parsing and Analysis 82

a b

1 13

3 12

R Result
c d

a 5

b 3

c 4

S
a b c d

NULL NULL a 5

3 12 b 3

NULL NULL c 4

•  R a=d S

Full-outer Join
–  Syntax: R C S

•  R and S are inputs and C is condition

– Semantics:
{ (t,s) | t εR AND sεS AND (t,s) matches C}
union
{ (NULL(R),s) | s εS AND NOT exists tεR: (t,s)
matches C }
union
{ (t, NULL(S)) | t εR AND NOT exists sεS: (t,s)
matches C }

CS 525 Notes 8 - Parsing and Analysis 83

Full-outer Join Example

CS 525 Notes 8 - Parsing and Analysis 84

a b

1 13

3 12

R Result
c d

a 5

b 3

c 4

S
a b c d

1 13 NULL NULL

NULL NULL a 5

3 12 b 3

NULL NULL c 4

•  R a=d S

Semijoin
–  Syntax: R ⋉ S and R ⋊ S

•  R and S are inputs

– Semantics:
•  All tuples from R that have a matching tuple from

relation S on the common attributes A
{ t | t εR AND exists sεS: t.A = s.A}

CS 525 Notes 8 - Parsing and Analysis 85

Semijoin Example

CS 525 Notes 8 - Parsing and Analysis 86

a b

1 13

3 12

R Result
c a

a 5

b 3

c 4

S
a b

3 12

•  R ⋉ S

Antijoin
–  Syntax: R ▷ S

•  R and S are inputs

– Semantics:
•  All tuples from R that have no matching tuple from

relation S on the common attributes A
{ t | t εR AND NOT exists sεS: t.A = s.A}

CS 525 Notes 8 - Parsing and Analysis 87

Antijoin Example

CS 525 Notes 8 - Parsing and Analysis 88

a b

1 13

3 12

R Result
c a

a 5

b 3

c 4

S
a b

1 13

•  R ▷ S

Aggregation

–  Syntax:GαA (R)
•  A is list of aggregation functions
•  G is list of group by attributes

– Semantics:
•  Build groups of tuples according G and compute

the aggregation functions from each group
•  { (t.G, agg(G(t)) | tεR }
•  G(t) = { t’ | t’ εR AND t’.G = t.G }

CS 525 Notes 8 - Parsing and Analysis 89

Aggregation Example

•  bαsum(a) (R)

CS 525 Notes 8 - Parsing and Analysis 90

a b

1 1

3 1

6 2

3 2

R Result
sum(a) b

4 1

9 2

Duplicate Removal

–  Syntax:δ(R)
•  R is input

– Semantics:
•  Remove duplicates from input
•  Set: N/A
•  Bag: { t1 | tnεR }

CS 525 Notes 8 - Parsing and Analysis 91

Duplicate Removal Example

•  δ (R)

CS 525 Notes 8 - Parsing and Analysis 92

a b

1 13

1 13

6 14

R Result
a b

1 13

6 14

Set operations
–  Input: R and S

•  Have to have the same schema
–  Union compatible

•  Modulo attribute names

–  Types
•  Union
•  Intersection
•  Set difference

CS 525 Notes 8 - Parsing and Analysis 93

Union
–  Syntax: R U S

•  R and S are union-compatible inputs

– Semantics:
•  Set: { (t) | t εR OR tεS}
•  Bag: { (t,s)n+m | tnεR AND smεS }

–  Assumption tn with n < 1 for tuple not in relation

CS 525 Notes 8 - Parsing and Analysis 94

Union Example

•  R U S

CS 525 Notes 8 - Parsing and Analysis 95

a

1

3

R Result
b

1

2

3

S
a

1

2

3

1

3

Intersection
–  Syntax: R ∩ S

•  R and S are union-compatible inputs

– Semantics:
•  Set: { (t) | t εR AND tεS}
•  Bag: { (t,s)min(n,m) | tnεR AND smεS }

CS 525 Notes 8 - Parsing and Analysis 96

Intersection Example

•  R ∩ S

CS 525 Notes 8 - Parsing and Analysis 97

a

1

3

R Result
b

1

2

3

S
a

1

3

Set Difference
–  Syntax: R - S

•  R and S are union-compatible inputs

– Semantics:
•  Set: { (t) | t εR AND NOT tεS}
•  Bag: { (t,s)n - m | tnεR AND smεS }

CS 525 Notes 8 - Parsing and Analysis 98

Set Difference Example

•  R - S

CS 525 Notes 8 - Parsing and Analysis 99

a

1

5

R Result
b

1

2

3

S
a

5

Canonical Translation to
Relational Algebra

•  TEXTBOOK version of conversion
•  Given an SQL query
•  Return an equivalent relational algebra

expression

CS 525 Notes 8 - Parsing and Analysis 100

Canonical Translation
•  FROM clause into joins and cross-

products
– Cross-product between list items
– Joins into their algebra counter-part

•  WHERE clause into selection
•  SELECT clause into projection and

renaming
–  If it has aggregation functions use

aggreation
– DISTINCT into duplicate removal

CS 525 Notes 8 - Parsing and Analysis 101

Canonical Translation
•  GROUP BY clause into aggregation
•  HAVING clause into selection
•  ORDER BY – no counter-part

•  Then turn joins into crossproducts and
selections

CS 525 Notes 8 - Parsing and Analysis 102

Set Operations
•  UNION ALL into union
•  UNION duplicate removal over union
•  INTERSECT ALL into intersection
•  INTERSECT add duplicate removal
•  EXCEPT ALL into set difference
•  EXCEPT apply duplicate removal to

inputs and then apply set difference

CS 525 Notes 8 - Parsing and Analysis 103

CS 525 Notes 8 - Parsing and Analysis 104

Example: Relational Algebra Translation

SELECT sum(R.a) !
FROM R !
GROUP BY b

Πsum(a)

Bαsum(a)

R

CS 525 Notes 8 - Parsing and Analysis 105

Example: Relational Algebra Translation

SELECT dep, headcnt!
FROM (SELECT count(*) AS headcnt, dep!

"FROM employee !
"GROUP BY dep) !

WHERE headcnt > 100 !
Πdep, headcnt

ρheadcnt ← count(*)

Employee

σheadcnt > 100

depαcount(*)

CS 525 Notes 8 - Parsing and Analysis 106

Example: Relational Algebra Translation

SELECT * !
FROM R JOIN S ON (R.a = S.b) !

R

X

S R

a=b

S

σa =b

Parsing and Analysis Summary

•  SQL text -> Internal representation
•  Semantic checks
•  Database catalog
•  View unfolding

CS 525 Notes 8 - Parsing and Analysis 107

