
1

CS 525 Notes 4 - Indexing 1

CS 525: Advanced Database
Organization
04: Indexing

Boris Glavic

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 4 - Indexing 2

Indexing & Hashing

 value

Part 04

?	

 value
record

CS 525 Notes 4 - Indexing 3

Query Types:

•  Point queries:
–  Input: value v of attribute A
– Output: all objects (tuples) with that value

in attribute A
•  Range queries:

–  Input: value interval [low,high] of attr A
– Output: all tuples with a value
 low <= v < high in attribute A

CS 525 Notes 4 - Indexing 4

Index Considerations:

•  Supported Query Types
•  Secondary-storage capable
•  Storage size

–  Index Size / Data Size

•  Complexity of Operations
– E.g., insert is O(log(n)) worst-case

•  Efficient Concurrent Operations?

CS 525 Notes 4 - Indexing 5

Topics

•  Conventional indexes
•  B-trees
•  Hashing schemes
•  Advanced Index Techniques

CS 525 Notes 4 - Indexing 6

Sequential File

20
10

40
30

60
50

80
70

100
90

2

CS 525 Notes 4 - Indexing 7

Sequential File

20
10

40
30

60
50

80
70

100
90

Dense Index

10
20
30
40

50
60
70
80

90
100
110
120

CS 525 Notes 4 - Indexing 8

Sequential File

20
10

40
30

60
50

80
70

100
90

Sparse Index

10
30
50
70

90
110
130
150

170
190
210
230

CS 525 Notes 4 - Indexing 9

Sequential File

20
10

40
30

60
50

80
70

100
90

Sparse 2nd level

10
30
50
70

90
110
130
150

170
190
210
230

10
90
170
250

330
410
490
570

CS 525 Notes 4 - Indexing 10

•  Comment:
 {FILE,INDEX} may be contiguous
 or not (blocks chained)

CS 525 Notes 4 - Indexing 11

Question:

•  Can we build a dense, 2nd level index
for a dense index?

CS 525 Notes 4 - Indexing 12

Notes on pointers:

(1) Block pointer (sparse index) can be
 smaller than record pointer

 BP

 RP

3

CS 525 Notes 4 - Indexing 13

(2) If file is contiguous, then we can omit
 pointers (i.e., compute them)

Notes on pointers:

CS 525 Notes 4 - Indexing 14

K1

K3

K4

K2

R1

R2

R3

R4

CS 525 Notes 4 - Indexing 15

K1

K3

K4

K2

R1

R2

R3

R4

say:
1024 B
per block

•  if we want K3 block:
 get it at offset
 (3-1)1024
 = 2048 bytes

CS 525 Notes 4 - Indexing 16

Sparse vs. Dense Tradeoff

•  Sparse: Less index space per record
 can keep more of index

in memory
•  Dense: Can tell if any record exists

 without accessing file

(Later:

–  sparse better for insertions
–  dense needed for secondary indexes)

CS 525 Notes 4 - Indexing 17

Terms

•  Index sequential file
•  Search key (≠ primary key)
•  Primary index (on Sequencing field)
•  Secondary index
•  Dense index (all Search Key values in)
•  Sparse index
•  Multi-level index

CS 525 Notes 4 - Indexing 18

Next:

•  Duplicate keys

•  Deletion/Insertion

•  Secondary indexes

4

CS 525 Notes 4 - Indexing 19

Duplicate keys

10
10

20
10

30
20

30
30

45
40

CS 525 Notes 4 - Indexing 20

10
10

20
10

30
20

30
30

45
40

10
10
10
20

20
30
30
30

10
10

20
10

30
20

30
30

45
40

10
10
10
20

20
30
30
30

Dense index, one way to implement?

Duplicate keys

CS 525 Notes 4 - Indexing 21

10
10

20
10

30
20

30
30

45
40

10
20
30
40

Dense index, better way?

Duplicate keys

CS 525 Notes 4 - Indexing 22

10
10

20
10

30
20

30
30

45
40

10
10
20
30

Sparse index, one way?

Duplicate keys

CS 525 Notes 4 - Indexing 23

10
10

20
10

30
20

30
30

45
40

10
10
20
30

Sparse index, one way?

Duplicate keys

ca
re

fu
l i

f
lo

ok
in

g
fo

r
20

 o
r

30
!

CS 525 Notes 4 - Indexing 24

10
10

20
10

30
20

30
30

45
40

10
20
30
30

Sparse index, another way?

Duplicate keys

–  place first new key from block

5

CS 525 Notes 4 - Indexing 25

10
10

20
10

30
20

30
30

45
40

10
20
30
30

Sparse index, another way?

Duplicate keys

–  place first new key from block
should
this be
40?

CS 525 Notes 4 - Indexing 26

 Duplicate values,
 primary index

•  Index may point to first instance of
 each value only

 File
 Index

Summary

a
a
a

b

.	

.	

CS 525 Notes 4 - Indexing 27

Deletion from sparse index

 20

10

40
30

60
50

80
70

10
30
50
70

90 	

	

110
130
150

CS 525 Notes 4 - Indexing 28

Deletion from sparse index

 20

10

40
30

60
50

80
70

10
30
50
70

90 	

	

110
130
150

–  delete record 40

CS 525 Notes 4 - Indexing 29

Deletion from sparse index

 20

10

40
30

60
50

80
70

10
30
50
70

90 	

	

110
130
150

–  delete record 40

CS 525 Notes 4 - Indexing 30

Deletion from sparse index

 20

10

40
30

60
50

80
70

10
30
50
70

90 	

	

110
130
150

–  delete record 30

6

CS 525 Notes 4 - Indexing 31

Deletion from sparse index

 20

10

40
30

60
50

80
70

10
30
50
70

90 	

	

110
130
150

–  delete record 30

40 40

CS 525 Notes 4 - Indexing 32

Deletion from sparse index

 20

10

40
30

60
50

80
70

10
30
50
70

90 	

	

110
130
150

–  delete records 30 & 40

CS 525 Notes 4 - Indexing 33

Deletion from sparse index

 20

10

40
30

60
50

80
70

10
30
50
70

90 	

	

110
130
150

–  delete records 30 & 40

CS 525 Notes 4 - Indexing 34

Deletion from sparse index

 20

10

40
30

60
50

80
70

10
30
50
70

90 	

	

110
130
150

–  delete records 30 & 40

50
70

CS 525 Notes 4 - Indexing 35

Deletion from dense index

 20

10

40
30

60
50

80
70

10
20
30
40

50 	

	

60
70
80

CS 525 Notes 4 - Indexing 36

Deletion from dense index

 20

10

40
30

60
50

80
70

10
20
30
40

50 	

	

60
70
80

–  delete record 30

7

CS 525 Notes 4 - Indexing 37

Deletion from dense index

 20

10

40
30

60
50

80
70

10
20
30
40

50 	

	

60
70
80

–  delete record 30

40

CS 525 Notes 4 - Indexing 38

Deletion from dense index

 20

10

40
30

60
50

80
70

10
20
30
40

50 	

	

60
70
80

–  delete record 30

40 40

CS 525 Notes 4 - Indexing 39

Insertion, sparse index case

 20

10

30

50
40

60

10
30
40
60

CS 525 Notes 4 - Indexing 40

Insertion, sparse index case

 20

10

30

50
40

60

10
30
40
60

–  insert record 34

CS 525 Notes 4 - Indexing 41

Insertion, sparse index case

 20

10

30

50
40

60

10
30
40
60

–  insert record 34

34

•  our lucky day!
 we have free space
 where we need it!

CS 525 Notes 4 - Indexing 42

Insertion, sparse index case

 20

10

30

50
40

60

10
30
40
60

–  insert record 15

8

CS 525 Notes 4 - Indexing 43

Insertion, sparse index case

 20

10

30

50
40

60

10
30
40
60

–  insert record 15

15
20

30
20

CS 525 Notes 4 - Indexing 44

Insertion, sparse index case

 20

10

30

50
40

60

10
30
40
60

–  insert record 15

15
20

30
20

•  Illustrated: Immediate reorganization
•  Variation:

–  insert new block (chained file)
–  update index

CS 525 Notes 4 - Indexing 45

Insertion, sparse index case

 20

10

30

50
40

60

10
30
40
60

–  insert record 25

CS 525 Notes 4 - Indexing 46

Insertion, sparse index case

 20

10

30

50
40

60

10
30
40
60

–  insert record 25
25

overflow blocks
(reorganize later...)

CS 525 Notes 4 - Indexing 47

Insertion, dense index case

•  Similar

•  Often more expensive . . .

CS 525 Notes 4 - Indexing 48

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

9

CS 525 Notes 4 - Indexing 49

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

•  Sparse index

30
20
80
100

90
...

CS 525 Notes 4 - Indexing 50

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

•  Sparse index

30
20
80
100

90
...

does not make sense!

CS 525 Notes 4 - Indexing 51

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

•  Dense index

CS 525 Notes 4 - Indexing 52

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

•  Dense index
10
20
30
40

50
60
70
...

CS 525 Notes 4 - Indexing 53

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

•  Dense index
10
20
30
40

50
60
70
...

10
50
90
...

sparse
high
level

CS 525 Notes 4 - Indexing 54

With secondary indexes:

•  Lowest level is dense
•  Other levels are sparse

Also: Pointers are record pointers
 (not block pointers; not computed)

10

CS 525 Notes 4 - Indexing 55

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

CS 525 Notes 4 - Indexing 56

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10
10
10
20

20
30
40
40

40
40
...

one option...

CS 525 Notes 4 - Indexing 57

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10
10
10
20

20
30
40
40

40
40
...

one option...

Problem:
excess overhead!

•  disk space
•  search time

CS 525 Notes 4 - Indexing 58

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10

another option...

40
30

20

CS 525 Notes 4 - Indexing 59

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10

another option...

40
30

20 Problem:
variable size
records in
index!

CS 525 Notes 4 - Indexing 60

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...

λ

λ

λ

λ
Another idea:

Chain records with same key?

11

CS 525 Notes 4 - Indexing 61

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...

λ

λ

λ

λ
Another idea (suggested in class):

Chain records with same key?
Problems:
•  Need to add fields to records
•  Need to follow chain to know records

CS 525 Notes 4 - Indexing 62

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...

buckets

CS 525 Notes 4 - Indexing 63

Why “bucket” idea is useful

Indexes Records
Name: primary EMP (name,dept,floor,...)

Dept: secondary
Floor: secondary

CS 525 Notes 4 - Indexing 64

Query: Get employees in
 (Toy Dept) ^ (2nd floor)

Dept. index EMP Floor index

Toy 2nd

CS 525 Notes 4 - Indexing 65

Query: Get employees in
 (Toy Dept) ^ (2nd floor)

Dept. index EMP Floor index

Toy 2nd

→ Intersect toy bucket and 2nd Floor
 bucket to get set of matching EMP’s

CS 525 Notes 4 - Indexing 66

This idea used in
 text information retrieval

Documents
...the cat is
 fat ...

...was raining
 cats and dogs...

...Fido the
 dog ...

12

CS 525 Notes 4 - Indexing 67

This idea used in
 text information retrieval

Documents
...the cat is
 fat ...

...was raining
 cats and dogs...

...Fido the
 dog ...

Inverted lists

cat

dog

CS 525 Notes 4 - Indexing 68

IR QUERIES

•  Find articles with “cat” and “dog”
•  Find articles with “cat” or “dog”
•  Find articles with “cat” and not “dog”

CS 525 Notes 4 - Indexing 69

Summary so far

•  Conventional index
– Basic Ideas: sparse, dense, multi-level…
– Duplicate Keys
– Deletion/Insertion
– Secondary indexes

–  Buckets of Postings List

CS 525 Notes 4 - Indexing 70

Conventional indexes

Advantage:
 - Simple
 - Index is sequential file
 good for scans

Disadvantage:
 - Inserts expensive, and/or
 - Lose sequentiality & balance

CS 525 Notes 4 - Indexing 71

Example Index (sequential)

 continuous

 free space

10
20
30

40
50
60

70
80
90

CS 525 Notes 4 - Indexing 72

Example Index (sequential)

 continuous

 free space

10
20
30

40
50
60

70
80
90

39
31
35
36

32
38
34

33

overflow area
(not sequential)

13

CS 525 Notes 4 - Indexing 73

Outline:

•  Conventional indexes
•  B-Trees ⇒ NEXT
•  Hashing schemes
•  Advanced Index Techniques

CS 525 Notes 4 - Indexing 74

•  NEXT: Another type of index
– Give up on sequentiality of index
– Try to get “balance”

B+-tree Motivation

•  Tree indices are pretty efficient
– E.g., binary search tree

• Average case O(log(n)) lookup

•  However
– Unclear how to map to disk (index larger

than main memory, loading partial index)
– Worst-case O(n) lookup

CS 525 Notes 4 - Indexing 75

B+-tree Properties
•  Large nodes:

–  Node size is multiple of block size
•  -> small number of levels
•  -> simple way to map index to disk
•  -> many keys per node

•  Balance:
–  Require all nodes to be more than X% full
–  -> for n records guaranteed only logarithmically

many levels
–  -> log(n) worst-case performance

CS 525 Notes 4 - Indexing 76

CS 525 Notes 4 - Indexing 77

Root

B+Tree Example n=3

10
0

12
0

15
0

18
0

30

3 5 11

30

35

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

CS 525 Notes 4 - Indexing 78

Sample non-leaf

to keys to keys to keys to keys

< 57 57≤ k<81 81≤k<95 ≥95

57

 81

 95

14

CS 525 Notes 4 - Indexing 79

Sample leaf node:

 From non-leaf node

 to next leaf
 in sequence 57

 81

 95

To
 r

ec
or

d

w
ith

 k
ey

 5
7

To

 r
ec

or
d

w

ith
 k

ey
 8

1

To
 r

ec
or

d

w
ith

 k
ey

 8
5

CS 525 Notes 4 - Indexing 80

In textbook’s notation n=3

Leaf:

Non-leaf:

30

35

30

30 35

30

CS 525 Notes 4 - Indexing 81

Size of nodes: n+1 pointers
 n keys

(fixed)

CS 525 Notes 4 - Indexing 82

Don’t want nodes to be too empty

•  Use at least (balance)

Non-leaf: ⎡(n+1)/2⎤ pointers

Leaf: ⎣(n+1)/2⎦ pointers to data

CS 525 Notes 4 - Indexing 83

 Full node min. node

Non-leaf

Leaf

n=3

12
0

15
0

18
0

30

3 5 11

30

35

co
un

ts
 e

ve
n

if
nu

ll

CS 525 Notes 4 - Indexing 84

B+tree rules tree of order n

(1) All leaves at same lowest level
 (balanced tree)

-> guaranteed worst-case complexity for
operations on the index

(2) Pointers in leaves point to records
 except for “sequence pointer”

15

CS 525 Notes 4 - Indexing 85

(3) Number of pointers/keys for B+tree

Non-leaf
(non-root) n+1 n ⎡(n+1)/2⎤ ⎡(n+1)/2⎤- 1

Leaf
(non-root) n+1 n

Root n+1 n 1 1

Max Max Min Min
ptrs keys ptrs→data keys

⎣(n+1)/2⎦ ⎣(n+1)/2⎦

Search Algorithm

•  Search for key k
•  Start from root until leaf is reached
•  For current node find i so that

– Key[i] <= k < Key[i + 1]
– Follow i+1th pointer

•  If current node is leaf return pointer to
record or fail (no such record in tree)

CS 525 Notes 4 - Indexing 86

CS 525 Notes 4 - Indexing 87

Root

Search Example n=3

10
0

12
0

15
0

18
0

30

3 5 11

30

35

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

k= 120 Remarks Search

•  If n is large, e.g., 500
•  Keys inside node are sorted
•  -> use binary search to find I
•  Performance considerations

– Linear search O(n)
– Binary search O(log2(n))

CS 525 Notes 4 - Indexing 88

CS 525 Notes 4 - Indexing 89

Insert into B+tree

(a) simple case
–  space available in leaf

(b) leaf overflow
(c) non-leaf overflow
(d) new root

CS 525 Notes 4 - Indexing 90

(a) Insert key = 32 n=3

3 5 11

30

31

30

10
0

16

CS 525 Notes 4 - Indexing 91

(a) Insert key = 32 n=3

3 5 11

30

31

30

10
0

32

CS 525 Notes 4 - Indexing 92

(a) Insert key = 7 n=3

3 5 11

30

31

 30

10
0

CS 525 Notes 4 - Indexing 93

(a) Insert key = 7 n=3

3 5 11

30

31

 30

10
0

3 5

7

CS 525 Notes 4 - Indexing 94

(a) Insert key = 7 n=3

3 5 11

30

31

 30

10
0

3 5

7
7

CS 525 Notes 4 - Indexing 95

(c) Insert key = 160

n=3

10
0

12
0

15
0

18
0

15
0

15
6

17
9

18
0

20
0

CS 525 Notes 4 - Indexing 96

(c) Insert key = 160

n=3

10
0

12
0

15
0

18
0

15
0

15
6

17
9

18
0

20
0

16
0

17
9

17

CS 525 Notes 4 - Indexing 97

(c) Insert key = 160

n=3
10

0

12
0

15
0

18
0

15
0

15
6

17
9

18
0

20
0

18
0

16
0

17
9

CS 525 Notes 4 - Indexing 98

(c) Insert key = 160

n=3

10
0

12
0

15
0

18
0

15
0

15
6

17
9

18
0

20
0

16
0

18
0

16
0

17
9

CS 525 Notes 4 - Indexing 99

(d) New root, insert 45 n=3

10

20

30

1 2 3 10

12

20

25

30

32

40

CS 525 Notes 4 - Indexing 100

(d) New root, insert 45 n=3

10

20

30

1 2 3 10

12

20

25

30

32

40

40

45

CS 525 Notes 4 - Indexing 101

(d) New root, insert 45 n=3

10

20

30

1 2 3 10

12

20

25

30

32

40

40

45

40

CS 525 Notes 4 - Indexing 102

(d) New root, insert 45 n=3

10

20

30

1 2 3 10

12

20

25

30

32

40

40

45

40

30

new root

18

Insertion Algorithm

•  Insert Record with key k
•  Search leaf node for k

– Leaf node has at least one space
•  Insert into leaf

– Leaf is full
• Split leaf into two nodes (new leaf)
•  Insert new leaf’s smallest key into parent

CS 525 Notes 4 - Indexing 103

Insertion Algorithm cont.

– Non-leaf node is full
• Split parent
•  Insert median key into parent

– Root is full
• Split root
• Create new root with two pointers and single

key

•  -> B-trees grow at the root

CS 525 Notes 4 - Indexing 104

CS 525 Notes 4 - Indexing 105

(a) Simple case - no example

(b) Coalesce with neighbor (sibling)

(c) Re-distribute keys
(d) Cases (b) or (c) at non-leaf

Deletion from B+tree

CS 525 Notes 4 - Indexing 106

(b) Coalesce with sibling
– Delete 50

10

40

10
0

10

20

30

 40

50

n=4

CS 525 Notes 4 - Indexing 107

(b) Coalesce with sibling
– Delete 50

10

40

10
0

10

20

30

 40

50

n=4

40

CS 525 Notes 4 - Indexing 108

(c) Redistribute keys
– Delete 50

10

40

10
0

10

20

30

35

 40

50

n=4

19

CS 525 Notes 4 - Indexing 109

(c) Redistribute keys
– Delete 50

10

40

10
0

10

20

30

35

 40

50

n=4

35

35

CS 525 Notes 4 - Indexing 110

40

45

30

37

25

26

 20

22

10

14

1 3

10

20

 30

40

(d) Non-leaf coalese
– Delete 37

n=4

25

CS 525 Notes 4 - Indexing 111

40

45

30

37

25

26

 20

22

10

14

1 3

10

20

 30

40

(d) Non-leaf coalese
– Delete 37

n=4

30

25

CS 525 Notes 4 - Indexing 112

40

45

30

37

25

26

 20

22

10

14

1 3

10

20

 30

40

(d) Non-leaf coalese
– Delete 37

n=4

40

30

25

CS 525 Notes 4 - Indexing 113

40

45

30

37

25

26

 20

22

10

14

1 3

10

20

 30

40

(d) Non-leaf coalese
– Delete 37

n=4

40

30

25

25

new root

Deletion Algorithm
•  Delete record with key k
•  Search leaf node for k

– Leaf has more than min entries
• Remove from leaf

– Leaf has min entries
• Try to borrow from sibling

– One direct sibling has more min entries
• Move entry from sibling and adapt key in

parent

CS 525 Notes 4 - Indexing 114

20

Deletion Algorithm cont.

•  Both direct siblings have min entries
– Merge with one sibling
– Remove node or sibling from parent
–  ->recursive deletion

•  Root has two children that get merged
– Merged node becomes new root

CS 525 Notes 4 - Indexing 115 CS 525 Notes 4 - Indexing 116

B+tree deletions in practice

– Often, coalescing is not implemented
–  Too hard and not worth it!
–  Assumption: nodes will fill up in time again

CS 525 Notes 4 - Indexing 117

Comparison: B-trees vs. static
 indexed sequential file

Ref #1: Held & Stonebraker
 “B-Trees Re-examined”
 CACM, Feb. 1978

CS 525 Notes 4 - Indexing 118

Ref # 1 claims:
 - Concurrency control harder in B-Trees

 - B-tree consumes more space

For their comparison:
 block = 512 bytes
 key = pointer = 4 bytes
 4 data records per block

CS 525 Notes 4 - Indexing 119

Example: 1 block static index

127 keys

(127+1)4 = 512 Bytes
-> pointers in index implicit! up to 127

 blocks

k1

k2

k3

k1

 k2

 k3

1 data
block

CS 525 Notes 4 - Indexing 120

Example: 1 block B-tree

63 keys

63x(4+4)+8 = 512 Bytes
-> pointers needed in B-tree up to 63

 blocks because index is blocks
 not contiguous

k1

k2

...

k63

k1

 k2

 k3

1 data
block

next
-

21

CS 525 Notes 4 - Indexing 121

Size comparison Ref. #1

 Static Index B-tree
data # data
blocks height blocks height

2 -> 127 2 2 -> 63 2
128 -> 16,129 3 64 -> 3968 3
16,130 -> 2,048,383 4 3969 -> 250,047 4

 250,048 -> 15,752,961 5

CS 525 Notes 4 - Indexing 122

Ref. #1 analysis claims

•  For an 8,000 block file,
 after 32,000 inserts

 after 16,000 lookups
 ⇒ Static index saves enough accesses

 to allow for reorganization

CS 525 Notes 4 - Indexing 123

Ref. #1 analysis claims

•  For an 8,000 block file,
 after 32,000 inserts

 after 16,000 lookups
 ⇒ Static index saves enough accesses

 to allow for reorganization

Ref. #1 conclusion Static index better!!

CS 525 Notes 4 - Indexing 124

Ref #2: M. Stonebraker,
 “Retrospective on a database

 system,” TODS, June 1980

Ref. #2 conclusion B-trees better!!

CS 525 Notes 4 - Indexing 125

•  DBA does not know when to reorganize
•  DBA does not know how full to load

 pages of new index

Ref. #2 conclusion B-trees better!!

CS 525 Notes 4 - Indexing 126

•  Buffering
– B-tree: has fixed buffer requirements
– Static index: must read several overflow

 blocks to be efficient
 (large & variable
size buffers
needed for this)

Ref. #2 conclusion B-trees better!!

22

CS 525 Notes 4 - Indexing 127

•  Speaking of buffering…
 Is LRU a good policy for B+tree buffers?

CS 525 Notes 4 - Indexing 128

•  Speaking of buffering…
 Is LRU a good policy for B+tree buffers?

→ Of course not!
→ Should try to keep root in memory

 at all times
(and perhaps some nodes from second level)

CS 525 Notes 4 - Indexing 129

Interesting problem:

 For B+tree, how large should n be?

…

n is number of keys / node

CS 525 Notes 4 - Indexing 130

Sample assumptions:
(1) Time to read node from disk is

 (S+Tn) msec.

CS 525 Notes 4 - Indexing 131

Sample assumptions:
(1) Time to read node from disk is

 (S+Tn) msec.
(2) Once block in memory, use binary

 search to locate key:
 (a + b LOG2 n) msec.

 For some constants a,b; Assume a << S

CS 525 Notes 4 - Indexing 132

Sample assumptions:
(1) Time to read node from disk is

 (S+Tn) msec.
(2) Once block in memory, use binary

 search to locate key:
 (a + b LOG2 n) msec.

 For some constants a,b; Assume a << S

(3) Assume B+tree is full, i.e.,
 # nodes to examine is LOGn N
 where N = # records

23

CS 525 Notes 4 - Indexing 133

➸Can get:
 f(n) = time to find a record

f(n)

 nopt n

CS 525 Notes 4 - Indexing 134

➸ FIND nopt by f’(n) = 0

 Answer is nopt = “few hundred”

CS 525 Notes 4 - Indexing 135

➸ FIND nopt by f’(n) = 0

 Answer is nopt = “few hundred”

➸ What happens to nopt as

•  Disk gets faster?
•  CPU get faster?
•  Memory hierarchy?

CS 525 Notes 4 - Indexing 136

Variation on B+tree: B-tree (no +)

•  Idea:
– Avoid duplicate keys
– Have record pointers in non-leaf nodes

CS 525 Notes 4 - Indexing 137

 to record to record to record
 with K1 with K2 with K3

 to keys to keys to keys to keys
 < K1 K1<x<K2 K2<x<k3 >k3

K1 P1 K2 P2 K3 P3

CS 525 Notes 4 - Indexing 138

B-tree example n=2

 65

12
5

14
5

16
5

85

10
5

25

45

10

20

30

40

11
0

12
0

90

10
0

70

80

17
0

18
0

50

60

13
0

14
0

15
0

16
0

24

CS 525 Notes 4 - Indexing 139

B-tree example n=2

 65

12
5

14
5

16
5

85

10
5

25

45

10

20

30

40

11
0

12
0

90

10
0

70

80

17
0

18
0

50

60

13
0

14
0

15
0

16
0

•  sequence pointers
 not useful now!
 (but keep space for simplicity)

CS 525 Notes 4 - Indexing 140

Note on inserts

•  Say we insert record with key = 25

10

20

30
 n=3 leaf

CS 525 Notes 4 - Indexing 141

Note on inserts

•  Say we insert record with key = 25

10

20

30
 n=3 leaf

10

– 20

–

25

30

•  Afterwards:

CS 525 Notes 4 - Indexing 142

So, for B-trees:

 MAX MIN
 Tree Rec Keys Tree Rec Keys
 Ptrs Ptrs Ptrs Ptrs

Non-leaf
non-root n+1 n n ⎡(n+1)/2⎤ ⎡(n+1)/2⎤-1 ⎡(n+1)/2⎤-1
Leaf
non-root 1 n n 1 ⎣n/2⎦ ⎣n/2⎦
Root
non-leaf n+1 n n 2 1 1
Root
Leaf 1 n n 1 1 1

CS 525 Notes 4 - Indexing 143

Tradeoffs:

J B-trees have faster lookup than B+trees

L in B-tree, non-leaf & leaf different sizes
L in B-tree, deletion more complicated

CS 525 Notes 4 - Indexing 144

Tradeoffs:

J B-trees have faster lookup than B+trees

L in B-tree, non-leaf & leaf different sizes
L in B-tree, deletion more complicated

➨ B+trees preferred!

25

CS 525 Notes 4 - Indexing 145

But note:

•  If blocks are fixed size
 (due to disk and buffering restrictions)

 Then lookup for B+tree is
 actually better!!

CS 525 Notes 4 - Indexing 146

Example:
 - Pointers 4 bytes
 - Keys 4 bytes
 - Blocks 100 bytes (just example)
 - Look at full 2 level tree

CS 525 Notes 4 - Indexing 147

Root has 8 keys + 8 record pointers
 + 9 son pointers

 = 8x4 + 8x4 + 9x4 = 100 bytes

B-tree:

CS 525 Notes 4 - Indexing 148

Root has 8 keys + 8 record pointers
 + 9 son pointers

 = 8x4 + 8x4 + 9x4 = 100 bytes

B-tree:

Each of 9 sons: 12 rec. pointers (+12 keys)
 = 12x(4+4) + 4 = 100 bytes

CS 525 Notes 4 - Indexing 149

Root has 8 keys + 8 record pointers
 + 9 son pointers

 = 8x4 + 8x4 + 9x4 = 100 bytes

B-tree:

Each of 9 sons: 12 rec. pointers (+12 keys)
 = 12x(4+4) + 4 = 100 bytes

2-level B-tree, Max # records =
 12x9 + 8 = 116

CS 525 Notes 4 - Indexing 150

Root has 12 keys + 13 son pointers
 = 12x4 + 13x4 = 100 bytes

B+tree:

26

CS 525 Notes 4 - Indexing 151

Root has 12 keys + 13 son pointers
 = 12x4 + 13x4 = 100 bytes

B+tree:

Each of 13 sons: 12 rec. ptrs (+12 keys)
 = 12x(4 +4) + 4 = 100 bytes

CS 525 Notes 4 - Indexing 152

Root has 12 keys + 13 son pointers
 = 12x4 + 13x4 = 100 bytes

B+tree:

Each of 13 sons: 12 rec. ptrs (+12 keys)
 = 12x(4 +4) + 4 = 100 bytes

2-level B+tree, Max # records
 = 13x12 = 156

CS 525 Notes 4 - Indexing 153

So...

 ooooooooooooo ooooooooo
 156 records 108 records

 Total = 116

B+ B

8 records

CS 525 Notes 4 - Indexing 154

So...

 ooooooooooooo ooooooooo
 156 records 108 records

 Total = 116

B+ B

8 records

•  Conclusion:
– For fixed block size,
– B+ tree is better because it is bushier

Additional B-tree Variants

•  B*-tree
–  Internal notes have to be 2/3 full

CS 525 Notes 4 - Indexing 155 CS 525 Notes 4 - Indexing 156

An Interesting Problem...
•  What is a good index structure when:

–  records tend to be inserted with keys
that are larger than existing values?
(e.g., banking records with growing data/time)

– we want to remove older data

27

CS 525 Notes 4 - Indexing 157

One Solution: Multiple Indexes
•  Example: I1, I2

day days indexed days indexed
 I1 I2
10 1,2,3,4,5 6,7,8,9,10
11 11,2,3,4,5 6,7,8,9,10
12 11,12,3,4,5 6,7,8,9,10
13 11,12,13,4,5 6,7,8,9,10

• advantage: deletions/insertions from smaller index
• disadvantage: query multiple indexes

CS 525 Notes 4 - Indexing 158

Another Solution (Wave Indexes)

day I1 I2 I3 I4
10 1,2,3 4,5,6 7,8,9 10
11 1,2,3 4,5,6 7,8,9 10,11
12 1,2,3 4,5,6 7,8,9 10,11, 12
13 13 4,5,6 7,8,9 10,11, 12
14 13,14 4,5,6 7,8,9 10,11, 12
15 13,14,15 4,5,6 7,8,9 10,11, 12
16 13,14,15 16 7,8,9 10,11, 12

• advantage: no deletions
• disadvantage: approximate windows

Concurrent Access To B-trees

•  Multiple processes/threads accessing
the B-tree
– Can lead to corruption

•  Serialize access to complete tree for
updates
– Simple
– Unnecessary restrictive
– Not feasible for high concurrency

CS 525 Notes 4 - Indexing 159

Lock Nodes

•  One solution
– Read and exclusive locks
– Safe and unsafe updates of nodes

• Safe: No ancestor of node will be effected by
update

• Unsafe: Ancestor may be affected
• Can be determined locally

–  E.g., deletion is safe is node has more than n/2

CS 525 Notes 4 - Indexing 160

Read Write

Read X -

Write - -

Lock Nodes

•  Reading
– Use standard search algorithm
– Hold lock on current node
– Release when navigating to child

•  Writing
– Lock each node on search for key
– Release all locks on parents of node if the

node is safe
CS 525 Notes 4 - Indexing 161

Improvements?

•  Try locking only the leaf for update
– Let update use read locks and only lock

leaf node with write lock
–  If leaf node is unsafe then use previous

protocol

•  Many more locking approaches have
been proposed

CS 525 Notes 4 - Indexing 162

28

CS 525 Notes 4 - Indexing 163

Outline/summary

•  Conventional Indexes
• Sparse vs. dense
• Primary vs. secondary

•  B trees
• B+trees vs. B-trees
• B+trees vs. indexed sequential

•  Hashing schemes --> Next
•  Advanced Index Techniques

