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CS 525: Advanced Database 
Organization 
04: Indexing 

Boris Glavic 

Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  
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Indexing & Hashing 
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Query Types: 

•  Point queries: 
–  Input: value v of attribute A 
– Output: all objects (tuples) with that value 

in attribute A 
•  Range queries: 

–  Input: value interval [low,high] of attr A 
– Output: all tuples with a value  
     low <= v < high in attribute A  
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Index Considerations: 

•  Supported Query Types 
•  Secondary-storage capable 
•  Storage size 

–  Index Size / Data Size 

•  Complexity of Operations 
– E.g., insert is O(log(n)) worst-case 

•  Efficient Concurrent Operations? 
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Topics 

•  Conventional indexes 
•  B-trees 
•  Hashing schemes 
•  Advanced Index Techniques 
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•  Comment: 
 {FILE,INDEX} may be contiguous  
      or not (blocks chained) 
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Question: 

•  Can we build a dense, 2nd level index 
for a dense index? 
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Notes on pointers: 

(1) Block pointer (sparse index) can be  
 smaller than record pointer 

 
 BP 

 
 RP 
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(2) If file is contiguous, then we can omit 
  pointers (i.e., compute them) 

Notes on pointers: 
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K1 

K3 
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say: 
1024 B 
per block 

•  if we want K3 block: 
    get it at offset 
    (3-1)1024 
    = 2048 bytes 
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Sparse vs. Dense Tradeoff 

•  Sparse: Less index space per record 
          can keep more of index 

in memory 
•  Dense:  Can tell if any record exists

          without accessing file 
 
(Later:  

–  sparse better for insertions 
–  dense needed for secondary indexes) 
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Terms 

•  Index sequential file 
•  Search key ( ≠ primary key) 
•  Primary index (on Sequencing field) 
•  Secondary index 
•  Dense index (all Search Key values in) 
•  Sparse index 
•  Multi-level index 
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Next: 

•  Duplicate keys 

•  Deletion/Insertion 

•  Secondary indexes 
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Duplicate keys 
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Dense index, one way to implement? 

Duplicate keys 
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Duplicate keys 
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Sparse index, another way? 

Duplicate keys 

–  place first new key from block 
should 
this be 
40? 
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   Duplicate values,  
        primary index 

•  Index may point to first instance of  
 each value only 

       File 
        Index   
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Deletion from sparse index 
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Deletion from sparse index 
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Deletion from sparse index 
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Deletion from sparse index 
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Deletion from sparse index 
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Deletion from sparse index 
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Deletion from sparse index 
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Deletion from sparse index 
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Deletion from dense index 
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Deletion from dense index 
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Deletion from dense index 
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Deletion from dense index 
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Insertion, sparse index case 
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Insertion, sparse index case 
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Insertion, sparse index case 
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Insertion, sparse index case 

 
 
 20 

10 

30 

50 
40 

60 

10 
30 
40 
60 

–  insert record 15 



8 

CS 525 Notes 4 - Indexing 43 

Insertion, sparse index case 
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Insertion, sparse index case 
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•  Variation: 

–  insert new block (chained file) 
–  update index 
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Insertion, sparse index case 
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Insertion, sparse index case 
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Insertion, dense index case 

•  Similar 

•  Often more expensive . . .  

CS 525 Notes 4 - Indexing 48 

Secondary indexes 
Sequence 
field 

50 
30 

70 
20 

40 
80 

10 
100 

60 
90 



9 

CS 525 Notes 4 - Indexing 49 
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Secondary indexes 
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Secondary indexes 
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Secondary indexes 
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With secondary indexes: 

•  Lowest level is dense 
•  Other levels are sparse 

Also: Pointers are record pointers 
 (not block pointers; not computed) 
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Duplicate values & secondary indexes 
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Duplicate values & secondary indexes 
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Duplicate values & secondary indexes 
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one option... 

Problem: 
excess overhead! 

•  disk space 
•  search time 
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Duplicate values & secondary indexes 
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Duplicate values & secondary indexes 
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Duplicate values & secondary indexes 
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Another idea: 

Chain records with same key? 
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Duplicate values & secondary indexes 
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Another idea (suggested in class): 

Chain records with same key? 
Problems: 
•  Need to add fields to records 
•  Need to follow chain to know records 
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Duplicate values & secondary indexes 
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Why “bucket” idea is useful 

Indexes    Records 
Name: primary  EMP (name,dept,floor,...) 

Dept: secondary 
Floor: secondary 
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Query: Get employees in  
  (Toy Dept) ^ (2nd floor) 

Dept. index    EMP     Floor index 

Toy     2nd 
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Query: Get employees in  
  (Toy Dept) ^ (2nd floor) 

Dept. index    EMP     Floor index 

Toy     2nd 

→ Intersect toy bucket and 2nd Floor         
    bucket to get set of matching EMP’s 
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This idea used in  
 text information retrieval 

Documents 
...the cat is  
     fat ... 

...was raining 
 cats and dogs... 

...Fido the  
     dog ... 
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This idea used in  
 text information retrieval 

Documents 
...the cat is  
     fat ... 

...was raining 
 cats and dogs... 

...Fido the  
     dog ... 

Inverted lists 

cat 

dog 
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IR QUERIES 

•  Find articles with “cat” and “dog” 
•  Find articles with “cat” or “dog” 
•  Find articles with “cat” and not “dog” 
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Summary so far 

•  Conventional index 
– Basic Ideas: sparse, dense, multi-level… 
– Duplicate Keys 
– Deletion/Insertion 
– Secondary indexes 

–  Buckets of Postings List 
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Conventional indexes 

Advantage: 
   - Simple 
   - Index is sequential file 
     good for scans 

Disadvantage: 
   - Inserts expensive, and/or 
   - Lose sequentiality & balance 
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Example   Index (sequential) 
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Example   Index (sequential) 
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Outline:  

•  Conventional indexes 
•  B-Trees                   ⇒ NEXT 
•  Hashing schemes 
•  Advanced Index Techniques 

CS 525 Notes 4 - Indexing 74 

•  NEXT: Another type of index 
– Give up on sequentiality of index 
– Try to get “balance” 

B+-tree Motivation 

•  Tree indices are pretty efficient 
– E.g., binary search tree 

• Average case O(log(n)) lookup 

•  However 
– Unclear how to map to disk (index larger 

than main memory, loading partial index) 
– Worst-case O(n) lookup 
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B+-tree Properties 
•  Large nodes: 

–  Node size is multiple of block size 
•  -> small number of levels 
•  -> simple way to map index to disk 
•  -> many keys per node 

•  Balance: 
–  Require all nodes to be more than X% full 
–  -> for n records guaranteed only logarithmically 

many levels 
–  -> log(n) worst-case performance 
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Root 
 

B+Tree Example     n=3 
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Sample non-leaf 
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Sample leaf node: 

     From non-leaf node 
 

       to next leaf 
       in sequence 57
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In textbook’s notation   n=3 

Leaf: 
 
 
Non-leaf: 
 

30
 

35
 

30
 

30 35 

30 
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Size of nodes:   n+1 pointers 
     n keys   

(fixed) 
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Don’t want nodes to be too empty 

•  Use at least (balance) 

Non-leaf:  ⎡(n+1)/2⎤ pointers 
 
Leaf:   ⎣(n+1)/2⎦  pointers to data 
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    Full node   min. node 
 
Non-leaf 
 
 
Leaf 
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B+tree rules tree of order n 

(1) All leaves at same lowest level   
  (balanced tree) 

-> guaranteed worst-case complexity for 
operations on the index 

(2) Pointers in leaves point to records  
  except for “sequence pointer” 
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(3) Number of pointers/keys for B+tree 
 

Non-leaf 
(non-root) n+1 n ⎡(n+1)/2⎤  ⎡(n+1)/2⎤- 1 

Leaf 
(non-root) n+1 n 

Root n+1 n 1 1 

Max   Max  Min             Min  
ptrs   keys  ptrs→data    keys 

⎣(n+1)/2⎦  ⎣(n+1)/2⎦ 

Search Algorithm 

•  Search for key k 
•  Start from root until leaf is reached 
•  For current node find i so that 

– Key[i] <= k < Key[i + 1] 
– Follow i+1th pointer 

•  If current node is leaf return pointer to 
record or fail (no such record in tree) 
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Root 
 

Search Example     n=3 
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k= 120 Remarks Search 

•  If n is large, e.g., 500 
•  Keys inside node are sorted 
•  -> use binary search to find I 
•  Performance considerations 

– Linear search O(n) 
– Binary search O(log2(n)) 
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Insert into B+tree 

(a) simple case 
–  space available in leaf 

(b) leaf overflow 
(c) non-leaf overflow 
(d) new root 
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(a) Insert key = 32 n=3 
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(a) Insert key = 32 n=3 
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(a) Insert key = 7 n=3 
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(a) Insert key = 7 n=3 
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(a) Insert key = 7 n=3 
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(c) Insert key = 160 
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(c) Insert key = 160 
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(c) Insert key = 160 
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(c) Insert key = 160 
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(d) New root,  insert 45 n=3 
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(d) New root,  insert 45 n=3 
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(d) New root,  insert 45 n=3 
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(d) New root,  insert 45 n=3 
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Insertion Algorithm 

•  Insert Record with key k 
•  Search leaf node for k 

– Leaf node has at least one space 
•  Insert into leaf 

– Leaf is full 
• Split leaf into two nodes (new leaf) 
•  Insert new leaf’s smallest key into parent 
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Insertion Algorithm cont. 

– Non-leaf node is full 
• Split parent 
•  Insert median key into parent 

– Root is full 
• Split root 
• Create new root with two pointers and single 

key 

•  -> B-trees grow at the root 
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(a) Simple case - no example 

(b) Coalesce with neighbor (sibling) 

(c) Re-distribute keys 
(d) Cases (b) or (c) at non-leaf 

Deletion from B+tree 
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(b) Coalesce with sibling 
– Delete 50 
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(b) Coalesce with sibling 
– Delete 50 
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(c) Redistribute keys 
– Delete 50 
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(c) Redistribute keys 
– Delete 50 
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(d) Non-leaf coalese 
– Delete 37 
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(d) Non-leaf coalese 
– Delete 37 
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(d) Non-leaf coalese 
– Delete 37 

n=4 
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new root 

Deletion Algorithm 
•  Delete record with key k 
•  Search leaf node for k 

– Leaf has more than min entries 
• Remove from leaf 

– Leaf has min entries 
• Try to borrow from sibling 

– One direct sibling has more min entries 
• Move entry from sibling and adapt key in 

parent 
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Deletion Algorithm cont. 

•  Both direct siblings have min entries 
– Merge with one sibling 
– Remove node or sibling from parent 
–  ->recursive deletion 

•  Root has two children that get merged 
– Merged node becomes new root 
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B+tree deletions in practice 

– Often, coalescing is not implemented 
–  Too hard and not worth it! 
–  Assumption: nodes will fill up in time again 
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Comparison: B-trees vs. static  
   indexed sequential file 

Ref #1:   Held & Stonebraker 
   “B-Trees Re-examined” 
   CACM, Feb. 1978 
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Ref # 1 claims: 
 - Concurrency control harder in B-Trees 

   - B-tree consumes more space 
 
For their comparison: 
 block = 512 bytes 
 key = pointer = 4 bytes 
 4 data records per block 
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Example: 1 block static index 

          
 
127 keys 
 
 
 
(127+1)4 = 512 Bytes 
-> pointers in index implicit!   up to 127 

       blocks 
 
 
 
 
 

k1 

k2 

k3 

k1 
 
  
 k2 
 
  
 k3 
 
  
 

1 data 
block 
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Example: 1 block B-tree 

          
 
63 keys 
 
 
 
63x(4+4)+8 = 512 Bytes 
-> pointers needed in B-tree   up to 63 

 blocks because index is    blocks 
 not contiguous 

k1 

k2 

... 

k63 

k1 
 
  
 k2 
 
  
 k3 
 
  
 

1 data 
block 

next 
- 
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Size comparison        Ref. #1 

     Static Index                   B-tree 
# data     # data 
blocks     height       blocks     height 
 
2 -> 127   2     2 -> 63        2 
128 -> 16,129   3       64 -> 3968             3 
16,130 -> 2,048,383  4     3969 -> 250,047          4 

        250,048 -> 15,752,961    5 
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Ref. #1 analysis claims 

•  For an 8,000 block file,    
 after 32,000 inserts 

  after 16,000 lookups 
  ⇒ Static index saves enough accesses  

 to allow for reorganization 
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Ref. #1 analysis claims 

•  For an 8,000 block file,    
 after 32,000 inserts 

  after 16,000 lookups 
  ⇒ Static index saves enough accesses  

 to allow for reorganization 

Ref. #1 conclusion Static index better!! 
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Ref #2:   M. Stonebraker,  
   “Retrospective on a database  

   system,”   TODS, June 1980 

Ref. #2 conclusion B-trees better!! 
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•  DBA does not know when to reorganize 
•  DBA does not know how full to load  

 pages of new index 

Ref. #2 conclusion B-trees better!! 
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•  Buffering 
– B-tree: has fixed buffer requirements 
– Static index: must read several overflow

    blocks to be efficient
     (large & variable 
size       buffers 
needed for this) 

Ref. #2 conclusion B-trees better!! 
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•  Speaking of buffering… 
  Is LRU a good policy  for B+tree buffers? 
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•  Speaking of buffering… 
  Is LRU a good policy  for B+tree buffers? 

→ Of course not! 
→ Should try to keep root in memory 

  at all times 
(and perhaps some nodes from second level) 
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Interesting problem: 

 For B+tree, how large should n be? 
 

… 

n is number of keys / node 
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Sample assumptions: 
(1) Time to read node from disk is   

 (S+Tn) msec. 
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Sample assumptions: 
(1) Time to read node from disk is   

 (S+Tn) msec. 
(2) Once block in memory, use binary  

 search to locate key:     
 (a + b LOG2 n) msec. 

  For some constants a,b;   Assume a << S 
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Sample assumptions: 
(1) Time to read node from disk is   

 (S+Tn) msec. 
(2) Once block in memory, use binary  

 search to locate key:     
 (a + b LOG2 n) msec. 

  For some constants a,b;   Assume a << S 

(3) Assume B+tree is full, i.e.,   
 # nodes to examine is LOGn N  
 where N = # records 
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➸Can get: 
   f(n) = time to find a record 

f(n)  
 
 
      
       nopt    n 
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➸ FIND nopt by f’(n) = 0 

 Answer is nopt = “few hundred” 
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➸ FIND nopt by f’(n) = 0 

 Answer is nopt = “few hundred” 
   

➸ What happens to nopt  as 

•  Disk gets faster? 
•  CPU get faster? 
•  Memory hierarchy? 
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Variation on B+tree: B-tree (no +) 

•  Idea: 
– Avoid duplicate keys 
– Have record pointers in non-leaf nodes 
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        to record      to record       to record 
        with K1      with K2       with K3 

  to keys         to keys         to keys      to keys 
 < K1        K1<x<K2       K2<x<k3                >k3 

K1 P1 K2 P2 K3 P3 
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B-tree example     n=2 
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B-tree example     n=2 
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•  sequence pointers 
  not useful now! 
  (but keep space for simplicity) 
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Note on inserts 

•  Say we insert record with key = 25 

10
 

20
 

30
 n=3 leaf 

CS 525 Notes 4 - Indexing 141 

Note on inserts 

•  Say we insert record with key = 25 

10
 

20
 

30
 n=3 leaf 

10
 

– 20
 

– 

25
 

30
 

•  Afterwards: 
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So, for B-trees: 

    MAX   MIN 
   Tree    Rec  Keys    Tree    Rec          Keys 
   Ptrs  Ptrs      Ptrs     Ptrs 

Non-leaf 
non-root  n+1  n  n       ⎡(n+1)/2⎤   ⎡(n+1)/2⎤-1  ⎡(n+1)/2⎤-1 
Leaf 
non-root  1  n  n    1       ⎣n/2⎦             ⎣n/2⎦ 
Root 
non-leaf  n+1  n  n    2          1                1 
Root 
Leaf   1  n  n    1          1                1 

CS 525 Notes 4 - Indexing 143 

Tradeoffs: 

J B-trees have faster lookup than B+trees 
 
L in B-tree, non-leaf & leaf different sizes 
L in B-tree, deletion more complicated 
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Tradeoffs: 

J B-trees have faster lookup than B+trees 
 
L in B-tree, non-leaf & leaf different sizes 
L in B-tree, deletion more complicated 

➨ B+trees preferred! 
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But note: 

•  If blocks are fixed size     
 (due to disk and buffering restrictions) 

   Then lookup for B+tree is    
 actually better!! 
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Example: 
 - Pointers  4 bytes 
 - Keys   4 bytes 
 - Blocks  100 bytes (just example) 
 - Look at full 2 level tree 
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Root has 8 keys + 8 record pointers  
    + 9 son pointers 

   = 8x4 + 8x4 + 9x4 = 100 bytes 

B-tree:  
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Root has 8 keys + 8 record pointers  
    + 9 son pointers 

   = 8x4 + 8x4 + 9x4 = 100 bytes 

B-tree:  

Each of 9 sons: 12 rec. pointers (+12 keys) 
   = 12x(4+4) + 4 = 100 bytes 
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Root has 8 keys + 8 record pointers  
    + 9 son pointers 

   = 8x4 + 8x4 + 9x4 = 100 bytes 

B-tree:  

Each of 9 sons: 12 rec. pointers (+12 keys) 
   = 12x(4+4) + 4 = 100 bytes 

2-level B-tree, Max # records = 
   12x9 + 8 = 116 
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Root has 12 keys + 13 son pointers 
   = 12x4 + 13x4 = 100 bytes 

B+tree:  
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Root has 12 keys + 13 son pointers 
   = 12x4 + 13x4 = 100 bytes 

B+tree:  

Each of 13 sons: 12 rec. ptrs (+12 keys) 
   = 12x(4 +4) + 4 = 100 bytes 
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Root has 12 keys + 13 son pointers 
   = 12x4 + 13x4 = 100 bytes 

B+tree:  

Each of 13 sons: 12 rec. ptrs (+12 keys) 
   = 12x(4 +4) + 4 = 100 bytes 
  

2-level B+tree, Max # records 
   = 13x12 = 156 
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So... 
 
 
 

  ooooooooooooo        ooooooooo 
         156 records     108 records 

      Total = 116 

B+ B 

8 records 
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So... 
 
 
 

  ooooooooooooo        ooooooooo 
         156 records     108 records 

      Total = 116 

B+ B 

8 records 

•  Conclusion: 
– For fixed block size, 
– B+ tree is better because it is bushier 

Additional B-tree Variants 

•  B*-tree 
–  Internal notes have to be 2/3 full 
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An Interesting Problem... 
•  What is a good index structure when: 

–  records tend to be inserted with keys 
that are larger than existing values? 
(e.g., banking records with growing data/time) 

– we want to remove older data 
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One Solution: Multiple Indexes 
•  Example: I1, I2 

day         days indexed       days indexed 
                     I1                      I2 
10   1,2,3,4,5   6,7,8,9,10 
11   11,2,3,4,5   6,7,8,9,10 
12   11,12,3,4,5  6,7,8,9,10 
13   11,12,13,4,5  6,7,8,9,10 

• advantage: deletions/insertions from smaller index 
• disadvantage: query multiple indexes 
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Another Solution (Wave Indexes) 

day   I1   I2   I3   I4 
10   1,2,3   4,5,6   7,8,9   10 
11   1,2,3   4,5,6   7,8,9   10,11 
12   1,2,3   4,5,6   7,8,9   10,11, 12 
13   13   4,5,6   7,8,9   10,11, 12 
14   13,14   4,5,6   7,8,9   10,11, 12 
15   13,14,15  4,5,6   7,8,9   10,11, 12 
16   13,14,15  16   7,8,9   10,11, 12 

• advantage: no deletions 
• disadvantage: approximate windows 

Concurrent Access To B-trees 

•  Multiple processes/threads accessing 
the B-tree 
– Can lead to corruption 

•  Serialize access to complete tree for 
updates 
– Simple 
– Unnecessary restrictive 
– Not feasible for high concurrency 
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Lock Nodes 

•  One solution 
– Read and exclusive locks 
– Safe and unsafe updates of nodes 

• Safe: No ancestor of node will be effected by 
update 

• Unsafe: Ancestor may be affected 
• Can be determined locally 

–  E.g., deletion is safe is node has more than n/2 
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Read Write 

Read X - 

Write - - 

Lock Nodes 

•  Reading 
– Use standard search algorithm 
– Hold lock on current node 
– Release when navigating to child 

•  Writing 
– Lock each node on search for key 
– Release all locks on parents of node if the 

node is safe 
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Improvements? 

•  Try locking only the leaf for update 
– Let update use read locks and only lock 

leaf node with write lock 
–  If leaf node is unsafe then use previous 

protocol 

•  Many more locking approaches have 
been proposed 
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Outline/summary 

•  Conventional Indexes 
• Sparse vs. dense 
• Primary vs. secondary 

•  B trees 
• B+trees vs. B-trees 
• B+trees vs. indexed sequential 

•  Hashing schemes   -->  Next 
•  Advanced Index Techniques 


