
Name CWID

Exam
1

October 20th, 2015

CS525 - Midterm Exam
Solutions

Please leave this empty! 1 2 3 4 Sum

Instructions
• Things that you are not allowed to use

– Personal notes
– Textbook
– Printed lecture notes
– Phone

• The exam is 90 minutes long

• Multiple choice questions are graded in the following way: You get points for correct answers and points
subtracted for wrong answers. The minimum points for each questions is 0. For example, assume there
is a multiple choice question with 6 answers - each may be correct or incorrect - and each answer gives
1 point. If you answer 3 questions correct and 3 incorrect you get 0 points. If you answer 4 questions
correct and 2 incorrect you get 2 points. . . .

• For your convenience the number of points for each part and questions are shown in parenthesis.

• There are 5 parts in this exam

1. SQL (32)
2. Relational Algebra (26)
3. Index Structures (24)
4. I/O Estimation (18)

DB - Spring 2014: Page 2 (of 13)

Part 1 SQL (Total: 32 Points)

Consider the following database schema and instance:

location
lName city owner sizeSf

Windsor Castle Windsor Queen 40,000
Big Ben London Public 3,500

Stonehedge Amesbury Public 14,000

account
witness time suspect crimeId
Bob 10:30 Peter 1
Peter 10:30 Bob 1
Queen 11:00 Bob 2

crime
id location time type victim
1 Big Ben 10:30 murder Alice
2 Windsor Castle 11:00 theft Queen

Hints:

• When writing queries do only take the schema into account and not the example data given here. That
is your queries should return correct results for all potential instances of this schema.

• Attributes with black background form the primary key of an relation. For example, lName is the primary
key of relation location.

• The attribute crimeId of relation account is a foreign key to the attribute id of relation crime.

DB - Spring 2014: Page 3 (of 13)

Question 1.1 (6 Points)

Write an SQL query that returns the names of suspects for murders on locations owned by the Queen. Make
sure that your query returns each such person only once.

Solution

SELECT DISTINCT suspec t
FROM account a , crime c , l o c a t i o n l
WHERE a . cr imeId = c . id

AND c . type = ’murder ’
AND l . owner = ’Queen ’
AND l . lName = c . l o c a t i o n ;

DB - Spring 2014: Page 4 (of 13)

Question 1.2 (8 Points)

Write an SQL query that returns total size (sizeSf) of the real estate (locations) owned by who owns the most
real estate (in terms of total size of locations owned by this person).

Solution

SELECT DISTINCT sum (s i z e S f)
FROM l o c a t i o n
GROUP BY owner
HAVING sum (s i z e S f) = (SELECT max(sumSize)

FROM (SELECT sum (s i z e S f) AS sumSize
FROM l o c a t i o n
GROUP BY owner) ttlPerOwner) ;

DB - Spring 2014: Page 5 (of 13)

Question 1.3 (8 Points)

Write a query that returns pairs of suspects that have provided account suspecting each other of the same crime,
e.g., in the example instance Bob is suspecting Peter to be the murderer of Alice while at the same time Peter
is suspecting Bob to be her murderer. Make sure to return each such pair only once. Hint: (Bob,Peter) and
(Peter,Bob) are the same pair of people.

Solution

SELECT DISTINCT l . witness , l . su spec t
FROM account l , account r
WHERE l . cr imeId = r . cr imeId

AND l . w i tne s s = r . suspec t
AND l . su spec t = r . w i tnes s
AND l . w i tne s s < r . suspec t ;

DISTINCT is needed here, because there may be multiple crimes that two persons are accusing each other of.

DB - Spring 2014: Page 6 (of 13)

Question 1.4 (10 Points)

Write a query that returns for each city the number crimes per type, e.g., the number of murders in London,
the number of thefts in Windsor, and so on. For each city, crime type pair return how many of these crimes
have been solved. A crime is considered solved if there is at least one account for this crimes and all accounts
for that crime agree on the suspect. For example, in the example database the murder at Big Ben is not solved
(contradictory accounts) whereas the theft at Windsor Castle is (one account cannot contradict itself).

Solution

WITH so lvedCrimes AS (
SELECT c i ty , type , cr imeId
FROM l o c a t i o n l , account a , cr ime c
WHERE l . lName = c . l o c a t i o n AND c . id = a . cr imeId
GROUP BY c i ty , type , cr imeId
HAVING count (DISTINCT suspec t) = 1

) ,

numSolved AS (
SELECT c i ty , type , count (∗) AS numSolved
FROM so lvedCrimes
GROUP BY c i ty , type

) ,

numCrimes AS (
SELECT c i ty , type , count (∗)
FROM l o c a t i o n l , cr ime c
WHERE l . lName = c . l o c a t i o n
GROUP BY c i ty , type

)

SELECT DISTINCT l . c i ty , c . type ,
CASE WHEN numTotal IS NULL THEN 0 ELSE numTotal END AS numTotal ,
CASE WHEN numSolved IS NULL THEN 0 ELSE numSolves END AS numSolved

FROM l o c a t i o n l , cr ime c
LEFT OUTER JOIN numSolved s ON (l . c i t y = s . c i t y AND c . type = s . type)
LEFT OUTER JOIN numCrimes n ON (l . c i t y = n . c i t y AND c . type = n . type) ;

DB - Spring 2014: Page 7 (of 13)

Part 2 Relational Algebra (Total: 26 Points)

Question 2.1 Relational Algebra (6 Points)

Write an relational algebra expression over the schema from the SQL part that returns the time, type, and
victim for all crimes in Windsor (the location city). Use the set semantics version of relational algebra.

Solution

q = πtime,type,victim(crime Xlocation=lName σcity=W indsor(location))

DB - Spring 2014: Page 8 (of 13)

Question 2.2 Relational Algebra (12 Points)

Write an relational algebra expression over the schema from the SQL part that returns for each person the
number of crimes the person is accused of committing. Do not count multiple witnesses for the same crime
twice (e.g., if Peter is accused by both Alice and Bob of committing a crime with id 1 then this counts as one
crime and not 2). Persons that are not accused of committed any crime should be returned too. Use the bag
semantics version of relational algebra.

Solution

persons = πp,0→cnt(δ(πwitness→p(account) ∪ πsuspect(account) ∪ πvictim(crime)))
numAcc = suspectαcount(∗)(δ(πsuspect,crimeId(account)))

q = pαmax(cnt)(persons ∪ numAcc)

DB - Spring 2014: Page 9 (of 13)

Question 2.3 Relational Algebra (8 Points)

Write an relational algebra expression over the schema from the SQL part that returns cities where no crimes
have been taken place so far (there was no crime in any location that is in this city). Use the set semantics
version of relational algebra.

Solution

citiesWCrime = πcity(location ./lName=location crime)
q = πcity(location)− citiesWCrime

DB - Spring 2014: Page 10 (of 13)

Part 3 Index Structures (Total: 24 Points)

Question 3.1 B+-tree Operations (24 Points)

Given is the B+-tree shown below (n = 3). Execute the following operations and write down the resulting
B+-tree after each step:

insert(6),insert(4),insert(3),delete(40)

When splitting or merging nodes follow these conventions:

• Leaf Split: In case a leaf node needs to be split, the left node should get the extra key if the keys cannot
be split evenly.

• Non-Leaf Split: In case a non-leaf node is split evenly, the “middle” value should be taken from the
right node.

• Node Underflow: In case of a node underflow you should first try to redistribute and only if this fails
merge. Both approaches should prefer the left sibling.

10 40

1 5 9 15 22 40 41

Solution

DB - Spring 2014: Page 11 (of 13)

insert(6)
6 10 40

1 5 6 9 15 22 40 41

insert(4)
6 10 40

1 4 5 6 9 15 22 40 41

insert(3)
10

4 6 40

1 3 4 5 6 9 15 22 40 41

delete(40)
4 6 10

1 3 4 5 6 9 15 22 41

DB - Spring 2014: Page 12 (of 13)

Part 4 I/O Estimation (Total: 18 Points)

Question 4.1 I/O Cost Estimation (12 = 4 + 4 + 4 Points)

Consider two relations R and S with B(R) = 100 and B(S) = 2, 000. You have M = 101 memory pages
available. Compute the number of I/O operations needed to join these two relations using block-nested-loop
join, merge-join (the inputs are not sorted), and hash-join. You can assume that the hash function evenly
distributes keys across buckets. Justify you result by showing the I/O cost estimation for each join method.

Solution
Block Nested-loop:
Use smaller table R as the inner. We only have one chunk of size 100 = B(R). Thus, we get 1× (B(R) +B(S))
= 2,100 I/Os.
Merge-join:
Relation R can be sorted in memory resulting in 2 ∗ B(R) = 200 I/Os. Relation S requires one merge phase,
merging 20 runs: 2 × 2 × B(S) = 8, 000 I/Os. The last merge phase of relation S cannot be combined with
sorting R (121 blocks of memory required). However, the merge join can be execute during this merge phase
avoiding one read of relation S. Without optimizations we get 8, 200 + B(R) + B(S) = 10, 300. If we execute
the merge-join during the last merge phase for S we get 3Ḃ(R) + 3 ·B(S) = 6, 300.
Hash-join:
Relation R fits into memory. Thus, the hash-join requires B(R) +B(S) = 2, 100 I/O.

Question 4.2 External Sorting (6 Points)

Consider a relation R with B(R) = 10, 000, 000. Assume that M = 101 memory pages are available for sorting.
How many I/O operations are needed to sort this relation using no more than M memory pages.

Solution

External sorting requires 2× (1 + dlogM−1(B(R)
M)e)×B(R) = 2× 4× 10, 000, 000 = 80, 000, 000 I/Os.

DB - Spring 2014: Page 13 (of 13)

