
CS 525 Notes 1 - Introduction 1

CS 525:
Advanced Database

Organization

01: Introduction
Boris Glavic

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

Advanced Database
Organization?

•  =Database Implementation

•  =How to implement a database system

•  … and have fun doing it ;-)

CS 525 Notes 1 - Introduction 2

Isn t Implementing a
Database System Simple?

CS 525 Notes 1 - Introduction 3

Relations Statements Results

CS 525 Notes 1 - Introduction 4

Introducing the

Database Management System

•  The latest from Megatron Labs
•  Incorporates latest relational technology
•  UNIX compatible

CS 525 Notes 1 - Introduction 5

Megatron 3000
Implementation Details

First sign non-disclosure agreement

CS 525 Notes 1 - Introduction 6

Megatron 3000
Implementation Details

•  Relations stored in files (ASCII)

 e.g., relation R is in /usr/db/R

Smith # 123 # CS

Jones # 522 # EE

.

.

.

CS 525 Notes 1 - Introduction 7

Megatron 3000
Implementation Details

•  Directory file (ASCII) in /usr/db/directory

R1 # A # INT # B # STR …

R2 # C # STR # A # INT …

.

.

.

CS 525 Notes 1 - Introduction 8

Megatron 3000
Sample Sessions

% MEGATRON3000

 Welcome to MEGATRON 3000!

&

& quit

%

.

.

.

CS 525 Notes 1 - Introduction 9

Megatron 3000
Sample Sessions

& select *

 from R #

 Relation R

 A B C

 SMITH 123 CS

&

CS 525 Notes 1 - Introduction 10

Megatron 3000
Sample Sessions

& select A,B

 from R,S

 where R.A = S.A and S.C > 100 #

 A B

 123 CAR

 522 CAT

&

CS 525 Notes 1 - Introduction 11

Megatron 3000
Sample Sessions

& select *

 from R | LPR #

&

Result sent to LPR (printer).

CS 525 Notes 1 - Introduction 12

Megatron 3000
Sample Sessions

& select *

 from R

 where R.A < 100 | T #

&

New relation T created.

CS 525 Notes 1 - Introduction 13

Megatron 3000

•  To execute select * from R where condition :

 (1) Read dictionary to get R attributes

 (2) Read R file, for each line:

 (a) Check condition

 (b) If OK, display

CS 525 Notes 1 - Introduction 14

Megatron 3000

•  To execute select * from R
 where condition | T :

 (1) Process select as before

 (2) Write results to new file T

 (3) Append new line to dictionary

CS 525 Notes 1 - Introduction 15

Megatron 3000

•  To execute select A,B from R,S where condition :

 (1) Read dictionary to get R,S attributes

 (2) Read R file, for each line:

 (a) Read S file, for each line:

 (i) Create join tuple

 (ii) Check condition

 (iii) Display if OK

CS 525 Notes 1 - Introduction 16

What s wrong with the
Megatron 3000 DBMS?

CS 525 Notes 1 - Introduction 17

What s wrong with the
Megatron 3000 DBMS?

•  Tuple layout on disk
e.g., - Change string from Cat to Cats and we

 have to rewrite file

 - ASCII storage is expensive

 - Deletions are expensive

CS 525 Notes 1 - Introduction 18

What s wrong with the
Megatron 3000 DBMS?

•  Search expensive; no indexes
e.g., - Cannot find tuple with given key quickly

 - Always have to read full relation

CS 525 Notes 1 - Introduction 19

What s wrong with the
Megatron 3000 DBMS?

•  Brute force query processing
e.g., select *

 from R,S

 where R.A = S.A and S.B > 1000

 - Do select first?

 - More efficient join?

CS 525 Notes 1 - Introduction 20

What s wrong with the
Megatron 3000 DBMS?

•  No buffer manager
e.g., Need caching

CS 525 Notes 1 - Introduction 21

What s wrong with the
Megatron 3000 DBMS?

•  No concurrency control

CS 525 Notes 1 - Introduction 22

What s wrong with the
Megatron 3000 DBMS?

•  No reliability
e.g., - Can lose data

 - Can leave operations half done

CS 525 Notes 1 - Introduction 23

What s wrong with the
Megatron 3000 DBMS?

•  No security
e.g., - File system insecure

 - File system security is coarse

CS 525 Notes 1 - Introduction 24

What s wrong with the
Megatron 3000 DBMS?

•  No application program interface (API)
e.g., How can a payroll program get at the data?

CS 525 Notes 1 - Introduction 25

What s wrong with the
Megatron 3000 DBMS?

•  Cannot interact with other DBMSs.

CS 525 Notes 1 - Introduction 26

What s wrong with the
Megatron 3000 DBMS?

•  Poor dictionary facilities

CS 525 Notes 1 - Introduction 27

What s wrong with the
Megatron 3000 DBMS?

•  No GUI

CS 525 Notes 1 - Introduction 28

What s wrong with the
Megatron 3000 DBMS?

•  Lousy salesman!!

CS 525 Notes 1 - Introduction 29

Course Overview

•  File & System Structure
 Records in blocks, dictionary, buffer management,…

•  Indexing & Hashing
 B-Trees, hashing,…

•  Query Processing
 Query costs, join strategies,…

•  Crash Recovery
 Failures, stable storage,…

CS 525 Notes 1 - Introduction 30

Course Overview

•  Concurrency Control
 Correctness, locks,…

•  Transaction Processing
 Logs, deadlocks,…

•  Security & Integrity
 Authorization, encryption,…

•  Advanced Topics
 Distribution, More Fancy Optimizations, …

CS 525 Notes 1 - Introduction 31

System Structure

Buffer Manager

Query Parser User

User Transaction Transaction Manager

Strategy Selector

Recovery Manager Concurrency Control

File Manager Log Lock Table M.M. Buffer

Statistical Data
Indexes

User Data System Data

CS 525 Notes 1 - Introduction 32

Some Terms

•  Database system

•  Transaction processing system

•  File access system

•  Information retrieval system

CS 525 Notes 1 - Introduction 33

Course Information

•  Webpage: http://www.cs.iit.edu/~cs525/

•  Instructor: Boris Glavic
–  http://www.cs.iit.edu/~glavic/

–  DBGroup: http://www.cs.iit.edu/~dbgroup/

–  Office Hours: Thurdays, 1pm-2pm

–  Office: Stuart Building, Room 226 C

•  TA: Xi Zhang (xzhang22@hawk.iit.edu)

•  Time: Mon + Wed 3:15pm – 4:30pm

Google Group

•  https://groups.google.com/forum/#!forum/cs525-2014-spring-
group

•  Mailing-list for announcements

•  Discussion forum

–  Student - Instructor/TA

–  Student – Student

•  ->please join the group to keep up to date

CS 525 Notes 1 - Introduction 34

Workload and Grading

•  Schedule and Important Dates

– On webpage & updated there

•  Programming Assignments (50%)
–  4 Assignments

–  Groups of 3 students

–  Plagiarism -> 0 points and administrative action

•  Quizzes (10%)

•  Mid Term (20%) and Final Exam (20%)

CS 525 Notes 1 - Introduction 35

Textbooks

•  Elmasri and Navathe , Fundamentals of Database Systems,
6th Edition , Addison-Wesley , 2003

•  Garcia-Molina, Ullman, and Widom, Database Systems: The
Complete Book, 2nd Edition, Prentice Hall, 2008

•  Ramakrishnan and Gehrke , Database Management
Systems, 3nd Edition , McGraw-Hill , 2002

•  Silberschatz, Korth, and Sudarshan , Database System
Concepts, 6th Edition , McGraw Hill , 2010

CS 525 Notes 1 - Introduction 36

Programming Assignments

•  4 assignments one on-top of the other

•  Optional 5th assignment for extra credit

•  Code has to compile & run on server account

–  Email-ID@fourier.cs.iit.edu

–  Linux machine

–  SSH with X-forwarding

•  Source code managed in git repository on Bitbucket.org

–  Handing in assignments = submit (push) to repository

–  One repository per student

–  You should have gotten an invitation (if not, contact me/TA)

–  Git tutorials linked on course webpage!

CS 525 Notes 1 - Introduction 37

CS 525 Notes 1 - Introduction 38

Next:

•  Hardware

CS 525 Notes 2 - Hardware 1

CS 525: Advanced Database
Organization

02: Hardware

Boris Glavic

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 2 - Hardware 2

Outline

•  Hardware: Disks

•  Access Times

•  Example - Megatron 747

•  Optimizations

•  Other Topics:

–  Storage costs

–  Using secondary storage

–  Disk failures

CS 525 Notes 2 - Hardware 3

Hardware

DBMS

Data Storage

CS 525 Notes 2 - Hardware 4

P

M C

Typical
Computer

Secondary
Storage

... ...

CS 525 Notes 2 - Hardware 5

Processor
 Fast, slow, reduced instruction set,
 with cache, pipelined…
 Speed: 100 → 500 → 1000 MIPS

Memory
 Fast, slow, non-volatile, read-only,…
 Access time: 10-6 → 10-9 sec.
 1 µs → 1 ns

CS 525 Notes 2 - Hardware 6

Secondary storage
 Many flavors:
 - Disk: Floppy (hard, soft)
 Removable Packs
 Winchester
 Ram disks

 Optical, CD-ROM…
 Arrays
 - Tape Reel, cartridge
 Robots

CS 525 Notes 2 - Hardware 7

Focus on: Typical Disk

Terms: Platter, Head, Actuator
 Cylinder, Track
 Sector (physical),
 Block (logical), Gap

…

CS 525 Notes 2 - Hardware 8

Top View

CS 525 Notes 2 - Hardware 9

Typical Numbers
 Diameter: 1 inch → 15 inches
 Cylinders: 100 → 2000
 Surfaces: 1 (CDs) →
 (Tracks/cyl) 2 (floppies) → 30
 Sector Size: 512B → 50K

 Capacity: 360 KB (old floppy)
 → 1 TB (I use)

CS 525 Notes 2 - Hardware 10

Disk Access Time

block x
in memory

?

I want
block X

CS 525 Notes 2 - Hardware 11

Time = Seek Time +
 Rotational Delay +
 Transfer Time +
 Other

CS 525 Notes 2 - Hardware 12

Seek Time

3 or 5x

x

1 N

Cylinders Traveled

Time

CS 525 Notes 2 - Hardware 13

Average Random Seek Time

 ∑ ∑ SEEKTIME (i → j)

S =

 N(N-1)

 N N

i=1 j=1
j≠i

CS 525 Notes 2 - Hardware 14

Average Random Seek Time

 ∑ ∑ SEEKTIME (i → j)

S =

 N(N-1)

 N N

i=1 j=1
j≠i

Typical S: 10 ms → 40 ms

CS 525 Notes 2 - Hardware 15

Rotational Delay

Head Here

Block I Want

CS 525 Notes 2 - Hardware 16

Average Rotational Delay

R = 1/2 revolution

typical R = 8.33 ms (3600 RPM)

CS 525 Notes 2 - Hardware 17

Transfer Rate: t

•  typical t: 10’s → 100’s MB/second

•  transfer time: block size

 t

CS 525 Notes 2 - Hardware 18

Other Delays

•  CPU time to issue I/O

•  Contention for controller

•  Contention for bus, memory

CS 525 Notes 2 - Hardware 19

Other Delays

•  CPU time to issue I/O

•  Contention for controller

•  Contention for bus, memory

Typical Value: 0

Other Delays (now and near future)

•  Increasing amount of parallelism

•  Contention can become a problem

•  -> need rethink approach to scale

CS 525 Notes 2 - Hardware 20

CS 525 Notes 2 - Hardware 21

•  So far: Random Block Access

•  What about: Reading Next block?

CS 525 Notes 2 - Hardware 22

If we do things right (e.g., Double Buffer,

 Stagger
Blocks…)

Time to get = Block Size + Negligible

 block t

 - skip gap

 - switch track

 - once in a while,

 next cylinder

CS 525 Notes 2 - Hardware 23

Rule of Random I/O: Expensive
Thumb Sequential I/O: Much less

•  Ex: 1 KB Block
» Random I/O: ∼ 20 ms.

» Sequential I/O: ∼ 1 ms.

CS 525 Notes 2 - Hardware 24

Cost for Writing similar to Reading

…. unless we want to verify!
 need to add (full) rotation + Block size

 t

CS 525 Notes 2 - Hardware 25

•  To Modify a Block?

CS 525 Notes 2 - Hardware 26

•  To Modify a Block?

To Modify Block:

 (a) Read Block

 (b) Modify in Memory

 (c) Write Block

 [(d) Verify?]

CS 525 Notes 2 - Hardware 27

Block Address:

•  Physical Device

•  Cylinder #

•  Surface #

•  Sector

CS 525 Notes 2 - Hardware 28

Complication: Bad Blocks

•  Messy to handle
•  May map via software to

integer sequence
1
2
. Map Actual Block Addresses

.
m

CS 525 Notes 2 - Hardware 29

•  3.5 in diameter

•  3600 RPM

•  1 surface

•  16 MB usable capacity (16 X 220)

•  128 cylinders

•  seek time: average = 25 ms.

 adjacent cyl = 5 ms.

An Example Megatron 747 Disk (old)

CS 525 Notes 2 - Hardware 30

•  1 KB blocks = sectors

•  10% overhead between blocks

•  capacity = 16 MB = (220)16 = 224

•  # cylinders = 128 = 27

•  bytes/cyl = 224/27 = 217 = 128 KB

•  blocks/cyl = 128 KB / 1 KB = 128

CS 525 Notes 2 - Hardware 31

3600 RPM 60 revolutions / sec
 1 rev. = 16.66 msec.

One track:
...

CS 525 Notes 2 - Hardware 32

3600 RPM 60 revolutions / sec
 1 rev. = 16.66 msec.

One track:
...

Time over useful data:(16.66)(0.9)=14.99 ms.
Time over gaps: (16.66)(0.1) = 1.66 ms.
Transfer time 1 block = 14.99/128=0.117 ms.
Trans. time 1 block+gap=16.66/128=0.13ms.

CS 525 Notes 2 - Hardware 33

Burst Bandwith
 1 KB in 0.117 ms.

BB = 1/0.117 = 8.54 KB/ms.

or

BB =8.54KB/ms x 1000 ms/1sec x 1MB/1024KB
 = 8540/1024 = 8.33 MB/sec

CS 525 Notes 2 - Hardware 34

Sustained bandwith (over track)

 128 KB in 16.66 ms.

SB = 128/16.66 = 7.68 KB/ms

or

SB = 7.68 x 1000/1024 = 7.50 MB/sec.

CS 525 Notes 2 - Hardware 35

T1 = Time to read one random block

T1 = seek + rotational delay + TT

 = 25 + (16.66/2) + .117 = 33.45 ms.

CS 525 Notes 2 - Hardware 36

Suppose OS deals with 4 KB blocks

T4 = 25 + (16.66/2) + (.117) x 1

 + (.130) X 3 = 33.83 ms

[Compare to T1 = 33.45 ms]

... 1 2 3 4

1 block

CS 525 Notes 2 - Hardware 37

TT = Time to read a full track

 (start at any block)

TT = 25 + (0.130/2) + 16.66* = 41.73 ms

 to get to first block

* Actually, a bit less; do not have to read last gap.

CS 525 Notes 2 - Hardware 38

The NEW Megatron 747

•  8 Surfaces, 3.5 Inch diameter

–  outer 1 inch used

•  213 = 8192 Tracks/surface

•  256 Sectors/track

•  29 = 512 Bytes/sector

CS 525 Notes 2 - Hardware 39

•  8 GB Disk
•  If all tracks have 256 sectors

•  Outermost density: 100,000 bits/inch
•  Inner density: 250,000 bits/inch

1

.

CS 525 Notes 2 - Hardware 40

•  Outer third of tracks: 320 sectors

•  Middle third of tracks: 256

•  Inner third of tracks: 192

•  Density: 114,000 → 182,000 bits/inch

CS 525 Notes 2 - Hardware 41

Timing for new Megatron 747 (Ex 2.3)

•  Time to read 4096-byte block:

– MIN: 0.5 ms

– MAX: 33.5 ms

– AVE: 14.8 ms

CS 525 Notes 2 - Hardware 42

Outline

•  Hardware: Disks

•  Access Times

•  Example: Megatron 747

•  Optimizations

•  Other Topics

– Storage Costs

– Using Secondary Storage

– Disk Failures

here

CS 525 Notes 2 - Hardware 43

Optimizations (in controller or O.S.)

•  Disk Scheduling Algorithms
–  e.g., elevator algorithm

•  Track (or larger) Buffer

•  Pre-fetch

•  Arrays

•  Mirrored Disks

•  On Disk Cache

CS 525 Notes 2 - Hardware 44

Double Buffering

Problem: Have a File
»  Sequence of Blocks B1, B2

 Have a Program

»  Process B1

»  Process B2

»  Process B3

 ..
.

CS 525 Notes 2 - Hardware 45

Single Buffer Solution

(1) Read B1 → Buffer

(2) Process Data in Buffer

(3) Read B2 → Buffer

(4) Process Data in Buffer ...

CS 525 Notes 2 - Hardware 46

Say P = time to process/block

 R = time to read in 1 block

 n = # blocks

Single buffer time = n(P+R)

CS 525 Notes 2 - Hardware 47

Double Buffering

Memory:

Disk: A B C D G E F

process

CS 525 Notes 2 - Hardware 48

Double Buffering

Memory:

Disk: A B C D G E F

B

done

process

A

CS 525 Notes 2 - Hardware 49

Double Buffering

Memory:

Disk: A B C D G E F

A C

process

B

done

CS 525 Notes 2 - Hardware 50

Double Buffering

Memory:

Disk: A B C D G E F

A B

done

process

A C

process

B

done

CS 525 Notes 2 - Hardware 51

Say P ≥ R

What is processing time?

P = Processing time/block
R = IO time/block
n = # blocks

CS 525 Notes 2 - Hardware 52

Say P ≥ R

What is processing time?

P = Processing time/block
R = IO time/block
n = # blocks

•  Double buffering time = R + nP

•  Single buffering time = n(R+P)

CS 525 Notes 2 - Hardware 53

Disk Arrays

•  RAIDs (various flavors)

•  Block Striping

•  Mirrored

logically one disk

CS 525 Notes 2 - Hardware 54

On Disk Cache

P

M C

cache

cache

CS 525 Notes 2 - Hardware 55

Block Size Selection?

•  Big Block → Amortize I/O Cost, Less
Management Overhead

•  Big Block ⇒ Read in more useless stuff!

 and takes longer to read

Unfortunately...

CS 525 Notes 2 - Hardware 56

Trend

•  As memory prices drop,

 blocks get bigger ...

Trend

CS 525 Notes 2 - Hardware 57

Storage Cost

10-9 10-6 10-3 10-0 103
access time (sec)

1015

1013

1011

109

107

105

103
cache

electronic

main

electronic

secondary

magnetic

optical

disks
online

tape

nearline

tape &

optical

disks

offline

tape

ty
p
ic

al
 c

ap
ac

it
y
 (

b
y
te

s)

from Gray & Reuter

CS 525 Notes 2 - Hardware 58

Storage Cost

10-9 10-6 10-3 10-0 103
access time (sec)

104

102

100

10-2

10-4

cache

electronic

main
electronic

secondary magnetic

optical

disks

online

tape

nearline

tape &

optical

disks
offline

tape

d
o
ll

ar
s/

M
B

from Gray & Reuter

CS 525 Notes 2 - Hardware 59

Using secondary storage effectively

•  Example: Sorting data on disk

•  Conclusion:

–  I/O costs dominate

– Design algorithms to reduce I/O

•  Also: How big should blocks be?

CS 525 Notes 2 - Hardware 60

Five Minute Rule

•  THE 5 MINUTE RULE FOR TRADING
MEMORY FOR DISC ACCESSES
Jim Gray & Franco Putzolu
May 1985

•  The Five Minute Rule, Ten Years Later
Goetz Graefe & Jim Gray
December 1997

CS 525 Notes 2 - Hardware 61

Five Minute Rule

•  Say a page is accessed every X seconds

•  CD = cost if we keep that page on disk

– $D = cost of disk unit

–  I = numbers IOs that unit can perform per

second

–  In X seconds, unit can do XI IOs

– So CD = $D / XI

CS 525 Notes 2 - Hardware 62

Five Minute Rule

•  Say a page is accessed every X seconds

•  CM = cost if we keep that page on RAM

– $M = cost of 1 MB of RAM

– P = numbers of pages in 1 MB RAM

– So CM = $M / P

CS 525 Notes 2 - Hardware 63

Five Minute Rule

•  Say a page is accessed every X seconds

•  If CD is smaller than CM,

– keep page on disk

– else keep in memory

•  Break even point when CD = CM, or
 $D P
 I $M X =

CS 525 Notes 2 - Hardware 64

Using 97 Numbers

•  P = 128 pages/MB (8KB pages)

•  I = 64 accesses/sec/disk

•  $D = 2000 dollars/disk (9GB + controller)

•  $M = 15 dollars/MB of DRAM

•  X = 266 seconds (about 5 minutes)
(did not change much from 85 to 97)

CS 525 Notes 2 - Hardware 65

Disk Failures

•  Partial → Total

•  Intermittent → Permanent

CS 525 Notes 2 - Hardware 66

Coping with Disk Failures

•  Detection

– e.g. Checksum

•  Correction

 ⇒ Redundancy

CS 525 Notes 2 - Hardware 67

At what level do we cope?

•  Single Disk

– e.g., Error Correcting Codes

•  Disk Array

Logical Physical

CS 525 Notes 2 - Hardware 68

 Operating System
 e.g., Stable Storage

Logical Block Copy A Copy B

CS 525 Notes 2 - Hardware 69

 Database System

•  e.g.,

 Log

Current DB Last week s DB

CS 525 Notes 2 - Hardware 70

Summary

•  Secondary storage, mainly disks

•  I/O times + formulas

– Sequential vs. random

•  I/Os should be avoided,

 especially random ones…..

•  OS optimizations

•  Disk errors

Summary

CS 525 Notes 2 - Hardware 71

Outline

•  Hardware: Disks

•  Access Times

•  Example: Megatron 747

•  Optimizations

•  Other Topics

– Storage Costs

– Using Secondary Storage

– Disk Failures

 here

Outlook - Hardware

•  Disk Access is the main limiting factor

•  However, to implement fast DBMS
–  need to understand other parts of the hardware

•  Memory hierarchy

•  CPU architecture: pipelining, vector instructions, OOE, …

•  SSD storage

–  need to understand how OS manages hardware

•  File access, VM, Buffering, …

CS 525 Notes 2 - Hardware 72

Memory Hierarchy

CPU Register
(< 1KB, 1

cycle)

L1 Cache (10
KB’s, few cycles)

L2 Cache (e.g., 512 KB,
2-10 x L1)

L3 Cache (MB)

Main Memory (GB, 100’s cycles)

CS 525 Notes 2 - Hardware 73

Memory Hierarchy

•  Compare: Disk vs. Main Memory

•  Reduce accesses to main memory

•  Cache conscious algorithms

CS 525 Notes 2 - Hardware 74

Increasing Amount of
Parallelism

•  Contention on, e.g., Memory

•  NUMA

•  Algorithmic Challenges

– How to parallelize algorithms?

– Sometime: Completely different approach

required

–  -> Rewrite large parts of DBMS

CS 525 Notes 2 - Hardware 75

New Trend:
Software/Hardware Co-design

•  Actually, revived trend: database
machines (80’s)

•  New goals: power consumption

•  Design specific hardware and write
special software for it

•  E.g., Oracle Exadata, Oracle Labs

CS 525 Notes 2 - Hardware 76

CS 525 Notes 3 1

CS 525: Advanced Database
Organization

03: Disk Organization

Boris Glavic

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 3 2

•  How to lay out data on disk

•  How to move it to/from memory

Topics for today

CS 525 Notes 3 3

What are the data items we want to store?

•  a salary

•  a name

•  a date

•  a picture

CS 525 Notes 3 4

What are the data items we want to store?

•  a salary

•  a name

•  a date

•  a picture

What we have available: Bytes

8
bits

CS 525 Notes 3 5

To represent:

•  Integer (short): 2 bytes

 e.g., 35 is

00000000 00100011

•  Real, floating point
n bits for mantissa, m for exponent….

Endian! Could as well be

00000000 00100011

CS 525 Notes 3 6

•  Characters

 → various coding schemes suggested,

 most popular is ASCII (1 byte encoding)

To represent:

Example:
A: 1000001

a: 1100001
5: 0110101

LF: 0001010

CS 525 Notes 3 7

•  Boolean

 e.g., TRUE
 FALSE

1111 1111

0000 0000

To represent:

•  Application specific
 e.g., enumeration
 RED → 1 GREEN → 3

 BLUE → 2 YELLOW → 4 …

CS 525 Notes 3 8

•  Boolean

 e.g., TRUE
 FALSE

1111 1111

0000 0000

To represent:

•  Application specific
 e.g., RED → 1 GREEN → 3
 BLUE → 2 YELLOW → 4 …

 Can we use less than 1 byte/code?
Yes, but only if desperate...

CS 525 Notes 3 9

•  Dates

 e.g.: - Integer, # days since Jan 1, 1900

 - 8 characters, YYYYMMDD

 - 7 characters, YYYYDDD

 (not YYMMDD! Why?)

•  Time

 e.g. - Integer, seconds since midnight

 - characters, HHMMSSFF

To represent:

CS 525 Notes 3 10

•  String of characters

– Null terminated

 e.g.,

– Length given

 e.g.,

- Fixed length

c t a

c t a 3

To represent:

CS 525 Notes 3 11

•  Bag of bits

Length Bits

To represent:

CS 525 Notes 3 12

Key Point

•  Fixed length items

•  Variable length items
 - usually length given at beginning

CS 525 Notes 3 13

•  Type of an item: Tells us how to

 interpret

 (plus size if fixed)

Also

CS 525 Notes 3 14

Data Items

Records

Blocks

Files

Memory

Overview

CS 525 Notes 3 15

Record - Collection of related data
 items (called FIELDS)

E.g.: Employee record:

 name field,

 salary field,

 date-of-hire field, ...

CS 525 Notes 3 16

Types of records:

•  Main choices:

– FIXED vs VARIABLE FORMAT

– FIXED vs VARIABLE LENGTH

CS 525 Notes 3 17

A SCHEMA (not record) contains

 following information

 - # fields

 - type of each field

 - order in record

 - meaning of each field

Fixed format

CS 525 Notes 3 18

Example: fixed format and length

Employee record

 (1) E#, 2 byte integer

 (2) E.name, 10 char. Schema

 (3) Dept, 2 byte code

55 s m i t h 02

83 j o n e s 01

Records

CS 525 Notes 3 19

•  Record itself contains format

 Self Describing

Variable format

CS 525 Notes 3 20

Example: variable format and length

4 I 5 2 4 S D R O F 46

Field name codes could also be strings, i.e. TAGS

#

 F
ie

ld
s

C
o
d
e
 i
d
e
n
ti
fy

in
g

 f

ie
ld

 a
s

E
#

In

te
g
e
r

ty
p
e

 C
o
d
e
 f
o
r

E
n
a
m

e

S
tr

in
g
 t

y
p
e

L
e
n
g
th

 o
f

st
r.

CS 525 Notes 3 21

Variable format useful for:

•  sparse records

•  repeating fields

•  evolving formats

But may waste space...

Additional indirection…

CS 525 Notes 3 22

•  EXAMPLE: var format record with

 repeating fields

 Employee → one or more → children

3 E_name: Fred Child: Sally Child: Tom

CS 525 Notes 3 23

Note: Repeating fields does not imply

 - variable format, nor

 - variable size

John Sailing Chess --

CS 525 Notes 3 24

Note: Repeating fields does not imply

 - variable format, nor

 - variable size

John Sailing Chess --

•  Key is to allocate maximum number of

 repeating fields (if not used → null)

CS 525 Notes 3 25

 Many variants between
 fixed - variable format:

Example: Include record type in record

record type record length

tells me what

to expect

(i.e. points to schema)

5 27

CS 525 Notes 3 26

Record header - data at beginning
 that describes record

May contain:

 - record type

 - record length

 - time stamp

 - null-value bitmap

 - other stuff ...

CS 525 Notes 3 27

Other interesting issues:

•  Compression

– within record - e.g. code selection

– collection of records - e.g. find common

patterns

•  Encryption

•  Splitting of large records

– E.g., image field, store pointer

Record Header – null-map

•  SQL: NULL is special value for every
data type

– Reserve one value for each data type as

NULL?

•  Easier solution

– Record header has a bitmap to store

whether field is NULL

– Only store non-NULL fields in record

CS 525 Notes 3 28

Separate Storage of Large
Values

•  Store fields with large values separately

– E.g., image or binary document

– Records have pointers to large field

content

•  Rationale

– Large fields mostly not used in search

conditions

– Benefit from smaller records

CS 525 Notes 3 29

CS 525 Notes 3 30

Next: placing records into blocks

blocks ...

 a file

CS 525 Notes 3 31

Next: placing records into blocks

blocks ...

 a file

assume fixed

length blocks

assume a single file (for now)

CS 525 Notes 3 32

(1) separating records

(2) spanned vs. unspanned

(3) sequencing

(4) indirection

Options for storing records in blocks:

CS 525 Notes 3 33

Block

(a) no need to separate - fixed size recs.

(b) special marker

(c) give record lengths (or offsets)

 - within each record

 - in block header

(1) Separating records

R2 R1 R3

CS 525 Notes 3 34

•  Unspanned: records must be within one
block
 block 1 block 2
 ...

•  Spanned
 block 1 block 2

 ...

(2) Spanned vs. Unspanned

R1 R2

R1

R3 R4 R5

R2
R3
(a)

R3
(b) R6 R5 R4

R7
(a)

CS 525 Notes 3 35

 need indication need indication

 of partial record of continuation

 pointer to rest (+ from where?)

R1 R2
R3
(a)

R3
(b) R6 R5 R4

R7
(a)

With spanned records:

CS 525 Notes 3 36

•  Unspanned is much simpler, but may
waste space…

•  Spanned essential if

 record size > block size

Spanned vs. unspanned:

CS 525 Notes 3 37

•  Ordering records in file (and block) by
some key value

 Sequential file (⇒ sequenced)

(3) Sequencing

CS 525 Notes 3 38

Why sequencing?

Typically to make it possible to efficiently
read records in order

 (e.g., to do a merge-join — discussed later)

CS 525 Notes 3 39

Sequencing Options

(a) Next record physically contiguous

 ...

(b) Linked

Next (R1) R1

R1 Next (R1)

CS 525 Notes 3 40

(c) Overflow area

Records

in sequence

R1

R2

R3

R4

R5

Sequencing Options

CS 525 Notes 3 41

(c) Overflow area

Records

in sequence

R1

R2

R3

R4

R5

Sequencing Options

header

R2.1

R1.3

R4.7

CS 525 Notes 3 42

•  How does one refer to records?

(4) Indirection

Rx

CS 525 Notes 3 43

•  How does one refer to records?

(4) Indirection

Rx

Many options:

 Physical Indirect

CS 525 Notes 3 44

 Purely Physical

 Device ID

E.g., Record Cylinder #

 Address = Track #

 or ID Block #

 Offset in block

Block ID

CS 525 Notes 3 45

 Fully Indirect

E.g., Record ID is arbitrary bit string

 map

rec ID

 r address

 a
Physical

addr. Rec ID

CS 525 Notes 3 46

Tradeoff

 Flexibility Cost

 to move records of indirection

 (for deletions, insertions)

CS 525 Notes 3 47

 Physical Indirect

 Many options
 in between …

CS 525 Notes 3 48

Block header - data at beginning that
 describes block

May contain:
 - File ID (or RELATION or DB ID)

 - This block ID

 - Record directory

 - Pointer to free space

 - Type of block (e.g. contains recs type 4;

 is overflow, …)

 - Pointer to other blocks like it

 - Timestamp ...

CS 525 Notes 3 49

Example: Indirection in block

 Header

A block: Free space

R3

R4

R1 R2

Tuple Identifier (TID)

•  TID is

– Page identifier

– Slot number

•  Slot stores either record or pointer
(TID)

•  TID of a record is fixed for all time

CS 525 Notes 3 50

TID Operations

•  Insertion

– Set TID to record location (page, slot)

•  Moving record

– e.g., update variable-size or reorganization

– Case 1: TID points to record

• Replace record with pointer (new TID)

– Case 2: TID points to pointer (TID)

• Replace pointer with new pointer

 CS 525 Notes 3 51

CS 525 Notes 3 52

Block 1 Block 2

TID: Block 1, Slot 2

CS 525 Notes 3 53

Block 1 Block 2

TID: Block 1, Slot 2

Move record to Block 2 slot 3 -> TID does not change!

Block 2, Slot 3

CS 525 Notes 3 54

Block 1 Block 2

TID: Block 1, Slot 2

Move record again to Block 2 slot 2
-> still one level of indirection

Block 2, Slot 2

TID Properties

•  TID of record never changes

– Can be used safely as pointer to record
(e.g., in index)

•  At most one level of indirection

– Relatively efficient

– Changes to physical address - changing

max 2 pages

CS 525 Notes 3 55

CS 525 Notes 3 56

(1) separating records

(2) spanned vs. unspanned

(3) sequencing

(4) indirection

Options for storing records in blocks:

CS 525 Notes 3 57

(1) Insertion/Deletion

(2) Buffer Management

(3) Comparison of Schemes

Other Topics

CS 525 Notes 3 58

Block

Deletion

Rx

CS 525 Notes 3 59

Options:

(a) Immediately reclaim space

(b) Mark deleted

CS 525 Notes 3 60

Options:

(a) Immediately reclaim space

(b) Mark deleted

– May need chain of deleted records

 (for re-use)

– Need a way to mark:

•  special characters

• delete field

•  in map

CS 525 Notes 3 61

 As usual, many tradeoffs...

•  How expensive is it to move valid
record to free space for immediate
reclaim?

•  How much space is wasted?

– e.g., deleted records, delete fields, free
space chains,...

CS 525 Notes 3 62

Dangling pointers

Concern with deletions

R1 ?

CS 525 Notes 3 63

Solution #1: Do not worry

CS 525 Notes 3 64

E.g., Leave MARK in map or old
location

Solution #2: Tombstones

CS 525 Notes 3 65

E.g., Leave MARK in map or old
location

Solution #2: Tombstones

•  Physical IDs

 A block

 This space This space can
 never re-used be re-used

CS 525 Notes 3 66

•  Logical IDs

ID LOC

7788

map

Never reuse
ID 7788 nor

 space in map...

E.g., Leave MARK in map or old location

Solution #2: Tombstones

CS 525 Notes 3 67

Easy case: records not in sequence

 → Insert new record at end of file or
 in deleted slot

 → If records are variable size, not
 as easy...

Insert

CS 525 Notes 3 68

Hard case: records in sequence

 → If free space close by , not too bad...

 → Or use overflow idea...

Insert

CS 525 Notes 3 69

Interesting problems:

•  How much free space to leave in each
block, track, cylinder?

•  How often do I reorganize file + overflow?

CS 525 Notes 3 70

Free
space

CS 525 Notes 3 71

•  For Caching of Disk Blocks

•  Buffer Replacement Strategies

– E.g., LRU, clock

•  Pinned blocks

•  Forced output

•  Double buffering

•  Swizzling

Buffer Management

in Notes02

Buffer Manager

•  Manages blocks cached from disk in
main memory

•  Usually -> fixed size buffer (M pages)

•  DB requests page from Buffer Manager

– Case 1: page is in memory -> return

address

– Case 2: page is on disk -> load into

memory, return address

CS 525 Notes 3 72

Goals

•  Reduce the amount of I/O

•  Maximize the hit rate

– Ratio of number of page accesses that are
fulfilled without reading from disk

•  -> Need strategy to decide when to

CS 525 Notes 3 73

Buffer Manager Organization

•  Bookkeeping

– Need to map (hash table) page-ids to
locations in buffer (page frames)

– Per page store fix count, dirty bit, …

– Manage free space

•  Replacement strategy

–  If page is requested but buffer is full

– Which page to emit remove from buffer

CS 525 Notes 3 74

FIFO

•  First In, First Out

•  Replace page that has been in the
buffer for the longest time

•  Implementation: E.g., pointer to oldest
page (circular buffer)

– Pointer->next = Pointer++ % M

•  Simple, but not prioritizing frequently
accessed pages

CS 525 Notes 3 75

LRU
•  Least Recently Used

•  Replace page that has not been
accessed for the longest time

•  Implementation:

– List, ordered by LRU

– Access a page, move it to list tail

•  Widely applied and reasonable
performance

CS 525 Notes 3 76

Clock

•  Frames are organized clock-wise

•  Pointer S to current frame

•  Each frame has a reference bit

– Page is loaded or accessed -> bit = 1

•  Find page to replace (advance pointer)

– Return first frame with bit = 0

– On the way set all bits to 0

CS 525 Notes 3 77

Clock Example

CS 525 Notes 3 78

0 Page 0

1 Page 1

1 Page 2

0 Page 3

1 Page 4

S

Reference bit

Other Replacement Strategies

•  LRU-K

•  GCLOCK

•  Clock-Pro

•  ARC

•  LFU

CS 525 Notes 3 79

CS 525 Notes 3 80

Swizzling

 Memory Disk

Rec A

block 1

block 2

block 1

CS 525 Notes 3 81

Swizzling

 Memory Disk

Rec A

block 1

Rec A block 2 block 2

block 1

CS 525 Notes 3 82

Row vs Column Store

•  So far we assumed that fields of a
record are stored contiguously (row
store)...

•  Another option is to store all values of a
field together (column store)

CS 525 Notes 3 83

•  Example: Order consists of

–  id, cust, prod, store, price, date, qty

Row Store

id1 cust1 prod1 store1 price1 date1 qty1

id2 cust2 prod2 store2 price2 date2 qty2

id3 cust3 prod3 store3 price3 date3 qty3

CS 525 Notes 3 84

•  Example: Order consists of

–  id, cust, prod, store, price, date, qty

Column Store

id1 cust1

id2 cust2

id3 cust3

id4 cust4

... ...

id1 prod1

id2 prod2

id3 prod3

id4 prod4

... ...

id1 price1 qty1

id2 price2 qty2

id3 price3 qty3

id4 price4 qty4

...

ids may or may not be stored explicitly

CS 525 Notes 3 85

Row vs Column Store

•  Advantages of Column Store

– more compact storage (fields need not
start at byte boundaries)

– Efficient compression, e.g., RLE

– efficient reads on data mining operations

•  Advantages of Row Store

– writes (multiple fields of one record)more
efficient

– efficient reads for record access (OLTP)

CS 525 Notes 3 86

•  There are 10,000,000 ways to organize
my data on disk…

 Which is right for me?

Comparison

CS 525 Notes 3 87

Issues:

Flexibility Space Utilization

Complexity Performance

CS 525 Notes 3 88

 To evaluate a given strategy, compute
following parameters:
 -> space used for expected data
 -> expected time to

 - fetch record given key

 - fetch record with next key
 - insert record
 - append record
 - delete record
 - update record
 - read complete file
 - reorganize file

CS 525 Notes 3 89

Example

How would you design Megatron 3000
storage system? (for a relational DB, low end)

– Variable length records?

– Spanned?

– What data types?
– Fixed format?

– Record IDs ?
– Sequencing?

– How to handle deletions?

CS 525 Notes 3 90

•  How to lay out data on disk

 Data Items

 Records

 Blocks

 Files

 Memory

 DBMS

Summary

CS 525 Notes 3 91

 How to find a record quickly,

 given a key

Next

CS 525 Notes 4 - Indexing 1

CS 525: Advanced Database
Organization
04: Indexing

Boris Glavic

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 4 - Indexing 2

Indexing & Hashing

 value

Part 04

? value

record

CS 525 Notes 4 - Indexing 3

Query Types:

•  Point queries:

–  Input: value v of attribute A

– Output: all objects (tuples) with that value

in attribute A

•  Range queries:

–  Input: value interval [low,high] of attr A

– Output: all tuples with a value

 low <= v < high in attribute A

CS 525 Notes 4 - Indexing 4

Index Considerations:

•  Supported Query Types

•  Secondary-storage capable

•  Storage size

–  Index Size / Data Size

•  Complexity of Operations

– E.g., insert is O(log(n)) worst-case

•  Efficient Concurrent Operations?

CS 525 Notes 4 - Indexing 5

Topics

•  Conventional indexes

•  B-trees

•  Hashing schemes

•  Advanced Index Techniques

CS 525 Notes 4 - Indexing 6

Sequential File

20
10

40
30

60
50

80
70

100
90

CS 525 Notes 4 - Indexing 7

Sequential File

20
10

40
30

60
50

80
70

100
90

Dense Index

10
20
30
40

50
60
70
80

90
100
110
120

CS 525 Notes 4 - Indexing 8

Sequential File

20
10

40
30

60
50

80
70

100
90

Sparse Index

10
30
50
70

90
110
130
150

170
190
210
230

CS 525 Notes 4 - Indexing 9

Sequential File

20
10

40
30

60
50

80
70

100
90

Sparse 2nd level

10
30
50
70

90
110
130
150

170
190
210
230

10
90
170
250

330
410
490
570

CS 525 Notes 4 - Indexing 10

•  Comment:

 {FILE,INDEX} may be contiguous

 or not (blocks chained)

CS 525 Notes 4 - Indexing 11

Question:

•  Can we build a dense, 2nd level index
for a dense index?

CS 525 Notes 4 - Indexing 12

Notes on pointers:

(1) Block pointer (sparse index) can be
 smaller than record pointer

 BP

 RP

CS 525 Notes 4 - Indexing 13

(2) If file is contiguous, then we can omit

 pointers (i.e., compute them)

Notes on pointers:

CS 525 Notes 4 - Indexing 14

K1

K3

K4

K2

R1

R2

R3

R4

CS 525 Notes 4 - Indexing 15

K1

K3

K4

K2

R1

R2

R3

R4

say:
1024 B
per block

•  if we want K3 block:
 get it at offset
 (3-1)1024
 = 2048 bytes

CS 525 Notes 4 - Indexing 16

Sparse vs. Dense Tradeoff

•  Sparse: Less index space per record
 can keep more of index

in memory

•  Dense: Can tell if any record exists
 without accessing file

(Later:
–  sparse better for insertions
–  dense needed for secondary indexes)

CS 525 Notes 4 - Indexing 17

Terms

•  Index sequential file

•  Search key (≠ primary key)

•  Primary index (on Sequencing field)

•  Secondary index

•  Dense index (all Search Key values in)

•  Sparse index

•  Multi-level index

CS 525 Notes 4 - Indexing 18

Next:

•  Duplicate keys

•  Deletion/Insertion

•  Secondary indexes

CS 525 Notes 4 - Indexing 19

Duplicate keys

10
10

20
10

30
20

30
30

45
40

CS 525 Notes 4 - Indexing 20

10
10

20
10

30
20

30
30

45
40

10
10
10
20

20
30
30
30

10
10

20
10

30
20

30
30

45
40

10
10
10
20

20
30
30
30

Dense index, one way to implement?

Duplicate keys

CS 525 Notes 4 - Indexing 21

10
10

20
10

30
20

30
30

45
40

10
20
30
40

Dense index, better way?

Duplicate keys

CS 525 Notes 4 - Indexing 22

10
10

20
10

30
20

30
30

45
40

10
10
20
30

Sparse index, one way?

Duplicate keys

CS 525 Notes 4 - Indexing 23

10
10

20
10

30
20

30
30

45
40

10
10
20
30

Sparse index, one way?

Duplicate keys
ca

re
fu

l
if
 l
o
o
k
in

g

fo
r

2
0
 o

r
3
0
!

CS 525 Notes 4 - Indexing 24

10
10

20
10

30
20

30
30

45
40

10
20
30
30

Sparse index, another way?

Duplicate keys

–  place first new key from block

CS 525 Notes 4 - Indexing 25

10
10

20
10

30
20

30
30

45
40

10
20
30
30

Sparse index, another way?

Duplicate keys

–  place first new key from block

should
this be

40?

CS 525 Notes 4 - Indexing 26

 Duplicate values,
 primary index

•  Index may point to first instance of
 each value only

 File

 Index

Summary

a

a
a

b

.

.

CS 525 Notes 4 - Indexing 27

Deletion from sparse index

20
10

40
30

60
50

80
70

10
30
50
70

90

110
130
150

CS 525 Notes 4 - Indexing 28

Deletion from sparse index

20
10

40
30

60
50

80
70

10
30
50
70

90

110
130
150

–  delete record 40

CS 525 Notes 4 - Indexing 29

Deletion from sparse index

20
10

40
30

60
50

80
70

10
30
50
70

90

110
130
150

–  delete record 40

CS 525 Notes 4 - Indexing 30

Deletion from sparse index

20
10

40
30

60
50

80
70

10
30
50
70

90

110
130
150

–  delete record 30

CS 525 Notes 4 - Indexing 31

Deletion from sparse index

20
10

40
30

60
50

80
70

10
30
50
70

90

110
130
150

–  delete record 30

40
40

CS 525 Notes 4 - Indexing 32

Deletion from sparse index

20
10

40
30

60
50

80
70

10
30
50
70

90

110
130
150

–  delete records 30 & 40

CS 525 Notes 4 - Indexing 33

Deletion from sparse index

20
10

40
30

60
50

80
70

10
30
50
70

90

110
130
150

–  delete records 30 & 40

CS 525 Notes 4 - Indexing 34

Deletion from sparse index

20
10

40
30

60
50

80
70

10
30
50
70

90

110
130
150

–  delete records 30 & 40

50
70

CS 525 Notes 4 - Indexing 35

Deletion from dense index

20
10

40
30

60
50

80
70

10
20
30
40

50

60
70
80

CS 525 Notes 4 - Indexing 36

Deletion from dense index

20
10

40
30

60
50

80
70

10
20
30
40

50

60
70
80

–  delete record 30

CS 525 Notes 4 - Indexing 37

Deletion from dense index

20
10

40
30

60
50

80
70

10
20
30
40

50

60
70
80

–  delete record 30

40

CS 525 Notes 4 - Indexing 38

Deletion from dense index

20
10

40
30

60
50

80
70

10
20
30
40

50

60
70
80

–  delete record 30

40 40

CS 525 Notes 4 - Indexing 39

Insertion, sparse index case

20
10

30

50
40

60

10
30
40
60

CS 525 Notes 4 - Indexing 40

Insertion, sparse index case

20
10

30

50
40

60

10
30
40
60

–  insert record 34

CS 525 Notes 4 - Indexing 41

Insertion, sparse index case

20
10

30

50
40

60

10
30
40
60

–  insert record 34

34

•  our lucky day!
 we have free space
 where we need it!

CS 525 Notes 4 - Indexing 42

Insertion, sparse index case

20
10

30

50
40

60

10
30
40
60

–  insert record 15

CS 525 Notes 4 - Indexing 43

Insertion, sparse index case

20
10

30

50
40

60

10
30
40
60

–  insert record 15

15
20

30

20

CS 525 Notes 4 - Indexing 44

Insertion, sparse index case

20
10

30

50
40

60

10
30
40
60

–  insert record 15

15
20

30

20

•  Illustrated: Immediate reorganization
•  Variation:

–  insert new block (chained file)
–  update index

CS 525 Notes 4 - Indexing 45

Insertion, sparse index case

 20
10

30

50
40

60

10
30
40
60

–  insert record 25

CS 525 Notes 4 - Indexing 46

Insertion, sparse index case

 20
10

30

50
40

60

10
30
40
60

–  insert record 25

25

overflow blocks
(reorganize later...)

CS 525 Notes 4 - Indexing 47

Insertion, dense index case

•  Similar

•  Often more expensive . . .

CS 525 Notes 4 - Indexing 48

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

CS 525 Notes 4 - Indexing 49

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

•  Sparse index

30
20
80
100

90
...

CS 525 Notes 4 - Indexing 50

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

•  Sparse index

30
20
80
100

90
...

does not make sense!

CS 525 Notes 4 - Indexing 51

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

•  Dense index

CS 525 Notes 4 - Indexing 52

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

•  Dense index

10
20
30
40

50
60
70
...

CS 525 Notes 4 - Indexing 53

Secondary indexes
Sequence
field

50
30

70
20

40
80

10
100

60
90

•  Dense index

10
20
30
40

50
60
70
...

10
50
90
...

sparse
high

level

CS 525 Notes 4 - Indexing 54

With secondary indexes:

•  Lowest level is dense

•  Other levels are sparse

Also: Pointers are record pointers

 (not block pointers; not computed)

CS 525 Notes 4 - Indexing 55

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

CS 525 Notes 4 - Indexing 56

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10
10
10
20

20
30
40
40

40
40
...

one option...

CS 525 Notes 4 - Indexing 57

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10
10
10
20

20
30
40
40

40
40
...

one option...

Problem:
excess overhead!

•  disk space

•  search time

CS 525 Notes 4 - Indexing 58

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10

another option...

40

30

20

CS 525 Notes 4 - Indexing 59

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10

another option...

40

30

20 Problem:
variable size
records in

index!

CS 525 Notes 4 - Indexing 60

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...

λ

λ

λ

λ

Another idea:
Chain records with same key?

CS 525 Notes 4 - Indexing 61

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...

λ

λ

λ

λ

Another idea (suggested in class):
Chain records with same key?

Problems:
•  Need to add fields to records
•  Need to follow chain to know records

CS 525 Notes 4 - Indexing 62

Duplicate values & secondary indexes

10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...

buckets

CS 525 Notes 4 - Indexing 63

Why bucket idea is useful

Indexes Records

Name: primary EMP (name,dept,floor,...)

Dept: secondary

Floor: secondary

CS 525 Notes 4 - Indexing 64

Query: Get employees in
 (Toy Dept) ^ (2nd floor)

Dept. index EMP Floor index

Toy 2nd

CS 525 Notes 4 - Indexing 65

Query: Get employees in
 (Toy Dept) ^ (2nd floor)

Dept. index EMP Floor index

Toy 2nd

→ Intersect toy bucket and 2nd Floor
 bucket to get set of matching EMP’s

CS 525 Notes 4 - Indexing 66

This idea used in
 text information retrieval

Documents

...the cat is
 fat ...

...was raining
 cats and dogs...

...Fido the
 dog ...

CS 525 Notes 4 - Indexing 67

This idea used in
 text information retrieval

Documents

...the cat is
 fat ...

...was raining
 cats and dogs...

...Fido the
 dog ...

Inverted lists

cat

dog

CS 525 Notes 4 - Indexing 68

IR QUERIES

•  Find articles with cat and dog

•  Find articles with cat or dog

•  Find articles with cat and not dog

CS 525 Notes 4 - Indexing 69

Summary so far

•  Conventional index

– Basic Ideas: sparse, dense, multi-level…

– Duplicate Keys

– Deletion/Insertion

– Secondary indexes
–  Buckets of Postings List

CS 525 Notes 4 - Indexing 70

Conventional indexes

Advantage:

 - Simple
 - Index is sequential file
 good for scans

Disadvantage:
 - Inserts expensive, and/or
 - Lose sequentiality & balance

CS 525 Notes 4 - Indexing 71

Example Index (sequential)

 continuous

 free space

10
20
30

40
50
60

70
80
90

CS 525 Notes 4 - Indexing 72

Example Index (sequential)

 continuous

 free space

10
20
30

40
50
60

70
80
90

39
31
35
36

32
38
34

33

overflow area
(not sequential)

CS 525 Notes 4 - Indexing 73

Outline:

•  Conventional indexes

•  B-Trees ⇒ NEXT

•  Hashing schemes

•  Advanced Index Techniques

CS 525 Notes 4 - Indexing 74

•  NEXT: Another type of index

– Give up on sequentiality of index

– Try to get balance

B+-tree Motivation

•  Tree indices are pretty efficient

– E.g., binary search tree

• Average case O(log(n)) lookup

•  However

– Unclear how to map to disk (index larger
than main memory, loading partial index)

– Worst-case O(n) lookup

CS 525 Notes 4 - Indexing 75

B+-tree Properties
•  Large nodes:

–  Node size is multiple of block size

•  -> small number of levels

•  -> simple way to map index to disk

•  -> many keys per node

•  Balance:

–  Require all nodes to be more than X% full

–  -> for n records guaranteed only logarithmically

many levels

–  -> log(n) worst-case performance

CS 525 Notes 4 - Indexing 76

C
S
 5

2
5

N
o
te

s 4
 - In

d
e
x
in

g

7
7

R
o
o
t

B
+

T
re

e
 E

x
a
m

p
le

 n

=
3

100

120
150
180

30

3
5
11

30
35

100
101
110

120
130

150
156
179

180
200

CS 525 Notes 4 - Indexing 78

Sample non-leaf

to keys to keys to keys to keys

< 57 57≤ k<81 81≤k<95 ≥95

5
7

 8
1

 9
5

CS 525 Notes 4 - Indexing 79

Sample leaf node:

 From non-leaf node

 to next leaf

 in sequence 5
7

 8
1

 9
5

To
 r

e
co

rd

w
it
h
 k

e
y
 5

7

To

 r
e
co

rd

w
it
h
 k

e
y
 8

1

To

 r
e
co

rd

w
it
h
 k

e
y
 8

5

CS 525 Notes 4 - Indexing 80

In textbook’s notation n=3

Leaf:

Non-leaf:

3
0

3
5

3
0

30 35

30

CS 525 Notes 4 - Indexing 81

Size of nodes: n+1 pointers

 n keys
(fixed)

CS 525 Notes 4 - Indexing 82

Don’t want nodes to be too empty

•  Use at least (balance)

Non-leaf: (n+1)/2 pointers

Leaf: (n+1)/2 pointers to data

CS 525 Notes 4 - Indexing 83

 Full node min. node

Non-leaf

Leaf

n=3

1
2
0

1
5
0

1
8
0

3
0

3

5

1
1

3
0

3
5

co
u
n
ts

 e
v
e
n
 i
f

n
u
ll

CS 525 Notes 4 - Indexing 84

B+tree rules tree of order n

(1) All leaves at same lowest level
 (balanced tree)

-> guaranteed worst-case complexity for

operations on the index

(2) Pointers in leaves point to records
 except for sequence pointer

CS 525 Notes 4 - Indexing 85

(3) Number of pointers/keys for B+tree

Non-leaf
(non-root) n+1 n (n+1)/2 (n+1)/2- 1

Leaf
(non-root) n+1 n

Root n+1 n 1 1

Max Max Min Min
ptrs keys ptrs→data keys

(n+1)/2 (n+1)/2

Search Algorithm

•  Search for key k

•  Start from root until leaf is reached

•  For current node find i so that

– Key[i] <= k < Key[i + 1]

– Follow i+1th pointer

•  If current node is leaf return pointer to
record or fail (no such record in tree)

CS 525 Notes 4 - Indexing 86

C
S
 5

2
5

N
o
te

s 4
 - In

d
e
x
in

g

8
7

R
o
o
t

S
e
a
rch

 E
x
a
m

p
le

 n

=
3

100

120
150
180

30

3
5
11

30
35

100
101
110

120
130

150
156
179

180
200

k
=

 1
2
0

Remarks Search

•  If n is large, e.g., 500

•  Keys inside node are sorted

•  -> use binary search to find I

•  Performance considerations

– Linear search O(n)

– Binary search O(log2(n))

CS 525 Notes 4 - Indexing 88

CS 525 Notes 4 - Indexing 89

Insert into B+tree

(a) simple case
–  space available in leaf

(b) leaf overflow

(c) non-leaf overflow

(d) new root

CS 525 Notes 4 - Indexing 90

(a) Insert key = 32 n=3

3

5

1
1

3
0

3
1

3
0

1
0
0

CS 525 Notes 4 - Indexing 91

(a) Insert key = 32 n=3

3

5

1
1

3
0

3
1

3
0

1
0
0

3
2

CS 525 Notes 4 - Indexing 92

(a) Insert key = 7 n=3

3

5

1
1

3
0

3
1

 3
0

1
0
0

CS 525 Notes 4 - Indexing 93

(a) Insert key = 7 n=3

3

5

1
1

3
0

3
1

 3
0

1
0
0

3

5
 7

CS 525 Notes 4 - Indexing 94

(a) Insert key = 7 n=3

3

5

1
1

3
0

3
1

 3
0

1
0
0

3

5
 7

7

CS 525 Notes 4 - Indexing 95

(c) Insert key = 160

n=3

1
0
0

1
2
0

1
5
0

1
8
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

CS 525 Notes 4 - Indexing 96

(c) Insert key = 160

n=3

1
0
0

1
2
0

1
5
0

1
8
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
6
0

1
7
9

CS 525 Notes 4 - Indexing 97

(c) Insert key = 160

n=3

1
0
0

1
2
0

1
5
0

1
8
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
8
0

1
6
0

1
7
9

CS 525 Notes 4 - Indexing 98

(c) Insert key = 160

n=3

1
0
0

1
2
0

1
5
0

1
8
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
6
0

1
8
0

1
6
0

1
7
9

CS 525 Notes 4 - Indexing 99

(d) New root, insert 45 n=3

1
0

2
0

3
0

1

2

3

1
0

1
2

2
0

2
5

3
0

3
2

4
0

CS 525 Notes 4 - Indexing 100

(d) New root, insert 45 n=3

1
0

2
0

3
0

1

2

3

1
0

1
2

2
0

2
5

3
0

3
2

4
0

4
0

4
5

CS 525 Notes 4 - Indexing 101

(d) New root, insert 45 n=3

1
0

2
0

3
0

1

2

3

1
0

1
2

2
0

2
5

3
0

3
2

4
0

4
0

4
5

4
0

CS 525 Notes 4 - Indexing 102

(d) New root, insert 45 n=3

1
0

2
0

3
0

1

2

3

1
0

1
2

2
0

2
5

3
0

3
2

4
0

4
0

4
5

4
0

3
0

new root

Insertion Algorithm

•  Insert Record with key k

•  Search leaf node for k

– Leaf node has at least one space

•  Insert into leaf

– Leaf is full

• Split leaf into two nodes (new leaf)

•  Insert new leaf’s smallest key into parent

CS 525 Notes 4 - Indexing 103

Insertion Algorithm cont.

– Non-leaf node is full

• Split parent

•  Insert median key into parent

– Root is full

• Split root

• Create new root with two pointers and single

key

•  -> B-trees grow at the root

CS 525 Notes 4 - Indexing 104

CS 525 Notes 4 - Indexing 105

(a) Simple case - no example

(b) Coalesce with neighbor (sibling)

(c) Re-distribute keys

(d) Cases (b) or (c) at non-leaf

Deletion from B+tree

CS 525 Notes 4 - Indexing 106

(b) Coalesce with sibling

– Delete 50

1
0

4
0

1
0
0

1
0

2
0

3
0

 4
0

5
0

n=4

CS 525 Notes 4 - Indexing 107

(b) Coalesce with sibling

– Delete 50

1
0

4
0

1
0
0

1
0

2
0

3
0

 4
0

5
0

n=4

4
0

CS 525 Notes 4 - Indexing 108

(c) Redistribute keys

– Delete 50

1
0

4
0

1
0
0

1
0

2
0

3
0

3
5

 4
0

5
0

n=4

CS 525 Notes 4 - Indexing 109

(c) Redistribute keys

– Delete 50

1
0

4
0

1
0
0

1
0

2
0

3
0

3
5

 4
0

5
0

n=4

3
5

3
5

CS 525 Notes 4 - Indexing 110

4
0

4
5

3
0

3
7

2
5

2
6

 2
0

2
2

1
0

1
4

1

3

1
0

2
0

 3
0

4
0

(d) Non-leaf coalese

– Delete 37
n=4

2
5

CS 525 Notes 4 - Indexing 111

4
0

4
5

3
0

3
7

2
5

2
6

 2
0

2
2

1
0

1
4

1

3

1
0

2
0

 3
0

4
0

(d) Non-leaf coalese

– Delete 37
n=4

3
0

2
5

CS 525 Notes 4 - Indexing 112

4
0

4
5

3
0

3
7

2
5

2
6

 2
0

2
2

1
0

1
4

1

3

1
0

2
0

 3
0

4
0

(d) Non-leaf coalese

– Delete 37
n=4

4
0

3
0

2
5

CS 525 Notes 4 - Indexing 113

4
0

4
5

3
0

3
7

2
5

2
6

 2
0

2
2

1
0

1
4

1

3

1
0

2
0

 3
0

4
0

(d) Non-leaf coalese

– Delete 37
n=4

4
0

3
0

2
5

2
5

new root

Deletion Algorithm
•  Delete record with key k

•  Search leaf node for k

– Leaf has more than min entries

• Remove from leaf

– Leaf has min entries

• Try to borrow from sibling

– One direct sibling has more min entries

• Move entry from sibling and adapt key in

parent

CS 525 Notes 4 - Indexing 114

Deletion Algorithm cont.

•  Both direct siblings have min entries

– Merge with one sibling

– Remove node or sibling from parent

–  ->recursive deletion

•  Root has two children that get merged

– Merged node becomes new root

CS 525 Notes 4 - Indexing 115

CS 525 Notes 4 - Indexing 116

B+tree deletions in practice

– Often, coalescing is not implemented
–  Too hard and not worth it!

–  Assumption: nodes will fill up in time again

CS 525 Notes 4 - Indexing 117

Comparison: B-trees vs. static
 indexed sequential file

Ref #1: Held & Stonebraker

 B-Trees Re-examined

 CACM, Feb. 1978

CS 525 Notes 4 - Indexing 118

Ref # 1 claims:

 - Concurrency control harder in B-Trees

 - B-tree consumes more space

For their comparison:

 block = 512 bytes
 key = pointer = 4 bytes
 4 data records per block

CS 525 Notes 4 - Indexing 119

Example: 1 block static index

127 keys

(127+1)4 = 512 Bytes

-> pointers in index implicit! up to 127

 blocks

k1

k2

k3

k1

 k2

 k3

1 data
block

CS 525 Notes 4 - Indexing 120

Example: 1 block B-tree

63 keys

63x(4+4)+8 = 512 Bytes

-> pointers needed in B-tree up to 63
 blocks because index is blocks
 not contiguous

k1

k2

...

k63

k1

 k2

 k3

1 data
block

next

-

CS 525 Notes 4 - Indexing 121

Size comparison Ref. #1

 Static Index B-tree

data # data
blocks height blocks height

2 -> 127 2 2 -> 63 2

128 -> 16,129 3 64 -> 3968 3

16,130 -> 2,048,383 4 3969 -> 250,047 4

 250,048 -> 15,752,961 5

CS 525 Notes 4 - Indexing 122

Ref. #1 analysis claims

•  For an 8,000 block file,
 after 32,000 inserts

 after 16,000 lookups

 ⇒ Static index saves enough accesses
 to allow for reorganization

CS 525 Notes 4 - Indexing 123

Ref. #1 analysis claims

•  For an 8,000 block file,
 after 32,000 inserts

 after 16,000 lookups

 ⇒ Static index saves enough accesses
 to allow for reorganization

Ref. #1 conclusion Static index better!!

CS 525 Notes 4 - Indexing 124

Ref #2: M. Stonebraker,

 Retrospective on a database
 system, TODS, June 1980

Ref. #2 conclusion B-trees better!!

CS 525 Notes 4 - Indexing 125

•  DBA does not know when to reorganize

•  DBA does not know how full to load
 pages of new index

Ref. #2 conclusion B-trees better!!

CS 525 Notes 4 - Indexing 126

•  Buffering

– B-tree: has fixed buffer requirements

– Static index: must read several overflow

 blocks to be efficient
 (large & variable

size buffers
needed for this)

Ref. #2 conclusion B-trees better!!

CS 525 Notes 4 - Indexing 127

•  Speaking of buffering…

 Is LRU a good policy for B+tree buffers?

CS 525 Notes 4 - Indexing 128

•  Speaking of buffering…

 Is LRU a good policy for B+tree buffers?

→ Of course not!

→ Should try to keep root in memory
 at all times

(and perhaps some nodes from second level)

CS 525 Notes 4 - Indexing 129

Interesting problem:

 For B+tree, how large should n be?

…

n is number of keys / node

CS 525 Notes 4 - Indexing 130

Sample assumptions:

(1) Time to read node from disk is
 (S+Tn) msec.

CS 525 Notes 4 - Indexing 131

Sample assumptions:

(1) Time to read node from disk is
 (S+Tn) msec.

(2) Once block in memory, use binary
 search to locate key:
 (a + b LOG2 n) msec.

 For some constants a,b; Assume a << S

CS 525 Notes 4 - Indexing 132

Sample assumptions:

(1) Time to read node from disk is
 (S+Tn) msec.

(2) Once block in memory, use binary
 search to locate key:
 (a + b LOG2 n) msec.

 For some constants a,b; Assume a << S

(3) Assume B+tree is full, i.e.,
 # nodes to examine is LOGn N
 where N = # records

CS 525 Notes 4 - Indexing 133

➸Can get:
 f(n) = time to find a record

f(n)

 nopt n

CS 525 Notes 4 - Indexing 134

➸ FIND nopt by f’(n) = 0

 Answer is nopt = few hundred

CS 525 Notes 4 - Indexing 135

➸ FIND nopt by f’(n) = 0

 Answer is nopt = few hundred

➸ What happens to nopt as

•  Disk gets faster?

•  CPU get faster?

•  Memory hierarchy?

CS 525 Notes 4 - Indexing 136

Variation on B+tree: B-tree (no +)

•  Idea:

– Avoid duplicate keys

– Have record pointers in non-leaf nodes

CS 525 Notes 4 - Indexing 137

 to record to record to record
 with K1 with K2 with K3

 to keys to keys to keys to keys
 < K1 K1<x<K2 K2<x<k3 >k3

K1 P1 K2 P2 K3 P3

C
S
 5

2
5

N
o
te

s 4
 - In

d
e
x
in

g

1
3
8

B
-tre

e
 e

x
a
m

p
le

 n

=
2

65
125

145
165

85
105

25
45

10
20

30
40

110
120

90
100

70
80

170
180

50
60

130
140

150
160

CS 525 Notes 4 - Indexing 139

B-tree example n=2

 6
5

1
2
5

1
4
5

1
6
5

8
5

1
0
5

2
5

4
5

1
0

2
0

3
0

4
0

1
1
0

1
2
0

9
0

1
0
0

7
0

8
0

1
7
0

1
8
0

5
0

6
0

1
3
0

1
4
0

1
5
0

1
6
0

•  sequence pointers
 not useful now!
 (but keep space for simplicity)

CS 525 Notes 4 - Indexing 140

Note on inserts

•  Say we insert record with key = 25

1
0

2
0

3
0
 n=3

leaf

CS 525 Notes 4 - Indexing 141

Note on inserts

•  Say we insert record with key = 25

1
0

2
0

3
0
 n=3

leaf

1
0

–

2
0

–

2
5

3
0

•  Afterwards:

CS 525 Notes 4 - Indexing 142

So, for B-trees:

 MAX MIN

 Tree Rec Keys Tree Rec Keys
 Ptrs Ptrs Ptrs Ptrs

Non-leaf
non-root n+1 n n (n+1)/2 (n+1)/2-1 (n+1)/2-1

Leaf
non-root 1 n n 1 n/2 n/2

Root
non-leaf n+1 n n 2 1 1

Root
Leaf 1 n n 1 1 1

CS 525 Notes 4 - Indexing 143

Tradeoffs:

 B-trees have faster lookup than B+trees

 in B-tree, non-leaf & leaf different sizes

 in B-tree, deletion more complicated

CS 525 Notes 4 - Indexing 144

Tradeoffs:

 B-trees have faster lookup than B+trees

 in B-tree, non-leaf & leaf different sizes

 in B-tree, deletion more complicated

➨ B+trees preferred!

CS 525 Notes 4 - Indexing 145

But note:

•  If blocks are fixed size
 (due to disk and buffering restrictions)

 Then lookup for B+tree is
 actually better!!

CS 525 Notes 4 - Indexing 146

Example:

 - Pointers 4 bytes

 - Keys 4 bytes

 - Blocks 100 bytes (just example)

 - Look at full 2 level tree

CS 525 Notes 4 - Indexing 147

Root has 8 keys + 8 record pointers
 + 9 son pointers

 = 8x4 + 8x4 + 9x4 = 100 bytes

B-tree:

CS 525 Notes 4 - Indexing 148

Root has 8 keys + 8 record pointers
 + 9 son pointers

 = 8x4 + 8x4 + 9x4 = 100 bytes

B-tree:

Each of 9 sons: 12 rec. pointers (+12 keys)

 = 12x(4+4) + 4 = 100 bytes

CS 525 Notes 4 - Indexing 149

Root has 8 keys + 8 record pointers
 + 9 son pointers

 = 8x4 + 8x4 + 9x4 = 100 bytes

B-tree:

Each of 9 sons: 12 rec. pointers (+12 keys)

 = 12x(4+4) + 4 = 100 bytes

2-level B-tree, Max # records =

 12x9 + 8 = 116

CS 525 Notes 4 - Indexing 150

Root has 12 keys + 13 son pointers

 = 12x4 + 13x4 = 100 bytes

B+tree:

CS 525 Notes 4 - Indexing 151

Root has 12 keys + 13 son pointers

 = 12x4 + 13x4 = 100 bytes

B+tree:

Each of 13 sons: 12 rec. ptrs (+12 keys)

 = 12x(4 +4) + 4 = 100 bytes

CS 525 Notes 4 - Indexing 152

Root has 12 keys + 13 son pointers

 = 12x4 + 13x4 = 100 bytes

B+tree:

Each of 13 sons: 12 rec. ptrs (+12 keys)

 = 12x(4 +4) + 4 = 100 bytes

2-level B+tree, Max # records

 = 13x12 = 156

CS 525 Notes 4 - Indexing 153

So...

 ooooooooooooo ooooooooo
 156 records 108 records

 Total = 116

B+ B

8 records

CS 525 Notes 4 - Indexing 154

So...

 ooooooooooooo ooooooooo
 156 records 108 records

 Total = 116

B+ B

8 records

•  Conclusion:

– For fixed block size,

– B+ tree is better because it is bushier

Additional B-tree Variants

•  B*-tree

–  Internal notes have to be 2/3 full

CS 525 Notes 4 - Indexing 155

CS 525 Notes 4 - Indexing 156

An Interesting Problem...

•  What is a good index structure when:

–  records tend to be inserted with keys
that are larger than existing values?
(e.g., banking records with growing data/time)

– we want to remove older data

CS 525 Notes 4 - Indexing 157

One Solution: Multiple Indexes

•  Example: I1, I2

day days indexed days indexed
 I1 I2

10 1,2,3,4,5 6,7,8,9,10
11 11,2,3,4,5 6,7,8,9,10

12 11,12,3,4,5 6,7,8,9,10

13 11,12,13,4,5 6,7,8,9,10

• advantage: deletions/insertions from smaller index
• disadvantage: query multiple indexes

CS 525 Notes 4 - Indexing 158

Another Solution (Wave Indexes)

day I1 I2 I3 I4
10 1,2,3 4,5,6 7,8,9 10
11 1,2,3 4,5,6 7,8,9 10,11
12 1,2,3 4,5,6 7,8,9 10,11, 12
13 13 4,5,6 7,8,9 10,11, 12
14 13,14 4,5,6 7,8,9 10,11, 12
15 13,14,15 4,5,6 7,8,9 10,11, 12
16 13,14,15 16 7,8,9 10,11, 12

• advantage: no deletions
• disadvantage: approximate windows

Concurrent Access To B-trees

•  Multiple processes/threads accessing
the B-tree

– Can lead to corruption

•  Serialize access to complete tree for
updates

– Simple

– Unnecessary restrictive

– Not feasible for high concurrency

CS 525 Notes 4 - Indexing 159

Lock Nodes

•  One solution

– Read and exclusive locks

– Safe and unsafe updates of nodes

• Safe: No ancestor of node will be effected by
update

• Unsafe: Ancestor may be affected

• Can be determined locally

–  E.g., deletion is safe is node has more than n/2

CS 525 Notes 4 - Indexing 160

Read Write

Read X -

Write - -

Lock Nodes

•  Reading

– Use standard search algorithm

– Hold lock on current node

– Release when navigating to child

•  Writing

– Lock each node on search for key

– Release all locks on parents of node if the

node is safe

CS 525 Notes 4 - Indexing 161

Improvements?

•  Try locking only the leaf for update

– Let update use read locks and only lock
leaf node with write lock

–  If leaf node is unsafe then use previous
protocol

•  Many more locking approaches have
been proposed

CS 525 Notes 4 - Indexing 162

CS 525 Notes 4 - Indexing 163

Outline/summary

•  Conventional Indexes
• Sparse vs. dense

• Primary vs. secondary

•  B trees
• B+trees vs. B-trees

• B+trees vs. indexed sequential

•  Hashing schemes --> Next

•  Advanced Index Techniques

CS 525 Notes 5 - Hashing 1

CS 525: Advanced Database
Organization

Boris Glavic

05: Hashing and More

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 5 - Hashing 2

key → h(key)

Hashing

<key>

.

.

.

Buckets
(typically 1
disk block)

CS 525 Notes 5 - Hashing 3

.

.

.

Two alternatives

records

.

.

.

(1) key → h(key)

CS 525 Notes 5 - Hashing 4

(2) key → h(key)

Index

record
key 1

Two alternatives

CS 525 Notes 5 - Hashing 5

(2) key → h(key)

Index

record
key 1

Two alternatives

•  Alt (2) for secondary search key

CS 525 Notes 5 - Hashing 6

Example hash function

•  Key = x1 x2 … xn n byte character
string

•  Have b buckets

•  h: add x1 + x2 + ….. xn

–  compute sum modulo b

CS 525 Notes 5 - Hashing 7

➽ This may not be best function …

➽ Read Knuth Vol. 3 if you really
 need to select a good function.

CS 525 Notes 5 - Hashing 8

➽ This may not be best function …

➽ Read Knuth Vol. 3 if you really
 need to select a good function.

Good hash Expected number of

 function: keys/bucket is the

 same for all buckets

CS 525 Notes 5 - Hashing 9

Within a bucket:

•  Do we keep keys sorted?

•  Yes, if CPU time critical

 & Inserts/Deletes not too frequent

CS 525 Notes 5 - Hashing 10

Next: example to illustrate
 inserts,

overflows, deletes

 h(K)

CS 525 Notes 5 - Hashing 11

EXAMPLE 2 records/bucket

INSERT:

h(a) = 1

h(b) = 2

h(c) = 1

h(d) = 0

0

1

2

3

CS 525 Notes 5 - Hashing 12

EXAMPLE 2 records/bucket

INSERT:

h(a) = 1

h(b) = 2

h(c) = 1

h(d) = 0

0

1

2

3

d

a

c

b

h(e) = 1

CS 525 Notes 5 - Hashing 13

EXAMPLE 2 records/bucket

INSERT:

h(a) = 1

h(b) = 2

h(c) = 1

h(d) = 0

0

1

2

3

d

a

c

b

h(e) = 1

e

CS 525 Notes 5 - Hashing 14

0

1

2

3

a

b

c

e

d

EXAMPLE: deletion

Delete:
e
f

f

g

CS 525 Notes 5 - Hashing 15

0

1

2

3

a

b

c

e

d

EXAMPLE: deletion

Delete:
e
f

f

g
maybe move

g up

c

CS 525 Notes 5 - Hashing 16

0

1

2

3

a

b

c

e

d

EXAMPLE: deletion

Delete:
e
f

f

g
maybe move

g up

c

d

CS 525 Notes 5 - Hashing 17

Rule of thumb:

•  Try to keep space utilization

 between 50% and 80%

 Utilization = # keys used
 total # keys that fit

CS 525 Notes 5 - Hashing 18

Rule of thumb:

•  Try to keep space utilization

 between 50% and 80%

 Utilization = # keys used
 total # keys that fit

•  If < 50%, wasting space

•  If > 80%, overflows significant
 depends on how good hash
 function is & on # keys/bucket

CS 525 Notes 5 - Hashing 19

How do we cope with growth?

•  Overflows and reorganizations

•  Dynamic hashing

CS 525 Notes 5 - Hashing 20

How do we cope with growth?

•  Overflows and reorganizations

•  Dynamic hashing

•  Extensible

•  Linear

CS 525 Notes 5 - Hashing 21

Extensible hashing: two ideas

(a) Use i of b bits output by hash function

 b

 h(K) →

 use i → grows over time….

00110101

CS 525 Notes 5 - Hashing 22

(b) Use directory

 h(K)[i] to bucket

.

.

.

.

.

.

CS 525 Notes 5 - Hashing 23

Example: h(k) is 4 bits; 2 keys/bucket

i = 1

1

1

0001

1001
1100

Insert 1010

CS 525 Notes 5 - Hashing 24

Example: h(k) is 4 bits; 2 keys/bucket

i = 1

1

1

0001

1001
1100

Insert 1010
1

1100

1010

CS 525 Notes 5 - Hashing 25

Example: h(k) is 4 bits; 2 keys/bucket

i = 1

1

1

0001

1001
1100

Insert 1010
1

1100

1010

New directory

2

00

01

10

11

i =

2

2

CS 525 Notes 5 - Hashing 26

1

0001

2

1001
1010
2

1100

Insert:

0111

0000

00

01

10

11

2 i =

Example continued

CS 525 Notes 5 - Hashing 27

1

0001

2

1001
1010
2

1100

Insert:

0111

0000

00

01

10

11

2 i =

Example continued

0111

0000

0111

0001

CS 525 Notes 5 - Hashing 28

1

0001

2

1001
1010
2

1100

Insert:

0111

0000

00

01

10

11

2 i =

Example continued

0111

0000

0111

0001

2

2

CS 525 Notes 5 - Hashing 29

00

01

10

11

2 i =

2 1001
1010

2 1100

2 0111

2 0000
0001

Insert:

1001

Example continued

CS 525 Notes 5 - Hashing 30

00

01

10

11

2 i =

2 1001
1010

2 1100

2 0111

2 0000
0001

Insert:

1001

Example continued

1001
1001

1010

CS 525 Notes 5 - Hashing 31

00

01

10

11

2 i =

2 1001
1010

2 1100

2 0111

2 0000
0001

Insert:

1001

Example continued

1001
1001

1010

000

001

010

011

100

101

110

111

3 i =

3

3

CS 525 Notes 5 - Hashing 32

Extensible hashing: deletion

•  No merging of blocks

•  Merge blocks
 and cut directory if possible

 (Reverse insert procedure)

CS 525 Notes 5 - Hashing 33

Deletion example:

•  Run thru insert example in reverse!

CS 525 Notes 5 - Hashing 34

Note: Still need overflow chains

•  Example: many records with duplicate keys

1

1101
1100

2

2

1100

insert 1100

1100

if we split:

CS 525 Notes 5 - Hashing 35

Solution: overflow chains

1

1101
1100

1

1100

insert 1100 add overflow block:

1101
1101

CS 525 Notes 5 - Hashing 36

 Extensible hashing

 Can handle growing files

 - with less wasted space

 - with no full reorganizations

Summary

+

CS 525 Notes 5 - Hashing 37

 Extensible hashing

 Can handle growing files

 - with less wasted space

 - with no full reorganizations

Summary

+

 Indirection

 (Not bad if directory in memory)

 Directory doubles in size

 (Now it fits, now it does not)

-

-

CS 525 Notes 5 - Hashing 38

Linear hashing

•  Another dynamic hashing scheme

Two ideas:
(a) Use i low order bits of hash

01110101

grows

b

i

CS 525 Notes 5 - Hashing 39

Linear hashing

•  Another dynamic hashing scheme

Two ideas:
(a) Use i low order bits of hash

01110101

grows

b

i

(b) File grows linearly

CS 525 Notes 5 - Hashing 40

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101

1111

0000

1010

m = 01 (max used block)

Future
growth
buckets

CS 525 Notes 5 - Hashing 41

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101

1111

0000

1010

m = 01 (max used block)

Future
growth
buckets

If h(k)[i] ≤ m, then

 look at bucket h(k)[i]

 else, look at bucket h(k)[i] - 2i -1

Rule

CS 525 Notes 5 - Hashing 42

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101

1111

0000

1010

m = 01 (max used block)

Future
growth
buckets

If h(k)[i] ≤ m, then

 look at bucket h(k)[i]

 else, look at bucket h(k)[i] - 2i -1

Rule

•  insert 0101

CS 525 Notes 5 - Hashing 43

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101

1111

0000

1010

m = 01 (max used block)

Future
growth
buckets

If h(k)[i] ≤ m, then

 look at bucket h(k)[i]

 else, look at bucket h(k)[i] - 2i -1

Rule

0101
•  can have overflow chains!

•  insert 0101

CS 525 Notes 5 - Hashing 44

Note
•  In textbook, n is used instead of m

•  n=m+1

00 01 10 11

0101

1111

0000

1010

m = 01 (max used block)

Future
growth
buckets

n=10

CS 525 Notes 5 - Hashing 45

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101

1111

0000

1010

m = 01 (max used block)

Future
growth
buckets

CS 525 Notes 5 - Hashing 46

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101

1111

0000

1010

m = 01 (max used block)

Future
growth
buckets

10

1010

CS 525 Notes 5 - Hashing 47

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101

1111

0000

1010

m = 01 (max used block)

Future
growth
buckets

10

1010

0101 •  insert 0101

CS 525 Notes 5 - Hashing 48

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101

1111

0000

1010

m = 01 (max used block)

Future
growth
buckets

10

1010

0101 •  insert 0101

11

CS 525 Notes 5 - Hashing 49

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101

1111

0000

1010

m = 01 (max used block)

Future
growth
buckets

10

1010

0101 •  insert 0101

11

1111
0101

CS 525 Notes 5 - Hashing 50

Example Continued: How to grow beyond this?

00 01 10 11

1111 1010 0101

0101

0000

m = 11 (max used block)

i = 2

. . .

CS 525 Notes 5 - Hashing 51

Example Continued: How to grow beyond this?

00 01 10 11

1111 1010 0101

0101

0000

m = 11 (max used block)

i = 2

0 0 0 0
100 101 110 111

3

. . .

CS 525 Notes 5 - Hashing 52

Example Continued: How to grow beyond this?

00 01 10 11

1111 1010 0101

0101

0000

m = 11 (max used block)

i = 2

0 0 0 0
100 101 110 111

3

. . .

100

100

CS 525 Notes 5 - Hashing 53

Example Continued: How to grow beyond this?

00 01 10 11

1111 1010 0101

0101

0000

m = 11 (max used block)

i = 2

0 0 0 0
100 101 110 111

3

. . .

100

100

101

101

0101

0101

CS 525 Notes 5 - Hashing 54

☛ When do we expand file?

•  Keep track of: # used slots
 total # of slots

= U

CS 525 Notes 5 - Hashing 55

•  If U > threshold then increase m

 (and maybe i)

☛ When do we expand file?

•  Keep track of: # used slots
 total # of slots

= U

CS 525 Notes 5 - Hashing 56

 Linear Hashing

 Can handle growing files

 - with less wasted space

 - with no full reorganizations

 No indirection like extensible hashing

Summary

+

+

 Can still have overflow chains -

CS 525 Notes 5 - Hashing 57

Example: BAD CASE

 Very full

 Very empty Need to move

 m here…

 Would waste

 space...

CS 525 Notes 5 - Hashing 58

 Hashing

 - How it works

 - Dynamic hashing

 - Extensible

 - Linear

Summary

CS 525 Notes 5 - Hashing 59

Next:

•  Indexing vs Hashing

•  Index definition in SQL

•  Multiple key access

CS 525 Notes 5 - Hashing 60

•  Hashing good for probes given key

 e.g., SELECT …

 FROM R

 WHERE R.A = 5

-> Point Queries

Indexing vs Hashing

CS 525 Notes 5 - Hashing 61

•  INDEXING (Including B Trees) good for

 Range Searches:

 e.g., SELECT

 FROM R

 WHERE R.A > 5

-> Range Queries

Indexing vs Hashing

CS 525 Notes 5 - Hashing 62

Index definition in SQL

•  Create index name on rel (attr)

•  Create unique index name on rel (attr)

defines candidate key

•  Drop INDEX name

CS 525 Notes 5 - Hashing 63

 CANNOT SPECIFY TYPE OF INDEX

 (e.g. B-tree, Hashing, …)

 OR PARAMETERS

 (e.g. Load Factor, Size of Hash,...)

 ... at least in standard SQL...

 Vendor specific extensions allow

 that

Note

CS 525 Notes 5 - Hashing 64

 ATTRIBUTE LIST ⇒ MULTIKEY INDEX

 (next)

 e.g., CREATE INDEX foo ON R(A,B,C)

Note

CS 525 Notes 5 - Hashing 65

Motivation: Find records where

 DEPT = Toy AND SAL > 50k

Multi-key Index

CS 525 Notes 5 - Hashing 66

Strategy I:

•  Use one index, say Dept.

•  Get all Dept = Toy records
 and check their salary

I1

CS 525 Notes 5 - Hashing 67

•  Use 2 Indexes; Manipulate Pointers

Toy Sal
 > 50k

Strategy II:

CS 525 Notes 5 - Hashing 68

•  Multiple Key Index

One idea:

Strategy III:

I1

I2

I3

CS 525 Notes 5 - Hashing 69

Example

 Example
 Record

Dept
Index

 Salary
 Index

Name=Joe
DEPT=Sales
SAL=15k

Art
Sales
Toy

10k
15k
17k
21k

12k
15k
15k
19k

CS 525 Notes 5 - Hashing 70

For which queries is this index good?

Find RECs Dept = Sales SAL=20k

Find RECs Dept = Sales SAL > 20k

Find RECs Dept = Sales

Find RECs SAL = 20k

CS 525 Notes 5 - Hashing 71

Interesting application:

•  Geographic Data

 DATA:

 <X1,Y1, Attributes>

 <X2,Y2, Attributes>

x

y

.
.

.

CS 525 Notes 5 - Hashing 72

Queries:

•  What city is at <Xi,Yi>?

•  What is within 5 miles from <Xi,Yi>?

•  Which is closest point to <Xi,Yi>?

CS 525 Notes 5 - Hashing 73

h

n
b

i
a

c o

d
Example

e

g

f

m

l

k
j

CS 525 Notes 5 - Hashing 74

h

n
b

i
a

c o

d

10 20

10 20

Example
e

g

f

m

l

k
j

CS 525 Notes 5 - Hashing 75

h

n
b

i
a

c o

d

10 20

10 20

Example
e

g

f

m

l

k
j 25 15 35 20

40

30

20

10

CS 525 Notes 5 - Hashing 76

h

n
b

i
a

c o

d

10 20

10 20

Example
e

g

f

m

l

k
j 25 15 35 20

40

30

20

10

5

15 15

CS 525 Notes 5 - Hashing 77

h

n
b

i
a

c o

d

10 20

10 20

Example
e

g

f

m

l

k
j 25 15 35 20

40

30

20

10

h i a b c d e f g

n o m l j k

5

15 15

CS 525 Notes 5 - Hashing 78

h

n
b

i
a

c o

d

10 20

10 20

Example
e

g

f

m

l

k
j 25 15 35 20

40

30

20

10

h i a b c d e f g

n o m l j k

•  Search points near f
•  Search points near b

5

15 15

CS 525 Notes 5 - Hashing 79

Queries

•  Find points with Yi > 20

•  Find points with Xi < 5

•  Find points close to i = <12,38>

•  Find points close to b = <7,24>

Next

•  Even more index structures

CS 525 Notes 5 - Hashing 80

CS 525: Advanced Database
Organization

Boris Glavic

06: Even more index
 structures

Slides: adapted from a course taught by

Hector Garcia‐Molina, Stanford InfoLab

CS 525 Notes 6 ‐ More Indices 1

Recap

•  We have discussed

– ConvenGonal Indices

– B‐trees

– Hashing

– Trade‐offs

– MulG‐key indices

– MulG‐dimensional indices

•  … but no example

CS 525 Notes 6 ‐ More Indices 2

Today

•  Mul$‐dimensional index structures

–  kd-Trees (very similar to example before)

–  Grid File (Grid Index)

–  Quad Trees

–  R Trees

–  Partitioned Hash

–  ...

•  Bitmap‐indices

•  Tries

CS 525 Notes 6 ‐ More Indices 3

CS 525 Notes 5 - Hashing 4

Grid Index

 Key 2

 X1 X2 …… Xn

 V1

 V2

Key 1

 Vn

To records with key1=V3, key2=X2

CS 525 Notes 5 - Hashing 5

CLAIM

•  Can quickly find records with

– key 1 = Vi ∧ Key 2 = Xj

– key 1 = Vi

– key 2 = Xj

CS 525 Notes 5 - Hashing 6

CLAIM

•  Can quickly find records with

– key 1 = Vi ∧ Key 2 = Xj

– key 1 = Vi

– key 2 = Xj

•  And also ranges….

–  E.g., key 1 ≥ Vi ∧ key 2 < Xj

•  How do we find entry i,j in linear structure?

CS 525 Notes 5 - Hashing 7

0, 0

0, 1

0, 2

0, 3

1, 0

1, 1

1, 2

1, 3

2, 0

2, 1

2, 2

2, 3

3, 0

i, j position S+0

position S+1

position S+2

position S+3

position S+4

position S+9

pos(i, j) =

max number of
i values N=4

•  How do we find entry i,j in linear structure?

CS 525 Notes 5 - Hashing 8

0, 0

0, 1

0, 2

0, 3

1, 0

1, 1

1, 2

1, 3

2, 0

2, 1

2, 2

2, 3

3, 0

i, j position S+0

position S+1

position S+2

position S+3

position S+4

position S+9

pos(i, j) = S + iN + j

max number of
i values N=4

Issue: Cells must be same size,
and N must be constant!

Issue: Some cells may overflow,
some may be sparse...

CS 525 Notes 5 - Hashing 9

Solution: Use Indirection

 Buckets

V1
V2
V3 *Grid only
V4 contains

 pointers to
 buckets

Buckets

‐‐
‐‐
‐‐

‐‐
‐‐
‐‐

‐‐
‐‐
‐‐

‐‐
‐‐
‐‐

‐‐
‐‐
‐‐

X1 X2 X3

CS 525 Notes 5 - Hashing 10

With indirection:

•  Grid can be regular without wasting space

•  We do have price of indirection

CS 525 Notes 5 - Hashing 11

Can also index grid on value ranges

Salary Grid

Linear Scale

1 2 3

Toy Sales Personnel

0‐20K 1

20K‐50K 2

50K‐ 3 8

CS 525 Notes 5 - Hashing 12

Grid files

 Good for multiple-key search

 Space, management overhead
 (nothing is free)

 Need partitioning ranges that evenly
 split keys

+

‐

‐

CS 525 Notes 5 - Hashing 13

Idea:

Key1 Key2

ParGGoned hash funcGon

h1 h2

010110 1110010

CS 525 Notes 5 - Hashing 14

 <Fred,toy,10k>,<Joe,sales,10k>
 <Sally,art,30k>

EX:

Insert

000
001
010
011
100
101
110
111

h1(toy) =0

h1(sales) =1

h1(art) =1

 .

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
 .

CS 525 Notes 5 - Hashing 15

EX:

Insert

000
001
010
011
100
101
110
111

<Fred>

<Joe><Sally>

 <Fred,toy,10k>,<Joe,sales,10k>
 <Sally,art,30k>

h1(toy) =0

h1(sales) =1

h1(art) =1

 .

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
 .

CS 525 Notes 5 - Hashing 16

EX:

000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0

h1(sales) =1

h1(art) =1

 .

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
 .

Find Emp. with Dept. = Sales ∧ Sal=40k

<Fred>

<Mary>

<Tom><Bill>

<Andy>

CS 525 Notes 5 - Hashing 17

EX:

000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0

h1(sales) =1

h1(art) =1

 .

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
 .

Find Emp. with Dept. = Sales ∧ Sal=40k

<Fred>

<Mary>

<Tom><Bill>

<Andy>

CS 525 Notes 5 - Hashing 18

EX:

000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0

h1(sales) =1

h1(art) =1

 .

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
 .

Find Emp. with Sal=30k

<Fred>

<Mary>

<Tom><Bill>

<Andy>

CS 525 Notes 5 - Hashing 19

EX:

000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0

h1(sales) =1

h1(art) =1

 .

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
 .

Find Emp. with Sal=30k

<Fred>

<Mary>

<Tom><Bill>

<Andy>

CS 525 Notes 5 - Hashing 20

EX:

000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0

h1(sales) =1

h1(art) =1

 .

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
 .

Find Emp. with Dept. = Sales

<Fred>

<Mary>

<Tom><Bill>

<Andy>

CS 525 Notes 5 - Hashing 21

EX:

000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0

h1(sales) =1

h1(art) =1

 .

h2(10k) =01

h2(20k) =11

h2(30k) =01

h2(40k) =00
 .

Find Emp. with Dept. = Sales

<Fred>

<Mary>

<Tom><Bill>

<Andy>

R‐tree

•  Nodes can store up to M entries

– Minimum fill requirement (depends on variant)

•  Each node rectangle in n‐dimensional space

– Minimum Bounding Rectangle (MBR) of its

children

•  MBRs of siblings are allowed to overlap

– Different from B‐trees

•  balanced

CS 525 Notes 6 ‐ More Indices 22

CS 525 Notes 6 ‐ More Indices 23

Data Space

[5‐7] [9‐15] [13‐19]

[20‐24] [12‐16] [2‐4]

[5] [6] [7]

[24] [20] [24]

[9] [11] [15]

[15] [16] [12]

[13] [14] [18] [19]

[4] [2] [2] [3]

R‐tree ‐ Search

•  Point Search

– Search for p = <xi, yi>

– Keep list of potenGal nodes

•  Needed because of overlap

– Traverse to child if MBR of

child contains p

CS 525 Notes 6 ‐ More Indices 24

R‐tree ‐ Search

•  Point Search

– Search for points in region =

<[xmin‐ xmax], [ymin ‐ymax]>

– Keep list of potenGal nodes

– Traverse to child if MBR of

child overlaps with query

region

CS 525 Notes 6 ‐ More Indices 25

CS 525 Notes 6 ‐ More Indices 26

Data Space

[5‐7] [9‐15] [13‐19]

[20‐24] [12‐16] [2‐4]

[5] [6] [7]

[24] [20] [24]

[9] [11] [15]

[15] [16] [12]

[13] [14] [18] [19]

[4] [2] [2] [3]

Search <5,24>

R‐tree ‐ Insert

•  Similar to B‐tree, but more complex

– Overlap ‐> mulGple choices where to add entry

– Split harder because more choice how to split

node (compare B‐tree = 1 choice)

•  1) Find potenGal subtrees for current node

– Choose one for insert (heurisGc, e.g., the one the

would grow the least)

– ConGnue unGl leaf is found

CS 525 Notes 6 ‐ More Indices 27

R‐tree ‐ Insert

•  2) Insert into leaf

•  3) Leaf is full? ‐> split

– Find best split (minimum overlap between new

nodes) is hard (O(2M))

– Use linear or quadraGc heurisGcs (original paper)

•  4) Adapt parents if necessary

CS 525 Notes 6 ‐ More Indices 28

R‐tree ‐ Delete

•  1) Find leaf node that contains entry

•  2) Delete entry

•  3) Leaf node underflow?

– Remove leaf node and cache entries

– Adapt parents

– Reinsert deleted entries

CS 525 Notes 6 ‐ More Indices 29

Bitmap Index

•  Domain of values D = {d1, …, dn}

– Gender {male, female}

– Age {1, …, 120?}

•  Use one vector of bits for each value

– One bit for each record

•  0: record has different value in this arribute

•  1: record has this value

CS 525 Notes 6 ‐ More Indices 30

Bitmap Index Example

CS 525 Notes 6 ‐ More Indices 31

Name Age Gender

Peter 1 male

Gertrud 2 female

Joe 1 male

Marry 3 female

male female

1 0

0 1

1 0

0 1

1 2 3

1 0 0

0 1 0

1 0 0

0 0 1

Age Gender Todlers

Bitmap Index Example

CS 525 Notes 6 ‐ More Indices 32

Name Age Gender

Peter 1 male

Gertrud 2 female

Joe 1 male

Marry 3 female

male female

1 0

0 1

1 0

0 1

1 2 3

1 0 0

0 1 0

1 0 0

0 0 1

Age Gender Todlers

Find all todlers with age 2 and sex female:

Bitwise‐and between vectors

0

1

0

0

Bitmap Index Example

CS 525 Notes 6 ‐ More Indices 33

Name Age Gender

Peter 1 male

Gertrud 2 female

Joe 1 male

Marry 3 female

male female

1 0

0 1

1 0

0 1

1 2 3

1 0 0

0 1 0

1 0 0

0 0 1

Age Gender Todlers

Find all todlers with age 2 or sex female:

Bitwise‐or between vectors

0

1

0

1

Compression

•  ObservaGon:

– Each record has one value in indexed arribute

– For N records and domain of size |D|

•  Only 1/|D| bits are 1

–  ‐> waste of space

•  SoluGon

– Compress data

– Need to make sure that and and or is sGll fast

CS 525 Notes 6 ‐ More Indices 34

Run length encoding (RLE)

•  Instead of actual 0‐1 sequence encode length

of 0 or 1 runs

•  One bit to indicate whether 0/1 run + several

bits to encode run length

•  But how many bits to use to encode a run

length?

– Gamma codes or similar to have variable number

of bits

CS 525 Notes 6 ‐ More Indices 35

RLE Example

CS 525 Notes 6 ‐ More Indices 36

•  0001 0000 1110 1111 (2 bytes)

•  3, 1,4, 3, 1,4 (6 bytes)

•  ‐> if we use one byte to encode a run we have

7 bits for length = max run length is 128(127)

Elias Gamma Codes

CS 525 Notes 6 ‐ More Indices 37

•  X = 2N + (x mod 2N)

– Write N as N zeros followed by one 1

– Write (x mod 2N) as N bit number

•  18 = 24 + 2 = 000010010

•  0001 0000 1110 1111 (2 bytes)

•  3, 1,4, 3, 1,4 (6 bytes)

•  0111 0010 0011 1001 00 (3 bytes)

Hybrid Encoding

CS 525 Notes 6 ‐ More Indices 38

•  Run length encoding

– Can waste space

– And/or run length not aligned to byte/word

boundaries

•  Encode some bytes of sequence as is and only

store long runs as run length

– EWAH

– BBC (that’s what Oracle uses)

Extended Word aligned Hybrid

(EWAH)

CS 525 Notes 6 ‐ More Indices 39

•  Segment sequence in machine words (64bit)

•  Use two types of words to encode

– Literal words, taken directly from input sequence

– Run words

•  ½ word is used to encode a run

•  ½ word is used to encode how many literals follow

0000 0000 0000 0000 0010 1000 1111 1111 1100 0010

0010 0001 0010 1000 1001 0001 1100 0010

Bitmap Indices

CS 525 Notes 6 ‐ More Indices 40

•  Fast for read intensive workloads

– Used a lot in datawarehousing

•  Oxen build on the fly during query processing

– As we will see later in class

Trie

•  From Retrieval

•  Tree index structure

•  Keys are sequences of values from a domain D

– D = {0,1}

– D = {a,b,c,….,z}

•  Key size may or may not be fixed

– Store 4‐byte integers using D = {0,1} (32 elements)

– Strings using D={a,…,z} (arbitrary length)

CS 525 Notes 6 ‐ More Indices 41

Trie

•  Each node has pointers to |D| child nodes

– One for each value of D

•  Searching for a key k = [d1, …, dn]

– Start at the root

– Follow child for value di

CS 525 Notes 6 ‐ More Indices 42

Trie Example

CS 525 Notes 6 ‐ More Indices 43

b

a

r l

l

i

n

Words: bar, ball, in

1

2

3

Search for bald

Fail !

Tries ImplementaGon

•  1) Each node has an array of child pointers

•  2) Each node has a list or hash table of child

pointers

•  3) array compression schemes derived from

compressed DFA representaGons

CS 525 Notes 6 ‐ More Indices 44

CS 525 Notes 5 - Hashing 45

Discussion:
 - Conventional Indices
 - B-trees
 - Hashing (extensible, linear)
 - SQL Index Definition
 - Index vs. Hash
 - Multiple Key Access
 - Multi Dimensional Indices
 Variations: Grid, R-tree,
 - Partitioned Hash
 - Bitmap indices and compression
 - Tries

Summary

CS 525 Notes 7 - Query Processing 1

CS 525: Advanced Database
Organisation

07: Query Processing
Overview

Boris Glavic

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 7 - Query Processing 2

Query Processing

Q → Query Plan

CS 525 Notes 7 - Query Processing 3

Query Processing

Q → Query Plan

Focus: Relational Systems

•  Others?

CS 525 Notes 7 - Query Processing 4

Example

 Select B,D

 From R,S

 Where R.A = c ∧ S.E = 2 ∧
R.C=S.C

CS 525 Notes 7 - Query Processing 5

 R A B C S C D E

 a 1 10 10 x 2

 b 1 20 20 y 2

 c 2 10 30 z 2

 d 2 35 40 x 1

 e 3 45 50 y 3

CS 525 Notes 7 - Query Processing 6

 R A B C S C D E

 a 1 10 10 x 2

 b 1 20 20 y 2

 c 2 10 30 z 2

 d 2 35 40 x 1

 e 3 45 50 y 3

Answer B D

 2 x

CS 525 Notes 7 - Query Processing 7

•  How do we execute query?

 - Do Cartesian product

 - Select tuples

 - Do projection
One idea

CS 525 Notes 7 - Query Processing 8

RXS R.A R.B R.C S.C S.D S.E

 a 1 10 10 x 2

 a 1 10 20 y 2

 .
 .

 C 2 10 10 x 2
 .
 .

CS 525 Notes 7 - Query Processing 9

RXS R.A R.B R.C S.C S.D S.E

 a 1 10 10 x 2

 a 1 10 20 y 2

 .
 .

 C 2 10 10 x 2
 .
 .

Bingo!

Got one...

CS 525 Notes 7 - Query Processing 10

Relational Algebra - can be used to
 describe plans...

Ex: Plan I

 ΠB,D

 σR.A= c ∧ S.E=2 ∧ R.C=S.C

 X

 R S

CS 525 Notes 7 - Query Processing 11

Relational Algebra - can be used to
 describe plans...

Ex: Plan I

 ΠB,D

 σR.A= c ∧ S.E=2 ∧ R.C=S.C

 X

 R S

OR: ΠB,D [σR.A= c ∧ S.E=2 ∧ R.C = S.C (RXS)]

CS 525 Notes 7 - Query Processing 12

Another idea:

 ΠB,D

 σR.A = c σS.E = 2

 R S

Plan II

 natural join

CS 525 Notes 7 - Query Processing 13

 R S

A B C σ (R) σ(S) C D E

a 1 10 A B C C D E 10 x 2

b 1 20 c 2 10 10 x 2 20 y 2

c 2 10 20 y 2 30 z 2

d 2 35 30 z 2 40 x 1

e 3 45 50 y 3

CS 525 Notes 7 - Query Processing 14

Plan III
 Use R.A and S.C Indexes

 (1) Use R.A index to select R tuples
 with R.A = c

 (2) For each R.C value found, use S.C
 index to find matching tuples

CS 525 Notes 7 - Query Processing 15

Plan III
 Use R.A and S.C Indexes

 (1) Use R.A index to select R tuples
 with R.A = c

 (2) For each R.C value found, use S.C
 index to find matching tuples

 (3) Eliminate S tuples S.E ≠ 2

 (4) Join matching R,S tuples, project

 B,D attributes and place in result

CS 525 Notes 7 - Query Processing 16

 R S

A B C C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

A C

I1 I2

CS 525 Notes 7 - Query Processing 17

 R S

A B C C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

A C

I1 I2

= c

<c,2,10>

CS 525 Notes 7 - Query Processing 18

 R S

A B C C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

A C

I1 I2

= c

<c,2,10> <10,x,2>

CS 525 Notes 7 - Query Processing 19

 R S

A B C C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

A C

I1 I2

= c

<c,2,10> <10,x,2>

check=2?

output: <2,x>

CS 525 Notes 7 - Query Processing 20

 R S

A B C C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

A C

I1 I2

= c

<c,2,10> <10,x,2>

check=2?

output: <2,x>

next tuple:
<c,7,15>

CS 525 Notes 7 - Query Processing 21

Overview of Query Optimization

CS 525 Notes 7 - Query Processing 22

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1,P2,…..}

{(P1,C1),(P2,C2)...}

Pi

 answer

SQL query

parse tree

logical query plan

improved l.q.p

l.q.p. +sizes

statistics

CS 525 Notes 7 - Query Processing 23

Example: SQL query

SELECT title

FROM StarsIn

WHERE starName IN (

 SELECT name

 FROM MovieStar

 WHERE birthdate LIKE %1960

);

(Find the movies with stars born in 1960)

CS 525 Notes 7 - Query Processing 24

Example: Parse Tree
<Query>

<SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Tuple> IN <Query>

title StarsIn <Attribute> (<Query>)

starName <SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Attribute> LIKE <Pattern>

name MovieStar birthDate %1960

CS 525 Notes 7 - Query Processing 25

Example: Generating Relational Algebra

Πtitle

σ

StarsIn <condition>

<tuple> IN Πname

<attribute> σbirthdate LIKE %1960

starName MovieStar

Fig. 7.15: An expression using a two-argument σ, midway between a parse tree
and relational algebra

CS 525 Notes 7 - Query Processing 26

Example: Logical Query Plan

Πtitle

σstarName=name

StarsIn Πname

σbirthdate LIKE %1960

 MovieStar

Fig. 7.18: Applying the rule for IN conditions

×

CS 525 Notes 7 - Query Processing 27

Example: Improved Logical Query Plan

Πtitle

starName=name

StarsIn Πname

σbirthdate LIKE %1960

 MovieStar

Fig. 7.20: An improvement on fig. 7.18.

Question:
Push project to

StarsIn?

CS 525 Notes 7 - Query Processing 28

Example: Estimate Result Sizes

 Need expected size

 StarsIn

 MovieStar

Π

σ

CS 525 Notes 7 - Query Processing 29

Example: One Physical Plan

 Parameters: join order,

 memory size, project attributes,...
Hash join

SEQ scan index scan Parameters:
Select Condition,...

StarsIn MovieStar

CS 525 Notes 7 - Query Processing 30

Example: Estimate costs

 L.Q.P

 P1 P2 …. Pn

 C1 C2 …. Cn

 Pick best!

CS 525 Notes 8 - Parsing and Analysis 1

CS 525: Advanced Database
Organisation

08: Query Processing
Parsing and Analysis

Boris Glavic

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 8 - Parsing and Analysis 2

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1,P2,…..}

{(P1,C1),(P2,C2)...}

Pi

 answer

SQL query

parse tree

logical query plan

improved l.q.p

l.q.p. +sizes

statistics

CS 525 Notes 8 - Parsing and Analysis 3

Parsing, Analysis, Conversion

1.  Parsing
–  Transform SQL text into syntax tree

2.  Analysis
–  Check for semantic correctness

–  Use database catalog

–  E.g., unfold views, lookup functions and
attributes, check scopes

3.  Conversion
–  Transform into internal representation

–  Relational algebra or QBM

Analysis and Conversion

•  Usually intertwined

•  The internal representation is used to
store analysis information

•  Create an initial representation and
complete during analysis

CS 525 Notes 8 - Parsing and Analysis 4

CS 525 Notes 8 - Parsing and Analysis 5

Parsing, Analysis, Conversion

1.  Parsing

2.  Analysis

3.  Conversion

Parsing

•  SQL -> Parse Tree

•  Covered in compiler courses and books

•  Here only short overview

CS 525 Notes 8 - Parsing and Analysis 6

SQL Standard

•  Standardized language

– 86, 89, 92, 99, 03, 06, 08, 11

•  DBMS vendors developed their own
dialects

CS 525 Notes 8 - Parsing and Analysis 7

CS 525 Notes 8 - Parsing and Analysis 8

Example: SQL query

SELECT title !

FROM StarsIn!

WHERE starName IN (!

" "SELECT name !

" "FROM MovieStar!

" "WHERE birthdate LIKE %1960 !

); !

(Find the movies with stars born in 1960)

CS 525 Notes 8 - Parsing and Analysis 9

Example: Parse Tree
<Query>

<Query Block>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Tuple> IN <Query>

title StarsIn <Attribute> (<Query>)

starName <Query Block>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Attribute> LIKE <Pattern>

name MovieStar birthDate %1960

SQL Query Structure

•  Organized in Query blocks

SELECT <select_list> !

FROM <from_list> !

WHERE <where_condition> !

GROUP BY <group_by_expressions> !

HAVING <having_condition> !

ORDER BY <order_by_expressions> !

CS 525 Notes 8 - Parsing and Analysis 10

Query Blocks

•  Only SELECT clause is mandatory

– Some DBMS require FROM

SELECT (1 + 2) AS result

CS 525 Notes 8 - Parsing and Analysis 11

result

3

SELECT clause

•  List of expressions and optional name
assignment + optional DISTINCT

– Attribute references: R.a, b

– Constants: 1, ‘hello’, ‘2008-01-20’

– Operators: (R.a + 3) * 2

– Functions (maybe UDF): substr(R.a, 1,3)

• Single result or set functions

– Renaming: (R.a + 2) AS x

CS 525 Notes 8 - Parsing and Analysis 12

SELECT clause - example

SELECT substring(p.name,1,1) AS initial !

 p.name!

FROM person p !

!

" !

CS 525 Notes 8 - Parsing and Analysis 13

name gender

Joe male

Jim male

person
initial name

J Joe

J Jim

result

SELECT clause – set functions

•  Function extrChar(string) !

SELECT extrChar(p.name) AS n !

FROM person p !

CS 525 Notes 8 - Parsing and Analysis 14

name gender

Joe male

Jim male

person

n

J

o

e

J

i

m

result

SELECT clause – DISTINCT

SELECT DISTINCT gender !

FROM person p !

CS 525 Notes 8 - Parsing and Analysis 15

name gender

Joe male

Jim male

person
gender

male

result

FROM clause

•  List of table expressions

– Access to relations

– Subqueries (need alias)

– Join expressions

– Table functions

– Renaming of relations and columns

CS 525 Notes 8 - Parsing and Analysis 16

FROM clause examples

FROM R !

 -access table R

FROM R, S !

 -access tables R and S

FROM R JOIN S ON (R.a = S.b) !

 -join tables R and S on condition (R.a = S.b)

FROM R x !

FROM R AS x !

 -Access table R and assign alias ‘x’

CS 525 Notes 8 - Parsing and Analysis 17

FROM clause examples

FROM R x(c,d) !

FROM R AS x(c,d) !

 -using aliases x for R and c,d for its attribues

FROM (R JOIN S t ON (R.a = t.b)), T !

 -join R and S, and access T

FROM (R JOIN S ON (R.a = S.b)) JOIN T !

 -join tables R and S and result with T

FROM create_sequence(1,100) AS seq(a) !

 -call table function

CS 525 Notes 8 - Parsing and Analysis 18

FROM clause examples

FROM !

"(SELECT count(*) FROM employee)
"AS empcnt(cnt) !

-count number of employee in subquery

CS 525 Notes 8 - Parsing and Analysis 19

FROM clause examples

SELECT * !

FROM create_sequence(1,3) AS seq(a) !

CS 525 Notes 8 - Parsing and Analysis 20

a

1

2

3

result

FROM clause examples
SELECT dep, headcnt!

FROM (SELECT count(*) AS headcnt, dep!

"FROM employee !

"GROUP BY dep) !

WHERE headcnt > 100 !

CS 525 Notes 8 - Parsing and Analysis 21

result

name dep

Joe IT

Jim Marketing

… …

employee
dep headcnt

IT 103

Support 2506

… …

FROM clause - correlation

•  Correlation

– Reference attributes from other FROM
clause item

– Attributes of ith entry only available in j > i

– Semantics:

•  For each row in result of ith entry:

• Substitute correlated attributes with value from

current row and evaluate query

CS 525 Notes 8 - Parsing and Analysis 22

Correlation - Example

CS 525 Notes 8 - Parsing and Analysis 23

SELECT name, chr!

FROM employee AS e, !

"extrChar(e.name) AS c(chr) !

 result

name dep

Joe IT

Jim Marketing

… …

employee

name chr

Joe J

Joe o

Joe e

Jim J

Jim i

… …

Correlation - Example

CS 525 Notes 8 - Parsing and Analysis 24

SELECT name !

FROM (SELECT max(salary) maxsal!

" FROM employee) AS m, !

" (SELECT name !

" FROM employee x !

" WHERE x.salary = m.maxsal) AS e !

result
name salary

Joe 20,000

Jim 30,000

… …

employee

name

Jim

WHERE clause

•  A condition

– Attribute references

– Constants

– Operators (boolean)

– Functions

– Nested subquery expressions

•  Result has to be boolean

CS 525 Notes 8 - Parsing and Analysis 25

WHERE clause examples

WHERE R.a = 3 !

 -comparison between attribute and constant

WHERE (R.a > 5) AND (R.a < 10) !

 -range query using boolean AND

WHERE R.a = S.b!

 -comparison between two attributes

WHERE (R.a * 2) > (S.b – 3) !

 -using operators

CS 525 Notes 8 - Parsing and Analysis 26

Nested Subqueries

•  Nesting a query within an expression

•  Correlation allowed

– Access FROM clause attributes

•  Different types of nesting

– Scalar subquery

– Existential quantification

– Universal quantification

CS 525 Notes 8 - Parsing and Analysis 27

Nested Subqueries Semantics

•  For each tuple produced by the FROM
clause execute the subquery

–  If correlated attributes replace them with

tuple values

CS 525 Notes 8 - Parsing and Analysis 28

Scalar subquery

•  Subquery that returns one result tuple

– How to check?

–  -> Runtime error

!

SELECT * !

FROM R !

WHERE R.a = (SELECT count(*) FROM S) !

CS 525 Notes 8 - Parsing and Analysis 29

Existential Quantification

• <expr> IN <subquery> !
– Evaluates to true if <expr> equal to at

least one of the results of the subquery

SELECT * !

FROM users !

WHERE name IN (SELECT name FROM !

 blacklist) !

CS 525 Notes 8 - Parsing and Analysis 30

Existential Quantification

• EXISTS <subquery> !
– Evaluates to true if <subquery> returns at

least one tuple

SELECT * !

FROM users u !

WHERE EXISTS (SELECT * FROM !

 blacklist b !

 WHERE b.name = u.name) !

 CS 525 Notes 8 - Parsing and Analysis 31

Existential Quantification

• <expr> <op> ANY <subquery> !
– Evaluates to true if <expr> <op> <tuple>

evaluates to true for at least one result

tuple

– Op is any comparison operator: =, <, >, …

SELECT * !

FROM users !

WHERE name = ANY (SELECT name FROM !

 blacklist) !

 CS 525 Notes 8 - Parsing and Analysis 32

Universal Quantification

• <expr> <op> ALL <subquery> !
– Evaluates to true if <expr> <op> <tuple>

evaluates to true for all result tuples

– Op is any comparison operator: =, <, >, …

SELECT * !

FROM nation !

WHERE nname = ALL (SELECT nation FROM !

 blacklist) !

CS 525 Notes 8 - Parsing and Analysis 33

Nested Subqueries Example

SELECT dep,name!

FROM employee e !

WHERE salary >= ALL (SELECT salary !

 FROM employee d !

" WHERE e.dep = d.dep) !

CS 525 Notes 8 - Parsing and Analysis 34

name dep salary

Joe IT 2000

Jim IT 300

Bob HR 100

Alice HR 10000

Patrice HR 10000

employee

dep Name

IT Joe

HR Alice

HR Patrice

result

GROUP BY clause

•  A list of expressions

– Same as WHERE

– No restriction to boolean

– DBMS has to know how to compare = for
data type

•  Results are grouped by values of the

expressions

•  -> usually used for aggregation

CS 525 Notes 8 - Parsing and Analysis 35

GROUP BY restrictions

•  If group-by is used then

– SELECT clause can only use group by
expressions or aggregation functions

CS 525 Notes 8 - Parsing and Analysis 36

GROUP BY clause examples

GROUP BY R.a!

 -group on single attribute

GROUP BY (1+2) !

 -allowed but useless (single group)

GROUP BY salary / 1000 !

 -groups of salary values in buckets of 1000

GROUP BY R.a, R.b !

 -group on two attributes

CS 525 Notes 8 - Parsing and Analysis 37

SELECT count(*) AS numP, !

"(SELECT count(*) !

 FROM friends o !

"WHERE o.with = f.name) AS numF!

FROM (SELECT DISTINCT name FROM friends) f !

GROUP BY (SELECT count(*) !

 FROM friends o !

 WHERE o.with = f.name)

CS 525 Notes 8 - Parsing and Analysis 38

numP numF

1 1

2 2

result

name with

Joe Jim

Joe Peter

Jim Joe

Jim Peter

Peter Joe

friends

HAVING clause

•  A boolean expression

•  Applied after grouping and aggregation

– Only references aggregation expressions
and group by expressions

CS 525 Notes 8 - Parsing and Analysis 39

HAVING clause examples

… !

HAVING sum(R.a) > 100 !

"-only return tuples with sum bigger than 100!

!

… !

GROUP BY dep!

HAVING dep = ‘IT’ AND sum(salary) > 1000000

 -only return group ‘IT’ and sum threshold

CS 525 Notes 8 - Parsing and Analysis 40

ORDER BY clause

•  A list of expressions

•  Semantics: Order the result on these
expressions

CS 525 Notes 8 - Parsing and Analysis 41

ORDER BY clause examples

ORDER BY R.a ASC !

ORDER BY R.a!

 -order ascending on R.a

ORDER BY R.a DESC !

 -order descending on R.a

ORDER BY salary + bonus !

 -order by sum of salary and bonus

CS 525 Notes 8 - Parsing and Analysis 42

New and Non-standard
SQL features (excerpt)

•  LIMIT / OFFSET

– Only return a fix maximum number of rows

– FETCH FIRST n ROWS ONLY (DB2)

–  row_number() (Oracle)

•  Window functions

– More flexible grouping

– Return both aggregated results and input

values

CS 525 Notes 8 - Parsing and Analysis 43

CS 525 Notes 8 - Parsing and Analysis 44

Parsing, Analysis, Conversion

1.  Parsing

2.  Analysis

3.  Conversion

Analysis Goals

•  Semantic checks

– Table column exists

– Operator, function exists

– Determine type casts

– Scope checks

•  Rewriting

– Unfolding views

CS 525 Notes 8 - Parsing and Analysis 45

Semantic checks
SELECT * !

FROM R !

WHERE R.a + 3 > 5 !

•  Table R exists?

•  Expand *: which attributes in R?

•  R.a is a column?

•  Type of constants 3, 5?

•  Operator + for types of R.a and 3 exists?

•  Operator > for types of result of + and 5 exists?

CS 525 Notes 8 - Parsing and Analysis 46

Database Catalog

•  Stores information about database
objects

•  Aliases:

–  Information Schema

– System tables

– Data Dictionary

CS 525 Notes 8 - Parsing and Analysis 47

Typical Catalog Information

•  Tables

– Name, attributes + data types, constraints

•  Schema, DB

– Hierarchical structuring of data

•  Data types

– Comparison operators

– physical representation

– Functions to (de)serialize to string

CS 525 Notes 8 - Parsing and Analysis 48

Typical Catalog Information

•  Functions (including aggregate/set)

– Build-in

– User defined (UDF)

•  Triggers

•  Stored Procedures

•  …

CS 525 Notes 8 - Parsing and Analysis 49

Type Casts
•  Similar to automatic type conversion in

programming languages

•  Expression: R.a + 3.0

– Say R.a is of type integer

• Search for a function +(int,float)

– Does not exist?

• Try to find a way to cast R.a, 3.0 or both to
new data type

• So that a function + exists for new types

CS 525 Notes 8 - Parsing and Analysis 50

Scope checks

•  Check that references are in correct
scope

•  E.g., if GROUP BY is present then
SELECT clause expression can only

reference group by expressions or
aggregated values

CS 525 Notes 8 - Parsing and Analysis 51

View Unfolding

•  SQL allows for stored queries using
CREATE VIEW

•  Afterwards a view can be used in
queries

•  If view is not materialized, then need to
replace view with its definition

CS 525 Notes 8 - Parsing and Analysis 52

View Unfolding Example

CREATE VIEW totalSalary AS !

SELECT name, salary + bonus AS total !

FROM employee !

!

SELECT * !

FROM totalSalary!

WHERE total > 10000 !

CS 525 Notes 8 - Parsing and Analysis 53

View Unfolding Example

CREATE VIEW totalSalary AS !

SELECT name, salary + bonus AS total !

FROM employee !

!

SELECT * !

FROM (SELECT name, !

" " salary + bonus AS total !

 FROM employee) AS totalSalary!

WHERE total > 10000 !

CS 525 Notes 8 - Parsing and Analysis 54

Analysis Summary

•  Perform semantic checks

– Catalog lookups (tables, functions, types)

– Scope checks

•  View unfolding

•  Generate internal representation during
analysis

CS 525 Notes 8 - Parsing and Analysis 55

CS 525 Notes 8 - Parsing and Analysis 56

Parsing, Analysis, Conversion

1.  Parsing

2.  Analysis

3.  Conversion

Conversion

•  Create an internal representation

– Should be useful for analysis

– Should be useful optimization

•  Internal representation

– Relational algebra

– Query tree/graph models

• E.g., QGM (Query Graph Model) in Starburst

CS 525 Notes 8 - Parsing and Analysis 57

Relational Alegbra

•  Formal language

•  Good for studying logical optimization
and query equivalence (containment)

•  Not informative enough for analysis

– No datatype representation in algebra

expressions

– No meta-data

CS 525 Notes 8 - Parsing and Analysis 58

Other Internal
Representations

•  Practical implementations

– Mostly following structure of SQL query
blocks

– Store data type and meta-data (where
necessary)

CS 525 Notes 8 - Parsing and Analysis 59

Canonical Translation to
Relational Algebra

•  TEXTBOOK version of conversion

•  Given an SQL query

•  Return an equivalent relational algebra
expression

CS 525 Notes 8 - Parsing and Analysis 60

Relational Algebra Recap

•  Formal query language

•  Consists of operators

–  Input(s): relation

– Output: relation

–  -> Composable

•  Set and Bag semantics version

CS 525 Notes 8 - Parsing and Analysis 61

•  Relation Schema

– A set of attribute name-datatype pairs

•  Relation (instance)

– A (multi-)set of tuples with the same

schema

•  Tuple

– List of attribute value pairs (or function

from attribute name to value)

CS 525 Notes 8 - Parsing and Analysis 62

Set- vs. Bag semantics

•  Set semantics:

– Relations are Sets

– Used in most theoretical work

•  Bag semantics

– Relations are Multi-Sets

• Each element (tuple) can appear more than

once

– SQL uses bag semantics

CS 525 Notes 8 - Parsing and Analysis 63

Bag semantics notation

•  We use tm to denote tuple t appears
with multiplicity m

CS 525 Notes 8 - Parsing and Analysis 64

Set- vs. Bag semantics

CS 525 Notes 8 - Parsing and Analysis 65

Name Purchase

Peter Guitar

Peter Guitar

Joe Drum

Alice Bass

Alice Bass

Name Purchase

Peter Guitar

Joe Drum

Alice Bass

Set Bag

Operators
•  Selection

•  Renaming

•  Projection

•  Joins

– Theta, natural, cross-product, outer, anti

•  Aggregation

•  Duplicate removal

•  Set operations

CS 525 Notes 8 - Parsing and Analysis 66

Selection

–  Syntax:σc (R)
•  R is input

•  C is a condition

– Semantics:
•  Return all tuples that match condition C

•  Set: { t | t εR AND t fulfills C }

•  Bag: { tn | tnεR AND t fulfills C }

CS 525 Notes 8 - Parsing and Analysis 67

Selection Example

•  σa>5 (R)

CS 525 Notes 8 - Parsing and Analysis 68

a b

1 13

3 12

6 14

R Result

a b

6 14

Renaming

–  Syntax:ρA (R)
•  R is input

•  A is list of attribute renamings b ← a

– Semantics:
•  Applies renaming from A to inputs

•  Set: { t.A | t εR }

•  Bag: { (t.A)n | tnεR }

CS 525 Notes 8 - Parsing and Analysis 69

Renaming Example

•  ρc ← a (R)

CS 525 Notes 8 - Parsing and Analysis 70

a b

1 13

3 12

6 14

R Result

c b

1 13

3 12

6 14

Projection

–  Syntax:ΠA (R)
•  R is input

•  A is list of projection expressions

•  Standard: only attributes in A

– Semantics:
•  Project all inputs on projection expressions

•  Set: { t.A | t εR }

•  Bag: { (t.A)n | tnεR }

CS 525 Notes 8 - Parsing and Analysis 71

Projection Example

•  Πb (R)

CS 525 Notes 8 - Parsing and Analysis 72

a b

1 13

3 12

6 14

R Result

b

13

12

14

Cross Product

–  Syntax: R X S
•  R and S are inputs

– Semantics:
•  All combinations of tuples from R and S

•  = mathematical definition of cross product

•  Set: { (t,s) | t εR AND sεS }

•  Bag: { (t,s)n*m | tnεR AND smεS }

CS 525 Notes 8 - Parsing and Analysis 73

Cross Product Example

•  R X S

CS 525 Notes 8 - Parsing and Analysis 74

a b

1 13

3 12

R Result

c d

a 5

b 3

c 4

S

a b c d

1 13 a 5

1 13 b 3

1 13 c 4

3 12 a 5

3 12 b 3

3 12 c 4

Join

–  Syntax: R C S
•  R and S are inputs

•  C is a condition

– Semantics:
•  All combinations of tuples from R and S that

match C

•  Set: { (t,s) | t εR AND sεS AND (t,s) matches C}

•  Bag: { (t,s)n*m | tnεR AND smεS AND (t,s)

 matches C}

CS 525 Notes 8 - Parsing and Analysis 75

Join Example

•  R a=d S

CS 525 Notes 8 - Parsing and Analysis 76

a b

1 13

3 12

R Result

c d

a 5

b 3

c 4

S

a b c d

3 12 b 3

Natural Join

–  Syntax: R S
•  R and S are inputs

– Semantics:
•  All combinations of tuples from R and S that

match on common attributes

•  A = common attributes of R and S

•  C = exclusive attributes of S

•  Set: { (t,s.C) | t εR AND sεS AND t.A=s.A}

•  Bag: { (t,s.C)n*m | tnεR AND smεS AND t.A=s.A}

CS 525 Notes 8 - Parsing and Analysis 77

Natural Join Example

•  R S

CS 525 Notes 8 - Parsing and Analysis 78

a b

1 13

3 12

R Result

c a

a 5

b 3

c 4

S

a b c

3 12 b

Left-outer Join

–  Syntax: R C S
•  R and S are inputs

•  C is condition

– Semantics:
•  R join S

•  t εR without match, fill S attributes with NULL

{ (t,s) | t εR AND sεS AND (t,s) matches C}

union

{ (t, NULL(S)) | t εR AND NOT exists sεS: (t,s)

matches C }

CS 525 Notes 8 - Parsing and Analysis 79

Left-outer Join Example

•  R a=d S

CS 525 Notes 8 - Parsing and Analysis 80

a b

1 13

3 12

R Result

c d

a 5

b 3

c 4

S

a b c d

1 13 NULL NULL

3 12 b 3

Right-outer Join
–  Syntax: R C S

•  R and S are inputs

•  C is condition

– Semantics:
•  R join S

•  s εS without match, fill R attributes with NULL

{ (t,s) | t εR AND sεS AND (t,s) matches C}

union

{ (NULL(R),s) | s εS AND NOT exists tεR: (t,s)

matches C }

CS 525 Notes 8 - Parsing and Analysis 81

Right-outer Join Example

CS 525 Notes 8 - Parsing and Analysis 82

a b

1 13

3 12

R Result

c d

a 5

b 3

c 4

S

a b c d

NULL NULL a 5

3 12 b 3

NULL NULL c 4

•  R a=d S

Full-outer Join
–  Syntax: R C S

•  R and S are inputs and C is condition

– Semantics:
{ (t,s) | t εR AND sεS AND (t,s) matches C}

union

{ (NULL(R),s) | s εS AND NOT exists tεR: (t,s)
matches C }

union

{ (t, NULL(S)) | t εR AND NOT exists sεS: (t,s)
matches C }

CS 525 Notes 8 - Parsing and Analysis 83

Full-outer Join Example

CS 525 Notes 8 - Parsing and Analysis 84

a b

1 13

3 12

R Result

c d

a 5

b 3

c 4

S

a b c d

1 13 NULL NULL

NULL NULL a 5

3 12 b 3

NULL NULL c 4

•  R a=d S

Semijoin
–  Syntax: R S and R S

•  R and S are inputs

– Semantics:
•  All tuples from R that have a matching tuple from

relation S on the common attributes A

{ t | t εR AND exists sεS: t.A = s.A}

CS 525 Notes 8 - Parsing and Analysis 85

Semijoin Example

CS 525 Notes 8 - Parsing and Analysis 86

a b

1 13

3 12

R Result

c a

a 5

b 3

c 4

S
a b

3 12

•  R S

Antijoin
–  Syntax: R ▷ S

•  R and S are inputs

– Semantics:
•  All tuples from R that have no matching tuple from

relation S on the common attributes A

{ t | t εR AND NOT exists sεS: t.A = s.A}

CS 525 Notes 8 - Parsing and Analysis 87

Antijoin Example

CS 525 Notes 8 - Parsing and Analysis 88

a b

1 13

3 12

R Result

c a

a 5

b 3

c 4

S
a b

1 13

•  R ▷ S

Aggregation

–  Syntax:GαA (R)
•  A is list of aggregation functions

•  G is list of group by attributes

– Semantics:
•  Build groups of tuples according G and compute

the aggregation functions from each group

•  { (t.G, agg(G(t)) | tεR }

•  G(t) = { t’ | t’ εR AND t’.G = t.G }

CS 525 Notes 8 - Parsing and Analysis 89

Aggregation Example

•  bαsum(a) (R)

CS 525 Notes 8 - Parsing and Analysis 90

a b

1 1

3 1

6 2

3 2

R Result

sum(a) b

4 1

9 2

Duplicate Removal

–  Syntax:δ(R)
•  R is input

– Semantics:
•  Remove duplicates from input

•  Set: N/A

•  Bag: { t1 | tnεR }

CS 525 Notes 8 - Parsing and Analysis 91

Duplicate Removal Example

•  δ (R)

CS 525 Notes 8 - Parsing and Analysis 92

a b

1 13

1 13

6 14

R Result

a b

1 13

6 14

Set operations

–  Input: R and S
•  Have to have the same schema

–  Union compatible

•  Modulo attribute names

–  Types

•  Union

•  Intersection

•  Set difference

CS 525 Notes 8 - Parsing and Analysis 93

Union

–  Syntax: R U S
•  R and S are union-compatible inputs

– Semantics:
•  Set: { (t) | t εR OR tεS}

•  Bag: { (t,s)n+m | tnεR AND smεS }

–  Assumption tn with n < 1 for tuple not in relation

CS 525 Notes 8 - Parsing and Analysis 94

Union Example

•  R U S

CS 525 Notes 8 - Parsing and Analysis 95

a

1

3

R Result

b

1

2

3

S

a

1

2

3

1

3

Intersection

–  Syntax: R ∩ S
•  R and S are union-compatible inputs

– Semantics:
•  Set: { (t) | t εR AND tεS}

•  Bag: { (t,s)min(n,m) | tnεR AND smεS }

CS 525 Notes 8 - Parsing and Analysis 96

Intersection Example

•  R ∩ S

CS 525 Notes 8 - Parsing and Analysis 97

a

1

3

R Result

b

1

2

3

S

a

1

3

Set Difference

–  Syntax: R - S
•  R and S are union-compatible inputs

– Semantics:
•  Set: { (t) | t εR AND NOT tεS}

•  Bag: { (t,s)n - m | tnεR AND smεS }

CS 525 Notes 8 - Parsing and Analysis 98

Set Difference Example

•  R - S

CS 525 Notes 8 - Parsing and Analysis 99

a

1

5

R Result

b

1

2

3

S

a

5

Canonical Translation to
Relational Algebra

•  TEXTBOOK version of conversion

•  Given an SQL query

•  Return an equivalent relational algebra
expression

CS 525 Notes 8 - Parsing and Analysis 100

Canonical Translation
•  FROM clause into joins and cross-

products

– Cross-product between list items

– Joins into their algebra counter-part

•  WHERE clause into selection

•  SELECT clause into projection and
renaming

–  If it has aggregation functions use

aggreation

– DISTINCT into duplicate removal

CS 525 Notes 8 - Parsing and Analysis 101

Canonical Translation

•  GROUP BY clause into aggregation

•  HAVING clause into selection

•  ORDER BY – no counter-part

•  Then turn joins into crossproducts and
selections

CS 525 Notes 8 - Parsing and Analysis 102

Set Operations

•  UNION ALL into union

•  UNION duplicate removal over union

•  INTERSECT ALL into intersection

•  INTERSECT add duplicate removal

•  EXCEPT ALL into set difference

•  EXCEPT apply duplicate removal to
inputs and then apply set difference

CS 525 Notes 8 - Parsing and Analysis 103

CS 525 Notes 8 - Parsing and Analysis 104

Example: Relational Algebra Translation

SELECT sum(R.a) !

FROM R !

GROUP BY b

Πsum(a)

Bαsum(a)

R

CS 525 Notes 8 - Parsing and Analysis 105

Example: Relational Algebra Translation

SELECT dep, headcnt!

FROM (SELECT count(*) AS headcnt, dep!

"FROM employee !

"GROUP BY dep) !

WHERE headcnt > 100 !

Πdep, headcnt

ρheadcnt ← count(*)

Employee

σheadcnt > 100

depαcount(*)

CS 525 Notes 8 - Parsing and Analysis 106

Example: Relational Algebra Translation

SELECT * !

FROM R JOIN S ON (R.a = S.b) !

R

X

S R

a=b

S

σa =b

Parsing and Analysis Summary

•  SQL text -> Internal representation

•  Semantic checks

•  Database catalog

•  View unfolding

CS 525 Notes 8 - Parsing and Analysis 107

CS 525 Notes 9 - Logical Optimization 1

CS 525: Advanced Database
Organisation

09: Query Optimization -
Logical

Boris Glavic

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 8 - Parsing and Analysis 2

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1,P2,…..}

{(P1,C1),(P2,C2)...}

Pi

 answer

SQL query

parse tree

logical query plan

improved l.q.p

l.q.p. +sizes

statistics

CS 525 Notes 9 - Logical Optimization 3

Query Optimization

•  Relational algebra level

•  Detailed query plan level

CS 525 Notes 9 - Logical Optimization 4

Query Optimization

•  Relational algebra level

•  Detailed query plan level

– Estimate Costs

• without indexes

• with indexes

– Generate and compare plans

CS 525 Notes 9 - Logical Optimization 5

Relational algebra optimization

•  Transformation rules

 (preserve equivalence)

•  What are good transformations?

– Heuristic application of transformations

Query Equivalence

•  Two queries q and q’ are equivalent:

–  If for every database instance I

• Contents of all the tables

– Both queries have the same result

q≡q’ iff ∀I: q(I) = q’(I)

CS 525 Notes 9 - Logical Optimization 6

CS 525 Notes 9 - Logical Optimization 7

Rules: Natural joins & cross products & union

R S = S R

(R S) T = R (S T)

CS 525 Notes 9 - Logical Optimization 8

Note:

•  Carry attribute names in results, so
 order is not important

•  Can also write as trees, e.g.:

 T R

R S S T

CS 525 Notes 9 - Logical Optimization 9

R x S = S x R

(R x S) x T = R x (S x T)

R U S = S U R

R U (S U T) = (R U S) U T

Rules: Natural joins & cross products & union

R S = S R

(R S) T = R (S T)

CS 525 Notes 9 - Logical Optimization 10

Rules: Selects

σp1∧p2(R) =

σp1vp2(R) =

CS 525 Notes 9 - Logical Optimization 11

Rules: Selects

σp1∧p2(R) =

σp1vp2(R) =

σp1 [σp2 (R)]

[σp1 (R)] U [σp2 (R)]

CS 525 Notes 9 - Logical Optimization 12

Bags vs. Sets

R = {a,a,b,b,b,c}

S = {b,b,c,c,d}

RUS = ?

CS 525 Notes 9 - Logical Optimization 13

Bags vs. Sets

R = {a,a,b,b,b,c}

S = {b,b,c,c,d}

RUS = ?

•  Option 1 SUM

 RUS = {a,a,b,b,b,b,b,c,c,c,d}

•  Option 2 MAX

 RUS = {a,a,b,b,b,c,c,d}

CS 525 Notes 9 - Logical Optimization 14

Option 2 (MAX) makes this rule work:

σp1vp2 (R) = σp1(R) U σp2(R)

Example: R={a,a,b,b,b,c}

 P1 satisfied by a,b; P2 satisfied by b,c

CS 525 Notes 9 - Logical Optimization 15

Option 2 (MAX) makes this rule work:

σp1vp2 (R) = σp1(R) U σp2(R)

Example: R={a,a,b,b,b,c}

 P1 satisfied by a,b; P2 satisfied by b,c

 σp1vp2 (R) = {a,a,b,b,b,c}

σp1(R) = {a,a,b,b,b}

σp2(R) = {b,b,b,c}

σp1(R) U σp2 (R) = {a,a,b,b,b,c}

CS 525 Notes 9 - Logical Optimization 16

Sum option makes more sense:

Senators (……) Rep (……)

T1 = πyr,state Senators; T2 = πyr,state Reps

T1 Yr State T2 Yr State
 97 CA 99 CA
 99 CA 99 CA
 98 AZ 98 CA

Union?

CS 525 Notes 9 - Logical Optimization 17

Executive Decision

-> Use SUM option for bag unions

-> Some rules cannot be used for bags

CS 525 Notes 9 - Logical Optimization 18

Rules: Project

Let: X = set of attributes

 Y = set of attributes

 XY = X U Y

πxy (R) =

CS 525 Notes 9 - Logical Optimization 19

Rules: Project

Let: X = set of attributes

 Y = set of attributes

 XY = X U Y

πxy (R) =

πx [πy (R)]

CS 525 Notes 9 - Logical Optimization 20

Rules: Project

Let: X = set of attributes

 Y = set of attributes

 XY = X U Y

πxy (R) =

πx [πy (R)]

CS 525 Notes 9 - Logical Optimization 21

Let p = predicate with only R attribs

 q = predicate with only S attribs

 m = predicate with only R,S attribs

σp (R S) =

σq (R S) =

Rules: σ + combined

CS 525 Notes 9 - Logical Optimization 22

Let p = predicate with only R attribs

 q = predicate with only S attribs

 m = predicate with only R,S attribs

σp (R S) =

σq (R S) =

Rules: σ + combined

 [σp (R)] S

 R [σq (S)]

CS 525 Notes 9 - Logical Optimization 23

Some Rules can be Derived:

σp∧q (R S) =

σp∧q∧m (R S) =

σpvq (R S) =

Rules: σ + combined (continued)

CS 525 Notes 9 - Logical Optimization 24

Do one:

σp∧q (R S) = [σp (R)] [σq (S)]

σp∧q∧m (R S) =

 σm [(σp R) (σq S)]

σpvq (R S) =

 [(σp R) S] U [R (σq S)]

CS 525 Notes 9 - Logical Optimization 25

--> Derivation for first one:

σp∧q (R S) =

σp [σq (R S)] =

σp [R σq (S)] =

[σp (R)] [σq (S)]

CS 525 Notes 9 - Logical Optimization 26

Rules: π,σ combined

Let x = subset of R attributes

 z = attributes in predicate P
 (subset of R attributes)

πx[σp (R)] =

CS 525 Notes 9 - Logical Optimization 27

Rules: π,σ combined

Let x = subset of R attributes

 z = attributes in predicate P
 (subset of R attributes)

πx[σp (R)] =

 {σp [πx (R)]}

CS 525 Notes 9 - Logical Optimization 28

Rules: π,σ combined

Let x = subset of R attributes

 z = attributes in predicate P
 (subset of R attributes)

πx[σp (R)] =

 {σp [πx (R)]}

 πx

 πxz

CS 525 Notes 9 - Logical Optimization 29

Rules: π, combined

Let x = subset of R attributes

 y = subset of S attributes

 z = intersection of R,S attributes

πxy (R S) =

CS 525 Notes 9 - Logical Optimization 30

Rules: π, combined

Let x = subset of R attributes

 y = subset of S attributes

 z = intersection of R,S attributes

πxy (R S) =

πxy{[πxz (R)] [πyz (S)]}

CS 525 Notes 9 - Logical Optimization 31

πxy {σp (R S)} =

CS 525 Notes 9 - Logical Optimization 32

πxy {σp (R S)} =

πxy {σp [πxz’ (R) πyz’ (S)]}

 z’ = z U {attributes used in P }

CS 525 Notes 9 - Logical Optimization 33

Rules for σ, π combined with X

 similar...

e.g., σp (R X S) = ?

CS 525 Notes 9 - Logical Optimization 34

σp(R U S) = σp(R) U σp(S)

σp(R - S) = σp(R) - S = σp(R) - σp(S)

Rules σ, U combined:

CS 525 Notes 9 - Logical Optimization 35

σp1∧p2 (R) → σp1 [σp2 (R)]

σp (R S) → [σp (R)] S

R S → S R

πx [σp (R)] → πx {σp [πxz (R)]}

Which are good transformations?

CS 525 Notes 9 - Logical Optimization 36

Conventional wisdom:
 do projects early

Example: R(A,B,C,D,E) x={E}
 P: (A=3) ∧ (B= cat)

πx {σp (R)} vs. πE {σp{πABE(R)}}

CS 525 Notes 9 - Logical Optimization 37

 What if we have A, B indexes?

B = cat A=3

 Intersect pointers to get

 pointers to matching tuples

 e.g., using bitmaps

But

CS 525 Notes 9 - Logical Optimization 38

Bottom line:

•  No transformation is always good

•  Usually good: early selections

– Exception: expensive selection conditions

– E.g., UDFs

CS 525 Notes 9 - Logical Optimization 39

More transformations

•  Eliminate common sub-expressions

•  Detect constant expressions

•  Other operations: duplicate elimination

Pushing Selections

•  Idea:

– Join conditions equate attributes

– For parts of algebra tree (scope) store

which attributes have to be the same

• Called Equivalence classes

•  Example: R(a,b), S(c,d)

σb=3 (R b=c S) = σb=3 (R) b=c σc=3 (S)

CS 525 Notes 9 - Logical Optimization 40

Outer-Joins

•  Not commutative

– R ⟕ S ≠ S ⟕ R

•  p – condition over attributes in A

•  A list of attributes from R

σp (R ⟕A=B S) ≣ σp (R) ⟕A=B S

Not σp (R ⟕A=B S) ≣ R ⟕A=B σp (S)

CS 525 Notes 9 - Logical Optimization 41

Summary Equivalences

•  Associativity: (R ⊙ S) ⊙ T ≣ R ⊙ (S ⊙ T)

•  Commutativity: R ⊙ S ≣ S ⊙ R

•  Distributivity: (R ⊙ S) ⊗ T ≣ (R ⊗ T) ⊙ (S ⊗ T)

•  Difference between Set and Bag Equivalences

•  Only some equivalence are useful

CS 525 Notes 9 - Logical Optimization 42

CS 525 Notes 9 - Logical Optimization 43

Outline - Query Processing

•  Relational algebra level

–  transformations

– good transformations

•  Detailed query plan level

– estimate costs

– generate and compare plans

CS 525 Notes 9 - Logical Optimization 44

•  Estimating cost of query plan

(1) Estimating size of results

(2) Estimating # of IOs

CS 525 Notes 9 - Logical Optimization 45

Estimating result size

•  Keep statistics for relation R

– T(R) : # tuples in R

– S(R) : # of bytes in each R tuple

– B(R): # of blocks to hold all R tuples

– V(R, A) : # distinct values in R

 for attribute A

CS 525 Notes 9 - Logical Optimization 46

Example

 R A: 20 byte string

 B: 4 byte integer

 C: 8 byte date

 D: 5 byte string

A B C D

cat 1 10 a

cat 1 20 b

dog 1 30 a

dog 1 40 c

bat 1 50 d

CS 525 Notes 9 - Logical Optimization 47

Example

 R A: 20 byte string

 B: 4 byte integer

 C: 8 byte date

 D: 5 byte string

A B C D

cat 1 10 a

cat 1 20 b

dog 1 30 a

dog 1 40 c

bat 1 50 d

T(R) = 5 S(R) = 37

V(R,A) = 3 V(R,C) = 5

V(R,B) = 1 V(R,D) = 4

CS 525 Notes 9 - Logical Optimization 48

Size estimates for W = R1 x R2

T(W) =

S(W) =

CS 525 Notes 9 - Logical Optimization 49

Size estimates for W = R1 x R2

T(W) =

S(W) =

T(R1) × T(R2)

S(R1) + S(R2)

CS 525 Notes 9 - Logical Optimization 50

S(W) = S(R)

T(W) = ?

Size estimate for W = σA=a (R)

CS 525 Notes 9 - Logical Optimization 51

Example

 R V(R,A)=3

 V(R,B)=1

 V(R,C)=5

 V(R,D)=4

W = σz=val(R) T(W) =

A B C D

cat 1 10 a

cat 1 20 b

dog 1 30 a

dog 1 40 c

bat 1 50 d

CS 525 Notes 9 - Logical Optimization 52

Example

 R V(R,A)=3

 V(R,B)=1

 V(R,C)=5

 V(R,D)=4

W = σz=val(R) T(W) =

A B C D

cat 1 10 a

cat 1 20 b

dog 1 30 a

dog 1 40 c

bat 1 50 d

T(R)
V(R,Z)

CS 525 Notes 9 - Logical Optimization 53

Assumption:

Values in select expression Z = val

are uniformly distributed

over possible V(R,Z) values.

CS 525 Notes 9 - Logical Optimization 54

Alternate Assumption:

Values in select expression Z = val

are uniformly distributed

over domain with DOM(R,Z) values.

CS 525 Notes 9 - Logical Optimization 55

Example
 R Alternate assumption

 V(R,A)=3 DOM(R,A)=10
 V(R,B)=1 DOM(R,B)=10
 V(R,C)=5 DOM(R,C)=10
 V(R,D)=4 DOM(R,D)=10

A B C D

cat 1 10 a

cat 1 20 b

dog 1 30 a

dog 1 40 c

bat 1 50 d

W = σz=val(R) T(W) = ?

CS 525 Notes 9 - Logical Optimization 56

C=val ⇒ T(W) = (1/10)1 + (1/10)1 + ...

 = (5/10) = 0.5

B=val ⇒ T(W)= (1/10)5 + 0 + 0 = 0.5

A=val ⇒ T(W)= (1/10)2 + (1/10)2 + (1/10)1
 = 0.5

CS 525 Notes 9 - Logical Optimization 57

Example
 R Alternate assumption

 V(R,A)=3 DOM(R,A)=10
 V(R,B)=1 DOM(R,B)=10
 V(R,C)=5 DOM(R,C)=10
 V(R,D)=4 DOM(R,D)=10

A B C D

cat 1 10 a

cat 1 20 b

dog 1 30 a

dog 1 40 c

bat 1 50 d

W = σz=val(R) T(W) =
T(R)

DOM(R,Z)

CS 525 Notes 9 - Logical Optimization 58

Selection cardinality

SC(R,A) = average # records that satisfy

 equality condition on R.A

 T(R)

 V(R,A)

SC(R,A) =

 T(R)

 DOM(R,A)

CS 525 Notes 9 - Logical Optimization 59

What about W = σz ≥ val (R) ?

 T(W) = ?

CS 525 Notes 9 - Logical Optimization 60

What about W = σz ≥ val (R) ?

 T(W) = ?

•  Solution # 1:

 T(W) = T(R)/2

CS 525 Notes 9 - Logical Optimization 61

What about W = σz ≥ val (R) ?

 T(W) = ?

•  Solution # 1:

 T(W) = T(R)/2

•  Solution # 2:

 T(W) = T(R)/3

CS 525 Notes 9 - Logical Optimization 62

•  Solution # 3: Estimate values in range

Example R Z

Min=1 V(R,Z)=10

 W= σz ≥ 15 (R)

Max=20

CS 525 Notes 9 - Logical Optimization 63

•  Solution # 3: Estimate values in range

Example R Z

Min=1 V(R,Z)=10

 W= σz ≥ 15 (R)

Max=20

f = 20-15+1 = 6 (fraction of range)
 20-1+1 20

T(W) = f × T(R)

CS 525 Notes 9 - Logical Optimization 64

Equivalently:

 f×V(R,Z) = fraction of distinct values

T(W) = [f × V(Z,R)] ×T(R) = f × T(R)

 V(Z,R)

CS 525 Notes 9 - Logical Optimization 65

Size estimate for W = R1 R2

Let x = attributes of R1

 y = attributes of R2

CS 525 Notes 9 - Logical Optimization 66

Size estimate for W = R1 R2

Let x = attributes of R1

 y = attributes of R2

 X ∩ Y = ∅

 Same as R1 x R2

Case 1

CS 525 Notes 9 - Logical Optimization 67

 W = R1 R2 X ∩ Y = A

R1 A B C R2 A D

Case 2

CS 525 Notes 9 - Logical Optimization 68

 W = R1 R2 X ∩ Y = A

R1 A B C R2 A D

Case 2

Assumption:

V(R1,A) ≤ V(R2,A) ⇒ Every A value in R1 is in R2

V(R2,A) ≤ V(R1,A) ⇒ Every A value in R2 is in R1

CS 525 Notes 9 - Logical Optimization 69

R1 A B C R2 A D

Computing T(W) when V(R1,A) ≤ V(R2,A)

Take
1 tuple

Match

CS 525 Notes 9 - Logical Optimization 70

R1 A B C R2 A D

Computing T(W) when V(R1,A) ≤ V(R2,A)

Take
1 tuple

Match

1 tuple matches with T(R2) tuples...

 V(R2,A)

so T(W) = T(R2) × T(R1)

 V(R2, A)

CS 525 Notes 9 - Logical Optimization 71

•  V(R1,A) ≤ V(R2,A) T(W) = T(R2) T(R1)

 V(R2,A)

•  V(R2,A) ≤ V(R1,A) T(W) = T(R2) T(R1)

 V(R1,A)

[A is common attribute]

CS 525 Notes 9 - Logical Optimization 72

T(W) = T(R2) T(R1)

 max{ V(R1,A), V(R2,A) }

In general W = R1 R2

CS 525 Notes 9 - Logical Optimization 73

 with alternate assumption

Values uniformly distributed over domain

R1 A B C R2 A D

 This tuple matches T(R2)/DOM(R2,A) so

T(W) = T(R2) T(R1) = T(R2) T(R1)

 DOM(R2, A) DOM(R1, A)

Case 2

Assume the same

CS 525 Notes 9 - Logical Optimization 74

In all cases:

S(W) = S(R1) + S(R2) - S(A)

 size of attribute A

CS 525 Notes 9 - Logical Optimization 75

Using similar ideas,
we can estimate sizes of:

ΠAB (R)

σA=a∧B=b (R)

R S with common attribs. A,B,C

Union, intersection, diff,

CS 525 Notes 9 - Logical Optimization 76

Note: for complex expressions, need
 intermediate T,S,V results.

E.g. W = [σA=a (R1)] R2

 Treat as relation U

T(U) = T(R1)/V(R1,A) S(U) = S(R1)

 Also need V (U, *) !!

CS 525 Notes 9 - Logical Optimization 77

To estimate Vs

E.g., U = σA=a (R1)

 Say R1 has attribs A,B,C,D

 V(U, A) =

 V(U, B) =

 V(U, C) =

 V(U, D) =

CS 525 Notes 9 - Logical Optimization 78

Example

 R 1 V(R1,A)=3

 V(R1,B)=1

 V(R1,C)=5

 V(R1,D)=3

 U = σA=a (R1)

A B C D

cat 1 10 10

cat 1 20 20

dog 1 30 10

dog 1 40 30

bat 1 50 10

CS 525 Notes 9 - Logical Optimization 79

Example

 R 1 V(R1,A)=3

 V(R1,B)=1

 V(R1,C)=5

 V(R1,D)=3

 U = σA=a (R1)

A B C D

cat 1 10 10

cat 1 20 20

dog 1 30 10

dog 1 40 30

bat 1 50 10

V(U,A) =1 V(U,B) =1 V(U,C) = T(R1)

 V(R1,A)

V(D,U) ... somewhere in between

CS 525 Notes 9 - Logical Optimization 80

Possible Guess U = σA=a (R)

V(U,A) = 1

V(U,B) = V(R,B)

CS 525 Notes 9 - Logical Optimization 81

For Joins U = R1(A,B) R2(A,C)

V(U,A) = min { V(R1, A), V(R2, A) }

V(U,B) = V(R1, B)

V(U,C) = V(R2, C)

CS 525 Notes 9 - Logical Optimization 82

Example:

Z = R1(A,B) R2(B,C) R3(C,D)

 T(R1) = 1000 V(R1,A)=50 V(R1,B)=100

 T(R2) = 2000 V(R2,B)=200 V(R2,C)=300

 T(R3) = 3000 V(R3,C)=90 V(R3,D)=500

R1

R2

R3

CS 525 Notes 9 - Logical Optimization 83

T(U) = 1000×2000 V(U,A) = 50

 200 V(U,B) = 100

 V(U,C) = 300

Partial Result: U = R1 R2

CS 525 Notes 9 - Logical Optimization 84

Z = U R3

T(Z) = 1000×2000×3000 V(Z,A) = 50

 200×300 V(Z,B) = 100

 V(Z,C) = 90

 V(Z,D) = 500

Approximating Distributions

•  Summarize the distribution

– Used to better estimate result sizes

– Without the need to look at all the data

•  Concerns

– Error metric: How to measure preciseness

– Memory consumption

– Computational Complexity

CS 525 Notes 9 - Logical Optimization 85

Approximating Distributions

•  Parameterized distribution

– E.g., gauss distribution

– Adapt parameters to fit data

•  Histograms

– Divide domain into ranges (buckets)

– Store the number of tuples per bucket

•  Both need to be maintained

CS 525 Notes 9 - Logical Optimization 86

CS 525 Notes 9 - Logical Optimization 87

Histograms
Parameterized
Distribution

Maintaining Statistics

•  Use separate command that triggers
statistics collection

– Postgres: ANALYZE !

•  During query processing

– Overhead for queries

•  Use Sampling?

CS 525 Notes 9 - Logical Optimization 88

CS 525 Notes 9 - Logical Optimization 89

Estimating Result Size using
Histograms

10 20 30 40

10

20

30

40

number of tuples
in R with A value
in given range

 σA=val(R) = ?

Estimating Result Size using
Histograms

CS 525 Notes 9 - Logical Optimization 90

• σA=val(R) = ?

•  |B| - number of values per bucket

•  #B – number of records in bucket

 #B

 |B|

Join Size using Histograms

CS 525 Notes 9 - Logical Optimization 91

•  R ⋈ S

•  Use

•  Apply for each bucket

T(W) = T(R2) T(R1)

 max{ V(R1,A), V(R2,A) }

Join Size using Histograms

CS 525 Notes 9 - Logical Optimization 92

•  V(R1,A) = V(R2,A) = bucket size |B|

T(W) = #B(R2) #B(R1)

 |B| Σbuckets

Equi-width vs. Equi-depth

CS 525 Notes 9 - Logical Optimization 93

•  Equi-width

– All buckets contain the same number of
values

– Easy, but inaccurate

•  Equi-depth (used by most DBMS)

– All buckets contain the same number of

tuples

– Better accuracy, need to sort data to
compute

Equi-width vs. Equi-depth

CS 525 Notes 9 - Logical Optimization 94

Construct Equi-depth
Histograms

CS 525 Notes 9 - Logical Optimization 95

•  Sort input

•  Determine size of buckets

– #bucket / #tuples

•  Example 3 buckets

1, 5,44, 6,10,12, 3, 6, 7 !

1, 3, 5, 6, 6, 7,10,12,44 !

[1-5][6-8][9-44] !

Advanced Techniques

CS 525 Notes 9 - Logical Optimization 96

•  Wavelets

•  Approximate Histograms

•  Sampling Techniques

•  Compressed Histograms

CS 525 Notes 9 - Logical Optimization 97

Summary

•  Estimating size of results is an art

•  Don’t forget:

 Statistics must be kept up to date…

 (cost?)

CS 525 Notes 9 - Logical Optimization 98

Outline

•  Estimating cost of query plan

– Estimating size of results done!

– Estimating # of IOs next…

– Operator Implementations

•  Generate and compare plans

CS 525 Notes 10 - Query Execution 1

CS 525: Advanced Database
Organization

10: Query Execution

Boris Glavic

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 10 - Query Execution 2

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1,P2,…..}

{(P1,C1),(P2,C2)...}

Pi

 answer

SQL query

parse tree

logical query plan

improved l.q.p

l.q.p. +sizes

statistics

Query Execution

•  Here only:

– how to implement operators

– what are the costs of implementations

– how to implement queries

• Data flow between operators

•  Next part:

– How to choose good plan

CS 525 Notes 10 - Query Execution 3

Execution Plan

•  A tree (DAG) of physical operators that
implement a query

•  May use indices

•  May create temporary relations

•  May create indices on the fly

•  May use auxiliary operations such as
sorting

CS 525 Notes 10 - Query Execution 4

How to estimate costs

•  If everything fits into memory

– Standard computational complexity

•  If not

– Assume fixed memory available for

buffering pages

– Count I/O operations

– Real systems combine this with CPU
estimations

CS 525 Notes 10 - Query Execution 5

CS 525 Notes 10 - Query Execution 6

Estimating IOs:

•  Count # of disk blocks that must be
read (or written) to execute query plan

CS 525 Notes 10 - Query Execution 7

To estimate costs, we may have
additional parameters:

B(R) = # of blocks containing R tuples

f(R) = max # of tuples of R per block

M = # memory blocks available

CS 525 Notes 10 - Query Execution 8

To estimate costs, we may have
additional parameters:

B(R) = # of blocks containing R tuples

f(R) = max # of tuples of R per block

M = # memory blocks available

HT(i) = # levels in index i

LB(i) = # of leaf blocks in index i

CS 525 Notes 10 - Query Execution 9

Clustered index

Index that allows tuples to be read in an
order that corresponds to physical order

 A

A

index

10

15

17

19

35

37

Operators Overview

•  (External) Sorting

•  Joins (Nested Loop, Merge, Hash, …)

•  Aggregation (Sorting, Hash)

•  Selection, Projection (Index, Scan)

•  Union, Set Difference

•  Intersection

•  Duplicate Elimination

CS 525 Notes 10 - Query Execution 10

Operator Profiles
•  Algorithm

•  In-memory complexity: e.g., O(n2)

•  Memory requirements

– Runtime based on available memory

•  #I/O if operation needs to go to disk

•  Disk space needed

•  Prerequisites

– Conditions under which the operator can
be applied

CS 525 Notes 10 - Query Execution 11

Execution Strategies

•  Compiled

– Translate into C/C++/Assembler code

– Compile, link, and execute code

•  Interpreted

– Generic operator implementations

– Generic executor

•  Interprets query plan

CS 525 Notes 10 - Query Execution 12

Virtual Machine Approach

•  Implement virtual machine of low-level
DBMS operations

•  Compile query into machine-code for
that machine

CS 525 Notes 10 - Query Execution 13

Iterator Model

•  Need to be able to combine operators in
different ways

– E.g., join inputs may be scans, or outputs

of other joins, …

–  -> define generic interface for operators

– be able to arbitrarily compose complex
plans from a small set of operators

CS 525 Notes 10 - Query Execution 14

Iterator Model - Interface

•  Open

– Prepare operator to read inputs

•  Close

– Close operator and clean up

•  Next

– Return next result tuple

CS 525 Notes 10 - Query Execution 15

Query Execution – Iterator
Model

CS 525 Notes 10 - Query Execution 16

Iterator
open close next

Iterator
open close next

Iterator
open close next

Iterator
open close next

Query Execution – Iterator
Model

CS 525 Notes 10 - Query Execution 17

Iterator
open close next

Iterator
open close next

Iterator
open close next

Iterator
open close next

Key
 Call

Query Execution – Iterator
Model

CS 525 Notes 10 - Query Execution 18

Iterator
open close next

Iterator
open close next

Key

Iterator
open close next

Iterator
open close next

Return Tuple
Call

Parallelism

•  Iterator Model

– Pull-based query execution

•  Potential types of parallelism

–  Inter-query (every multiuser system)

–  Intra-operator

–  Inter-operator

CS 525 Notes 10 - Query Execution 19

Intra-Operator Parallelism

•  Execute portions of an operator in
parallel

– Merge-Sort

• Assign a processor to each merge phase

– Scan

• Partition tables

• Each process scans one partition

CS 525 Notes 10 - Query Execution 20

Inter-Operator Parallelism

•  Each process executes one or more
operators

•  Pipelining

– Push-based query execution

– Chain operators to directly produce results

– Pipeline-breakers

• Operators that need to consume the whole

input (or large parts) before producing outputs

CS 525 Notes 10 - Query Execution 21

Pipelining Communication

•  Queues

– Operators push their results to queues

– Operators read their inputs from queues

•  Direct call

– Operator calls its parent in the tree with
results

– Within one process

CS 525 Notes 10 - Query Execution 22

Pipelines

CS 525 Notes 10 - Query Execution 23

Key
 Append to queue

Dequeue

Direct Call

Pipeline-breakers

•  Sorting

– All operators that apply sorting

•  Aggregation

•  Set Difference

•  Some implementations of

– Join

– Union

CS 525 Notes 10 - Query Execution 24

Operators Overview

•  (External) Sorting

•  Joins (Nested Loop, Merge, Hash, …)

•  Aggregation (Sorting, Hash)

•  Selection, Projection (Index, Scan)

•  Union, Set Difference

•  Intersection

•  Duplicate Elimination

CS 525 Notes 10 - Query Execution 25

Sorting

•  Why do we want/need to sort

– Query requires sorting (ORDER BY)

– Operators require sorted input

• Merge-join

• Aggregation by sorting

• Duplicate removal using sorting

CS 525 Notes 10 - Query Execution 26

In-memory sorting

•  Algorithms from data structures 101

– Quick sort

– Merge sort

– Heap sort

–  Intro sort

– …

CS 525 Notes 10 - Query Execution 27

External sorting

•  Problem:

– Sort N pages of data with M pages of
memory

•  Solutions?

CS 525 Notes 10 - Query Execution 28

First Idea

•  Split data into runs of size M

•  Sort each run in memory and write back
to disk

–  ⌈N/M⌉ sorted runs of size M

•  Now what?

CS 525 Notes 10 - Query Execution 29

M M M

Merging Runs

•  Need to create bigger sorted runs out of
sorted smaller runs

– Divide and Conquer

– Merge Sort?

•  How to merge two runs that are bigger
than M?

CS 525 Notes 10 - Query Execution 30

Merging Runs using 3 pages

•  Merging sorted runs R1 and R2

•  Need 3 pages

– One page to buffer pages from R1

– One page to buffer pages from R2

– One page to buffer the result

• Whenever this buffer is full, write it to disk

CS 525 Notes 10 - Query Execution 31

Merging Runs

CS 525 Notes 10 - Query Execution 32

R1

R2

read

read

merge

write

2-Way External Mergesort

•  Repeat process until we have one
sorted run

•  Each iteration (pass) reads and writes
the whole table once: 2 B(R) I/Os

•  Each pass doubles the run size
–  1 + ⌈log2 (B(R) / M) ⌉ runs

–  2 B(R) * (1 + ⌈log2 (B(R) / M) ⌉) I/Os

CS 525 Notes 10 - Query Execution 33

CS 525 Notes 10 - Query Execution 34

2
3

5
6

4
7

10
1

11
12

13
14

20
40

21
22

2 3 5 6 1 4 7 10

11 12 13
14

20 21 22
40

1 2 3 4 5 6 7 10 11 12 13 14 20 21 22 40

1 2 3 4 5 6 7 10 11 12 13 14 20 21 22 40

Input

Pass 0

Pass 1

Pass 2

Pass 3

2 3 6 5 7 4 10 1 11 12 13 14 20 40 22 21

N-Way External Mergesort

•  How to utilize M buffer during merging?

•  Each pass merges M-1 runs at once

– One memory page as buffer for each run

•  #I/Os

 1 + ⌈logM-1 (B(R) / M) ⌉ runs

 2 B(R) *(1 + ⌈logM-1 (B(R) / M) ⌉) I/Os

CS 525 Notes 10 - Query Execution 35

Merging Runs

CS 525 Notes 10 - Query Execution 36

R1

R2

read

read

merge

write

RM-1

read

How many passes do we
need?

CS 525 Notes 10 - Query Execution 37

N M=17 M=129 M=257 M=513 M=1025

100 2 1 1 1 1

1,000 3 2 2 2 1

10,000 4 2 2 2 2

100,000 5 3 3 2 2

1,000,000 5 3 3 3 2

10,000,000 6 4 3 3 3

100,000,000 7 4 4 3 3

1,000,000,000 8 5 4 4 3

To put into perspective

•  Scenario

– Page size 4KB

– 1TB of data (250,000,000)

– 10MB of buffer for sorting (250)

•  Passes

– 4 passes

CS 525 Notes 10 - Query Execution 38

Merge

•  In practice would want larger I/O buffer
for each run

•  Trade-off between number of runs and
efficiency of I/O

CS 525 Notes 10 - Query Execution 39

Improving in-memory merging

•  Merging M runs

– To choose next element to output

– Have to compare M elements

–  -> complexity linear in M: O(M)

•  How to improve that?

– Use priority queue to store current element
from each run

–  -> O(log2(M))

CS 525 Notes 10 - Query Execution 40

Priority Queue

•  Queue for accessing elements in some
given order

– pop-smallest = return and remove

smallest element in set

– Insert(e) = insert element into queue

CS 525 Notes 10 - Query Execution 41

Min-Heap

•  Implementation of priority queue

– Store elements in a binary tree

– All levels are full (except leaf level)

– Heap property

• Parent is smaller than child

•  Example: { 1, 4, 7, 10 }

CS 525 Notes 10 - Query Execution 42

1

4 10

7

Min-Heap Insertion

• insert(e) !
1.  Add element at next free leaf node

• This may invalidate heap property

2.  If node smaller than parent then

• Switch node with parent

3.  Repeat until 2) cannot be applied
anymore

CS 525 Notes 10 - Query Execution 43

Min-Heap Dequeue

CS 525 Notes 10 - Query Execution 44

• pop-smallest !
1.  Return Root and use right-most leaf as

new root

• This may invalidate heap property

2.  If node smaller than child then

• Switch node with smaller child

3.  Repeat until 2) cannot be applied

anymore

Insertion

CS 525 Notes 10 - Query Execution 45

1

4 10

7

•  Insert 3

3

1

3 10

7 4

Insert at first free position Restore heap property

Dequeue

CS 525 Notes 10 - Query Execution 46

1

4 10

7 3

3

4 10

7

Dequeue

CS 525 Notes 10 - Query Execution 47

3

4 10

7

7

4 10

4

7 10

Min/Max-Heap Complexity

•  Heap is a complete tree

– Height is O(log2(n))

•  Insertion

– Maximal height of the tree switches

–  -> O(log2(n))

•  Dequeue

– Maximal height of the tree switches

–  -> O(log2(n))

CS 525 Notes 10 - Query Execution 48

Min-Heap Implementation

•  Full tree

– Use array to implement tree

•  Compute positions

– Parent(n) = ⌊ (n‐1) / 2 ⌋

– Children(n) = 2n + 1, 2n + 2

CS 525 Notes 10 - Query Execution 49

1

4 10

7 1 4 10 7

1 2 3

Merging with Priority Queue

CS 525 Notes 10 - Query Execution 50

1
8
9

7
10
12

6
11
13

1

7 6

Merging with Priority Queue

CS 525 Notes 10 - Query Execution 51

9

10
12

11
13

1
6

7 8

Merging with Priority Queue

CS 525 Notes 10 - Query Execution 52

9

10
12

13

1
6 7

11 8

Using a heap to generate runs

•  Read inputs into heap

– Until available memory is full

•  Replace elements

– Remove smallest element from heap

•  If larger then last element written of current
run then write to current run

• Else create a new run

– Add new element from input to heap

CS 525 Notes 10 - Query Execution 53

Using a heap to generate runs

CS 525 Notes 10 - Query Execution 54

5
7
2
3
4
12
15
1

2

7 5

Using a heap to generate runs

CS 525 Notes 10 - Query Execution 55

5
7
2
3
4
15
12
1

2
3

7 5

1

2

Using a heap to generate runs

CS 525 Notes 10 - Query Execution 56

5
7
2
3
4
15
12
1

2
3 4

7 5

1

2

Using a heap to generate runs

CS 525 Notes 10 - Query Execution 57

5
7
2
3
4
15
12
1

2
3
4

5

7 15

1

2

Using a heap to generate runs

CS 525 Notes 10 - Query Execution 58

5
7
2
3
4
15
12
1

2
3
4
5

7

12 15

1

2

Using a heap to generate runs

CS 525 Notes 10 - Query Execution 59

5
7
2
3
4
15
12
1

2
3
4
5
7

1

12 15

1

2

Using a heap to generate runs

CS 525 Notes 10 - Query Execution 60

5
7
2
3
4
15
12
1

2
3
4
5
7

12

15

1

1

Using a heap to generate runs

•  Increases the run-length

– On average by a factor of 2 (see Knuth)

CS 525 Notes 10 - Query Execution 61

Use clustered B+-tree
•  Keys in the B+-tree I are in sort order

–  If B+-tree is clustered traversing the leaf
nodes is sequential I/O!

– K = #keys/leaf node

•  Approach

– Traverse from root to first leaf: HT(I)

– Follow sibling pointers: |R| / K

– Read data blocks: B(R)

CS 525 Notes 10 - Query Execution 62

I/O Operations

•  HT(I) + |R| / K + B(R) I/Os

•  Less than 2 B(R) = 1 pass external
mergesort

•  ->Better than external merge-sort!

CS 525 Notes 10 - Query Execution 63

Unclustered B+-tree?
•  Each entry in a leaf node may point to

different page of relation R

– For each leaf page we may read up to K

pages from relation R

– Random I/O

•  In worst-case we have

– K * B(R)

– K = 500

• 500 * B(R) = 250 merge passes

CS 525 Notes 10 - Query Execution 64

Sorting Comparison

CS 525 Notes 10 - Query Execution 65

Property Ext. Mergesort B+ (clustered) B+ (unclustered)

Runtime O (N logM-1 (N)) O(N) O(N)

#I/O (random) 2 B(R) * (1 +
⌈logM-1 (B(R) / M) ⌉)

HT + |R| / K +
B(R)

HT + |R| / K + K *
#RB

Memory M 1 (better HT + X) 1 (better HT + X)

Disk Space 2 B(R) 0 0

Variants 1)  Merge with
heap

2)  Run generation
with heap

3)  Larger Buffer

B(R) = number of block of R
M = number of available memory blocks
#RB = records per page
HT = height of B+-tree (logarithmic)
K = number of keys per leaf node

Operators Overview
•  (External) Sorting

•  Joins (Nested Loop, Merge, Hash, …)

•  Aggregation (Sorting, Hash)

•  Selection, Projection (Index, Scan)

•  Union, Set Difference

•  Intersection

•  Duplicate Elimination

CS 525 Notes 10 - Query Execution 66

Scan

•  Implements access to a table

– Combined with selection

– Probably projection too

•  Variants

– Sequential

• Scan through all tuples of relation

– Index

• Use index to find tuples that match selection

CS 525 Notes 10 - Query Execution 67

Operators Overview
•  (External) Sorting

•  Joins (Nested Loop, Merge, Hash, …)

•  Aggregation (Sorting, Hash)

•  Selection, Projection (Index, Scan)

•  Union, Set Difference

•  Intersection

•  Duplicate Elimination

CS 525 Notes 10 - Query Execution 68

CS 525 Notes 10 - Query Execution 69

Options

•  Transformations: R1 c R2, R2 c R1

•  Joint algorithms:

– Nested loop

– Merge join

– Join with index

– Hash join

•  Outer join algorithms

CS 525 Notes 10 - Query Execution 70

Nested Loop Join (conceptually)

 for each r ∈ R1 do

 for each s ∈ R2 do

 if (r,s) ⊨ C then output (r,s)

Applicable to:
•  Any join condition C
•  Cross-product

CS 525 Notes 10 - Query Execution 71

•  Merge Join (conceptually)

(1) if R1 and R2 not sorted, sort them

(2) i ← 1; j ← 1;

 While (i ≤ T(R1)) ∧ (j ≤ T(R2)) do

 if R1{ i }.C = R2{ j }.C then outputTuples

 else if R1{ i }.C > R2{ j }.C then j ← j+1

 else if R1{ i }.C < R2{ j }.C then i ← i+1

Applicable to:

•  C is conjunction of equalities or </>:

 A1 = B1 AND … AND An = Bn

CS 525 Notes 10 - Query Execution 72

Procedure Output-Tuples

 While (R1{ i }.C = R2{ j }.C) ∧ (i ≤ T(R1)) do

 [jj ← j;

 while (R1{ i }.C = R2{ jj }.C) ∧ (jj ≤ T(R2)) do

 [output pair R1{ i }, R2{ jj };

 jj ← jj+1]

 i ← i+1]

CS 525 Notes 10 - Query Execution 73

Example

i R1{i}.C R2{j}.C j

1 10 5 1

2 20 20 2

3 20 20 3

4 30 30 4

5 40 30 5

 50 6

 52 7

CS 525 Notes 10 - Query Execution 74

Index nested loop (Conceptually)

For each r ∈ R1 do

 [X ← index (R2, C, r.C)

 for each s ∈ X do

 output (r,s) pair]

Assume R2.C index

Note: X ← index(rel, attr, value)

 then X = set of rel tuples with attr = value

CS 525 Notes 10 - Query Execution 75

Hash join (conceptual)

Hash function h, range 0 → k

Buckets for R1: G0, G1, ... Gk

Buckets for R2: H0, H1, ... Hk

Applicable to:

•  C is conjunction of equalities

 A1 = B1 AND … AND An = Bn

CS 525 Notes 10 - Query Execution 76

Algorithm

(1) Hash R1 tuples into G buckets

(2) Hash R2 tuples into H buckets

(3) For i = 0 to k do

 match tuples in Gi, Hi buckets

Hash join (conceptual)

Hash function h, range 0 → k

Buckets for R1: G0, G1, ... Gk

Buckets for R2: H0, H1, ... Hk

CS 525 Notes 10 - Query Execution 77

Simple example hash: even/odd

R1 R2 Buckets
2 5 Even:
4 4 R1 R2

3 12 Odd:
5 3

8 13
9 8
 11
 14

2 4 8 4 12 8 14

3 5 9 5 3 13 11

CS 525 Notes 10 - Query Execution 78

Factors that affect performance

(1) Tuples of relation stored

 physically together?

(2) Relations sorted by join attribute?

(3) Indexes exist?

CS 525 Notes 10 - Query Execution 79

Example 1(a) NL Join R1 R2

•  Relations not contiguous

•  Recall T(R1) = 10,000 T(R2) = 5,000

 S(R1) = S(R2) =1/10 block

 MEM=101 blocks

CS 525 Notes 10 - Query Execution 80

Example 1(a)
 Nested Loop Join R1 R2

•  Relations not contiguous

•  Recall T(R1) = 10,000 T(R2) = 5,000

 S(R1) = S(R2) =1/10 block

 MEM=101 blocks

Cost: for each R1 tuple:

 [Read tuple + Read R2]

Total =10,000 [1+500]=5,010,000 IOs

CS 525 Notes 10 - Query Execution 81

•  Can we do better?

CS 525 Notes 10 - Query Execution 82

•  Can we do better?

Use our memory

(1) Read 100 blocks of R1

(2) Read all of R2 (using 1 block) + join

(3) Repeat until done

CS 525 Notes 10 - Query Execution 83

Cost: for each R1 chunk:

 Read chunk: 100 IOs

 Read R2: 500 IOs

 600

CS 525 Notes 10 - Query Execution 84

Cost: for each R1 chunk:

 Read chunk: 100 IOs

 Read R2: 500 IOs

 600

Total = 1,000 x 600 = 6,000 IOs
 100

CS 525 Notes 10 - Query Execution 85

•  Can we do better?

CS 525 Notes 10 - Query Execution 86

•  Can we do better?

 Reverse join order: R2 R1

Total = 500 x (100 + 1,000) =
 100

 5 x 1,100 = 5,500 IOs

CS 525 Notes 10 - Query Execution 87

Cost of Block Nested Loop

 Reverse join order: R1 R2

Total = B(R1) x (min(B(R1), M-1) + B(R2))
 M-1

CS 525 Notes 10 - Query Execution 88

Block-Nested Loop Join (conceptual)

for each M-1 blocks of R1 do

 read M-1 blocks of R1 into buffer

 for each block of R2 do

 read next block of R2

 for each tuple r in R1 block

 for each tuple s in R2 block

 if (r,s) ⊨ C then output (r,s)

Note

•  How much memory for buffering inner
and for outer chunks?

– 1 for inner would minimize I/O

– But, larger buffer better for I/O

CS 525 Notes 10 - Query Execution 89

CS 525 Notes 10 - Query Execution 90

M - k M - k M - k

k k k k k k

R1

R2

CS 525 Notes 10 - Query Execution 91

Example 1(b) Merge Join

•  Both R1, R2 ordered by C; relations contiguous

Memory

R1

R2

…..

…..

R1

R2

CS 525 Notes 10 - Query Execution 92

Example 1(b) Merge Join

•  Both R1, R2 ordered by C; relations contiguous

Memory

R1

R2

…..

…..

R1

R2

Total cost: Read R1 cost + read R2 cost

 = 1000 + 500 = 1,500 IOs

Merge Join Example

CS 525 Notes 10 - Query Execution 93

R B=C S

A B

a 1

b 1

a 2

c 3

d 4

e 5

C D

1 x

2 y

2 e

6 q

7 d

R S

ZR ZS

Output: (a,1,1,X)

Merge Join Example

CS 525 Notes 10 - Query Execution 94

R B=C S

A B

a 1

b 1

a 2

c 3

d 4

e 5

C D

1 x

2 y

2 e

6 q

7 d

R S

ZR

ZS

Output: (b,1,1,X)

Merge Join Example

CS 525 Notes 10 - Query Execution 95

R B=C S

A B

a 1

b 1

a 2

c 3

d 4

e 5

C D

1 x

2 y

2 e

6 q

7 d

R S

ZR

ZS

R.B > S.C: advance ZS

Merge Join Example

CS 525 Notes 10 - Query Execution 96

R B=C S

A B

a 1

b 1

a 2

c 3

d 4

e 5

C D

1 x

2 y

2 e

6 q

7 d

R S

ZR

ZS

Output: (a,2,2,y)

Merge Join Example

CS 525 Notes 10 - Query Execution 97

R B=C S

A B

a 1

b 1

a 2

c 3

d 4

e 5

C D

1 x

2 y

2 e

6 q

7 d

R S

ZR
ZS

Output: (a,2,2,e)

Merge Join Example

CS 525 Notes 10 - Query Execution 98

R B=C S

A B

a 1

b 1

a 2

c 3

d 4

e 5

C D

1 x

2 y

2 e

6 q

7 d

R S

ZR

ZS

R.B > S.C: advance ZS

Merge Join Example

CS 525 Notes 10 - Query Execution 99

R B=C S

A B

a 1

b 1

a 2

c 3

d 4

e 5

C D

1 x

2 y

2 e

6 q

7 d

R S

ZR
ZS

R.B < S.C: advance ZR

Merge Join Example

CS 525 Notes 10 - Query Execution 100

R B=C S

A B

a 1

b 1

a 2

c 3

d 4

e 5

C D

1 x

2 y

2 e

6 q

7 d

R S

ZR

ZS

R.B < S.C: advance ZR

Merge Join Example

CS 525 Notes 10 - Query Execution 101

R B=C S

A B

a 1

b 1

a 2

c 3

d 4

e 5

C D

1 x

2 y

2 e

6 q

7 d

R S

ZR

ZS

R.B < S.C: DONE

CS 525 Notes 10 - Query Execution 102

Example 1(c) Merge Join

•  R1, R2 not ordered, but contiguous

--> Need to sort R1, R2 first

CS 525 Notes 10 - Query Execution 103

One way to sort: Merge Sort

(i) For each 100 blk chunk of R:

 - Read chunk

 - Sort in memory

 - Write to disk

 sorted

 chunks

 Memory

R1

R2

..
.

CS 525 Notes 10 - Query Execution 104

(ii) Read all chunks + merge + write out

Sorted file Memory Sorted

 Chunks

..
. ..
.

CS 525 Notes 10 - Query Execution 105

Cost: Sort

 Each tuple is read,written,

 read, written

so...

Sort cost R1: 4 x 1,000 = 4,000

Sort cost R2: 4 x 500 = 2,000

CS 525 Notes 10 - Query Execution 106

Example 1(d) Merge Join (continued)

R1,R2 contiguous, but unordered

Total cost = sort cost + join cost

 = 6,000 + 1,500 = 7,500 IOs

CS 525 Notes 10 - Query Execution 107

Example 1(c) Merge Join (continued)

R1,R2 contiguous, but unordered

Total cost = sort cost + join cost

 = 6,000 + 1,500 = 7,500 IOs

But: Iteration cost = 5,500
 so merge joint does not pay off!

CS 525 Notes 10 - Query Execution 108

But say R1 = 10,000 blocks contiguous

 R2 = 5,000 blocks not ordered

Iterate: 5000 x (100+10,000) = 50 x 10,100
 100

 = 505,000 IOs

Merge join: 5(10,000+5,000) = 75,000 IOs

 Merge Join (with sort) WINS!

CS 525 Notes 10 - Query Execution 109

How much memory do we need for
 merge sort?

E.g: Say I have 10 memory blocks

 10

..
.

100 chunks ⇒ to merge, need
 100 blocks! R1

CS 525 Notes 10 - Query Execution 110

In general:

Say k blocks in memory

 x blocks for relation sort

chunks = (x/k) size of chunk = k

CS 525 Notes 10 - Query Execution 111

In general:

Say k blocks in memory

 x blocks for relation sort

chunks = (x/k) size of chunk = k

chunks < buffers available for merge

CS 525 Notes 10 - Query Execution 112

In general:

Say k blocks in memory

 x blocks for relation sort

chunks = (x/k) size of chunk = k

chunks < buffers available for merge

so... (x/k) ≤ k

or k2 ≥ x or k ≥ √x

CS 525 Notes 10 - Query Execution 113

In our example

R1 is 1000 blocks, k ≥ 31.62

R2 is 500 blocks, k ≥ 22.36

 Need at least 32 buffers

Again: in practice we would not want to
use only one buffer per run!

CS 525 Notes 10 - Query Execution 114

Can we improve on merge join?

Hint: do we really need the fully sorted
files?

R1

R2

Join?

sorted runs

CS 525 Notes 10 - Query Execution 115

Cost of improved merge join:

C = Read R1 + write R1 into runs

 + read R2 + write R2 into runs

 + join

 = 2,000 + 1,000 + 1,500 = 4,500

--> Memory requirement?

CS 525 Notes 10 - Query Execution 116

Example 1(d) Index Join

•  Assume R1.C index exists; 2 levels

•  Assume R2 contiguous, unordered

•  Assume R1.C index fits in memory

CS 525 Notes 10 - Query Execution 117

Cost: Reads: 500 IOs

 for each R2 tuple:

 - probe index - free

 - if match, read R1 tuple: 1 IO

CS 525 Notes 10 - Query Execution 118

What is expected # of matching
tuples?

(a) say R1.C is key, R2.C is foreign key

 then expect = 1

(b) say V(R1,C) = 5000, T(R1) = 10,000

 with uniform assumption
 expect = 10,000/5,000 = 2

CS 525 Notes 10 - Query Execution 119

(c) Say DOM(R1, C)=1,000,000

 T(R1) = 10,000

 with alternate assumption

 Expect = 10,000 = 1
 1,000,000 100

What is expected # of matching
tuples?

CS 525 Notes 10 - Query Execution 120

Total cost with index join

(a) Total cost = 500+5000(1)1 = 5,500

(b) Total cost = 500+5000(2)1 = 10,500

(c) Total cost = 500+5000(1/100)1=550

CS 525 Notes 10 - Query Execution 121

What if index does not fit in memory?

Example: say R1.C index is 201 blocks

•  Keep root + 99 leaf nodes in memory

•  Expected cost of each probe is

 E = (0)99 + (1)101 ≈ 0.5
 200 200

CS 525 Notes 10 - Query Execution 122

Total cost (including probes)

 = 500+5000 [Probe + get records]

 = 500+5000 [0.5+2] uniform assumption

 = 500+12,500 = 13,000 (case b)

CS 525 Notes 10 - Query Execution 123

Total cost (including probes)

 = 500+5000 [Probe + get records]

 = 500+5000 [0.5+2] uniform assumption

 = 500+12,500 = 13,000 (case b)

For case (c):

= 500+5000[0.5 × 1 + (1/100) × 1]

= 500+2500+50 = 3050 IOs

CS 525 Notes 10 - Query Execution 124

So far

 Nested Loop 5500
 Merge join 1500
 Sort+Merge Join 7500 → 4500
 R1.C Index 5500 → 3050 → 550
 R2.C Index ________

CS 525 Notes 10 - Query Execution 125

•  R1, R2 contiguous (un-ordered)

→ Use 100 buckets

→ Read R1, hash, + write buckets

R1 →

Example 1(e) Partition Hash Join

..
.

..
.

10 blocks

100

CS 525 Notes 10 - Query Execution 126

-> Same for R2

-> Read one R1 bucket; build memory hash table

 -using different hash function h’

-> Read corresponding R2 bucket + hash probe

R1

R2

..
.

R1

memory ..
.

✏ Then repeat for all buckets

CS 525 Notes 10 - Query Execution 127

Cost:

Bucketize: Read R1 + write

 Read R2 + write

Join: Read R1, R2

Total cost = 3 x [1000+500] = 4500

CS 525 Notes 10 - Query Execution 128

Cost:

Bucketize: Read R1 + write

 Read R2 + write

Join: Read R1, R2

Total cost = 3 x [1000+500] = 4500

Note: this is an approximation since
buckets will vary in size and
we have to round up to blocks

Why is Hash Join good?

CS 525 Notes 10 - Query Execution 129

R

S S

R

CS 525 Notes 10 - Query Execution 130

Minimum memory requirements:

Size of R1 bucket = (x/k)

 k = number of memory buffers

 x = number of R1 blocks

So... (x/k) < k

k > √x need: k+1 total memory
 buffers

CS 525 Notes 10 - Query Execution 131

Can we use Hash-join when buckets
do not fit into memory?:

•  Treat buckets as relations and apply
Hash-join recursively

join

Duality Hashing-Sorting

•  Both partition inputs

•  Until input fits into memory

•  Logarithmic number of phases in
memory size

CS 525 Notes 10 - Query Execution 132

CS 525 Notes 10 - Query Execution 133

Trick: keep some buckets in memory

E.g., k’=33 R1 buckets = 31 blocks
 keep 2 in memory

memory

G0

G1

in

..
.

31

33-2=31

R1

called hybrid hash-join

CS 525 Notes 10 - Query Execution 134

Trick: keep some buckets in memory

E.g., k’=33 R1 buckets = 31 blocks
 keep 2 in memory

memory

G0

G1

in

..
.

31

33-2=31

R1

Memory use:
G0 31 buffers
G1 31 buffers
Output 33-2 buffers
R1 input 1
Total 94 buffers

 6 buffers to spare!!

called hybrid hash-join

CS 525 Notes 10 - Query Execution 135

Next: Bucketize R2

– R2 buckets =500/33= 16 blocks

– Two of the R2 buckets joined immediately

with G0,G1

memory

G0

G1

in

..
.

16

33-2=31

R2

..
.

31

33-2=31

R2 buckets R1 buckets

CS 525 Notes 10 - Query Execution 136

Finally: Join remaining buckets

–  for each bucket pair:

•  read one of the buckets into memory

•  join with second bucket

memory

Gi

out

..
.

16

33-2=31

ans

..
.

31

33-2=31

R2 buckets R1 buckets one full R2
bucket

one R1
buffer

CS 525 Notes 10 - Query Execution 137

Cost

•  Bucketize R1 = 1000+31×31=1961

•  To bucketize R2, only write 31 buckets:
 so, cost = 500+31×16=996

•  To compare join (2 buckets already done)

 read 31×31+31×16=1457

Total cost = 1961+996+1457 = 4414

CS 525 Notes 10 - Query Execution 138

•  How many buckets in memory?

memory

G0

G1

in
R1

memory

G0

in
R1

OR...

☛ See textbook for answer...

?

CS 525 Notes 10 - Query Execution 139

Another hash join trick:

•  Only write into buckets
 <val,ptr> pairs

•  When we get a match in join phase,
 must fetch tuples

CS 525 Notes 10 - Query Execution 140

•  To illustrate cost computation, assume:

– 100 <val,ptr> pairs/block

– expected number of result tuples is 100

CS 525 Notes 10 - Query Execution 141

•  To illustrate cost computation, assume:

– 100 <val,ptr> pairs/block

– expected number of result tuples is 100

 •  Build hash table for R2 in memory
 5000 tuples → 5000/100 = 50 blocks

•  Read R1 and match

•  Read ~ 100 R2 tuples

CS 525 Notes 10 - Query Execution 142

•  To illustrate cost computation, assume:

– 100 <val,ptr> pairs/block

– expected number of result tuples is 100

 •  Build hash table for R2 in memory
 5000 tuples → 5000/100 = 50 blocks

•  Read R1 and match

•  Read ~ 100 R2 tuples

Total cost = Read R2: 500
 Read R1: 1000

 Get tuples: 100
 1600

CS 525 Notes 10 - Query Execution 143

So far:

 Iterate 5500
 Merge join 1500
 Sort+merge joint 7500
 R1.C index 5500 → 550
 R2.C index _____
 Build R1.C index _____
 Build R2.C index _____
 Hash join 4500+
 with trick,R1 first 4414
 with trick,R2 first _____
 Hash join, pointers 1600

CS 525 Notes 10 - Query Execution 144

Yet another hash join trick:

•  Combine the ideas of

– block nested-loop with hash join

•  Use memory to build hash-table for one
chunk of relation

•  Find join partners in O(1) instead of
O(M)

•  Trade-off

– Space-overhead of hash-table

– Time savings from look-up

CS 525 Notes 10 - Query Execution 145

Summary

•  Nested Loop ok for small relations
 (relative to memory size)

– Need for complex join condition

•  For equi-join, where relations not
 sorted and no indexes exist,
 hash join usually best

CS 525 Notes 10 - Query Execution 146

•  Sort + merge join good for
 non-equi-join (e.g., R1.C > R2.C)

•  If relations already sorted, use
 merge join

•  If index exists, it could be useful

 (depends on expected result size)

Join Comparison

CS 525 Notes 10 - Query Execution 147

Ni= number of tuples in Ri

B(Ri) = number of blocks of Ri
#P = number of partition steps for hash join
Pij = average number of join partners

Algorithm #I/O Memory Disk Space

Nested Loop
(block)

B(R1) / (M-1) * !
[min(B(R),M-1)
+ B(R2)]

3 0

Index Nested Loop B(R1) + N1 * P12 B(Index) + 2 0

Merge (sorted) B(R1) + B(R2) Max tuples = 0

Merge (unsorted) B(R1) + B(R2)+
(sort – 1 pass)

sort

B(R1) + B(R2)

Hash (2#P + 1) (B(R1) +
B(R2))

root(max(B(R1),
B(R2)), #P + 1)

~B(R1) + B(R2)

Why do we need nested loop?

•  Remember not all join implementations
work for all types of join conditions

CS 525 Notes 10 - Query Execution 148

Algorithm Type of Condition Example

Nested Loop any a LIKE ‘%hello%’

Index Nested Loop Supported by index:
Equi-join (hash)

Equi or range (B-tree)

a = b
a < b

Merge Equalities and ranges a < b, a = b AND c = d

Hash Equi-join a = b

Outer Joins

•  How to implement (left) outer joins?

•  Nested Loop and Merge

– Use a flag that is set to true if we find a
match for an outer tuple

–  If flag is false fill with NULL

•  Hash

–  If no matching tuple fill with NULL

CS 525 Notes 10 - Query Execution 149

Merge Left Outer Join

CS 525 Notes 10 - Query Execution 150

R B=C S

A B

a 1

d 4

e 5

C D

1 x

2 y

2 e

6 q

7 d

R S

ZR ZS

Output: (a,1,1,X)

Merge Left Outer Join

CS 525 Notes 10 - Query Execution 151

R B=C S

A B

a 1

d 4

e 5

C D

1 x

2 y

2 e

6 q

7 d

R S

ZR

ZS

No match for (d,4)
Output: (d,4,NULL,NULL)

Merge Left Outer Join

CS 525 Notes 10 - Query Execution 152

R B=C S

A B

a 1

d 4

e 5

C D

1 x

2 y

2 e

6 q

7 d

R S

ZR

ZS

No match for (e,5)
Output: (e,5,NULL,NULL)

Operators Overview
•  (External) Sorting

•  Joins (Nested Loop, Merge, Hash, …)

•  Aggregation (Sorting, Hash)

•  Selection, Projection (Index, Scan)

•  Union, Set Difference

•  Intersection

•  Duplicate Elimination

CS 525 Notes 10 - Query Execution 153

Aggregation

•  Have to compute aggregation functions

–  for each group of tuples from input

•  Groups

– Determined by equality of group-by

attributes

CS 525 Notes 10 - Query Execution 154

Aggregation Example

a b

3 1

4 2

3 1

1 2

1 2

CS 525 Notes 10 - Query Execution 155

SELECT sum(a),b !

FROM R !

GROUP BY b !

sum(a) b

6 1

6 2

Aggregation Function
Interface

• init() !

–  Initialize state

• update(tuple) !

– Update state with information from tuple

• close() !

– Return result and clean-up

CS 525 Notes 10 - Query Execution 156

Implementation SUM(A)

• init() !

– sum := 0 !

• update(tuple) !

– sum += tuple.A!

• close() !

– return sum !

CS 525 Notes 10 - Query Execution 157

Aggregation Implementations

•  Sorting

– Sort input on group-by attributes

– On group boundaries output tuple

•  Hashing

– Store current aggregated values for each
group in hash table

– Update with newly arriving tuples

– Output result after processing all inputs

CS 525 Notes 10 - Query Execution 158

Grouping by sorting

•  Similar to Merge join

•  Sort R on group-by attribute

•  Scan through sorted input

–  If group-by values change

• Output using close() and call init()

– Otherwise

• Call update()

CS 525 Notes 10 - Query Execution 159

CS 525 Notes 10 - Query Execution 160

Aggregation Example

a b

3 1

4 2

3 1

1 2

1 2

SELECT sum(a),b !

FROM R !

GROUP BY b !

a b

3 1

3 1

4 2

1 2

1 2

sort init()

0

CS 525 Notes 10 - Query Execution 161

Aggregation Example

SELECT sum(a),b !

FROM R !

GROUP BY b !

a b

3 1

3 1

4 2

1 2

1 2

update(3,1)

3

CS 525 Notes 10 - Query Execution 162

Aggregation Example

SELECT sum(a),b !

FROM R !

GROUP BY b !

a b

3 1

3 1

4 2

1 2

1 2

update(3,1)

6

CS 525 Notes 10 - Query Execution 163

Aggregation Example

SELECT sum(a),b !

FROM R !

GROUP BY b !

a b

3 1

3 1

4 2

1 2

1 2

Group by changed!
close(), init(), update(4,2)

4

6
output

0

1

2

3

Grouping by Hashing

•  Create in-memory hash-table

•  For each input tuple probe hash table
with group by values

–  If no entry exists then call init(), update(),

and add entry

– Otherwise call update() for entry

•  Loop through all entries in hash-table
and ouput calling close()

CS 525 Notes 10 - Query Execution 164

CS 525 Notes 10 - Query Execution 165

Aggregation Example

a b

3 1

4 2

3 1

1 2

1 2

SELECT sum(a),b !

FROM R !

GROUP BY b !

CS 525 Notes 10 - Query Execution 166

Aggregation Example

a b

3 1

4 2

3 1

1 2

1 2

SELECT sum(a),b !

FROM R !

GROUP BY b !

3

Init() and update(3,1)

CS 525 Notes 10 - Query Execution 167

Aggregation Example

a b

3 1

4 2

3 1

1 2

1 2

SELECT sum(a),b !

FROM R !

GROUP BY b !

3

Init() and update(4,2)

4

CS 525 Notes 10 - Query Execution 168

Aggregation Example

a b

3 1

4 2

3 1

1 2

1 2

SELECT sum(a),b !

FROM R !

GROUP BY b !

6

update(3,1)

4

CS 525 Notes 10 - Query Execution 169

Aggregation Example

a b

3 1

4 2

3 1

1 2

1 2

SELECT sum(a),b !

FROM R !

GROUP BY b !

6

•  Loop through hash table entries
•  Output tuples

6

Aggregation Summary

•  Hashing

– No sorting -> no extra I/O

– Hash table has to fit into memory

– No outputs before all inputs have been
processed

•  Sorting

– No memory required

– Output one group at a time

CS 525 Notes 10 - Query Execution 170

Operators Overview
•  (External) Sorting

•  Joins (Nested Loop, Merge, Hash, …)

•  Aggregation (Sorting, Hash)

•  Selection, Projection (Index, Scan)

•  Union, Set Difference

•  Intersection

•  Duplicate Elimination

CS 525 Notes 10 - Query Execution 171

Duplicate Elimination
•  Equivalent to group-by on all attributes

•  -> Can use aggregation
implementations

•  Optimization

– Hash

• Directly output tuple and use hash table only to
avoid outputting duplicates

CS 525 Notes 10 - Query Execution 172

Operators Overview
•  (External) Sorting

•  Joins (Nested Loop, Merge, Hash, …)

•  Aggregation (Sorting, Hash)

•  Selection, Projection (Index, Scan)

•  Union, Set Difference

•  Intersection

•  Duplicate Elimination

CS 525 Notes 10 - Query Execution 173

Set Operations

•  Can be modeled as join

– with different output requirements

•  As aggregation/group by on all columns

– with different output requirements

CS 525 Notes 10 - Query Execution 174

Union

•  Bag union

– Append the two inputs

– E.g., using three buffers

•  Set union

– Apply duplicate removal to result

CS 525 Notes 10 - Query Execution 175

Intersection
•  Set version

– Equivalent to join + project + duplicate
removal

– 3-state aggregate function (found left,
found right, found both)

•  Bag version

– Join + project + min(i,j)

– Aggegate min(count(i),count(j))

CS 525 Notes 10 - Query Execution 176

Set Difference

•  Using join methods

– Find matching tuples

–  If no match found, then output

•  Using aggregation

– count(i) – count(j) (bag)

–  true(i) AND false(j) (set)

CS 525 Notes 10 - Query Execution 177

Summary
•  Operator implementations

– Joins!

– Other operators

•  Cost estimations

–  I/O

– memory

•  Query processing architectures

CS 525 Notes 10 - Query Execution 178

Next

•  Query Optimization Physical

•  -> How to efficiently choose an
efficient plan

CS 525 Notes 10 - Query Execution 179

CS 525 Notes 11 - Physical Optimization 1

CS 525: Advanced Database
Organization

11: Query Optimization

Physical

Boris Glavic
Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 11 - Physical Optimization 2

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1,P2,…..}

{(P1,C1),(P2,C2)...}

Pi

 answer

SQL query

parse tree

logical query plan

improved l.q.p

l.q.p. +sizes

statistics

Cost of Query

•  Parse + Analyze

•  Optimization – Find plan

•  Execution

•  Return results to client

CS 525 Notes 11 - Physical Optimization 3

Cost of Query
•  Parse + Analyze

– Can parse MB of SQL code in milisecs

•  Optimization – Find plan

– Generating plans, costing plans

•  Execution

– Execute plan

•  Return results to client

– Can be expensive but not discussed here

CS 525 Notes 11 - Physical Optimization 4

Physical Optimization

•  Apply after applying heuristics in logical
optimization

•  1) Enumerate potential execution plans

– All?

– Subset

•  2) Cost plans

– What cost function?

CS 525 Notes 11 - Physical Optimization 5

Physical Optimization

•  To apply pruning in the search for the
best plan

– Steps 1 and 2 have to be interleaved

– Prune parts of the search space

•  if we know that it cannot contain any plan that

is better than what we found so far

CS 525 Notes 11 - Physical Optimization 6

Example Query

CS 525 Notes 11 - Physical Optimization 7

SELECT e.name!

FROM Employee e, !

 EmpDep ed, !

 Department d !

WHERE e.name = ed.emp " !

!AND ed.dep = d.dep!

"AND d.dep = ‘CS’ !

πname

σdep=CS

⋈dep=dep

⋈name=emp

Employee EmpDep Department

Example Query – Possible Plan

CS 525 Notes 11 - Physical Optimization 8

SELECT e.name!

FROM Employee e, !

 EmpDep ed, !

 Department d !

WHERE e.name = ed.emp " !

!AND ed.dep = d.dep!

"AND d.dep = ‘CS’ !

πname

ISσdep=CS

NL⋈dep=dep

MJ⋈name=emp

SSEmployee SSEmpDep Department

Cost Model

•  Cost factors

–  #disk I/O

–  CPU cost

–  Response time

–  Total execution time

•  Cost of operators

–  I/O as discussed in query execution (part 10)

–  Need to know size of intermediate results

(part 09)

CS 525 Notes 11 - Physical Optimization 9

Example Query – Possible Plan

CS 525 Notes 11 - Physical Optimization 10

SELECT e.name!

FROM Employee e, !

 EmpDep ed, !

 Department d !

WHERE e.name = ed.emp " !

!AND ed.dep = d.dep!

"AND d.dep = ‘CS’ !

πname

ISσdep=CS

NL⋈dep=dep

MJ⋈name=emp

SSEmployee SSEmpDep Department

Cost?
Need input size!

Cost Model Trade-off

•  Precision

–  Incorrect cost-estimation -> choose
suboptimal plan

•  Cost of computing cost

– Cost of costing a plan
•  We may have to cost millions or billions of plans

– Cost of maintaining statistics
•  Occupies resources needed for query processing

CS 525 Notes 11 - Physical Optimization 11

Plan Enumeration

•  For each operator in the query

– Several implementation options

•  Binary operators (joins)

– Changing the order may improve

performance a lot!

•  -> consider both different

implementations and order of operators

in plan enumeration

CS 525 Notes 11 - Physical Optimization 12

Example Join Ordering
Result Sizes

CS 525 Notes 11 - Physical Optimization 13

σdep=CS

⋈dep=dep

⋈name=emp

E ED D σdep=CS

⋈dep=dep

⋈name=emp

E

ED

D

10000 10000 30

1
10000

500

10000

30

1

10000 500

500

Example Join Ordering
Cost (only NL)

CS 525 Notes 11 - Physical Optimization 14

σdep=CS

⋈dep=dep

⋈name=emp

E ED D
10000 10000 30

1
10000

500

S(E) = S(ED) = S(D) = 1/10 block
M = 101

σdep=CS

⋈dep=dep

⋈name=emp

E

ED

D

10000

30

1

10000 500

500

CS 525 Notes 11 - Physical Optimization 15

σdep=CS

⋈dep=dep

⋈name=emp

E ED D
10000 10000 30

1
10000

500

S(E) = S(ED) = S(D) = 1/10 block
M = 101

I/O costs only
No pipelining, write all results to disk

1100 x 10
3

101 x 10

1100 x 10 + 101 x 10 + 3 (operator costs)
+ 1000 + 1 + 50 (write results)

= 13064 I/Os

1001 + 1050 + 3 (operator costs)
+ 1 + 50 + 50

= 2155 I/Os

σdep=CS

⋈dep=dep

⋈name=emp

E

ED

D

10000

30

1

10000 500

500

3

1001 x 1

1050 x 1

Plan Enumeration

•  All

– Consider all potential plans of a certain
type (discussed later)

– Prune only if sure

•  Heuristics

– Apply heuristics to prune search space

•  Randomized Algorithms

CS 525 Notes 11 - Physical Optimization 16

Plan Enumeration Algorithms

•  All

–  Dynamic Programming (System R)

–  A* search

•  Heuristics

–  Minimum Selectivity, Intermediate result size, …

–  KBZ-Algorithm, AB-Algorithm

•  Randomized

–  Genetic Algorithms

–  Simulated Annealing

CS 525 Notes 11 - Physical Optimization 17

Reordering Joins Revisited

•  Equivalences (Natural Join)

1.  R ⋈ S ≣ S ⋈ R

2.  (R ⋈ S) ⋈ T ≣ R ⋈ (S ⋈ T)

•  Equivalences Equi-Join

1.  R ⋈a=b S ≣ S ⋈a=b R

2.  (R ⋈a=b S) ⋈c=d T ≣R ⋈a=b (S ⋈c=d T)?

3.  σa=b (R X S) ≣ R ⋈a=b S?

CS 525 Notes 11 - Physical Optimization 18

Equi-Join Equivalences

•  (R ⋈a=b S) ⋈c=d T ≣ R ⋈a=b (S ⋈c=d T)

–  What if c is attribute of R?

(R ⋈a=b S) ⋈c=d T ≣ R ⋈a=b∧c=d (S X T)

•  σa=b (R X S) ≣ R ⋈a=b S?

–  Only useful if a is from R and S from b (vice-
versa)

CS 525 Notes 11 - Physical Optimization 19

Why Cross-Products are bad

•  We discussed efficient join algorithms

– Merge-join O(n) resp. O(n log(n))

– Vs. Nested-loop O(n2)

•  R X S

– Result size is O(n2)

• Cannot be better than O(n2)

– Surprise, surprise: merge-join doesn’t work

 no need to sort, but degrades to nested loop

CS 525 Notes 11 - Physical Optimization 20

Agenda

•  Given some query

– How to enumerate all plans?

•  Try to avoid cross-products

•  Need way to figure out if equivalences
can be applied

– Data structure: Join Graph

CS 525 Notes 11 - Physical Optimization 21

Join Graph

•  Assumptions

– Only equi-joins (a = b)

• a and b are either constants or attributes

– Only conjunctive join conditions (AND)

CS 525 Notes 11 - Physical Optimization 22

Join Graph

•  Nodes: Relations R1, … , Rn of query

•  Edges: Join conditions

– Add edge between Ri and Rj labeled with C

•  if there is a join condition C

• That equates an attribute from Ri with an
attribute from Rj

– Add a self-edge to Ri for each simple

predicate

CS 525 Notes 11 - Physical Optimization 23

Join Graph Example

CS 525 Notes 11 - Physical Optimization 24

SELECT e.name!

FROM Employee e, !

 EmpDep ed, !

 Department d !

WHERE e.name = ed.emp " !

!AND ed.dep = d.dep!

"AND d.dep = ‘CS’ !

Department

EmpDep

Employee

Join Graph Example

CS 525 Notes 11 - Physical Optimization 25

SELECT e.name!

FROM Employee e, !

 EmpDep ed, !

 Department d !

WHERE e.name = ed.emp " !

!AND ed.dep = d.dep!

"AND d.dep = ‘CS’ !

Department

EmpDep

Employee

name=emp

dep=dep

dep=‘CS’

Notes on Join Graph

•  Join Graph tells us in which ways we
can join without using cross products

•  However, …

– Only if transitivity is considered

CS 525 Notes 11 - Physical Optimization 26

R S T
a=b b=c

a=c

Join Graph Shapes

CS 525 Notes 11 - Physical Optimization 27

Chain queries
Star queries Tree queries

Cycle queries Clique queries

Join Graph Shapes

CS 525 Notes 11 - Physical Optimization 28

Chain queries

SELECT * !

FROM R,S,T !

WHERE R.a = S.b!

!AND S.c = T.d!

Join Graph Shapes

CS 525 Notes 11 - Physical Optimization 29

Star queries

SELECT * !

FROM R,S,T,U !

WHERE R.a = S.a!

!AND R.b = T.b!

"AND R.c = U.c"

Join Graph Shapes

CS 525 Notes 11 - Physical Optimization 30

Tree queries

SELECT * !

FROM R,S,T,U,V !

WHERE R.a = S.a!

!AND R.b = T.b!

"AND T.c = U.c!

!AND T.d = V.d"

Join Graph Shapes

CS 525 Notes 11 - Physical Optimization 31

Cycle queries

SELECT * !

FROM R,S,T !

WHERE R.a = S.a!

!AND S.b = T.b!

"AND T.c = R.c!

Join Graph Shapes

CS 525 Notes 11 - Physical Optimization 32

Clique queries

SELECT * !

FROM R,S,T !

WHERE R.a = S.a!

!AND S.b = T.b!

"AND T.c = R.c!

How many join orders?

•  Assumption

– Use cross products (can freely reorder)

– Joins are binary operations

• Two inputs

• Each input either join result or relation access

CS 525 Notes 11 - Physical Optimization 33

How many join orders?
•  Example 3 relations R,S,T

– 12 orders

CS 525 Notes 11 - Physical Optimization 34

⋈

⋈

R S

T ⋈

⋈

S R

T ⋈

⋈

R T

S ⋈

⋈

S T

R ⋈

⋈

T R

S ⋈

⋈

T S

R

⋈

⋈

S T

R ⋈

⋈

R T

S ⋈

⋈

T S

R ⋈

⋈

T R

S ⋈

⋈

R S

T ⋈

⋈

S R

T

How many join orders?

•  A join over n+1 relations requires n binary joins

•  The root of the join tree joins k with n – k – 1 join

operators (0 <= k <= n-1)

CS 525 Notes 11 - Physical Optimization 35

⋈

k joins n – k - 1 joins

How many join orders?

•  This are the Catalan numbers

Cn = ΣCk x Cn-k-1
 = (2n)! / (n+1)!n!

C0 = 1

CS 525 Notes 11 - Physical Optimization 36

k=0

n-1

How many join orders?

•  This are the Catalan numbers

•  For each such tree we can permute the
input relations (n+1)! Permutations

(2n)! / (n+1)!n! * (n+1)! = (2n)!/n!

CS 525 Notes 11 - Physical Optimization 37

How many join orders?

CS 525 Notes 11 - Physical Optimization 38

#relations #join trees

2 2

3 12

4 120

5 1,680

6 30,240

7 665,280

8 17,297,280

9 17,643,225,600

10 670,442,572,800

11 28,158,588,057,600

How many join orders?

•  If for each join we consider k join
algorithms then for n relations we have

– Multiply with a factor kn-1

•  Example consider

– Nested loop

– Merge

– Hash

CS 525 Notes 11 - Physical Optimization 39

How many join orders?

CS 525 Notes 11 - Physical Optimization 40

#relations #join trees

2 6

3 108

4 3240

5 136,080

6 7,348,320

7 484,989,120

8 37,829,151,360

9 115,757,203,161,600

10 13,196,321,160,422,400

11 1,662,736,466,213,222,400

Too many join orders?

•  Even if costing is cheap

– Unrealistic assumption 1 CPU cycle

– Realistic are thousands or millions of

instructions

•  Cost all join options for 11 relations

– 3GHz CPU, 8 cores

– 69,280,686 sec > 2 years

CS 525 Notes 11 - Physical Optimization 41

How to deal with excessive
number of combinations?

•  Prune parts based on optimality

– Dynamic programming

– A*-search

•  Only consider certain types of join trees

– Left-deep, Right-deep, zig-zag, bushy

•  Heuristic and random algorithms

CS 525 Notes 11 - Physical Optimization 42

Dynamic Programming

•  Assumption: Principle of Optimality

– To compute the global optimal plan it is
only necessary to consider the optimal

solutions for its sub-queries

•  Does this assumption hold?

– Depends on cost-function

CS 525 Notes 11 - Physical Optimization 43

What is dynamic
programming?

•  Recall data structures and algorithms 101!

•  Consider a Divide-and-Conquer problem

–  Solutions for a problem of size n can be build from

solutions for sub-problems of smaller size (e.g.,
n/2 or n-1)

•  Memoize

–  Store solutions for sub-problems

–  -> Each solution has to be only computed once

–  -> Needs extra memory

CS 525 Notes 11 - Physical Optimization 44

Example Fibonacci Numbers

•  F(n) = F(n-1) + F(n-2)

•  F(0) = F(1) = 1

CS 525 Notes 11 - Physical Optimization 45

Fib(n) !
{ !

"if (n = 0) return 0 !
"else if (n = 1) return 1 !
"else return Fib(n-1) + Fib(n-2) !

} !

Example Fibonacci Numbers

CS 525 Notes 11 - Physical Optimization 46

F(4)

F(3) F(2)

F(2) F(1) F(1) F(0)

F(1) F(0)

Complexity

•  Number of calls

– C(n) = C(n-1) + C(n-2) + 1 = Fib(n+2)

– O(2n)

CS 525 Notes 11 - Physical Optimization 47

Using dynamic programming

CS 525 Notes 11 - Physical Optimization 48

Fib(n) !
{ !

"int[] fib; !
"fib[0] = 1; !
"fib[1] = 1; !

!

"for(i = 2; i < n; i++) !
" "fib[i] = fib[i-1] + fib[i-2] !

!

"return fib[n]; !
} !

Example Fibonacci Numbers

CS 525 Notes 11 - Physical Optimization 49

F(4)

F(3)

F(2)

F(1) F(0)

What do we gain?

•  O(n) instead of O(2n)

CS 525 Notes 11 - Physical Optimization 50

Dynamic Programming for
Join Enumeration

•  Find cheapest plan for n-relation join in
n passes

•  For each i in 1 … n

– Construct solutions of size i from best

solutions of size < i

CS 525 Notes 11 - Physical Optimization 51

DP Join Enumeration

CS 525 Notes 11 - Physical Optimization 52

optPlan ← Map({R},{plan}) !
"

find_join_dp(q(R1,…,Rn)) !
{ !
 for i=1 to n !
 optPlan[{Ri}] ← access_paths(Ri) !
 for i=2 to n !
 foreach S ⊆ {R1,…,Rn} with |S|=i !
 optPlan[S] ← ∅!
 foreach O ⊂ S with O ≠ ∅!
 optPlan[S] ← optPlan[S] ∪ !
 possible_joins(optPlan(O), optPlan(S\O)) !
 prune_plans(optPlan[S]) !
 return optPlan[{R1,…,Rn}]!
} !

Dynamic Programming for
Join Enumeration

• access_paths (R) !
– Find cheapest access path for relation R

• possible_joins(plan, plan) !
– Enumerate all joins (merge, NL, …)

variants between the input plans

• prune_plans({plan}) !
– Only keep cheapest plan from input set

CS 525 Notes 11 - Physical Optimization 53

DP-JE Complexity

•  Time: O(3n)

•  Space: O(2n)

•  Still to much for large number of joins
(10-20)

CS 525 Notes 11 - Physical Optimization 54

+left
+ zig-zag
+right

Types of join trees

CS 525 Notes 11 - Physical Optimization 55

⋈

⋈

R T

S

⋈

U

⋈

⋈

R T

S

⋈

U

⋈

⋈

S R

T

⋈

U
⋈ ⋈

R T S

⋈

U

Left-deep zig-zag bushy Right-deep

Number of Join-Trees

•  Number of join trees for n relations

•  Left-deep: n!

•  Right-deep: n!

•  Zig-zag: 2n-2n!

CS 525 Notes 11 - Physical Optimization 56

How many join orders?

CS 525 Notes 11 - Physical Optimization 57

#relations #bushy join trees #left-deep join trees

2 2 2

3 12 6

4 120 24

5 1,680 120

6 30,240 720

7 665,280 5040

8 17,297,280 40,230

9 17,643,225,600 362,880

10 670,442,572,800 3,628,800

11 28,158,588,057,600 39,916,800

DP with Left-deep trees only

•  Reduced search-space

•  Each join is with input relation

–  ->can use index joins

–  ->easy to pipe-line

•  DP with left-deep plans was introduced
by system R, the first relational
database developed by IBM Research

CS 525 Notes 11 - Physical Optimization 58

⋈

⋈

R T

S

⋈

U

Revisiting the assumption

•  Is it really sufficient to only look at the
best plan for every sub-query?

•  Cost of merge join depends whether the
input is already sorted

–  -> A sub-optimal plan may produce results
ordered in a way that reduces cost of

joining above

– Keep track of interesting orders

CS 525 Notes 11 - Physical Optimization 59

Interesting Orders

•  Number of interesting orders is usually
small

•  ->Extend DP join enumeration to keep
track of interesting orders

– Determine interesting orders

– For each sub-query store best-plan for
each interesting order

CS 525 Notes 11 - Physical Optimization 60

Example Interesting Orders

CS 525 Notes 11 - Physical Optimization 61

⋈

⋈

R S

T

Left-deep best plans: 3-way {R,S,T}

Left-deep best plans: 2-way

{R,S}

⋈

R S

{R,T}

⋈

R T

{S,T}

⋈

T S

HJ HJ HJ

⋈

⋈

R T

S ⋈

⋈

T S

R
HJ HJ HJ

HJ HJ HJ

Example Interesting Orders

CS 525 Notes 11 - Physical Optimization 62

⋈

⋈

R S

T

Left-deep best plans: 3-way {R,S,T}

Left-deep best plans: 2-way

{R,S}

⋈

R S

{R,T}

⋈

R T

{S,T}

⋈

T S

HJ HJ HJ

⋈

⋈

R T

S ⋈

⋈

T S

R
HJ HJ HJ

HJ HJ HJ

⋈

R S

MJ

Not best

⋈

⋈

R S

T
MJ

MJ

best

Greedy Join Enumeration

•  Heuristic method

– Not guaranteed that best plan is found

•  Start from single relation plans

•  In each iteration greedily join to plans
with the minimal cost

•  Until a plan for the whole query has
been generated

CS 525 Notes 11 - Physical Optimization 63

Greedy Join Enumeration

CS 525 Notes 11 - Physical Optimization 64

plans ← list({plan}) !
"

find_join_dp(q(R1,…,Rn)) !
{ !
 for i=1 to n !
 plans ← plans ∪ access_paths(Ri) !
 for i=n to 2 !
 cheapest = argminj,k∊{1,…,n} (cost(Pj ⋈ Pk)) !

 plans ← plans \ {Pj,Pk} ∪ {Pj ⋈ Pk} !
 return plans // single plan left!
} !

Greedy Join Enumeration

•  Time: O(n3)

– Loop iterations: O(n)

–  In each iterations looking of pairs of plans

in of max size n: O(n2)

•  Space: O(n2)

– Needed to store the current list of plans

CS 525 Notes 11 - Physical Optimization 65

Randomized Join-Algorithms

•  Iterative improvement

•  Simulated annealing

•  Tabu-search

•  Genetic algorithms

CS 525 Notes 11 - Physical Optimization 66

Transformative Approach

•  Start from (random) complete solutions

•  Apply transformations to generate new
solutions

– Direct application of equivalences

• Commutativity

• Associativity

– Combined equivalences

• E.g., (R ⋈ S) ⋈ T ≣ T ⋈ (S ⋈ R)

CS 525 Notes 11 - Physical Optimization 67

Concern about Transformative
Approach

•  Need to be able to generate random
plans fast

•  Need to be able to apply
transformations fast

– Trade-off: space covered by
transformations vs. number and complexity

of transformation rules

CS 525 Notes 11 - Physical Optimization 68

Iterative Improvement

CS 525 Notes 11 - Physical Optimization 69

improve(q(R1,…,Rn)) !
{ !
 best ← random_plan(q) !
 while (not reached time limit) !
 curplan ← random_plan(q) !
 do !"

 !prevplan ← curplan!
 curplan ← apply_random_trans (prevplan) "
 while (cost(curplan) < cost(prevplan)) !
 if (cost(prevplan) < cost(best) !
 best ← prevplan!
 return best !
} !

Iterative Improvement

•  Easy to get stuck in local minimum

•  Idea: Allow transformations that result
in more expensive plans with the hope
to move out of local minima

–  ->Simulated Annealing

CS 525 Notes 11 - Physical Optimization 70

Simulated Annealing

CS 525 Notes 11 - Physical Optimization 71

SA(q(R1,…,Rn)) !
{ !
 best ← random_plan(q) !
 curplan ← best !
 t ← tinit // “temperature”!
 while (t > 0) !
 newplan ← apply_random_trans(curplan) !
 if cost(newplan) < cost(curplan) !"

 !curplan ← newplan!
 else if random() < e-(cost(newplan)-cost(curplan))/t !

 curplan ← newplan!

 if (cost(curplan) < cost(best) !
 best ← curplan!

 reduce(t)!
 return best !
} !

Simulated Annealing

CS 525 Notes 11 - Physical Optimization 72

SA(q(R1,…,Rn)) !
{ !
 best ← random_plan(q) !
 curplan ← best !
 t ← tinit // “temperature”!
 while (t > 0) !
 newplan ← apply_random_trans(curplan) !
 if cost(newplan) < cost(curplan) !"

 !curplan ← newplan!
 else if random() < e-(cost(newplan)-cost(curplan))/t !

 curplan ← newplan!

 if (cost(curplan) < cost(best) !
 best ← curplan!

 reduce(t)!
 return best !
} !

Until “cooled down” !

Reduce !
Chance !
To “jump” !

Probability to !
Take “bad” plan !
Based on temp. !

Genetic Algorithms

•  Represent solutions as sequences
(strings) = genome

•  Start with random population of
solutions

•  Iterations = Generations

– Mutation = random changes to genomes

– Cross-over = Mixing two genomes

CS 525 Notes 11 - Physical Optimization 73

Genetic Join Enumeration for
Left-deep Plans

•  A left-deep plan can be represented as
a permutation of the relations

– Represent each relation by a number

– E.g., encode this tree as “1243”

CS 525 Notes 11 - Physical Optimization 74

⋈

⋈

R1
R2

R4

⋈

R3

Mutation

•  Switch random two random positions

•  Is applied with a certain fixed
probability

•  E.g., “1342” -> “4312”

CS 525 Notes 11 - Physical Optimization 75

Cross-over

•  Sub-set exchange

– For two solutions find subsequence

• equals length with the same set of relations

– Exchange these subsequences

•  Example

– J1 = “5632478” and J2 = “5674328”

– Generate J’ = “5643278”

CS 525 Notes 11 - Physical Optimization 76

Survival of the fittest

•  Probability of survival determined by
rank within the current population

•  Compute ranks based on costs of
solutions

•  Assign Probabilities based on rank

– Higher rank -> higher probability to survive

•  Roll a dice for each solution

CS 525 Notes 11 - Physical Optimization 77

Genetic Join Enumeration

•  Create an initial population P random plans

•  Apply crossover and mutation with a fixed
rate

–  E.g., crossover 65%, mutation 5%

•  Apply selection until size is again P

•  Stop once no improvement for at least X
iterations

CS 525 Notes 11 - Physical Optimization 78

Comparison Randomized Join
Enumeration

•  Iterative Improvement

–  Towards local minima (easy to get stuck)

•  Simulated Annealing

–  Probability to “jump” out of local minima

•  Genetic Algorithms

–  Random transformation

–  Mixing solutions (crossover)

–  Probabilistic chance to keep solution based on cost

CS 525 Notes 11 - Physical Optimization 79

Join Enumeration Recap

•  Hard problem

– Large problem size

• Want to reduce search space

– Large cost differences between solutions

• Want to consider many solution to increase

chance to find a good one.

CS 525 Notes 11 - Physical Optimization 80

Join Enumeration Recap

•  Tip of the iceberg

– More algorithms

– Combinations of algorithms

– Different representation subspaces of the
problem

– Cross-products / no cross-products

– …

CS 525 Notes 11 - Physical Optimization 81

From Join-Enumeration to
Plan Enumeration

•  So far we only know how to reorder
joins

•  What about other operations?

•  What if the query does consist of
several SQL blocks?

•  What if we have nested subqueries?

CS 525 Notes 11 - Physical Optimization 82

CS 525 Notes 11 - Physical Optimization 83

parse

convert

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1,P2,…..}

{(P1,C1),(P2,C2)...}

Pi

 answer

SQL query

parse tree

logical query plan

improved l.q.p

l.q.p. +sizes

statistics

From Join-Enumeration to
Plan Enumeration

•  Lets reconsider the input to plan
enumeration!

– We briefly touched on Query graph

models

– We discussed briefly why relational algebra

is not sufficient

CS 525 Notes 11 - Physical Optimization 84

Query Graph Models

•  Represents an SQL query as query
blocks

– A query block corresponds to the an SQL

query block (SELECT FROM WHERE …)

– Data type/operator/function information

• Needed for execution and optimization
decisions

– Structured in a way suited for optimization

CS 525 Notes 11 - Physical Optimization 85

QGM example

SELECT name, city !

FROM !

"(SELECT * !

"FROM person) AS p, !

"(SELECT * !

"FROM address) AS a !

WHERE p.addrId = a.id!

CS 525 Notes 11 - Physical Optimization 86

Postgres Example
{QUERY

 :commandType 1

 :querySource 0

 :canSetTag true

 :utilityStmt <>

 :resultRelation 0

 :intoClause <>

 :hasAggs false

 :hasSubLinks false

 :rtable (

 {RTE

 :alias

 {ALIAS

 :aliasname p

 :colnames <>

 }

 :eref

 {ALIAS

 :aliasname p

 :colnames ("name" "addrid")

 }

 :rtekind 1

 :subquery

 {QUERY

 :commandType 1

 :querySource 0

 :canSetTag true

…

CS 525 Notes 11 - Physical Optimization 87

How to enumerate plans for a
QGM query

•  Recall the correspondence between SQL
query blocks and algebra expressions!

•  If block is (A)SPJ

– Determine join order

– Decide which aggregation to use (if any)

•  If block is set operation

– Determine order

CS 525 Notes 11 - Physical Optimization 88

More than one query block

•  Recursive create plans for subqueries

– Start with leaf blocks

•  Consider our example

– Even if blocks are only SPJ we would not

consider reordering of joins across blocks

–  -> try to “pull up” subqueries before

optimization

CS 525 Notes 11 - Physical Optimization 89

Subquery Pull-up

SELECT name, city !

FROM !

"(SELECT * !

"FROM person) AS p, !

"(SELECT * !

"FROM address) AS a !

WHERE p.addrId = a.id!

CS 525 Notes 11 - Physical Optimization 90

SELECT name, city !

FROM !

"person p, !

"address a !

WHERE p.addrId = a.id!

Parameterized Queries

•  Problem

– Repeated executed of similar queries

•  Example

– Webshop

– Typical operation: Retrieve product with all
user comments for that product

– Same query modulo product id

CS 525 Notes 11 - Physical Optimization 91

Parameterized Queries

•  Naïve approach

– Optimize each version individually

– Execute each version individually

•  Materialized View

– Store common parts of the query

–  -> Optimizing a query with materialized
views

–  -> Separate topic not covered here

CS 525 Notes 11 - Physical Optimization 92

Caching Query Plans

•  Caching Query Plans

– Optimize query once

– Adapt plan for specific instances

– Assumption: varying values do not effect
optimization decisions

– Weaker Assumption: Additional cost of

“bad” plan less than cost of repeated
planning

CS 525 Notes 11 - Physical Optimization 93

Parameterized Queries

•  How to represent varying parts of a
query

– Parameters

– Query planned with parameters assumed
to be unknown

– For execution replace parameters with
concrete values

CS 525 Notes 11 - Physical Optimization 94

PREPARE statement

•  In SQL

– PREPARE name (parameters) AS
query !

– EXECUTE name (parameters)

CS 525 Notes 11 - Physical Optimization 95

Nested Subqueries

CS 525 Notes 11 - Physical Optimization 96

SELECT name !

FROM person p !

WHERE EXISTS (SELECT newspaper !

" " FROM hasRead h !

" " WHERE h.name = p.name "

" " AND h.newspaper = ‘Tribune’) !

How to evaluate nested
subquery?

•  If no correlations:

– Execute once and cache results

•  For correlations:

– Create plan for query with parameters

•  -> called nested iteration

CS 525 Notes 11 - Physical Optimization 97

Nested Iteration - Correlated

CS 525 Notes 11 - Physical Optimization 98

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
 qt ← q’(t) // parameterize q’ with values from t !
 result’ ← execute (qt) "
 evaluate_nested_condition (t,result’)"

Nested Iteration -
Uncorrelated

CS 525 Notes 11 - Physical Optimization 99

q ← outer query !
q’ ← inner query !
result ← execute(q) !
result’ ← execute (qt) "
foreach tuple t in result !
 evaluate_nested_condition (t,result’)"

Nested Iteration - Example

CS 525 Notes 11 - Physical Optimization 100

SELECT name !

FROM person p !

WHERE EXISTS (SELECT newspaper !

" " FROM hasRead h !

" " WHERE h.name = p.name " "!

 AND h.newspaper = ‘Tribune’) !

name gender

Alice female

Bob male

Joe male

name newspaper

Alice Tribune

Alice Courier

Joe Courier

person hasRead

Nested Iteration - Example

CS 525 Notes 11 - Physical Optimization 101

name gender

Alice female

Bob male

Joe male

name newspaper

Alice Tribune

Alice Courier

Joe Courier

person hasRead

SELECT newspaper !

FROM hasRead h !

WHERE h.name = p.name !

 AND h.newspaper
" = ‘Tribune’) !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
 qt ← q’(t) !
 result’ ← execute (qt) "
 evaluate_nested_condition (t,result’)"

Nested Iteration - Example

CS 525 Notes 11 - Physical Optimization 102

name gender

Alice female

Bob male

Joe male

name newspaper

Alice Tribune

Alice Courier

Joe Courier

person hasRead

SELECT newspaper !

FROM hasRead h !

WHERE h.name = ‘Alice’!

 AND h.newspaper
" = ‘Tribune’) !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
 qt ← q’(t) !
 result’ ← execute (qt) "
 evaluate_nested_condition (t,result’)"

Nested Iteration - Example

CS 525 Notes 11 - Physical Optimization 103

name gender

Alice female

Bob male

Joe male

name newspaper

Alice Tribune

Alice Courier

Joe Courier

person hasRead

SELECT newspaper !

FROM hasRead h !

WHERE h.name = p.name !

 AND h.newspaper
" = ‘Tribune’) !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
 qt ← q’(t) !
 result’ ← execute (qt) "
 evaluate_nested_condition (t,result’)"

newspaper

Tribune

result’

Nested Iteration - Example

CS 525 Notes 11 - Physical Optimization 104

name gender

Alice female

Bob male

Joe male

name newspaper

Alice Tribune

Alice Courier

Joe Courier

person hasRead

EXISTS evaluates to
true! !

!

Output(Alice) !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
 qt ← q’(t) !
 result’ ← execute (qt) "
 evaluate_nested_condition (t,result’)"

newspaper

Tribune

result’

Nested Iteration - Example

CS 525 Notes 11 - Physical Optimization 105

name gender

Alice female

Bob male

Joe male

name newspaper

Alice Tribune

Alice Courier

Joe Courier

person hasRead

Empty result set ->
EXISTS evaluates to
false !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
 qt ← q’(t) !
 result’ ← execute (qt) "
 evaluate_nested_condition (t,result’)"

newspaper

result’

Nested Iteration - Example

CS 525 Notes 11 - Physical Optimization 106

name gender

Alice female

Bob male

Joe male

name newspaper

Alice Tribune

Alice Courier

Joe Courier

person hasRead

Empty result set ->
EXISTS evaluates to
false !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
 qt ← q’(t) !
 result’ ← execute (qt) "
 evaluate_nested_condition (t,result’)"

newspaper

result’

Nested Iteration - Discussion

•  Repeated evaluation of nested subquery

–  If correlated

–  Improve:

• Plan once and substitute parameters

• EXISTS: stop processing after first result

•  IN/ANY: stop after first match

•  No optimization across nesting
boundaries

CS 525 Notes 11 - Physical Optimization 107

Unnesting and Decorrelation

•  Apply equivalences to transform nested
subqueries into joins

•  Unnesting:

– Turn a nested subquery into a join

•  Decorrelation:

– Turn correlations into join expressions

CS 525 Notes 11 - Physical Optimization 108

Equivalences

•  Classify types of nesting

•  Equivalence rules will have
preconditions

•  Can be applied heuristically before plan
enumeration or using a transformative

approach

CS 525 Notes 11 - Physical Optimization 109

N-type Nesting

•  Properties

– Expression ANY comparison (or IN)!

– No Correlations

– Nested query does not use aggregation

•  Example

CS 525 Notes 11 - Physical Optimization 110

SELECT name !

FROM orders o!

WHERE o.cust IN (SELECT cId!

" " FROM customer !

" " WHERE region = ‘USA’) !

A-type Nesting

•  Properties

– Expression is ANY comparison (or scalar)

– No Correlations

– Nested query uses aggregation

– No Group By

•  Example

CS 525 Notes 11 - Physical Optimization 111

SELECT name !

FROM orders o!

WHERE o.amount = (SELECT max(amount) !

" " FROM orders i) !

J-type Nesting

•  Properties

– Expression is ANY comparison (IN)

– Nested query uses equality comparison

with correlated attribute

– No aggregation in nested query

•  Example

CS 525 Notes 11 - Physical Optimization 112

SELECT name !

FROM orders o !

WHERE o.amount IN (SELECT amount !

" " FROM orders i !

" " WHERE i.cust = o.cust !

 AND i.shop = ‘New York’) !

JA-type Nesting
•  Properties

– Expression equality comparison

– Nested query uses equality comparison

with correlated attribute

– Nested query uses aggregation and no
GROUP BY

•  Example

CS 525 Notes 11 - Physical Optimization 113

SELECT name !

FROM orders o !

WHERE o.amount = (SELECT max(amount) !

" " FROM orders i !

" " WHERE i.cust = o.cust) !

Unnesting A-type

•  Move nested query to FROM clause

•  Turn nested condition (op ANY, IN) into
op with result attribute of nested query

CS 525 Notes 11 - Physical Optimization 114

Unnesting N/J-type

•  Move nested query to FROM clause

•  Add DISTINCT to SELECT clause of
nested query

•  Turn equality comparison with
correlated attributes into join conditions

•  Turn nested condition (op ANY, IN) into
op with result attribute of nested query

CS 525 Notes 11 - Physical Optimization 115

Example

1.  To FROM
clause

2.  Add

DISTINCT

3.  Correlation

to join

4.  Nesting
condition to
join

CS 525 Notes 11 - Physical Optimization 116

SELECT name !

FROM orders o !

WHERE o.amount IN (SELECT amount !

" " FROM orders i !

" " WHERE i.cust = o.cust !

 AND i.shop = ‘New York’) !

SELECT name !

FROM orders o, !

 (SELECT amount !

 FROM orders i !

 WHERE i.cust = o.cust !

 AND i.shop = ‘New York’) AS sub !

Example

1.  To FROM
clause

2.  Add

DISTINCT

3.  Correlation

to join

4.  Nesting
condition to
join

CS 525 Notes 11 - Physical Optimization 117

SELECT name !

FROM orders o !

WHERE o.amount IN (SELECT amount !

" " FROM orders i !

" " WHERE i.cust = o.cust !

 AND i.shop = ‘New York’) !

SELECT name !

FROM orders o, !

 (SELECT DISTINCT amount !

 FROM orders i !

 WHERE i.cust = o.cust !

 AND i.shop = ‘New York’) AS sub !

Example

1.  To FROM
clause

2.  Add

DISTINCT

3.  Correlation

to join

4.  Nesting
condition to
join

CS 525 Notes 11 - Physical Optimization 118

SELECT name !

FROM orders o !

WHERE o.amount IN (SELECT amount !

" " FROM orders i !

" " WHERE i.cust = o.cust !

 AND i.shop = ‘New York’) !

SELECT name !

FROM orders o, !

 (SELECT DISTINCT amount, cust!

 FROM orders i !

 WHERE i.shop = ‘New York’) AS sub !

WHERE sub.cust = o.cust !

Example

1.  To FROM
clause

2.  Add

DISTINCT

3.  Correlation

to join

4.  Nesting
condition to
join

CS 525 Notes 11 - Physical Optimization 119

SELECT name !

FROM orders o !

WHERE o.amount IN (SELECT amount !

" " FROM orders i !

" " WHERE i.cust = o.cust !

 AND i.shop = ‘New York’) !

SELECT name !

FROM orders o, !

 (SELECT DISTINCT amount, cust!

 FROM orders i !

 WHERE i.shop = ‘New York’) AS sub !

WHERE sub.cust = o.cust!

 AND o.amount = sub.amount!

Unnesting JA-type

•  Move nested query to FROM clause

•  Turn equality comparison with
correlated attributes into

– GROUP BY

– Join conditions

•  Turn nested condition (op ANY, IN) into
op with result attribute of nested query

CS 525 Notes 11 - Physical Optimization 120

Example

1.  To FROM
clause

2.  Introduce

GROUP BY
and join
conditions

3.  Nesting

condition to
join

CS 525 Notes 11 - Physical Optimization 121

SELECT name !

FROM orders o !

WHERE o.amount = (SELECT max(amount) !

" " FROM orders i !

" " WHERE i.cust = o.cust) !

SELECT name !

FROM orders o, !

 (SELECT max(amount) !

 FROM orders I !

 WHERE i.cust = o.cust) sub !

Example

1.  To FROM
clause

2.  Introduce

GROUP BY
and join
conditions

3.  Nesting

condition to
join

CS 525 Notes 11 - Physical Optimization 122

SELECT name !

FROM orders o !

WHERE o.amount = (SELECT max(amount) !

" " FROM orders i !

" " WHERE i.cust = o.cust) !

SELECT name !

FROM orders o, !

 (SELECT max(amount) AS ma, i.cust!

 FROM orders i !

 GROUP BY i.cust) sub !

WHERE i.cust = sub.cust!

Example

1.  To FROM
clause

2.  Introduce

GROUP BY
and join
conditions

3.  Nesting

condition to
join

CS 525 Notes 11 - Physical Optimization 123

SELECT name !

FROM orders o !

WHERE o.amount = (SELECT max(amount) !

" " FROM orders i !

" " WHERE i.cust = o.cust) !

SELECT name !

FROM orders o, !

 (SELECT max(amount) AS ma, i.cust!

 FROM orders i !

 GROUP BY i.cust) sub !

WHERE sub.cust = o.cust!

 AND o.amount = sub.ma!

Unnesting Benefits Example
•  N(orders) =

1,000,000

•  V(cust,orders) =
10,000

•  S(orders) =

 1/10 block

CS 525 Notes 11 - Physical Optimization 124

SELECT name !

FROM orders o !

WHERE o.amount = (SELECT max(amount) !

" " FROM orders i !

" " WHERE i.cust = o.cust) !

SELECT name !

FROM orders o, !

 (SELECT max(amount) AS ma, i.cust!

 FROM orders i !

 GROUP BY i.cust) sub !

WHERE sub.cust = o.cust!

 AND o.amount = sub.ma!

CS 525 Notes 11 - Physical Optimization 125

SELECT name !

FROM orders o !

WHERE o.amount = (SELECT max(amount) !

" " FROM orders i !

" " WHERE i.cust = o.cust) !

•  Inner query:

–  One scan B(orders) = 100,000 I/Os

•  Outer query:

–  One scan B(orders) = 100,000 I/Os

–  1,000,000 tuples

•  Total cost: 1,000,001 x 100,000=~ 1011 I/Os

•  N(orders) = 1,000,000

•  V(cust,orders) = 10,000

•  S(orders) = 1/10 block

•  M = 10,000

•  N(orders) = 1,000,000

•  V(cust,orders) = 10,000

•  S(orders) = 1/10 block

•  M = 10,000

CS 525 Notes 11 - Physical Optimization 126

•  Inner queries:

–  One scan B(orders) = 100,000 I/Os

•  1,000,000 result tuples

–  Aggregation: Sort (assume 1 pass) = 3 x 100,000 =

300,000 I/Os

•  10,000 result tuples -> + 1,000 pages to write to disk

•  The join: use merge – join during merge

–  3 x (1,000 + 100,000) I/Os = 303,000 I/Os

•  Total cost: 604,000 I/Os

SELECT name !

FROM orders o, !

 (SELECT max(amount) AS ma, i.cust!

 FROM orders i !

 GROUP BY i.cust) sub !

WHERE sub.cust = o.cust!

 AND o.amount = sub.ma!

CS 525 Notes 12 - Transaction
Management

1

CS 525: Advanced Database
Organization

12: Transaction
Management

Boris Glavic

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

Concurrency and Recovery

• DBMS should enable multiple
clients to access the database
concurrently
– This can lead to problems with correctness

of data because of interleaving of
operations from different clients

–  ->System should ensure correctness
(concurrency control)

CS 525 Notes 12 - Transaction
Management

2

Concurrency and Recovery

• DBMS should enable reestablish
correctness of data in the presence
of failures
–  ->System should restore a correct state

after failure (recovery)

CS 525 Notes 12 - Transaction
Management

3

CS 525 Notes 12 - Transaction
Management

4

Integrity or correctness of data

•  Would like data to be accurate or
 correct at all times

 EMP Name

White
Green
Gray

Age

52
3421

1

CS 525 Notes 12 - Transaction
Management

5

Integrity or consistency constraints

•  Predicates data must satisfy

•  Examples:

- x is key of relation R

- x → y holds in R

- Domain(x) = {Red, Blue, Green}

- α is valid index for attribute x of R

- no employee should make more than

 twice the average salary

CS 525 Notes 12 - Transaction
Management

6

Definition:

•  Consistent state: satisfies all constraints

•  Consistent DB: DB in consistent state

CS 525 Notes 12 - Transaction
Management

7

Constraints (as we use here) may
 not capture full correctness

Example 1 Transaction constraints

•  When salary is updated,

 new salary > old salary

•  When account record is deleted,

 balance = 0

CS 525 Notes 12 - Transaction
Management

8

Note: could be emulated by simple
 constraints, e.g.,

 account Acct # …. balance deleted?

CS 525 Notes 12 - Transaction
Management

9

Example 2 Database should reflect
 real world

DB
Reality

Constraints (as we use here) may
 not capture full correctness

CS 525 Notes 12 - Transaction
Management

10

in any case, continue with constraints...

Observation: DB cannot be consistent
 always!

Example: a1 + a2 +…. an = TOT (constraint)

 Deposit $100 in a2: a2 ← a2 + 100

 TOT ← TOT + 100

CS 525 Notes 12 - Transaction
Management

11

 a2

 TOT

.

.

50

.

.

1000

.

.

150

.

.

1000

.

.

150

.

.

1100

Example: a1 + a2 +…. an = TOT (constraint)

 Deposit $100 in a2: a2 ← a2 + 100

 TOT ← TOT + 100

Transactions

• Transaction: Sequence of
operations executed by one
concurrent client that preserve
consistency

CS 525 Notes 12 - Transaction
Management

12

CS 525 Notes 12 - Transaction
Management

13

Transaction: collection of actions
 that preserve consistency

Consistent DB Consistent DB’ T

CS 525 Notes 12 - Transaction
Management

14

Big assumption:

If T starts with consistent state +

 T executes in isolation

⇒ T leaves consistent state

CS 525 Notes 12 - Transaction
Management

15

Correctness (informally)

•  If we stop running transactions,
 DB left consistent

•  Each transaction sees a consistent DB

Transactions - ACID
•  Atomicity

–  Either all or no commands of transaction are executed
(their changes are persisted in the DB)

•  Consistency

–  After transaction DB is consistent (if before consistent)

•  Isolation

–  Transactions are running isolated from each other

•  Durability

–  Modifications of transactions are never lost

CS 525 Notes 12 - Transaction
Management

16

CS 525 Notes 12 - Transaction
Management

17

How can constraints be violated?

•  Transaction bug

•  DBMS bug

•  Hardware failure

 e.g., disk crash alters balance of account

•  Data sharing

 e.g.: T1: give 10% raise to programmers

 T2: change programmers ⇒ systems analysts

CS 525 Notes 12 - Transaction
Management

18

How can we prevent/fix violations?

• Part 13 (Recovery):

– due to failures

• Part 14 (Concurrency Control):

– due to data sharing

CS 525 Notes 12 - Transaction
Management

19

Will not consider:

•  How to write correct transactions

•  How to write correct DBMS

•  Constraint checking & repair

 That is, solutions studied here do not need

 to know constraints

CS 525 Notes 12 - Transaction
Management

20

Data Items:

•  Data Item / Database Object / …

•  Abstraction that will come in handy
when talking about concurrency control
and recovery

•  Data Item could be

– Table, Row, Page, Attribute value

CS 525 Notes 12 - Transaction
Management

21

Operations:

•  Input (x): block containing x → memory

•  Output (x): block containing x → disk

CS 525 Notes 12 - Transaction
Management

22

Operations:

•  Input (x): block containing x → memory

•  Output (x): block containing x → disk

•  Read (x,t): do input(x) if necessary
 t ← value of x in block

•  Write (x,t): do input(x) if necessary
 value of x in block ← t

CS 525 Notes 12 - Transaction
Management

23

Key problem Unfinished transaction
 (Atomicity)

Example Constraint: A=B

 T1: A ← A × 2

 B ← B × 2

CS 525 Notes 12 - Transaction
Management

24

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8

B: 8

memory disk

CS 525 Notes 12 - Transaction
Management

25

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8

B: 8

memory disk

16
16

CS 525 Notes 12 - Transaction
Management

26

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8

B: 8

memory disk

16
16

16

failure!

Transactions in SQL

•  BEGIN WORK

– Start new transaction

– Often implicit

•  COMMIT

– Finish and make all modifications of
transactions persistent

•  ABORT/ROLLBACK

– Finish and undo all changes of transaction

CS 525 Notes 12 - Transaction
Management

27

Example
BEGIN WORK; !

 UPDATE accounts !

 SET bal = bal + 40 !

 WHERE acc = 10; !

!

!

!

!

 UPDATE accounts !

 SET bal = bal - 40 !

 WHERE acc = 9; !

COMMIT; !

CS 525 Notes 12 - Transaction
Management

28

BEGIN WORK; !

 UPDATE accounts !

 SET bal = bal * 1.05; !

COMMIT; !

time

Example
BEGIN WORK; !

 UPDATE accounts !

 SET bal = bal + 40 !

 WHERE acc = 10; !

!

!

!

!

 UPDATE accounts !

 SET bal = bal - 40 !

 WHERE acc = 9; !

COMMIT; !

CS 525 Notes 12 - Transaction
Management

29

BEGIN WORK; !

 UPDATE accounts !

 SET bal = bal * 1.05; !

COMMIT; !

time Bank customer
transfers money
from account 9
to account 10

Example
BEGIN WORK; !

 UPDATE accounts !

 SET bal = bal + 40 !

 WHERE acc = 10; !

!

!

!

!

 UPDATE accounts !

 SET bal = bal - 40 !

 WHERE acc = 9; !

COMMIT; !

CS 525 Notes 12 - Transaction
Management

30

BEGIN WORK; !

 UPDATE accounts !

 SET bal = bal * 1.05; !

COMMIT; !

time Bank adds interest
to all accounts

BEGIN WORK; !

 UPDATE accounts !

 SET bal = bal + 40 !

 WHERE acc = 10; !

!

!

!

!

 UPDATE accounts !

 SET bal = bal - 40 !

 WHERE acc = 9; !

COMMIT; !

CS 525 Notes 12 - Transaction
Management

31

BEGIN WORK; !

 UPDATE accounts !

 SET bal = bal * 1.05; !

COMMIT; !

time

Potential Problems:
1.  Transactions are interrupted
•  No reduction in bal of acc 9
•  Only some accounts got

interest
2.  Interleaving of Transaction
•  Acc 9 too much interest

(before 40 has been
deducted)

Modeling Transactions and
their Interleaving

•  Transaction is sequence of operations

– read: ri(x) = transaction i read item x

– write: wi(x) = transaction i wrote item x

– commit: ci = transaction i committed

– abort: ai =transaction i aborted

CS 525 Notes 12 - Transaction
Management

32

BEGIN WORK; !

 UPDATE accounts !

 SET bal = bal + 40 !

 WHERE acc = 10; !

!

!

!

!

 UPDATE accounts !

 SET bal = bal - 40 !

 WHERE acc = 9; !

COMMIT; !

CS 525 Notes 12 - Transaction
Management

33

time

T1 = r1(a10), w1(a10), r1(a9), w1(a9), c1 !

BEGIN WORK; !

 UPDATE accounts !

 SET bal = bal + 40 !

 WHERE acc = 10; !

!

!

!

!

 UPDATE accounts !

 SET bal = bal - 40 !

 WHERE acc = 9; !

COMMIT; !

CS 525 Notes 12 - Transaction
Management

34

BEGIN WORK; !

 UPDATE accounts !

 SET bal = bal * 1.05; !

COMMIT; !

time

T1=r1(a10),w1(a10),r1(a9),w1(a9),c1 !

T2=r2(a1),w2(a1),r2(a2),w2(a2),r2(a9),w2(a9),r2(a10),w2(a10),c1 !

Assume we have accounts:
a1,a2,a9,a10

Schedules
•  A schedule S for a set of transactions

T = {T1, …, Tn} is an partial order over
operations of T so that

– S contains a prefix of the operations of
each Ti

– Operations of Ti appear in the same order
in S as in Ti

– For any two conflicting operations they are
ordered

CS 525 Notes 12 - Transaction
Management

35

Note
•  For simplicity: We often assume that

the schedule is a total order

CS 525 Notes 12 - Transaction
Management

36

How to model execution
order?

•  Schedules model the order of the
execution for operations of a set of
transactions

CS 525 Notes 12 - Transaction
Management

37

Conflicting Operations

•  Two operations are conflicting if

– At least one of them is a write

– Both are accessing the same data item

•  Intuition

– The order of execution for conflicting
operations can influence result!

CS 525 Notes 12 - Transaction
Management

38

Conflicting Operations

•  Examples

– w1(X), r2(X) are conflicting

– w1(X), w2(Y) are not conflicting

–  r1(X), r2(X) are not conflicting

– w1(X), w1(X) are not conflicting

CS 525 Notes 12 - Transaction
Management

39

Complete Schedules = History
•  A schedule S for T is complete if it

contains all operations from each
transaction in T

•  We will call complete schedules
histories

CS 525 Notes 12 - Transaction
Management

40

CS 525 Notes 12 - Transaction
Management

41

time

T1=r1(a10),w1(a10),r1(a9),w1(a9),c1 !

T2=r2(a1),w2(a1),r2(a2),w2(a2),r2(a9),w2(a9),r2(a10),w2(a10),c1 !

Complete Schedule

Incomplete Schedule

Not a Schedule

S=r2(a1),r1(a10),w2(a1),r2(a2),w1(a10),w2(a2),r2(a9),w2(a9),
r1(a9),w1(a9),c1 r2(a10),w2(a10),c1 !

S=r2(a1),r1(a10),w2(a1),w1(a10) !

S=r2(a1),r1(a10),c1 !

CS 525 Notes 12 - Transaction
Management

42

time

T1=r1(a10),w1(a10),r1(a9),w1(a9),c1 !

T2=r2(a1),w2(a1),r2(a2),w2(a2),r2(a9),w2(a9),r2(a10),w2(a10),c1 !

Conflicting operations

S1 = … w2(a1) … w1(a10) !

S2 = … w1(a1) … w2(a10) !

•  Conflicting operations w1(a10) and w2(a10) !

•  Order of these operations determines value of a10 !
•  S1 and S2 do not generate the same result

Why Schedules?
•  Study properties of different execution

orders

– Easy/Possible to recover after failure

–  Isolation

–  -> preserve ACID properties

•  Classes of schedules and protocols to
guarantee that only “good” schedules
are produced

CS 525 Notes 12 - Transaction
Management

43

CS 525 Notes 13 - Failure and Recovery 1

CS 525: Advanced Database
Organization

13: Failure and
Recovery
Boris Glavic

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 13 - Failure and Recovery 2

Now

• Crash recovery

CS 525 Notes 13 - Failure and Recovery 3

Correctness (informally)

•  If we stop running transactions,
 DB left consistent

•  Each transaction sees a consistent DB

CS 525 Notes 13 - Failure and Recovery 4

How can constraints be violated?

•  Transaction bug

•  DBMS bug

•  Hardware failure

 e.g., disk crash alters balance of account

•  Data sharing

 e.g.: T1: give 10% raise to programmers

 T2: change programmers ⇒ systems analysts

CS 525 Notes 13 - Failure and Recovery 5

Recovery

•  First order of business:
 Failure Model

CS 525 Notes 13 - Failure and Recovery 6

Events Desired

 Undesired Expected

 Unexpected

CS 525 Notes 13 - Failure and Recovery 7

Our failure model

 processor

memory disk

CPU

M D

CS 525 Notes 13 - Failure and Recovery 8

Desired events: see product manuals….

Undesired expected events:

 System crash

 - memory lost

 - cpu halts, resets

CS 525 Notes 13 - Failure and Recovery 9

Desired events: see product manuals….

Undesired expected events:

 System crash

 - memory lost

 - cpu halts, resets

Undesired Unexpected: Everything else!

that’s it!!

CS 525 Notes 13 - Failure and Recovery 10

Examples:

•  Disk data is lost

•  Memory lost without CPU halt

•  CPU implodes wiping out universe….

Undesired Unexpected: Everything else!

CS 525 Notes 13 - Failure and Recovery 11

Is this model reasonable?

Approach: Add low level checks +
 redundancy to increase

 probability model holds

E.g., Replicate disk storage (stable store)

 Memory parity

 CPU checks

CS 525 Notes 13 - Failure and Recovery 12

Second order of business:

Storage hierarchy

Memory Disk

DB Buffer

x x

CS 525 Notes 13 - Failure and Recovery 13

Operations:

•  Input (x): block containing x → memory

•  Output (x): block containing x → disk

CS 525 Notes 13 - Failure and Recovery 14

Operations:

•  Input (x): block containing x → memory

•  Output (x): block containing x → disk

•  Read (x,t): do input(x) if necessary
 t ← value of x in block

•  Write (x,t): do input(x) if necessary
 value of x in block ← t

CS 525 Notes 13 - Failure and Recovery 15

Key problem Unfinished transaction

Example Constraint: A=B

 T1: A ← A × 2

 B ← B × 2

CS 525 Notes 13 - Failure and Recovery 16

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8

B: 8

memory disk

CS 525 Notes 13 - Failure and Recovery 17

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8

B: 8

memory disk

16
16

CS 525 Notes 13 - Failure and Recovery 18

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8

B: 8

memory disk

16
16

16

failure!

CS 525 Notes 13 - Failure and Recovery 19

•  Need atomicity:

– execute all actions of a transaction or
none at all

How to restore consistent
state after crash?

•  Desired state after recovery:

–  Changes of committed transactions are reflected
on disk

–  Changes of unfinished transactions are not
reflected on disk

•  After crash we need to

–  Undo changes of unfinished transactions that
have been written to disk

–  Redo changes of finished transactions that have
not been written to disk

CS 525 Notes 13 - Failure and Recovery 20

How to restore consistent
state after crash?

•  After crash we need to

–  Undo changes of unfinished transactions that
have been written to disk

–  Redo changes of finished transactions that have
not been written to disk

•  We need to either

–  Store additional data to be able to Undo/Redo

–  Avoid ending up in situations where we need to
Undo/Redo

CS 525 Notes 13 - Failure and Recovery 21

CS 525 Notes 13 - Failure and Recovery 22

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8

B: 8

memory disk

16

failure!

T1 is unfinished
-> need to undo the
write to A to recover
to consistent state

Logging

•  After crash need to

– Undo

– Redo

•  We need to know

– Which operations have been executed

– Which operations are reflected on disk

•  ->Log upfront what is to be done

CS 525 Notes 13 - Failure and Recovery 23

Buffer Replacement Revisited

•  Now we are interested in knowing how
buffer replacement influences recovery!

CS 525 Notes 13 - Failure and Recovery 24

Buffer Replacement Revisited

•  Steal: all pages with fix count = 0 are
replacement candidates

– Smaller buffer requirements

•  No steal: pages that have been
modified by active transaction -> not
considered for replacement

– No need to undo operations of unfinished

transactions after failure

CS 525 Notes 13 - Failure and Recovery 25

Buffer Replacement Revisited

•  Force: Pages modified by transaction
are flushed to disk at end of transaction

– No redo required

•  No force: modified (dirty) pages are
allowed to remain in buffer after end of
transaction

– Less repeated writes of same page

CS 525 Notes 13 - Failure and Recovery 26

Effects of Buffer Replacement

CS 525 Notes 13 - Failure and Recovery 27

force No force

No steal
•  No Undo
•  No Redo

•  No Undo
•  Redo

steal
•  Undo
•  No Redo

•  Redo
•  Undo

Schedules and Recovery

•  Are there certain schedules that are
easy/hard/impossible to recover from?

CS 525 Notes 13 - Failure and Recovery 28

Recoverable Schedules

•  We should never have to rollback an already
committed transaction (D in ACID)

•  Recoverable (RC) schedules require that

–  A transaction does not commit before every
transaction that is has read from has committed

–  A transaction T reads from another transaction T’
if it reads an item X that has last been written by
T’ and T’ has not aborted before the read

CS 525 Notes 13 - Failure and Recovery 29

CS 525 Notes 12 - Transaction
Management

30

T1 = w1(X),c1 !

T2 = r2(X),w2(X),c2 !

Recoverable (RC) Schedule

S1 = w1(X),r2(X),w2(X),c1,c2 !

S2 = w1(X),r2(X),w2(X),c2,c1 !

Nonrecoverable Schedule

Cascading Abort

•  Transaction T has written an item that is later
read by T’ and T aborts after that

–  we have to also abort T’ because the value it read
is no longer valid anymore

–  This is called a cascading abort

–  Cascading aborts are complex and should be
avoided

CS 525 Notes 13 - Failure and Recovery 31

S = … w1(X) … r2(X) … a1!

Cascadeless Schedules

•  Cascadeless (CL) schedules guarantee that
there are no cascading aborts

–  Transactions only read values written by already
committed transactions

CS 525 Notes 13 - Failure and Recovery 32

CS 525 Notes 12 - Transaction
Management

33

T1 = w1(X),c1 !

T2 = r2(X),w2(X),c2 !

Recoverable (RC) Schedule

S2 = w1(X),r2(X),w2(X),c1,c2 !

S3 = w1(X),r2(X),w2(X),c2,c1 !

Nonrecoverable Schedule

Cascadeless (CL) Schedule

S1 = w1(X),c1,r2(X),w2(X),c2 !

CS 525 Notes 12 - Transaction
Management

34

T1 = w1(X),a1 !

T2 = r2(X),w2(X),c2 !

Recoverable (RC) Schedule

S2 = w1(X),r2(X),w2(X),a1,a2 !

S3 = w1(X),r2(X),w2(X),c2,a1 !

Nonrecoverable Schedule

Cascadeless (CL) Schedule

S1 = w1(X),a1,r2(X),w2(X),c2 !

Consider what
happens if T1
aborts!

Strict Schedules

•  Strict (ST) schedules guarantee that to
Undo the effect of an transaction we simply
have to undo each of its writes

–  Transactions do not read nor write items written
by uncommitted transactions

CS 525 Notes 13 - Failure and Recovery 35

CS 525 Notes 12 - Transaction
Management

36

T1 = w1(X),c1 !

T2 = r2(X),w2(X),c2 !

Recoverable (RC) Schedule

S2 = w1(X),r2(X),w2(X),c1,c2 !

S3 = w1(X),r2(X),w2(X),c2,c1 !

Nonrecoverable Schedule

Cascadeless (CL) + Strict Schedule (ST)

S1 = w1(X),c1,r2(X),w2(X),c2 !

Compare Classes

ST ⊂ CL ⊂ RC ⊂ ALL

CS 525 Notes 13 - Failure and Recovery 37

CS 525 Notes 13 - Failure and Recovery 38

Strict
schedules

Cascadeless schedules

Recoverable schedules

All schedules

Logging and Recovery

•  We now discuss approaches for logging
and how to use them in recovery

CS 525 Notes 13 - Failure and Recovery 39

CS 525 Notes 13 - Failure and Recovery 40

One solution: undo logging (immediate

 modification)

due to: Hansel and Gretel, 782 AD

CS 525 Notes 13 - Failure and Recovery 41

One solution: undo logging (immediate

 modification)

due to: Hansel and Gretel, 782 AD

•  Improved in 784 AD to durable

 undo logging

CS 525 Notes 13 - Failure and Recovery 42

T1: Read (A,t); t ← t×2 A=B
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

CS 525 Notes 13 - Failure and Recovery 43

T1: Read (A,t); t ← t×2 A=B
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

CS 525 Notes 13 - Failure and Recovery 44

T1: Read (A,t); t ← t×2 A=B
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>

CS 525 Notes 13 - Failure and Recovery 45

T1: Read (A,t); t ← t×2 A=B
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>

16

CS 525 Notes 13 - Failure and Recovery 46

T1: Read (A,t); t ← t×2 A=B
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>

16

CS 525 Notes 13 - Failure and Recovery 47

One complication

•  Log is first written in memory

•  Not written to disk on every action

 memory

 DB

 Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

CS 525 Notes 13 - Failure and Recovery 48

One complication

•  Log is first written in memory

•  Not written to disk on every action

 memory

 DB

 Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

16
BAD STATE

1

CS 525 Notes 13 - Failure and Recovery 49

One complication

•  Log is first written in memory

•  Not written to disk on every action

 memory

 DB

 Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16
BAD STATE

2

<T1, B, 8>
<T1, commit>

..
.

CS 525 Notes 13 - Failure and Recovery 50

Undo logging rules

(1) For every action generate undo log
 record (containing old value)

(2) Before x is modified on disk, log
 records pertaining to x must be

 on disk (write ahead logging: WAL)

(3) Before commit is flushed to log, all
 writes of transaction must be

 reflected on disk

CS 525 Notes 13 - Failure and Recovery 51

Recovery rules: Undo logging

•  For every Ti with <Ti, start> in log:
 - If <Ti,commit> or <Ti,abort>

 in log, do nothing
 - Else For all <Ti, X, v> in log:

 write (X, v)

 output (X)

 Write <Ti, abort> to log

CS 525 Notes 13 - Failure and Recovery 52

Recovery rules: Undo logging

•  For every Ti with <Ti, start> in log:
 - If <Ti,commit> or <Ti,abort>

 in log, do nothing
 - Else For all <Ti, X, v> in log:

 write (X, v)

 output (X)

 Write <Ti, abort> to log

➽IS THIS CORRECT??

CS 525 Notes 13 - Failure and Recovery 53

Recovery rules: Undo logging

(1) Let S = set of transactions with
 <Ti, start> in log, but no

 <Ti, commit> (or <Ti, abort>) record in log

(2) For each <Ti, X, v> in log,

 in reverse order (latest → earliest) do:

 - if Ti ∈ S then - write (X, v)

 - output (X)

(3) For each Ti ∈ S do

 - write <Ti, abort> to log

CS 525 Notes 13 - Failure and Recovery 54

Question

•  Can writes of <Ti, abort> records
be done in any order (in Step 3)?

– Example: T1 and T2 both write A

– T1 executed before T2

– T1 and T2 both rolled-back

– <T1, abort> written but NOT <T2, abort>?

– <T2, abort> written but NOT <T1, abort>?

T1 write A T2 write A
time/log

CS 525 Notes 13 - Failure and Recovery 55

What if failure during recovery?

 No problem! ✏ Undo idempotent

•  An operation is called idempotent
if the number of times it is applied
do not effect the result

•  For Undo:
•  Undo(log) = Undo(Undo(…

(Undo(log)) …))

Undo is idempotent

•  We store the values of data items
before the operation

•  Undo can be executed repeatedly
without changing effects

–  idempotent

CS 525 Notes 13 - Failure and Recovery 56

Physical vs. Logical Logging
•  How to represent values in log entries?

•  Physical logging

– Content of pages before and after

•  Logical operations

– Operation to execute for undo/redo

• E.g., delete record x

•  Hybrid (Physiological)

– Delete record x from page y

CS 525 Notes 13 - Failure and Recovery 57

CS 525 Notes 13 - Failure and Recovery 58

To discuss:

•  Redo logging

•  Undo/redo logging, why both?

•  Real world actions

•  Checkpoints

•  Media failures

CS 525 Notes 13 - Failure and Recovery 59

Redo logging (deferred modification)

T1: Read(A,t); t t×2; write (A,t);

 Read(B,t); t t×2; write (B,t);

 Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

CS 525 Notes 13 - Failure and Recovery 60

Redo logging (deferred modification)

T1: Read(A,t); t t×2; write (A,t);

 Read(B,t); t t×2; write (B,t);

 Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

CS 525 Notes 13 - Failure and Recovery 61

Redo logging (deferred modification)

T1: Read(A,t); t t×2; write (A,t);

 Read(B,t); t t×2; write (B,t);

 Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

output

16
16

CS 525 Notes 13 - Failure and Recovery 62

Redo logging (deferred modification)

T1: Read(A,t); t t×2; write (A,t);

 Read(B,t); t t×2; write (B,t);

 Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

<T1, end>

output

16
16

CS 525 Notes 13 - Failure and Recovery 63

Redo logging rules

(1) For every action, generate redo log

 record (containing new value)

(2) Before X is modified on disk (DB),
 all log records for transaction that
 modified X (including commit) must

 be on disk

(3) Flush log at commit

(4) Write END record after DB updates
 flushed to disk

CS 525 Notes 13 - Failure and Recovery 64

•  For every Ti with <Ti, commit> in log:

– For all <Ti, X, v> in log:

 Write(X, v)

 Output(X)

Recovery rules: Redo logging

CS 525 Notes 13 - Failure and Recovery 65

•  For every Ti with <Ti, commit> in log:

– For all <Ti, X, v> in log:

 Write(X, v)

 Output(X)

Recovery rules: Redo logging

➽IS THIS CORRECT??

CS 525 Notes 13 - Failure and Recovery 66

(1) Let S = set of transactions with
<Ti, commit> (and no <Ti, end>) in log

(2) For each <Ti, X, v> in log, in forward

 order (earliest → latest) do:

 - if Ti ∈ S then Write(X, v)

 Output(X)

(3) For each Ti ∈ S, write <Ti, end>

Recovery rules: Redo logging

Crash During Redo

•  Since Redo log contains values after
writes, repeated application of a log
entry does not change result

–  ->idempotent

CS 525 Notes 13 - Failure and Recovery 67

CS 525 Notes 13 - Failure and Recovery 68

Combining <Ti, end> Records

•  Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

CS 525 Notes 13 - Failure and Recovery 69

Combining <Ti, end> Records

•  Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

combined <end> (checkpoint)

CS 525 Notes 13 - Failure and Recovery 70

Solution: Checkpoint

Periodically:

(1) Do not accept new transactions

(2) Wait until all transactions finish

(3) Flush all log records to disk (log)

(4) Flush all buffers to disk (DB) (do not discard buffers)

(5) Write checkpoint record on disk (log)

(6) Resume transaction processing

•  no <ti, end> actions>
• simple checkpoint

CS 525 Notes 13 - Failure and Recovery 71

Example: what to do at recovery?

Redo log (disk):

<
T
1
,A

,1
6
>

 <
T
1
,c

o
m

m
it
>

C
h
e
ck

p
o
in

t

<
T
2
,B

,1
7
>

 <
T
2
,c

o
m

m
it
>

<
T
3
,C

,2
1
>

Crash
...

Advantage of Checkpoints

•  Limits recovery to parts of the log after
the checkpoint

– Think about system that has been online

for months

•  ->Analyzing the whole log is too expensive!

•  Source of backups

–  If we backup checkpoints we can use them
for media recovery!

CS 525 Notes 13 - Failure and Recovery 72

Checkpoints Justification

•  Checkpoint should be consistent DB
state

– No active transactions

• Do not accept new transactions

• Wait until all transactions finish

– DB state reflected on disk

•  Flush log

•  Flush buffers

CS 525 Notes 13 - Failure and Recovery 73

CS 525 Notes 13 - Failure and Recovery 74

Key drawbacks:

•  Undo logging:

– cannot bring backup DB copies up to date

•  Redo logging:

– need to keep all modified blocks in memory

until commit

CS 525 Notes 13 - Failure and Recovery 75

Solution: undo/redo logging!

Update ⇒ <Ti, Xid, New X val, Old X val>

page X

CS 525 Notes 13 - Failure and Recovery 76

Rules

•  Page X can be flushed before or
 after Ti commit

•  Log record flushed before
corresponding updated page (WAL)

•  Flush at commit (log only)

CS 525 Notes 13 - Failure and Recovery 77

Example: Undo/Redo logging
 what to do at recovery?

log (disk):

<
ch

e
ck

p
o
in

t>

 <
T
1
,
A
,
1
0
,
1
5
>

 <
T
1
,
B
,
2
0
,
2
3
>

<
T
1
,
co

m
m

it
>

 <
T
2
,
C
,
3
0
,
3
8
>

 <
T
2
,
D

,
4
0
,
4
1
>

Crash
...

Checkpoint Cost

•  Checkpoints are expensive

– No new transactions can start

– A lot of I/O

•  Flushing the log

•  Flushing dirty buffer pages

CS 525 Notes 13 - Failure and Recovery 78

CS 525 Notes 13 - Failure and Recovery 79

Non-quiesce checkpoint

L
O
G

 for

 undo dirty buffer
 pool pages
 flushed

Start-ckpt
active TR:
Ti,T2,...

end
ckpt

...

..
.

CS 525 Notes 13 - Failure and Recovery 80

Examples what to do at recovery time?

 no T1 commit

L
O
G

T1,-
a

...
Ckpt
T1

...
Ckpt
end

...
T1-
b

...

CS 525 Notes 13 - Failure and Recovery 81

Examples what to do at recovery time?

 no T1 commit

L
O
G

T1,-
a

...
Ckpt
T1

...
Ckpt
end

...
T1-
b

...

➽ Undo T1 (undo a,b)

CS 525 Notes 13 - Failure and Recovery 82

Example

L
O
G

...
T1
a

... ...
T1
b

... ...
T1
c

...
T1

cmt
...

ckpt-
end

ckpt-s
T1

CS 525 Notes 13 - Failure and Recovery 83

Example

L
O
G

...
T1
a

... ...
T1
b

... ...
T1
c

...
T1

cmt
...

ckpt-
end

ckpt-s
T1

➽ Redo T1: (redo b,c)

CS 525 Notes 13 - Failure and Recovery 84

Recover From Valid Checkpoint:

...
ckpt
start

... ...
T1
b

... ...
T1
c

...
ckpt-
start

ckpt
end

L
O
G

start
of latest
valid
checkpoint

CS 525 Notes 13 - Failure and Recovery 85

Recovery process:

•  Backwards pass (end of log ➜ latest valid checkpoint start)

–  construct set S of committed transactions

–  undo actions of transactions not in S

•  Undo pending transactions

–  follow undo chains for transactions in
 (checkpoint active list) - S

•  Forward pass (latest checkpoint start ➜ end of log)

–  redo actions of S transactions

backward pass

forward pass
start

check-
point

CS 525 Notes 13 - Failure and Recovery 86

Real world actions

E.g., dispense cash at ATM

 Ti = a1 a2 …... aj …... an

$

CS 525 Notes 13 - Failure and Recovery 87

Solution

(1) execute real-world actions after commit

(2) try to make idempotent

CS 525 Notes 13 - Failure and Recovery 88

 ATM

Give$$

(amt, Tid, time)

$

give(amt)

lastTid:

time:

CS 525 Notes 13 - Failure and Recovery 89

Media failure (loss of non-volatile
 storage)

A: 16

CS 525 Notes 13 - Failure and Recovery 90

Media failure (loss of non-volatile
 storage)

A: 16

Solution: Make copies of data!

CS 525 Notes 13 - Failure and Recovery 91

Example 1 Triple modular redundancy

•  Keep 3 copies on separate disks

•  Output(X) --> three outputs

•  Input(X) --> three inputs + vote

X1 X2 X3

CS 525 Notes 13 - Failure and Recovery 92

Example #2 Redundant writes,
 Single reads

•  Keep N copies on separate disks

•  Output(X) --> N outputs

•  Input(X) --> Input one copy
 - if ok, done

 - else try another one

➳ Assumes bad data can be detected

CS 525 Notes 13 - Failure and Recovery 93

Example #3: DB Dump + Log

backup
database

active
database

log

•  If active database is lost,
–  restore active database from backup
–  bring up-to-date using redo entries in log

CS 525 Notes 13 - Failure and Recovery 94

When can log be discarded?

check-
point

db
dump

last
needed
undo

not needed for
media recovery redo

not needed for undo
after system failure

not needed for
redo after system failure

log

time

last
needed
undo

not needed for
media recovery

Practical Recovery with ARIES

•  ARIES

– Algorithms for Recovery and Isolation
Exploiting Semantics

•  Implemented in, e.g.,

– DB2

– MSSQL

CS 525 Notes 13 - Failure and Recovery 95

Underlying Ideas

•  Keep track of state of pages by relating them to
entries in the log

•  WAL

•  Recovery in three phases
–  Analysis, Redo, Undo

•  Log entries to track state of Undo for repeated
failures

•  Redo: page-oriented -> efficient

•  Undo: logical -> permits higher level of concurrency

CS 525 Notes 13 - Failure and Recovery 96

Log Entry Structure

•  LSN

– Log sequence number

– Order of entries in the log

– Usually log file id and offset for direct
access

CS 525 Notes 13 - Failure and Recovery 97

•  LSN

•  Entry type

–  Update, compensation, commit, …

•  TID
–  Transaction identifier

•  PrevLSN

–  LSN of previous log record for same transaction

•  UndoNxtLSN

–  Next undo operation for CLR (later!)

•  Undo/Redo data
–  Data needed to undo/redo the update

CS 525 Notes 13 - Failure and Recovery 98

Page Header Additions

•  PageLSN

– LSN of the last update that modified the
page

– Used to know which changes have been
applied to a page

CS 525 Notes 13 - Failure and Recovery 99

Forward Processing

•  Normal operations when no ROLLBACK is
required

–  WAL: write redo/undo log record for each action
of a transaction

•  Buffer manager has to ensure that

–  changes to pages are not persisted before the
corresponding log record has been persisted

–  Transactions are not considered committed before
all their log records have been flushed

CS 525 Notes 13 - Failure and Recovery 100

Dirty Page Table

•  PageLSN

– Entries <PageID,RecLSN>

– Whenever a page is first fixed in the buffer

pool with indention to modify

•  Insert <PageId,RecLSN> with RecLSN
being the current end of the log

– Flushing a page removes it from the Dirty
page table

CS 525 Notes 13 - Failure and Recovery 101

Dirty Page Table

•  Used for checkpointing

•  Used for recovery to figure out what to
redo

CS 525 Notes 13 - Failure and Recovery 102

Transaction Table

•  TransID
–  Identifier of the transaction

•  State

–  Commit state

•  LastLSN

–  LSN of the last update of the transaction

•  UndoNxtLSN
–  If last log entry is a CLR then UndoNxtLSN from that record

–  Otherwise = LastLSN

CS 525 Notes 13 - Failure and Recovery 103

CS 525 Notes 13 - Failure and Recovery 104

A: 16
B: 16

13
…
<13,U,2,10,-,-A=3+A=16>

disk buffer

T1=r1(A),A=A*2,w1(A) !

Page_LSN:

LSN of last
modification to page

Persistent
log

Transaction Table:

<1, U, -, ->

Dirty Page Table:

CS 525 Notes 13 - Failure and Recovery 105

A: 16
B: 16

13
…
<13,U,2,10,-,-A=3+A=16>

Persistent
log

disk buffer

T1=r1(A),A=A*2,w1(A) !

A: 16
B: 16

13

Transaction Table:

<1, U, -, ->

Dirty Page Table:

<100, 14>

CS 525 Notes 13 - Failure and Recovery 106

A: 16
B: 16

13
…
<13,U,2,10,-,-A=3+A=16>

Persistent
log

disk buffer

T1=r1(A),A=A*2,w1(A) !

A: 16
B: 16

13

<14,U,1,-,-,-A=16+A=32>

Write log entry

Transaction Table:

<1, U, -, ->

Dirty Page Table:

<100, 14>

CS 525 Notes 13 - Failure and Recovery 107

A: 16
B: 16

13
…
<13,U,2,10,-,-A=3+A=16>

Persistent
log

disk buffer

T1=r1(A),A=A*2,w1(A) !

A: 32
B: 16

14

<14,U,1,-,-,-A=16+A=32>

Update page

Transaction Table:

<1, U, 14, 14>

Dirty Page Table:

<100, 14>

CS 525 Notes 13 - Failure and Recovery 108

A: 16
B: 16

13
…
<13,U,2,10,-,-A=3+A=16>

Persistent
log

disk buffer

T1=r1(A),A=A*2,w1(A) !

A: 32
B: 16

14

<14,U,1,-,-,-A=16+A=32>

2

1

Transaction Table:

<1, U, 14, 14>

Dirty Page Table:

<100, 14>
Can wait with
flushing page, but log
has to be flushed
first!

Undo during forward
processing

•  Transaction was rolled back

–  User aborted, aborted because of error, …

•  Need to undo operations of transaction

•  During Undo

–  Write log entries for every undo

–  Compensation Log Records (CLR)

–  Used to avoid repeated undo when failures occur

CS 525 Notes 13 - Failure and Recovery 109

Undo during forward processing

•  Starting with the LastLSN of transaction
from transaction table
–  Traverse log entries of transaction last to first

using PrevLSN pointers

–  For each log entry use undo information to undo
action

•  <LSN, Type, TID, PrevLSN, -, Undo/Redo data>

–  Before modifying data write an CLR that stores
redo-information for the undo operation

•  UndoNxtLSN = PrevLSN of log entry we are undoing

•  Redo data = How to redo the undo

CS 525 Notes 13 - Failure and Recovery 110

CS 525 Notes 13 - Failure and Recovery 111

buffer

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6>
<2,U,1,1,-,-B=10+B=5>

<3,U,1,2,-,-C=5+C=10>
<4,U,1,3,-,-A=6+A=4>

Undo T1

Transaction Table:

<1, U, 4, 4>

A: 4
B: 5

4

C: 10
D: 20

3

CS 525 Notes 13 - Failure and Recovery 112

buffer

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6>
<2,U,1,1,-,-B=10+B=5>

<3,U,1,2,-,-C=5+C=10>
<4,U,1,3,-,-A=6+A=4>

<5,CLR,1,-,3,+A=6>

Undo T1

Transaction Table:

<1, U, 5, 3>

A: 6
B: 5

5

C: 10
D: 20

3

CS 525 Notes 13 - Failure and Recovery 113

buffer

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6>
<2,U,1,1,-,-B=10+B=5>

<3,U,1,2,-,-C=5+C=10>
<4,U,1,3,-,-A=6+A=4>

<5,CLR,1,-,3,+A=6>
<6,CLR,1,-,2,+C=5>

Undo T1

Transaction Table:

<1, U, 6, 2>

A: 6
B: 5

5

C: 5
D: 20

6

CS 525 Notes 13 - Failure and Recovery 114

buffer

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6>
<2,U,1,1,-,-B=10+B=5>

<3,U,1,2,-,-C=5+C=10>
<4,U,1,3,-,-A=6+A=4>

<5,CLR,1,-,3,+A=6>
<6,CLR,1,-,2,+C=5>

<7,CLR,1,-,1,+B=10>

Undo T1

Transaction Table:

<1, U, 7, 1>

A: 6
B: 10

7

C: 5
D: 20

6

CS 525 Notes 13 - Failure and Recovery 115

buffer

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6>
<2,U,1,1,-,-B=10+B=5>

<3,U,1,2,-,-C=5+C=10>
<4,U,1,3,-,-A=6+A=4>

<5,CLR,1,-,3,+A=6>
<6,CLR,1,-,2,+C=5>

<7,CLR,1,-,1,+B=10>

<8,CLR,1,-,-,+A=3>

Undo T1

Transaction Table:

<1, U, 8, ->

A: 3
B: 10

8

C: 5
D: 20

6

Fuzzy Checkpointing in ARIES

•  Begin of checkpoint

– Write begin_cp log entry

– Write end_cp log entry with

• Dirty page table

• Transaction table

•  Master Record

– LSN of begin_cp log entry of last complete
checkpoint

CS 525 Notes 13 - Failure and Recovery 116

Restart Recovery

1.  Analysis Phase

2.  Redo Phase

3.  Undo Phase

CS 525 Notes 13 - Failure and Recovery 117

Analysis Phase

1) Determine LSN of last checkpoint
using Master Record

2) Get Dirty Page Table and Transaction
Table from checkpoint end record

3) RedoLSN = min(RecLSN) from Dirty
Page Table or checkpoint LSN if no dirty
page

CS 525 Notes 13 - Failure and Recovery 118

Analysis Phase

4) Scan log forward starting from
RedoLSN

•  Update log entry from transaction

–  If necessary: Add Page to Dirty Page Table

–  Add Transaction to Transaction Table or update
LastLSN

•  Transaction end entry

–  Remove transaction from Transaction Table

CS 525 Notes 13 - Failure and Recovery 119

Analysis Phase

•  Result

–  Transaction Table

•  Transactions to be later undone

–  RedoLSN

•  Log entry to start Redo Phase

–  Dirty Page Table

•  Pages that may not have been written back to
disk

CS 525 Notes 13 - Failure and Recovery 120

Redo Phase

•  Start at RedoLSN scan log forward

•  Unconditional Redo

– Even redo actions of transactions that will
be undone later

•  Only redo once

– Only redo operations that have not been
reflected on disk (PageLSN)

CS 525 Notes 13 - Failure and Recovery 121

Redo Phase

•  For each update log entry

–  If affected page is not in Dirty Page Table
or RecLSN > LSN

•  skip log entry

– Fix page in buffer

•  If PageLSN >= LSN then operation already
reflected on disk

–  Skip log entry

• Otherwise apply update

CS 525 Notes 13 - Failure and Recovery 122

Redo Phase

•  Result

– State of DB before Failure

CS 525 Notes 13 - Failure and Recovery 123

Undo Phase

•  Scan log backwards from end using
Transaction Table

– Repeatedly take log entry with max LSN

from all the current actions to be undone
for each transaction

• Write CLR

• Update Transaction Table

CS 525 Notes 13 - Failure and Recovery 124

Undo Phase

•  All unfinished transactions have been
rolled back

CS 525 Notes 13 - Failure and Recovery 125

Idempotence?

•  Redo

– We are not logging during Redo so
repeated Redo will result in the same state

•  Undo

–  If we see CLRs we do not undo this action
again

CS 525 Notes 13 - Failure and Recovery 126

Avoiding Repeated Work

•  Redo

–  If operation has been reflected on disk
(PageLSN) we do not need to redo it again

•  Undo

–  If we see CLRs we do not undo this action
again

CS 525 Notes 13 - Failure and Recovery 127

CS 525 Notes 13 - Failure and Recovery 128

T1 = w1(A), w1(B), w1(C), w1(A), c1 !

<1,begin(T1), ->
<2,begin(T2), ->

<3,write(A,T1),1>
<4,write(X,T2),2>

<5,write(B,T1),3>
<6,write(C,T1),5>

<7,write(A,T1),6>

<8,commit(T1),7>
<9,write(A,T2),4>

T2 = w1(X), r(A), w(A) !

Log

CS 525 Notes 13 - Failure and Recovery 129

T1 = w1(A), w1(B), w1(C), w1(A), c1 !

<1,begin(T1), ->
<2,begin(T2), ->

<3,write(A,T1),1>
<4,write(X,T2),2>

<5,write(B,T1),3>
<6,write(C,T1),5>

<7,write(A,T1),6>

<8,commit(T1),7>
<9,write(A,T2),4>

T2 = w1(X), r(A), w(A) !

Log
Analysis Phase:

 - start at log entry 1

 - add T1 to transaction table (rec. 1)

 - add T2 to transaction table (rec. 2)

 - add A to dirty page table (RecLSN 3)

 - add X to dirty page table (RecLSN 4)

 - add B to dirty page table (RecLSN 5)

 - add C to dirtypage table (RecLSN 6)

 - remove T1 from Transaction Table (rec. 8)

CS 525 Notes 13 - Failure and Recovery 130

T1 = w1(A), w1(B), w1(C), w1(A), c1 !

<1,begin(T1), ->
<2,begin(T2), ->

<3,write(A,T1),1>
<4,write(X,T2),2>

<5,write(B,T1),3>
<6,write(C,T1),5>

<7,write(A,T1),6>

<8,commit(T1),7>
<9,write(A,T2),4>

T2 = w1(X), r(A), w(A) !

Log
Analysis Phase Result:

 - Transaction Table:

 <T2, 9>

 - Dirty Page Table:

 <A, 3>, <B, 5>, <C, 6>, <X, 4>

 - RedoLSN = min(3,5,6,4) = 3

CS 525 Notes 13 - Failure and Recovery 131

T1 = w1(A), w1(B), w1(C), w1(A), c1 !

<1,begin(T1), ->
<2,begin(T2), ->

<3,write(A,T1),1>
<4,write(X,T2),2>

<5,write(B,T1),3>
<6,write(C,T1),5>

<7,write(A,T1),6>

<8,commit(T1),7>
<9,write(A,T2),4>

T2 = w1(X), r(A), w(A) !

Log
Redo Phase (RedoLSN 3):

 - Read A if PageLSN < 3 apply write

 - Read X if PageLSN < 4 apply write

 - Read B if PageLSN < 5 apply write

 - Read C if PageLSN < 6 apply write

 - Read A if PageLSN < 7 apply write

 - Read A if PageLSN < 9 apply write

CS 525 Notes 13 - Failure and Recovery 132

T1 = w1(A), w1(B), w1(C), w1(A), c1 !

<1,begin(T1), ->
<2,begin(T2), ->

<3,write(A,T1),1>
<4,write(X,T2),2>

<5,write(B,T1),3>
<6,write(C,T1),5>

<7,write(A,T1),6>

<8,commit(T1),7>
<9,write(A,T2),4>

<10,CLR(A,T2),4>

<11,CLR(X,T2),->

T2 = w1(X), r(A), w(A) !

Log
Undo Phase (T2):

 - Undo entry 9

 -write CLR with UndoNxtLSN = 4

 -modify page A

 - Undo entry 4

 -write CLR with UndoNxtLSN = 2

 -modify page X

 - Done

ARIES take away messages

•  Provide good performance by

–  Not requiring complete checkpoints

–  Linking of log records

–  Not restricting buffer operations (no-force/steal is
ok)

•  Logical Undo and Physical (Physiological)
Redo

•  Idempotent Redo and Undo

–  Avoid undoing the same operation twice

CS 525 Notes 13 - Failure and Recovery 133

Media Recovery

•  What if disks where log or DB is stored
failes

–  ->keep backups of log + DB state

CS 525 Notes 13 - Failure and Recovery 134

Log Backup

•  Split log into several files

•  Is append only, backup of old files
cannot interfere with current log
operations

CS 525 Notes 13 - Failure and Recovery 135

Backup DB state

•  Copy current DB state directly from disk

•  May be inconsistent

•  ->Use log to know which pages are up-
to-date and redo operations not yet
reflected

CS 525 Notes 13 - Failure and Recovery 136

CS 525 Notes 13 - Failure and Recovery 137

Summary

•  Consistency of data

•  One source of problems: failures

 - Logging

 - Redundancy

•  Another source of problems:
 Data Sharing..... next

CS 525 Notes 14 - Concurrency Control 1

CS 525: Advanced Database
Organization

14: Concurrency
 Control
Boris Glavic

Slides: adapted from a course taught by

Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 14 - Concurrency Control 2

Chapter 18 [18] Concurrency Control

 T1 T2 … Tn

DB
(consistency
constraints)

CS 525 Notes 14 - Concurrency Control 3

Example:

T1: Read(A) T2: Read(A)

 A ← A+100 A ← A×2

 Write(A) Write(A)

 Read(B) Read(B)

 B ← B+100 B ← B×2

 Write(B) Write(B)

Constraint: A=B

CS 525 Notes 14 - Concurrency Control 4

Schedule A

T1 T2

Read(A); A ← A+100

Write(A);

Read(B); B ← B+100;

Write(B);

 Read(A);A ← A×2;

 Write(A);

 Read(B);B ← B×2;

 Write(B);

CS 525 Notes 14 - Concurrency Control 5

Schedule A

T1 T2

Read(A); A ← A+100

Write(A);

Read(B); B ← B+100;

Write(B);

 Read(A);A ← A×2;

 Write(A);

 Read(B);B ← B×2;

 Write(B);

A B

25 25

125

 125

250

 250

250 250

CS 525 Notes 14 - Concurrency Control 6

Schedule B

T1 T2

 Read(A);A ← A×2;

 Write(A);

 Read(B);B ← B×2;

 Write(B);

Read(A); A ← A+100

Write(A);

Read(B); B ← B+100;

Write(B);

CS 525 Notes 14 - Concurrency Control 7

Schedule B

T1 T2

 Read(A);A ← A×2;

 Write(A);

 Read(B);B ← B×2;

 Write(B);

Read(A); A ← A+100

Write(A);

Read(B); B ← B+100;

Write(B);

A B

25 25

50

 50

150

 150

150 150

CS 525 Notes 14 - Concurrency Control 8

Schedule C

T1 T2

Read(A); A ← A+100

Write(A);

 Read(A);A ← A×2;

 Write(A);

Read(B); B ← B+100;

Write(B);

 Read(B);B ← B×2;

 Write(B);

CS 525 Notes 14 - Concurrency Control 9

Schedule C

T1 T2

Read(A); A ← A+100

Write(A);

 Read(A);A ← A×2;

 Write(A);

Read(B); B ← B+100;

Write(B);

 Read(B);B ← B×2;

 Write(B);

A B

25 25

125

250

 125

 250

250 250

CS 525 Notes 14 - Concurrency Control 10

Schedule D

T1 T2

Read(A); A ← A+100

Write(A);

 Read(A);A ← A×2;

 Write(A);

 Read(B);B ← B×2;

 Write(B);

Read(B); B ← B+100;

Write(B);

CS 525 Notes 14 - Concurrency Control 11

Schedule D

T1 T2

Read(A); A ← A+100

Write(A);

 Read(A);A ← A×2;

 Write(A);

 Read(B);B ← B×2;

 Write(B);

Read(B); B ← B+100;

Write(B);

A B

25 25

125

250

 50

 150

250 150

CS 525 Notes 14 - Concurrency Control 12

Schedule E

T1 T2

Read(A); A ← A+100

Write(A);

 Read(A);A ← A×1;

 Write(A);

 Read(B);B ← B×1;

 Write(B);

Read(B); B ← B+100;

Write(B);

Same as Schedule D
but with new T2

CS 525 Notes 14 - Concurrency Control 13

Schedule E

T1 T2

Read(A); A ← A+100

Write(A);

 Read(A);A ← A×1;

 Write(A);

 Read(B);B ← B×1;

 Write(B);

Read(B); B ← B+100;

Write(B);

A B

25 25

125

125

 25

 125

125 125

Same as Schedule D
but with new T2

Serial Schedules

•  As long as we do not execute
transactions in parallel and each
transaction does not violate the

constraints we are good

– All schedules with no interleaving of
transaction operations are called serial

schedules

CS 525 Notes 14 - Concurrency Control 14

Definition: Serial Schedule

•  No transactions are interleaved

– There exists no two operations from
transactions Ti and Tj so that both

operations are executed before either
transaction commits

CS 525 Notes 14 - Concurrency Control 15

CS 525 Notes 12 - Transaction
Management

16

T1 = r1(A),w1(A),r1(B),w1(B),c1 !

T2 = r2(A),w2(A),r2(B),w2(B),c2 !

Serial Schedule

S1 = r2(A),w2(A),r2(B),w2(B),c2,r1(A),w1(A),r1(B),w1(B),c1 !

S2 = r2(A),w2(A),r1(A),w1(A),r2(B),w2(B),c2,r1(B),w1(B),c1 !

!

Nonserial Schedule

Compare Classes

S ⊂ ST ⊂ CL ⊂ RC ⊂ ALL

CS 525 Notes 13 - Failure and Recovery 17

•  Abbreviations

– S = Serial

– ST = Strict

– CL = Cascadeless

– RC = Recoverable

– ALL = all possible schedules

CS 525 Notes 13 - Failure and Recovery 18

Strict (ST)

Cascadeless (CL)

Recoverable (RC)

All schedules (ALL)

Serial (S)

Why not serial schedules?

•  No concurrency!

CS 525 Notes 14 - Concurrency Control 19

CS 525 Notes 14 - Concurrency Control 20

•  Want schedules that are good ,
 regardless of

–  initial state and

–  transaction semantics

•  Only look at order of read and writes

Example:

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Outline
•  Since serial schedules have good

properties we would like our schedules
to behave like (be equivalent to) serial

schedules

1.  Need to define equivalence based solely
on order of operations

2.  Need to define class of schedules which is
equivalent to serial schedule

3.  Need to design scheduler that guarantees
that we only get these good schedules

CS 525 Notes 14 - Concurrency Control 21

CS 525 Notes 14 - Concurrency Control 22

Sc =r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

 T1 T2

Example:

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

CS 525 Notes 14 - Concurrency Control 23

However, for Sd:

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

•  as a matter of fact,

 T2 must precede T1

 in any equivalent schedule,

 i.e., T2 → T1

CS 525 Notes 14 - Concurrency Control 24

T1 T2 Sd cannot be rearranged

 into a serial schedule

 Sd is not equivalent to

 any serial schedule

 Sd is bad

•  T2 → T1

•  Also, T1 → T2

CS 525 Notes 14 - Concurrency Control 25

Returning to Sc

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

 T1 → T2 T1 → T2

CS 525 Notes 14 - Concurrency Control 26

Returning to Sc

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

 T1 → T2 T1 → T2

 no cycles ⇒ Sc is equivalent to a

 serial schedule

 (in this case T1,T2)

CS 525 Notes 14 - Concurrency Control 27

Concepts

Transaction: sequence of ri(x), wi(x) actions

Conflicting actions: r1(A) w2(A) w1(A)

 w2(A) r1(A) w2(A)

Schedule: represents chronological order
 in which actions are executed

Serial schedule: no interleaving of actions
 or transactions

CS 525 Notes 14 - Concurrency Control 28

What about concurrent actions?

Ti issues System Input(X) t ← x
read(x,t) issues completes
 input(x)

time

CS 525 Notes 14 - Concurrency Control 29

What about concurrent actions?

Ti issues System Input(X) t ← x
read(x,t) issues completes
 input(x)

time

T2 issues
write(B,S)

System
issues

input(B)

input(B)
completes

B ← S

System
issues

output(B)
output(B)
completes

CS 525 Notes 14 - Concurrency Control 30

So net effect is either

•  S=…r1(x)…w2(b)… or

•  S=…w2(B)…r1(x)…

CS 525 Notes 14 - Concurrency Control 31

What about conflicting, concurrent actions
on same object?

 start r1(A) end r1(A)

start w2(A) end w2(A)

time

CS 525 Notes 14 - Concurrency Control 32

•  Assume equivalent to either r1(A) w2(A)

 or w2(A) r1(A)

• ⇒ low level synchronization mechanism

•  Assumption called atomic actions

What about conflicting, concurrent actions
on same object?

 start r1(A) end r1(A)

start w2(A) end w2(A)

time

Outline
•  Since serial schedules have good

properties we would like our schedules
to behave like (be equivalent to) serial

schedules

1.  Need to define equivalence based solely
on order of operations

2.  Need to define class of schedules which is
equivalent to serial schedule

3.  Need to design scheduler that guarantees
that we only get these good schedules

CS 525 Notes 14 - Concurrency Control 33

Conflict Equivalence

•  Define equivalence based on the order
of conflicting actions

CS 525 Notes 14 - Concurrency Control 34

CS 525 Notes 14 - Concurrency Control 35

Definition

S1, S2 are conflict equivalent schedules

 if S1 can be transformed into S2 by a
series of swaps on non-conflicting
actions.

Alternatively:

If the order of conflicting actions in S1
and S2 is the same

Outline
•  Since serial schedules have good

properties we would like our schedules
to behave like (be equivalent to) serial

schedules

1.  Need to define equivalence based solely
on order of operations

2.  Need to define class of schedules which is
equivalent to serial schedule

3.  Need to design scheduler that guarantees
that we only get these good schedules

CS 525 Notes 14 - Concurrency Control 36

CS 525 Notes 14 - Concurrency Control 37

Definition

A schedule is conflict serializable (CSR) if
it is conflict equivalent to some serial
schedule.

How to check?
•  Compare orders of all conflicting

operations

•  Can be simplified because there is some
redundant information here, e.g.,

– W2(A) conflicts with R1(A)

– W2(B) conflicts with W1(B)

– Both imply that T2 has to be executed
before T1 in any equivalent serial schedule

CS 525 Notes 14 - Concurrency Control 38

S1 = w2(A),w2(B),r1(A),w1(B) !

CS 525 Notes 14 - Concurrency Control 39

Nodes: transactions in S

Arcs: Ti → Tj whenever

 - pi(A), qj(A) are actions in S

 - pi(A) <S qj(A)

 - at least one of pi, qj is a write

Conflict graph P(S) (S is schedule)

CS 525 Notes 14 - Concurrency Control 40

Exercise:

•  What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

•  Is S serializable?

CS 525 Notes 14 - Concurrency Control 41

Exercise:

•  What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

•  Is S serializable?

T1 T2

T3 T4

CS 525 Notes 14 - Concurrency Control 42

Exercise:

•  What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

•  Is S serializable?

T1 T2

T3 T4

CS 525 Notes 14 - Concurrency Control 43

Another Exercise:

•  What is P(S) for
S = w1(A) r2(A) r3(A) w4(A) ?

CS 525 Notes 14 - Concurrency Control 44

Another Exercise:

•  What is P(S) for
S = w1(A) r2(A) r3(A) w4(A) ?

T1 T2

T3 T4

CS 525 Notes 14 - Concurrency Control 45

Lemma

S1, S2 conflict equivalent ⇒ P(S1)=P(S2)

CS 525 Notes 14 - Concurrency Control 46

Lemma

S1, S2 conflict equivalent ⇒ P(S1)=P(S2)

Proof: (a → b same as ¬b → ¬a)

Assume P(S1) ≠ P(S2)

⇒ ∃ Ti: Ti → Tj in S1 and not in S2

⇒ S1 = …pi(A)... qj(A)… pi, qj

 S2 = …qj(A)…pi(A)... conflict

⇒ S1, S2 not conflict equivalent

CS 525 Notes 14 - Concurrency Control 47

Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent

CS 525 Notes 14 - Concurrency Control 48

Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent

Counter example:

S1=w1(A) r2(A) w2(B) r1(B)

S2=r2(A) w1(A) r1(B) w2(B)

CS 525 Notes 14 - Concurrency Control 49

Theorem

P(S1) acyclic ⇐⇒ S1 conflict serializable

(⇐) Assume S1 is conflict serializable

⇒ ∃ Ss: Ss, S1 conflict equivalent

⇒ P(Ss) = P(S1)

⇒ P(S1) acyclic since P(Ss) is acyclic

CS 525 Notes 14 - Concurrency Control 50

(⇒) Assume P(S1) is acyclic

Transform S1 as follows:
(1) Take T1 to be transaction with no incident arcs

(2) Move all T1 actions to the front

 S1 = ……. qj(A)…….p1(A)…..

(3) we now have S1 = < T1 actions ><... rest ...>

(4) repeat above steps to serialize rest!

T1

T2 T3

 T4

Theorem

P(S1) acyclic ⇐⇒ S1 conflict serializable

What’s the damage?

•  Classification of “bad” things that can
happen in “bad” schedules

– Dirty reads

– Non-repeatable reads

– Phantom reads (later)

CS 525 Notes 14 - Concurrency Control 51

Dirty Read

•  A transaction T1 read a value that has
been updated by an uncommitted
transaction T2

•  If T2 aborts then the value read by T1 is
invalid

CS 525 Notes 14 - Concurrency Control 52

CS 525 Notes 14 - Concurrency Control 53

Dirty Read

T1 T2

Read(A), A += 100

Write(A);

 Read(A), A +=200

Abort

 Write(A);

S1 = r1(A),w1(A),r2(A),a1,w2(A) !

T1 T2

A=50

T1: A = 150

A = 150

T2: A = 350

Non-repeatable Read

•  A transaction T1 reads items; some
before and some after an update of
these item by a transaction T2

•  Problem

– Repeated reads of the same item see
different values

– Some values are modified and some are
not

CS 525 Notes 14 - Concurrency Control 54

CS 525 Notes 14 - Concurrency Control 55

Inconsistent Read

T1 T2

Read(A)

 Read(A), A /= 2

 Write(A)

 Commit

Read(A)

Commit

S1 = r1(A),r2(A),w2(A),c2,r1(A),c1 !

T1 T2

A = 100

A = 50

A = 50

CS 525 Notes 14 - Concurrency Control 56

How to enforce serializable schedules?

Option 1: run system, recording P(S);
 at end of day, check for P(S)
 cycles and declare if execution

 was good

CS 525 Notes 14 - Concurrency Control 57

How to enforce serializable schedules?

Option 1: run system, recording P(S);
 at end of day, check for P(S)
 cycles and declare if execution

 was good

This is called optimistic concurrency
control

CS 525 Notes 14 - Concurrency Control 58

Option 2: prevent P(S) cycles from
 occurring

 T1 T2 ….. Tn

Scheduler

DB

How to enforce serializable schedules?

CS 525 Notes 14 - Concurrency Control 59

Option 2: prevent P(S) cycles from
 occurring

This is called pessimistic concurrency

control

How to enforce serializable schedules?

CS 525 Notes 14 - Concurrency Control 60

A locking protocol

Two new actions:

 lock (exclusive): li (A)

 unlock: ui (A)

scheduler

T1 T2

lock
table

CS 525 Notes 14 - Concurrency Control 61

Rule #1: Well-formed transactions

Ti: … li(A) … pi(A) … ui(A) ...

1)  Transaction has to lock A before it can
access A

2)  Transaction has to unlock A eventually

3)  Transaction cannot access A after
unlock

CS 525 Notes 14 - Concurrency Control 62

Rule #2 Legal scheduler

S = …….. li(A) ………... ui(A) ……...

4) Only one transaction can hold a lock
on A at the same time

 no lj(A)

CS 525 Notes 14 - Concurrency Control 63

•  What schedules are legal?
What transactions are well-formed?

S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)

r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)

l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)

l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

CS 525 Notes 14 - Concurrency Control 64

•  What schedules are legal?
What transactions are well-formed?

S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)

r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)

l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)

l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

CS 525 Notes 14 - Concurrency Control 65

Schedule F

T1 T2

l1(A);Read(A)

A A+100;Write(A);u1(A)

 l2(A);Read(A)

 A Ax2;Write(A);u2(A)

 l2(B);Read(B)

 B Bx2;Write(B);u2(B)

l1(B);Read(B)

B B+100;Write(B);u1(B)

CS 525 Notes 14 - Concurrency Control 66

Schedule F

T1 T2 25 25

l1(A);Read(A)

A A+100;Write(A);u1(A) 125

 l2(A);Read(A)

 A Ax2;Write(A);u2(A) 250

 l2(B);Read(B)

 B Bx2;Write(B);u2(B) 50

l1(B);Read(B)

B B+100;Write(B);u1(B) 150

 250 150

A B

CS 525 Notes 14 - Concurrency Control 67

Rule #3 Two phase locking (2PL)

 for transactions

Ti = ……. li(A) ………... ui(A) ……...

5) A transaction does not require new
locks after its first unlock operation

no unlocks no locks

CS 525 Notes 14 - Concurrency Control 68

locks

held by

Ti

 Time

 Growing Shrinking

 Phase Phase

CS 525 Notes 14 - Concurrency Control 69

Schedule G

T1 T2

l1(A);Read(A)

A A+100;Write(A)

l1(B); u1(A)

 l2(A);Read(A)

 A Ax2;Write(A);l2(B)

delayed

CS 525 Notes 14 - Concurrency Control 70

Schedule G

T1 T2

l1(A);Read(A)

A A+100;Write(A)

l1(B); u1(A)

 l2(A);Read(A)

 A Ax2;Write(A);l2(B)

Read(B);B B+100

Write(B); u1(B)

delayed

CS 525 Notes 14 - Concurrency Control 71

Schedule G

T1 T2

l1(A);Read(A)

A A+100;Write(A)

l1(B); u1(A)

 l2(A);Read(A)

 A Ax2;Write(A);l2(B)

Read(B);B B+100

Write(B); u1(B)

 l2(B); u2(A);Read(B)

 B Bx2;Write(B);u2(B);

delayed

CS 525 Notes 14 - Concurrency Control 72

Schedule H (T2 reversed)

T1 T2

l1(A); Read(A) l2(B);Read(B)

A A+100;Write(A) B Bx2;Write(B)

l1(B) l2(A)

 delayed delayed

Deadlock

•  Two or more transactions are waiting
for each other to release a lock

•  In the example

– T1 is waiting for T2 and is making no

progress

– T2 is waiting for T1 and is making no

progress

–  -> if we do not do anything they would

wait forever

CS 525 Notes 14 - Concurrency Control 73

CS 525 Notes 14 - Concurrency Control 74

•  Assume deadlocked transactions are
rolled back

– They have no effect

– They do not appear in schedule

– Come back to that later

E.g., Schedule H =

 This space intentionally

 left blank!

CS 525 Notes 14 - Concurrency Control 75

Next step:

Show that rules #1,2,3 ⇒ conflict-

 serializable

 schedules

CS 525 Notes 14 - Concurrency Control 76

Conflict rules for li(A), ui(A):

•  li(A), lj(A) conflict

•  li(A), uj(A) conflict

Note: no conflict < ui(A), uj(A)>, < li(A), rj(A)>,...

CS 525 Notes 14 - Concurrency Control 77

Theorem Rules #1,2,3 ⇒ conflict

 (2PL) serializable

 schedule

CS 525 Notes 14 - Concurrency Control 78

Theorem Rules #1,2,3 ⇒ conflict

 (2PL) serializable

 schedule

To help in proof:

Definition Shrink(Ti) = SH(Ti) =
 first unlock

 action of Ti

CS 525 Notes 14 - Concurrency Control 79

Lemma

Ti → Tj in S ⇒ SH(Ti) <S SH(Tj)

CS 525 Notes 14 - Concurrency Control 80

Lemma

Ti → Tj in S ⇒ SH(Ti) <S SH(Tj)

Proof of lemma:

Ti → Tj means that

 S = … pi(A) … qj(A) …; p,q conflict

By rules 1,2:

 S = … pi(A) … ui(A) … lj(A) ... qj(A) …

CS 525 Notes 14 - Concurrency Control 81

Lemma

Ti → Tj in S ⇒ SH(Ti) <S SH(Tj)

Proof of lemma:

Ti → Tj means that

 S = … pi(A) … qj(A) …; p,q conflict

By rules 1,2:

 S = … pi(A) … ui(A) … lj(A) ... qj(A) …

By rule 3: SH(Ti) SH(Tj)

So, SH(Ti) <S SH(Tj)

CS 525 Notes 14 - Concurrency Control 82

Proof:

(1) Assume P(S) has cycle

 T1 → T2 →…. Tn → T1

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1)

(3) Impossible, so P(S) acyclic

(4) ⇒ S is conflict serializable

Theorem Rules #1,2,3 ⇒ conflict

 (2PL) serializable

 schedule

CS 525 Notes 14 - Concurrency Control 83

2PL subset of Serializable

S ⊂ 2PL⊂ CSR⊂ ALL

CS 525 Notes 13 - Failure and Recovery 84

2PL (2PL)

Conflict Serializable (CSR)

All schedules (ALL)

Serial (S)

CS 525 Notes 14 - Concurrency Control 85

S1: w1(x) w3(x) w2(y) w1(y)

•  S1 cannot be achieved via 2PL:
The lock by T1 for y must occur after w2(y),

so the unlock by T1 for x must occur after
this point (and before w1(x)). Thus, w3(x)

cannot occur under 2PL where shown in S1

because T1 holds the x lock at that point.

•  However, S1 is serializable
(equivalent to T2, T1, T3).

CS 525 Notes 14 - Concurrency Control 86

SC: w1(A) w2(A) w1(B) w2(B)

If you need a bit more practice:

Are our schedules SC and SD 2PL schedules?

SD: w1(A) w2(A) w2(B) w1(B)

CS 525 Notes 14 - Concurrency Control 87

•  Beyond this simple 2PL protocol, it is all
a matter of improving performance and
allowing more concurrency….

– Shared locks

– Multiple granularity

– Avoid Deadlocks

–  Inserts, deletes and phantoms

– Other types of C.C. mechanisms

• Multiversioning concurrency control

CS 525 Notes 14 - Concurrency Control 88

Shared locks

So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

 Do not conflict

CS 525 Notes 14 - Concurrency Control 89

Shared locks

So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

 Do not conflict

Instead:

S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)

CS 525 Notes 14 - Concurrency Control 90

Lock actions

l-ti(A): lock A in t mode (t is S or X)

u-ti(A): unlock t mode (t is S or X)

Shorthand:

ui(A): unlock whatever modes

 Ti has locked A

CS 525 Notes 14 - Concurrency Control 91

Rule #1 Well formed transactions

Ti =... l-S1(A) … r1(A) … u1 (A) …

Ti =... l-X1(A) … w1(A) … u1 (A) …

CS 525 Notes 14 - Concurrency Control 92

•  What about transactions that read and
write same object?

Option 1: Request exclusive lock

Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

CS 525 Notes 14 - Concurrency Control 93

Option 2: Upgrade
(E.g., need to read, but don t know if will write…)

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)…

Think of
- Get 2nd lock on A, or
- Drop S, get X lock

•  What about transactions that read and
 write same object?

CS 525 Notes 14 - Concurrency Control 94

Rule #2 Legal scheduler

S =l-Si(A) … … ui(A) …

 no l-Xj(A)

S = ... l-Xi(A) … … ui(A) …

 no l-Xj(A)
 no l-Sj(A)

CS 525 Notes 14 - Concurrency Control 95

A way to summarize Rule #2

Compatibility matrix

Comp S X

 S true false

 X false false

CS 525 Notes 14 - Concurrency Control 96

Rule # 3 2PL transactions

No change except for upgrades:

(I) If upgrade gets more locks

 (e.g., S → {S, X}) then no change!

(II) If upgrade releases read (shared)
 lock (e.g., S → X)

 - can be allowed in growing phase

CS 525 Notes 14 - Concurrency Control 97

Proof: similar to X locks case

Detail:

l-ti(A), l-rj(A) do not conflict if comp(t,r)

l-ti(A), u-rj(A) do not conflict if comp(t,r)

Theorem Rules 1,2,3 ⇒ Conf.serializable

 for S/X locks schedules

CS 525 Notes 14 - Concurrency Control 98

Lock types beyond S/X

Examples:

 (1) increment lock

 (2) update lock

CS 525 Notes 14 - Concurrency Control 99

Example (1): increment lock

•  Atomic increment action: INi(A)

 {Read(A); A ← A+k; Write(A)}

•  INi(A), INj(A) do not conflict!

 A=7

A=5 A=17

 A=15

INi(A)

+2

INj(A)

+10

+10

INj(A)

+2

INi(A)

CS 525 Notes 14 - Concurrency Control 100

Comp S X I

 S

 X

 I

CS 525 Notes 14 - Concurrency Control 101

Comp S X I

 S T F F

 X F F F

 I F F T

CS 525 Notes 14 - Concurrency Control 102

Update locks

A common deadlock problem with upgrades:

T1 T2

l-S1(A)

 l-S2(A)

l-X1(A)

 l-X2(A)

 --- Deadlock ---

CS 525 Notes 14 - Concurrency Control 103

Solution

If Ti wants to read A and knows it

may later want to write A, it requests

update lock (not shared)

CS 525 Notes 14 - Concurrency Control 104

Comp S X U

 S

 X

 U

 New request

Lock
already
held in

CS 525 Notes 14 - Concurrency Control 105

Comp S X U

 S T F T

 X F F F

 U TorF F F

 -> symmetric table?

 New request

Lock
already
held in

CS 525 Notes 14 - Concurrency Control 106

Note: object A may be locked in different
 modes at the same time...

S1=...l-S1(A)…l-S2(A)…l-U3(A)… l-S4(A)…?

 l-U4(A)…?

CS 525 Notes 14 - Concurrency Control 107

Note: object A may be locked in different
 modes at the same time...

S1=...l-S1(A)…l-S2(A)…l-U3(A)… l-S4(A)…?

 l-U4(A)…?

•  To grant a lock in mode t, mode t must
be compatible with all currently held
locks on object

CS 525 Notes 14 - Concurrency Control 108

How does locking work in practice?

•  Every system is different

 (E.g., may not even provide

 CONFLICT-SERIALIZABLE schedules)

•  But here is one (simplified) way ...

CS 525 Notes 14 - Concurrency Control 109

(1) Don t trust transactions to
 request/release locks

(2) Hold all locks until transaction
 commits

locks

time

Sample Locking System:

Strict Strong 2PL (SS2PL)

•  2PL + (2) from the last slide

•  All locks are held until transaction end

•  Compare with schedule class strict
(ST) we defined for recovery

– A transaction never reads or writes items

written by an uncommitted transactions

•  SS2PL = (ST ∩ 2PL)

CS 525 Notes 14 - Concurrency Control 110

CS 525 Notes 13 - Failure and Recovery 111

2PL (2PL)

Conflict Serializable (CSR)

All schedules (ALL)

Serial (S)

SS2PL (SS2PL)

CS 525 Notes 14 - Concurrency Control 112

 Ti

 Read(A),Write(B)

 l(A),Read(A),l(B),Write(B)…

 Read(A),Write(B)

Scheduler, part I

Scheduler, part II

DB

lock
table

CS 525 Notes 14 - Concurrency Control 113

Lock table Conceptually

 A Λ

B
C

Λ

...

Lock info for B

Lock info for C

If null, object is unlocked

E
v
e
ry

 p
o
ss

ib
le

 o
b
je

ct

CS 525 Notes 14 - Concurrency Control 114

But use hash table:

A

If object not found in hash table, it is
unlocked

Lock info for A A

...
...

H

CS 525 Notes 14 - Concurrency Control 115

Lock info for A - example

 tran mode wait? Nxt T_link

Object:A
Group mode:U
Waiting:yes
List:

T1 S no

T2 U no

T3 X yes Λ

To other T3

records

CS 525 Notes 14 - Concurrency Control 116

What are the objects we lock?

 ?

Relation A

Relation B

...

Tuple A

Tuple B

Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB

CS 525 Notes 14 - Concurrency Control 117

•  Locking works in any case, but should
we choose small or large objects?

CS 525 Notes 14 - Concurrency Control 118

•  Locking works in any case, but should
we choose small or large objects?

•  If we lock large objects (e.g., Relations)

– Need few locks

– Low concurrency

•  If we lock small objects (e.g., tuples,fields)

– Need more locks

– More concurrency

CS 525 Notes 14 - Concurrency Control 119

We can have it both ways!!

Ask any janitor to give you the solution...

hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom

CS 525 Notes 14 - Concurrency Control 120

Example

 R1

t1
t2 t3

t4

CS 525 Notes 14 - Concurrency Control 121

Example

 R1

t1
t2 t3

t4

T1(IS)

T1(S)

CS 525 Notes 14 - Concurrency Control 122

Example

 R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(S)

CS 525 Notes 14 - Concurrency Control 123

Example (b)

 R1

t1
t2 t3

t4

T1(IS)

T1(S)

CS 525 Notes 14 - Concurrency Control 124

Example

 R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(IX)

T2(IX)

CS 525 Notes 14 - Concurrency Control 125

Multiple granularity

Comp Requestor

 IS IX S SIX X

 IS

 Holder IX

 S

 SIX

 X

CS 525 Notes 14 - Concurrency Control 126

Multiple granularity

Comp Requestor

 IS IX S SIX X

 IS

 Holder IX

 S

 SIX

 X

T T T T F

F

F

F

F F F F F

F F F T

F T F T

F F T T

CS 525 Notes 14 - Concurrency Control 127

Parent Child can be
locked in locked in

 IS
 IX
 S
 SIX
 X

P

C

CS 525 Notes 14 - Concurrency Control 128

Parent Child can be locked
locked in by same transaction in

 IS
 IX
 S
 SIX
 X

P

C

IS, S
IS, S, IX, X, SIX

none
X, IX, [SIX]

none

not necessary

CS 525 Notes 14 - Concurrency Control 129

Rules

(1) Follow multiple granularity comp function

(2) Lock root of tree first, any mode

(3) Node Q can be locked by Ti in S or IS only if

 parent(Q) locked by Ti in IX or IS

(4) Node Q can be locked by Ti in X,SIX,IX only

 if parent(Q) locked by Ti in IX,SIX

(5) Ti is two-phase

(6) Ti can unlock node Q only if none of Q s

 children are locked by Ti

CS 525 Notes 14 - Concurrency Control 130

Exercise:

•  Can T2 access object f2.2 in X mode?
What locks will T2 get?

R1

t1
t2 t3

t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(IX)

T1(X)

CS 525 Notes 14 - Concurrency Control 131

Exercise:

•  Can T2 access object f2.2 in X mode?
What locks will T2 get?

R1

t1
t2 t3

t4 T1(X)

f2.1 f2.2 f3.1 f3.2

T1(IX)

CS 525 Notes 14 - Concurrency Control 132

Exercise:

•  Can T2 access object f3.1 in X mode?
What locks will T2 get?

R1

t1
t2 t3

t4 T1(S)

f2.1 f2.2 f3.1 f3.2

T1(IS)

CS 525 Notes 14 - Concurrency Control 133

Exercise:

•  Can T2 access object f2.2 in S mode?
What locks will T2 get?

R1

t1
t2 t3

t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

CS 525 Notes 14 - Concurrency Control 134

Exercise:

•  Can T2 access object f2.2 in X mode?
What locks will T2 get?

R1

t1
t2 t3

t4 T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

CS 525 Notes 14 - Concurrency Control 135

Insert + delete operations

 Insert

A

Z

α

...

CS 525 Notes 14 - Concurrency Control 136

Modifications to locking rules:

(1) Get exclusive lock on A before
deleting A

(2) At insert A operation by Ti,
 Ti is given exclusive lock on A

CS 525 Notes 14 - Concurrency Control 137

Still have a problem: Phantoms

Example: relation R (E#,name,…)

 constraint: E# is key

 use tuple locking

R E# Name ….

 o1 55 Smith

 o2 75 Jones

CS 525 Notes 14 - Concurrency Control 138

T1: Insert <08,Obama,…> into R
T2: Insert <08,McCain,…> into R

 T1 T2

S1(o1) S2(o1)

S1(o2) S2(o2)

Check Constraint Check Constraint

Insert o3[08,Obama,..]

 Insert o4[08,McCain,..]

...

...

CS 525 Notes 14 - Concurrency Control 139

Solution

•  Use multiple granularity tree

•  Before insert of node Q,

 lock parent(Q) in

 X mode R1

t1
t2 t3

CS 525 Notes 14 - Concurrency Control 140

Back to example

T1: Insert<04,Kerry> T2: Insert<04,Bush>

 T1 T2

X1(R)

Check constraint

Insert<04,Kerry>

U(R)

 X2(R)

 Check constraint

 Oops! e# = 04 already in R!

X2(R) delayed

CS 525 Notes 14 - Concurrency Control 141

Instead of using R, can use index on R:

Example:
R

Index
0<E#<100

Index
100<E#<200

E#=2 E#=5 E#=107 E#=109 ...

...

...

CS 525 Notes 14 - Concurrency Control 142

•  This approach can be generalized to
multiple indexes...

CS 525 Notes 14 - Concurrency Control 143

Next:

•  Tree-based concurrency control

•  Validation concurrency control

CS 525 Notes 14 - Concurrency Control 144

Example

A

B C

D

E F

•  all objects accessed
 through root,
 following pointers

CS 525 Notes 14 - Concurrency Control 145

Example

A

B C

D

E F

•  all objects accessed
 through root,
 following pointers

T1 lock

T1 lock T1 lock

CS 525 Notes 14 - Concurrency Control 146

Example

A

B C

D

E F

•  all objects accessed
 through root,
 following pointers

T1 lock

T1 lock T1 lock

 can we release A lock
 if we no longer need A??

CS 525 Notes 14 - Concurrency Control 147

Idea: traverse like Monkey Bars

A

B C

D

E F

CS 525 Notes 14 - Concurrency Control 148

Idea: traverse like Monkey Bars

A

B C

D

E F

T1 lock

T1 lock

CS 525 Notes 14 - Concurrency Control 149

Idea: traverse like Monkey Bars

A

B C

D

E F

T1 lock

T1 lock

CS 525 Notes 14 - Concurrency Control 150

Why does this work?

•  Assume all Ti start at root; exclusive lock

•  Ti → Tj ⇒ Ti locks root before Tj

•  Actually works if we don t always
 start at root

Root

Q Ti → Tj

CS 525 Notes 14 - Concurrency Control 151

Rules: tree protocol (exclusive locks)

(1) First lock by Ti may be on any item

(2) After that, item Q can be locked by Ti
 only if parent(Q) locked by Ti

(3) Items may be unlocked at any time

(4) After Ti unlocks Q, it cannot relock Q

CS 525 Notes 14 - Concurrency Control 152

•  Tree-like protocols are used typically for
B-tree concurrency control

E.g., during insert, do not release parent lock, until you
are certain child does not have to split

Root

CS 525 Notes 14 - Concurrency Control 153

Tree Protocol with Shared Locks

•  Rules for shared & exclusive locks?

A

B C

D

E F

T1 S lock(released)

T1 S lock (held)

T1 X lock (released)

T1 X lock (will get)

CS 525 Notes 14 - Concurrency Control 154

Tree Protocol with Shared Locks

•  Rules for shared & exclusive locks?

A

B C

D

E F

T1 S lock(released)

T1 S lock (held)

T1 X lock (released)

T1 X lock (will get)

T2 reads:
•  B modified by T1

•  F not yet modified by T1

CS 525 Notes 14 - Concurrency Control 155

•  Need more restrictive protocol

•  Will this work??

– Once T1 locks one object in X mode,
all further locks down the tree must be

in X mode

Tree Protocol with Shared Locks

Deadlocks (again)

•  Before we assumed that we are able to
detect deadlocks and resolve them

•  Now two options

–  (1) Deadlock detection (and resolving)

–  (2) Deadlock prevention

CS 525 Notes 14 - Concurrency Control 156

Deadlock Prevention

•  Option 1:

– 2PL + transaction has to acquire all locks
at transaction start following a global order

CS 525 Notes 14 - Concurrency Control 157

locks

time

Deadlock Prevention

•  Option 1:

– Long lock durations

– Transaction has to know upfront what data

items it will access

• E.g.,

UPDATE R SET a = a + 1 WHERE b < 15

• We don’t know what tuples are in R!

CS 525 Notes 14 - Concurrency Control 158

Deadlock Prevention

•  Option 2:

– Define some global order of data items O

– Transactions have to acquire locks

according to this order

•  Example (X < Y < Z)

l1(X), l1(Z) (OK)

l1(Y), l1(X) (NOT OK)

CS 525 Notes 14 - Concurrency Control 159

Deadlock Prevention

•  Option 2:

– Accessed data items have to be known
upfront

– or access to data has to follow the order

CS 525 Notes 14 - Concurrency Control 160

Deadlock Prevention

•  Option 3 (Preemption)

– Roll-back transactions that wait for locks
under certain conditions

– 3 a) wait-die

• Assign timestamp to each transaction

•  If transaction Ti waits for Tj to release a lock
–  Timestamp Ti < Tj -> wait

–  Timestamp Ti > Tj -> roll-back Ti

CS 525 Notes 14 - Concurrency Control 161

Deadlock Prevention

•  Option 3 (Preemption)

– Roll-back transactions that wait for locks
under certain conditions

– 3 a) wound-wait

• Assign timestamp to each transaction

•  If transaction Ti waits for Tj to release a lock
–  Timestamp Ti < Tj -> roll-back Tj

–  Timestamp Ti > Tj -> wait

CS 525 Notes 14 - Concurrency Control 162

Deadlock Prevention

•  Option 3:

– Additional transaction roll-backs

CS 525 Notes 14 - Concurrency Control 163

Timeout-based Scheme

•  Option 4:

– After waiting for a lock longer than X, a
transaction is rolled back

CS 525 Notes 14 - Concurrency Control 164

Timeout-based Scheme

•  Option 4:

– Simple scheme

– Hard to find a good value of X

• To high: long wait times for a transaction
before it gets eventually aborted

• To low: to many transaction that are not
deadlock get aborted

CS 525 Notes 14 - Concurrency Control 165

Deadlock Detection and
Resolution

•  Data structure to detect deadlocks:
wait-for graph

– One node for each transaction

– Edge Ti->Tj if Ti is waiting for Tj

– Cycle -> Deadlock

• Abort one of the transaction in cycle to resolve

deadlock

CS 525 Notes 14 - Concurrency Control 166

Deadlock Detection and
Resolution

•  When do we run the detection?

•  How to choose the victim?

CS 525 Notes 14 - Concurrency Control 167

T1 T2

T3 T4 T5

CS 525 Notes 14 - Concurrency Control 168

Optimistic Concurrency Control:
Validation
Transactions have 3 phases:

(1) Read

– all DB values read

– writes to temporary storage

– no locking

(2) Validate

– check if schedule so far is serializable

(3) Write

–  if validate ok, write to DB

CS 525 Notes 14 - Concurrency Control 169

Key idea

•  Make validation atomic

•  If T1, T2, T3, … is validation order, then
resulting schedule will be conflict
equivalent to Ss = T1 T2 T3...

CS 525 Notes 14 - Concurrency Control 170

To implement validation, system keeps
two sets:

•  FIN = transactions that have finished
 phase 3 (and are all done)

•  VAL = transactions that have
 successfully finished phase 2
 (validation)

CS 525 Notes 14 - Concurrency Control 171

Example of what validation must prevent:

 RS(T2)={B} RS(T3)={A,B}

 WS(T2)={B,D} WS(T3)={C}

time

T2

start

T2

validated

T3

validated
T3

start

∩ = φ

CS 525 Notes 14 - Concurrency Control 172

T2
finish

phase 3

Example of what validation must prevent:

 RS(T2)={B} RS(T3)={A,B}

 WS(T2)={B,D} WS(T3)={C}

time

T2

start

T2

validated

T3

validated
T3

start

∩ = φ

allow

T3

start

CS 525 Notes 14 - Concurrency Control 173

Another thing validation must prevent:

 RS(T2)={A} RS(T3)={A,B}

 WS(T2)={D,E} WS(T3)={C,D}

time

T2

validated

T3

validated

finish
T2

CS 525 Notes 14 - Concurrency Control 174

Another thing validation must prevent:

 RS(T2)={A} RS(T3)={A,B}

 WS(T2)={D,E} WS(T3)={C,D}

time

T2

validated

T3

validated

finish
T2

BAD: w3(D) w2(D)

CS 525 Notes 14 - Concurrency Control 175

finish
T2

Another thing validation must prevent:

 RS(T2)={A} RS(T3)={A,B}

 WS(T2)={D,E} WS(T3)={C,D}

time

T2

validated

T3

validated

allow

finish
T2

CS 525 Notes 14 - Concurrency Control 176

Validation rules for Tj:

(1) When Tj starts phase 1:

 ignore(Tj) ← FIN

(2) at Tj Validation:

 if check (Tj) then

 [VAL ← VAL U {Tj};

 do write phase;

 FIN ←FIN U {Tj}]

CS 525 Notes 14 - Concurrency Control 177

Check (Tj):

 For Ti ∈ VAL - IGNORE (Tj) DO

 IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR

 Ti ∉ FIN] THEN RETURN false;

 RETURN true;

CS 525 Notes 14 - Concurrency Control 178

Check (Tj):

 For Ti ∈ VAL - IGNORE (Tj) DO

 IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR

 Ti ∉ FIN] THEN RETURN false;

 RETURN true;

Is this check too restrictive ?

CS 525 Notes 14 - Concurrency Control 179

Improving Check(Tj)

For Ti ∈ VAL - IGNORE (Tj) DO

 IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR

 (Ti ∉ FIN AND WS(Ti) ∩ WS(Tj) ≠ ∅)]

 THEN RETURN false;

RETURN true;

CS 525 Notes 14 - Concurrency Control 180

Exercise:

T: RS(T)={A,B}
 WS(T)={A,C}

V: RS(V)={B}
 WS(V)={D,E}

U: RS(U)={B}
 WS(U)={D}

W: RS(W)={A,D}
 WS(W)={A,C}

start
validate
finish

CS 525 Notes 14 - Concurrency Control 181

Is Validation = 2PL?

2PL

Val
2PL

Val

2PL

Val

Val

2PL

CS 525 Notes 14 - Concurrency Control 182

S2: w2(y) w1(x) w2(x)

•  S2 can be achieved with 2PL:
l2(y) w2(y) l1(x) w1(x) u1(x) l2(x) w2(x) u2(y) u2(x)

•  S2 cannot be achieved by validation:

The validation point of T2, val2 must occur before
w2(y) since transactions do not write to the database
until after validation. Because of the conflict on x,
val1 < val2, so we must have something like
 S2: val1 val2 w2(y) w1(x) w2(x)
With the validation protocol, the writes of T2 should
not start until T1 is all done with its writes, which is
not the case.

CS 525 Notes 14 - Concurrency Control 183

Validation subset of 2PL?

•  Possible proof (Check!):

– Let S be validation schedule

– For each T in S insert lock/unlocks, get S :

• At T start: request read locks for all of RS(T)

• At T validation: request write locks for WS(T);

release read locks for read-only objects

• At T end: release all write locks

– Clearly transactions well-formed and 2PL

– Must show S is legal (next page)

CS 525 Notes 14 - Concurrency Control 184

•  Say S not legal:
S : ... l1(x) w2(x) r1(x) val1 u2(x) ...

–  At val1: T2 not in Ignore(T1); T2 in VAL

–  T1 does not validate: WS(T2) ∩ RS(T1) ≠ ∅

–  contradiction!

•  Say S not legal:
S : ... val1 l1(x) w2(x) w1(x) u2(x) ...

–  Say T2 validates first (proof similar in other case)

–  At val1: T2 not in Ignore(T1); T2 in VAL

–  T1 does not validate:

T2 ∉ FIN AND WS(T1) ∩ WS(T2) ≠ ∅)

–  contradiction!

CS 525 Notes 14 - Concurrency Control 185

Validation (also called optimistic
concurrency control) is useful in
some cases:

 - Conflicts rare

 - System resources plentiful

 - Have real time constraints

Multiversioning Concurrency
Control (MVCC)

•  Keep old versions of data item and use
this to increase concurrency

•  Each write creates a new version of the
written data item

•  Use version numbers of timestamps to
identify versions

CS 525 Notes 14 - Concurrency Control 186

Multiversioning Concurrency
Control (MVCC)

•  Different transactions operate over
different versions of data items

•  -> readers never have to wait for writers

•  -> great for combined workloads

–  OLTP workload (writes, only access small number

of tuples, short)

–  OLAP workload (reads, access large portions of
database, long running)

CS 525 Notes 14 - Concurrency Control 187

MVCC schemes

•  MVCC timestamp ordering

•  MVCC 2PL

•  Snapshot isolation (SI)

–  We will only cover this one

CS 525 Notes 14 - Concurrency Control 188

Snapshot Isolation (SI)

•  Each transaction T is assigned a timestamp
S(T) when it starts

•  Each write creates a new data item version
timestamped with the current timestamp

•  When a transaction commits, then the latest
versions created by the transaction get a

timestamp C(T) as of the commit

CS 525 Notes 14 - Concurrency Control 189

Snapshot Isolation (SI)

•  Under snapshot isolation each
transaction T sees a consistent
snapshot of the database as of S(T)

–  It only sees data item versions of
transactions that committed before T

started

–  It also sees its own changes

CS 525 Notes 14 - Concurrency Control 190

First Updater Wins Rule (FUW)

•  Two transactions Ti and Tj may update
the same data item A

– To avoid lost updates only one of the two

can be safely committed

•  First Updater Wins Rules

– The transaction that updated A first is

allowed to commit

– The other transaction is aborted

CS 525 Notes 14 - Concurrency Control 191

First Committer Wins Rule
(FCW)

•  Two transactions Ti and Tj may update
the same data item A

– To avoid lost updates only one of the two

can be safely committed

•  First Committer Wins Rules

– The transaction that attempts to commit

first is allowed to commit

– The other transaction is aborted

CS 525 Notes 14 - Concurrency Control 192

CS 525 Notes 14 - Concurrency Control 193

T1! T2! T3!

W(Y := 1)"

Commit"

Start"

R(X) 0"

R(Y) 1"

W(X:=2)"

W(Z:=3)"

Commit"

R(Z) 5"

R(Y) 1"

W(X:=3)"

Commit-Req"

Abort"

Concurrent updates not visible"

"

Not first-committer of X"

Serialization error, T2 is rolled back"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

X! Y! Z!

0"

0"

"

"

"

"

2"

2"

"

"

"

"

3"

1"

"

"

"

"

"

"

5"

"

"

"

"

"

3"

3"

©Silberschatz, Korth and Sudarshan!

Update not visible outside of T1"

Update becomes visible to"

 future transactions"

Why does that work?

•  Since all transactions see a consistent
snapshot and their changes are only
made “public” once they commit

–  It looks like the transactions have been
executed in the order of their commits*

* Recall the writes to the same data item
are disallowed for concurrent transactions

CS 525 Notes 14 - Concurrency Control 194

Is that serializable?

•  Almost ;-)

•  There is still one type of conflict which
cannot occur in serialize schedules
called write-skew

CS 525 Notes 14 - Concurrency Control 195

Write Skew

•  Consider two data items A and B

– A = 5, B = 5

•  Concurrent Transactions T1 and T2

– T1: A = A + B

– T2: B = A + B

•  Final result under SI

– A = 10, B = 10

CS 525 Notes 14 - Concurrency Control 196

Write Skew

•  Consider serial schedules:

– T1, T2: A=10, B=15

– T2, T1: A=15, B=10

•  What is the problem

– Under SI both T1 and T2 do not see each
others changes

–  In any serial schedule one of the two
would see the others changes

CS 525 Notes 14 - Concurrency Control 197

Example: Oracle
•  Tuples are updated in place

•  Old versions in separate ROLLBACK segment

–  GC once nobody needs them anymore

•  How to implement the FCW or FUW?

–  Oracle uses write locks to block concurrent writes

–  Transaction waiting for a write lock aborts if
transaction holding the lock commits

CS 525 Notes 14 - Concurrency Control 198

SI Discussion

•  Advantages
–  Readers and writers do not block each other

–  If we do not GC old row versions we can go back

to previous versions of the database -> Time
travel

•  E.g., show me the customer table as it was yesterday

•  Disadvantages

–  Storage overhead to keep old row versions

–  GC overhead

–  Not strictly serializable

CS 525 Notes 14 - Concurrency Control 199

CS 525 Notes 14 - Concurrency Control 200

Summary

Have studied CC mechanisms used in practice

 - 2 PL variants

 - Multiple lock granularity

 - Deadlocks

 - Tree (index) protocols

 - Optimistic CC (Validation)

 - Multiversioning Concurrency Control (MVCC)

