CS 525: Advanced Database Organization 14: Concurrency

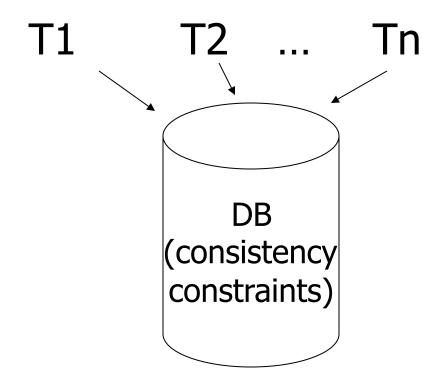
Boris Glavic

Control

Slides: adapted from a <u>course</u> taught by

Hector Garcia-Molina, Stanford InfoLab

Chapter 18 [18] Concurrency Control



Example:

T1: Read(A)

T2: Read(A)

 $A \leftarrow A+100$

 $A \leftarrow A \times 2$

Write(A)

Write(A)

Read(B)

Read(B)

 $B \leftarrow B + 100$

 $B \leftarrow B \times 2$

Write(B)

Write(B)

Constraint: A=B

ILLINOIS INSTITUTE OF TECHNOLOGY

Schedule A

T1

T2

```
Read(A); A \leftarrow A+100
Write(A);
Read(B); B \leftarrow B+100;
Write(B);
```

```
Read(A); A \leftarrow A \times 2;
Write(A);
Read(B); B \leftarrow B \times 2;
Write(B);
```

Schedule A

		Α	В
T1	T2	25	25
Read(A); $A \leftarrow A+100$			
Write(A);		125	
Read(B); $B \leftarrow B+100$;			
Write(B);			125
	Read(A);A \leftarrow A×2;		
	Write(A);	250	
	Read(B);B \leftarrow B \times 2;		
	Write(B);		250
	\ //	250	250

ILLINOIS INSTITUTE OF TECHNOLOGY

Schedule B

T1

T2

```
Read(A); A \leftarrow A \times 2;
Write(A);
Read(B); B \leftarrow B \times 2;
Write(B);
```

```
Read(A); A \leftarrow A+100
Write(A);
Read(B); B \leftarrow B+100;
Write(B);
```

Schedule B

		А	В
T1	T2	25	25
Read(A); A ← A+100 Write(A); Read(B); B ← B+100;	Read(A);A ← A×2; Write(A); Read(B);B ← B×2; Write(B);	50 150	50
Write(B);			150
		150	150

Schedule C

T1

T2

Read(A); $A \leftarrow A+100$ Write(A);

Read(A); $A \leftarrow A \times 2$; Write(A);

Read(B); $B \leftarrow B+100$; Write(B);

Read(B);B \leftarrow B×2; Write(B);

Schedule C

		Α	В
T1	T2	25	25
Read(A); $A \leftarrow A+100$			
Write(A);		125	
	Read(A);A \leftarrow A×2;		
	Write(A);	250	
Read(B); B ← B+100;			
Write(B);			125
	Read(B);B \leftarrow B \times 2;		
	Write(B);		250
	\ //	250	250
		Į.	

ILLINOIS INSTITUTE OF TECHNOLOGY

Schedule D

T1

T2

```
Read(A); A \leftarrow A+100
Write(A);
```

Read(A);A \leftarrow A×2;

Write(A);

Read(B);B \leftarrow B×2;

Write(B);

Read(B);
$$B \leftarrow B+100$$
; Write(B);

10

Schedule D

		Α	В
_T1	T2	25	25
Read(A); A ← A+100			
Write(A);		125	
	Read(A);A \leftarrow A×2;		
	Write(A);	250	
	Read(B);B \leftarrow B×2;		
	Write(B);		50
Read(B); B ← B+100;			
Write(B);			150
		250	150

11

Schedule E

Same as Schedule D but with new T2'

T1

T2'

Read(A); $A \leftarrow A+100$ Write(A);

Read(A); $A \leftarrow A \times 1$;

Write(A);

Read(B);B \leftarrow B \times 1;

Write(B);

Read(B); $B \leftarrow B+100$; Write(B);

Schedule E

Same as Schedule D but with new T2'

		Α	В
T1	T2'	25	25
Read(A); $A \leftarrow A+100$			
Write(A);		125	
	Read(A);A \leftarrow A×1;		
	Write(A);	125	
	Read(B);B \leftarrow B \times 1;		
	Write(B);		25
Read(B); $B \leftarrow B+100$;			
Write(B);			125
		125	125

Serial Schedules

- As long as we do not execute transactions in parallel and each transaction does not violate the constraints we are good
 - All schedules with no interleaving of transaction operations are called serial schedules

Definition: Serial Schedule

- No transactions are interleaved
 - There exists no two operations from transactions Ti and Tj so that both operations are executed before either transaction commits

$$T_1 = r_1(A), w_1(A), r_1(B), w_1(B), c_1$$

$$T_2 = r_2(A), w_2(A), r_2(B), w_2(B), c_2$$

Serial Schedule

$$S_1 = r_2(A), w_2(A), r_2(B), w_2(B), c_2, r_1(A), w_1(A), r_1(B), w_1(B), c_1$$

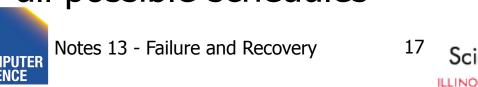
Nonserial Schedule

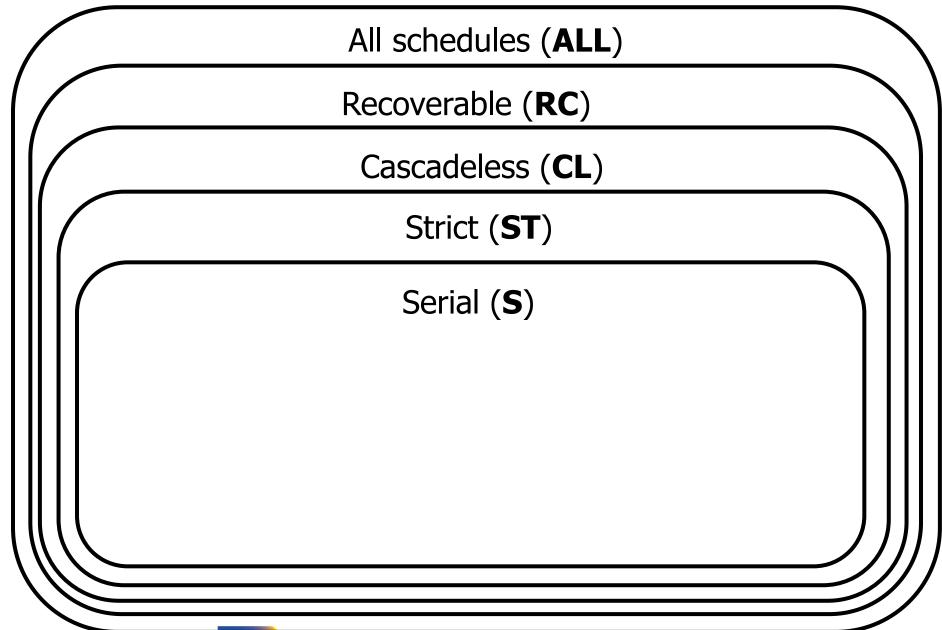
$$S_2 = r_2(A), w_2(A), r_1(A), w_1(A), r_2(B), w_2(B), c_2, r_1(B), w_1(B), c_1$$

Compare Classes

$S \subset ST \subset CL \subset RC \subset ALL$

- Abbreviations
 - -S = Serial
 - -ST = Strict
 - CL = Cascadeless
 - -RC = Recoverable
 - ALL = all possible schedules





18

Why not serial schedules?

No concurrency! ☺

- Want schedules that are "good", regardless of
 - initial state and
 - transaction semantics
- Only look at order of read and writes

Example:

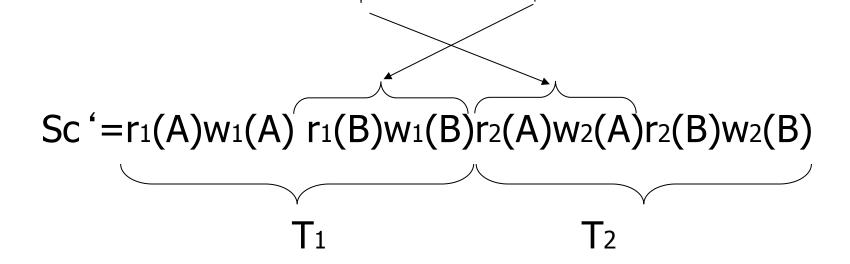
 $Sc=r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2(B)$

Outline

- Since serial schedules have good properties we would like our schedules to behave like (be **equivalent** to) serial schedules
 - 1. Need to define equivalence based solely on order of operations
 - 2. Need to define class of schedules which is equivalent to serial schedule
 - 3. Need to design scheduler that guarantees that we only get these good schedules

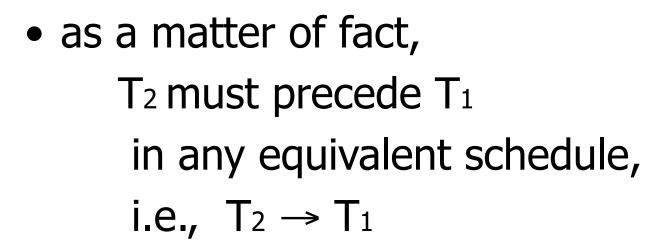
Example:

$$Sc=r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2(B)$$

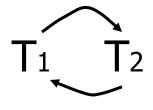


However, for Sd:

 $Sd=r_1(A)w_1(A)r_2(A)w_2(A) r_2(B)w_2(B)r_1(B)w_1(B)$



- $T_2 \rightarrow T_1$
- Also, $T_1 \rightarrow T_2$



⇒ Sd cannot be rearranged into a serial schedule

⇒ Sd is not "equivalent" to any serial schedule

□ Sd is "bad"

Returning to Sc

Sc=r₁(A)w₁(A)r₂(A)w₂(A)r₁(B)w₁(B)r₂(B)w₂(B)

$$T_1 \rightarrow T_2$$
 $T_1 \rightarrow T_2$

25

Returning to Sc

$$Sc=r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2(B)$$

$$T_1 \rightarrow T_2 \qquad T_1 \rightarrow T_2$$

serial schedule (in this case T_1,T_2)

Concepts

Transaction: sequence of ri(x), wi(x) actions Conflicting actions: r1(A) W2(A) W1(A) W2(A) W2(A)

Schedule: represents chronological order in which actions are executed

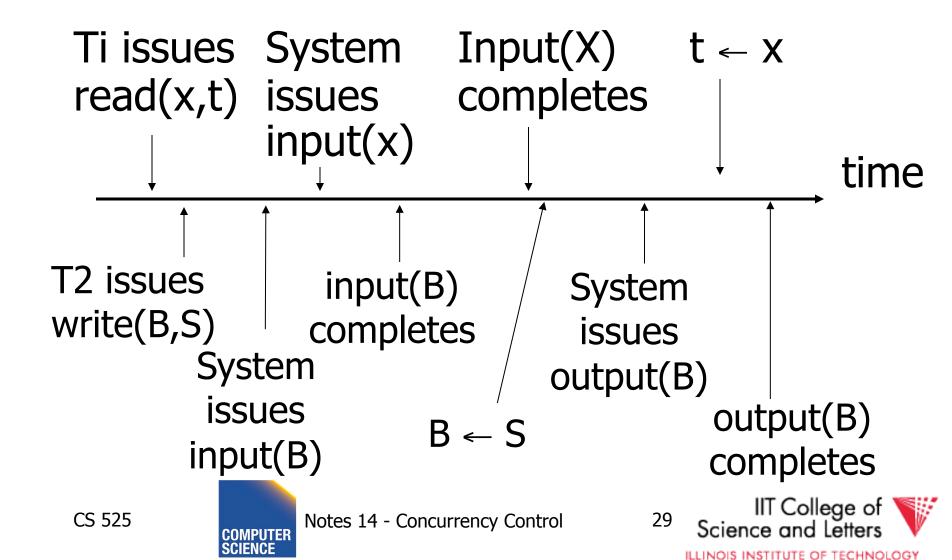
Serial schedule: no interleaving of actions or transactions

What about concurrent actions?

Ti issues System Input(X) $t \leftarrow x$ read(x,t) issues completes input(x) $t \leftarrow x$ time

28

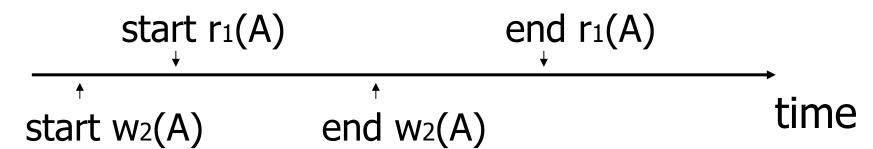
What about concurrent actions?



So net effect is either

- $S = ... r_1(x) ... w_2(b) ... or$
- $S = ...w_2(B)...r_1(x)...$

What about conflicting, concurrent actions on same object?



What about conflicting, concurrent actions on same object?

- Assume equivalent to either r₁(A) w₂(A)
 or w₂(A) r₁(A)
- → low level synchronization mechanism
- Assumption called "atomic actions"

Outline

- Since serial schedules have good properties we would like our schedules to behave like (be **equivalent** to) serial schedules
 - 1. Need to define equivalence based solely on order of operations
 - 2. Need to define class of schedules which is equivalent to serial schedule
 - 3. Need to design scheduler that guarantees that we only get these good schedules

Conflict Equivalence

 Define equivalence based on the order of conflicting actions

Definition

S₁, S₂ are <u>conflict equivalent</u> schedules if S₁ can be transformed into S₂ by a series of swaps on non-conflicting actions.

Alternatively:

If the order of conflicting actions in S_1 and S_2 is the same

Outline

- Since serial schedules have good properties we would like our schedules to behave like (be **equivalent** to) serial schedules
 - 1. Need to define equivalence based solely on order of operations
 - 2. Need to define class of schedules which is equivalent to serial schedule
 - 3. Need to design scheduler that guarantees that we only get these good schedules

Definition

A schedule is <u>conflict serializable</u> (**CSR**) if it is conflict equivalent to some serial schedule.

How to check?

- Compare orders of all conflicting operations
- Can be simplified because there is some redundant information here, e.g.,

$$S_1 = W_2(A), W_2(B), r_1(A), W_1(B)$$

- W2(A) conflicts with R1(A)
- W2(B) conflicts with W1(B)
- Both imply that T2 has to be executed before T1 in any equivalent serial schedule

Conflict graph P(S) (S is schedule)

Nodes: transactions in S

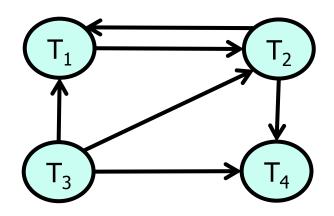
Arcs: Ti → Tj whenever

- p_i(A), q_j(A) are actions in S
- $p_i(A) <_S q_j(A)$
- at least one of p_i, q_j is a write

What is P(S) for
 S = w₃(A) w₂(C) r₁(A) w₁(B) r₁(C) w₂(A) r₄(A) w₄(D)

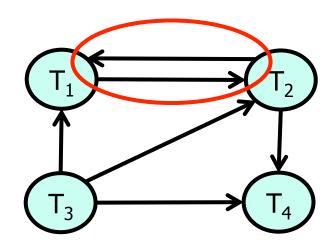
• Is S serializable?

What is P(S) for
 S = w₃(A) w₂(C) r₁(A) w₁(B) r₁(C) w₂(A) r₄(A) w₄(D)



• Is S serializable?

What is P(S) for
 S = w₃(A) w₂(C) r₁(A) w₁(B) r₁(C) w₂(A) r₄(A) w₄(D)



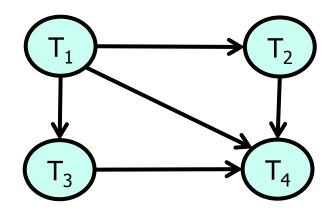
• Is S serializable?

Another Exercise:

What is P(S) for $S = w_1(A) r_2(A) r_3(A) w_4(A) ?$

Another Exercise:

What is P(S) for
 S = w₁(A) r₂(A) r₃(A) w₄(A) ?



Lemma

 S_1 , S_2 conflict equivalent $\Rightarrow P(S_1)=P(S_2)$

<u>Lemma</u>

 S_1 , S_2 conflict equivalent $\Rightarrow P(S_1)=P(S_2)$

Proof: (a \rightarrow b same as \neg b \rightarrow \neg a)

Assume $P(S_1) \neq P(S_2)$

 \Rightarrow 3 T_i: T_i \rightarrow T_j in S₁ and not in S₂

$$\Rightarrow S_1 = ...p_i(A)...q_j(A)...$$

$$S_2 = ...q_j(A)...p_i(A)...$$

$$f_i, q_j$$

$$confliction$$

 \Rightarrow S₁, S₂ not conflict equivalent

Note: $P(S_1)=P(S_2) \not\Rightarrow S_1$, S_2 conflict equivalent

Note: $P(S_1)=P(S_2) \not\Rightarrow S_1$, S_2 conflict equivalent

Counter example:

$$S_1=w_1(A) r_2(A) w_2(B) r_1(B)$$

$$S_2=r_2(A) w_1(A) r_1(B) w_2(B)$$

Theorem

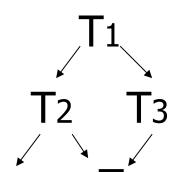
 $P(S_1)$ acyclic \iff S_1 conflict serializable

- (\Leftarrow) Assume S₁ is conflict serializable
- \Rightarrow 3 S_s: S_s, S₁ conflict equivalent
- $\Rightarrow P(S_s) = P(S_1)$
- \Rightarrow P(S₁) acyclic since P(S_s) is acyclic

Theorem

 $P(S_1)$ acyclic \iff S_1 conflict serializable

 (\Rightarrow) Assume P(S₁) is acyclic Transform S₁ as follows:



- (1) Take T₁ to be transaction with no incident arcs T_4
- (2) Move all T₁ actions to the front

$$S_1 =p_1(A).....p_1(A)....$$

- (3) we now have $S_1 = \langle T_1 \text{ actions } \rangle \langle ... \text{ rest } ... \rangle$
- (4) repeat above steps to serialize rest!

What's the damage?

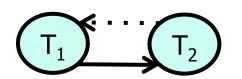
- Classification of "bad" things that can happen in "bad" schedules
 - Dirty reads
 - Non-repeatable reads
 - Phantom reads (later)

ILLINOIS INSTITUTE OF TECHNOLOGY

Dirty Read

- A transaction T₁ read a value that has been updated by an uncommitted transaction T₂
- If T₂ aborts then the value read by T₁ is invalid

Dirty Read



	_		
		-	

 T_2

A = 50

Read(A), A += 100

Write(A);

Read(A), A +=200

 T_1 : A = 150

A = 150

 T_2 : A = 350

Abort

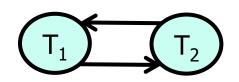
Write(A);

$$S_1 = r_1(A), w_1(A), r_2(A), a_1, w_2(A)$$

Non-repeatable Read

- A transaction T₁ reads items; some before and some after an update of these item by a transaction T₂
- Problem
 - Repeated reads of the same item see different values
 - Some values are modified and some are not

Inconsistent Read



T_1 T_2 $A = 3$

Read(A)

Read(A), A
$$/= 2$$
 A = 50
Write(A)

Commit

Commit

$$A = 50$$

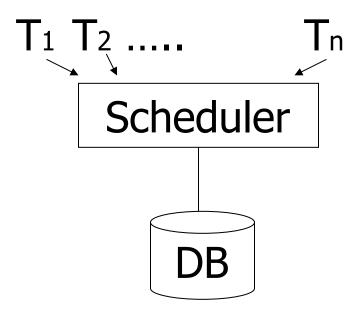
$$S_1 = r_1(A), r_2(A), w_2(A), c_2, r_1(A), c_1$$

Option 1: run system, recording P(S); at end of day, check for P(S) cycles and declare if execution was good

Option 1: run system, recording P(S); at end of day, check for P(S) cycles and declare if execution was good

This is called **optimistic concurrency control**

Option 2: prevent P(S) cycles from occurring



58

Option 2: prevent P(S) cycles from occurring

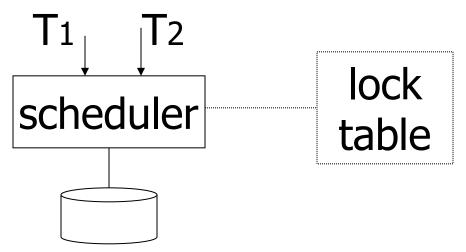
This is called **pessimistic concurrency control**

A locking protocol

Two new actions:

lock (exclusive): li (A)

unlock: ui (A)



60

Rule #1: Well-formed transactions

Ti: ... li(A) ... pi(A) ... ui(A) ...

- Transaction has to lock A before it can access A
- 2) Transaction has to unlock A eventually
- 3) Transaction cannot access A after unlock

Rule #2 Legal scheduler

$$S = \dots I_i(A) \dots u_i(A) \dots no I_j(A)$$

4) Only one transaction can hold a lock on A at the same time

What schedules are legal?
 What transactions are well-formed?

$$S_1 = I_1(A)I_1(B)r_1(A)w_1(B)I_2(B)u_1(A)u_1(B)$$

 $r_2(B)w_2(B)u_2(B)I_3(B)r_3(B)u_3(B)$

$$S_2 = I_1(A)r_1(A)w_1(B)u_1(A)u_1(B)$$

 $I_2(B)r_2(B)w_2(B)I_3(B)r_3(B)u_3(B)$

$$S_3 = I_1(A)r_1(A)u_1(A)I_1(B)w_1(B)u_1(B)$$

 $I_2(B)r_2(B)w_2(B)u_2(B)I_3(B)r_3(B)u_3(B)$

What schedules are legal?
 What transactions are well-formed?

$$S1 = I_1(A)I_1(B)r_1(A)w_1(B)I_2(B)u_1(A)u_1(B)$$

 $r_2(B)w_2(B)u_2(B)I_3(B)r_3(B)u_3(B)$

$$S2 = I_1(A)r_1(A)w_1(B)u_1(A)u_1(B)$$

 $I_2(B)r_2(B)w_2(B)I_3(B)r_3(B)u_3(B)$

$$S3 = I_1(A)r_1(A)u_1(A)I_1(B)w_1(B)u_1(B)$$

 $I_2(B)r_2(B)w_2(B)u_2(B)I_3(B)r_3(B)u_3(B)$

Schedule F

T1	T2
I ₁ (A);Read(A)	
A←A+100;Write(A);u ₁ (A)	
	I ₂ (A);Read(A)
	A←Ax2;Write(A);u2(A)
	I ₂ (B);Read(B)
	B←Bx2;Write(B);u ₂ (B)
I ₁ (B);Read(B)	
B←B+100;Write(B);u ₁ (B)	

65

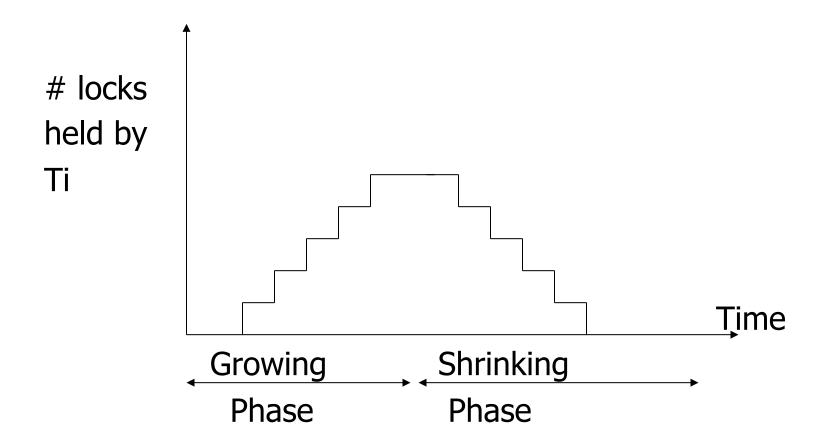
Schedule F

		Α	В
T1	T2	25	25
l ₁ (A);Read(A)			
A←A+100;Write(A);u ₁ (A)		125	
	I ₂ (A);Read(A)		
	A←Ax2;Write(A);u ₂ (A)	250	
	I ₂ (B);Read(B)		
	B←Bx2;Write(B);u ₂ (B)		50
l ₁ (B);Read(B)			
B←B+100;Write(B);u ₁ (B)			150
		250	150

66

Rule #3 Two phase locking (2PL) for transactions

5) A transaction does not require new locks after its first unlock operation



68

Schedule G

<u>T1</u>	T2
I ₁ (A);Read(A)	
A←A+100;Write(A)	
I ₁ (B); u ₁ (A)	
	I ₂ (A);Read(A) delayed
	A←Ax2;Write(A);(2(B))

Schedule G

 $\mathsf{T}1$

12

 $l_1(A);Read(A)$

 $A \leftarrow A + 100; Write(A)$

I₁(B); u₁(A)

Read(B);B ← B+100

Write(B); u₁(B)

l₂(A);Read(A)

A ←Ax2;Write(A); l₂(B)

Schedule G

T1

T2

 $I_1(A);Read(A)$

 $A \leftarrow A + 100; Write(A)$

I₁(B); u₁(A)

Read(B);B ← B+100

Write(B); u₁(B)

I₂(A);Read(A) delayed A←Ax2;Write(A);I₂(B)

 $l_2(B)$; $u_2(A)$; Read(B)

 $B \leftarrow Bx2;Write(B);u_2(B);$

71

Schedule H (T2 reversed)

T1 T2 $I_1(A); Read(A) I_2(B); Read(B)$ $A \leftarrow A+100; Write(A) B \leftarrow Bx2; Write(B)$ $I_1(B) I_2(A) I_2(A)$ $I_2(A) I_2(A)$ $I_3(B) I_3(B)$ $I_4(B) I_2(A)$

ILLINOIS INSTITUTE OF TECHNOLOGY

Deadlock

- Two or more transactions are waiting for each other to release a lock
- In the example
 - T₁ is waiting for T₂ and is making no progress
 - T₂ is waiting for T₁ and is making no progress
 - --> if we do not do anything they would wait forever

- Assume deadlocked transactions are rolled back
 - They have no effect
 - They do not appear in schedule
 - Come back to that later

This space intentionally left blank!

Next step:

Show that rules #1,2,3 \Rightarrow conflictserializable schedules

Conflict rules for li(A), ui(A):

- li(A), lj(A) conflict
- l_i(A), u_j(A) conflict

Note: no conflict $< u_i(A), u_j(A)>, < l_i(A), r_j(A)>,...$

Theorem Rules #1,2,3 \Rightarrow conflict (2PL) serializable schedule

Theorem Rules #1,2,3
$$\Rightarrow$$
 conflict (2PL) serializable schedule

To help in proof:

Lemma

$$Ti \rightarrow Tj \text{ in } S \Rightarrow SH(Ti) <_S SH(Tj)$$

Lemma

$$Ti \rightarrow Tj \text{ in } S \Rightarrow SH(Ti) <_S SH(Tj)$$

Proof of lemma:

Ti → Tj means that

$$S = ... p_i(A) ... q_i(A) ...; p,q conflict$$

By rules 1,2:

$$S = ... p_i(A) ... u_i(A) ... l_j(A) ... q_j(A) ...$$

Lemma

$$Ti \rightarrow Tj \text{ in } S \Rightarrow SH(Ti) <_S SH(Tj)$$

Proof of lemma:

Ti → Tj means that

$$S = ... p_i(A) ... q_j(A) ...; p,q conflict$$

By rules 1,2:

$$S = \dots p_i(A) \dots u_i(A) \dots |_{j}(A) \dots q_j(A) \dots$$

By rule 3: SH(Ti) SH(Tj)

So, $SH(Ti) <_S SH(Tj)$

Theorem Rules #1,2,3
$$\Rightarrow$$
 conflict (2PL) serializable schedule

Proof:

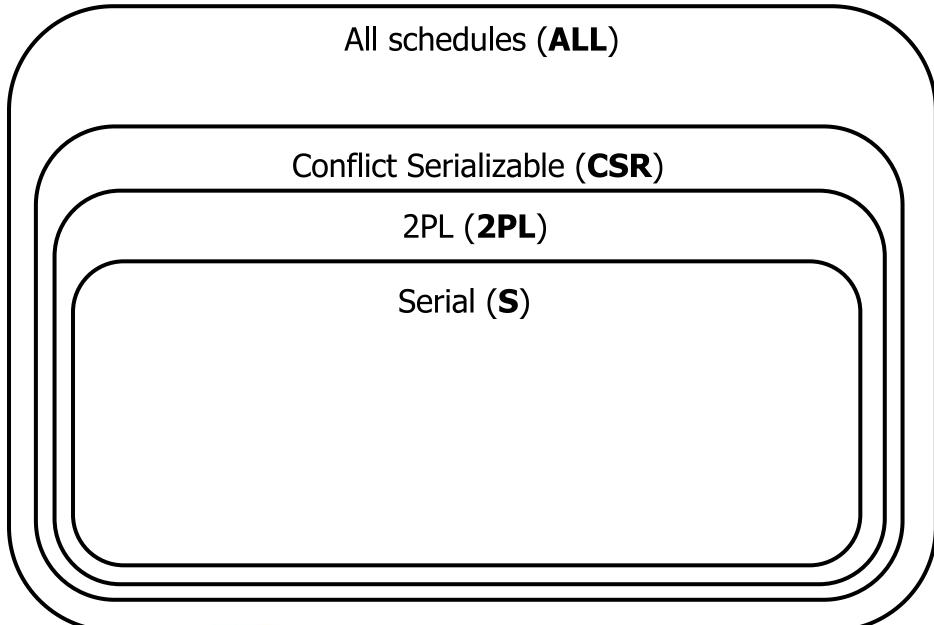
(1) Assume P(S) has cycle

$$T_1 \rightarrow T_2 \rightarrow \dots T_n \rightarrow T_1$$

- (2) By lemma: $SH(T_1) < SH(T_2) < ... < SH(T_1)$
- (3) Impossible, so P(S) acyclic
- $(4) \Rightarrow S$ is conflict serializable

2PL subset of Serializable

$S \subset 2PL \subset CSR \subset ALL$



S1: w1(x) w3(x) w2(y) w1(y)

- S1 cannot be achieved via 2PL:
 The lock by T1 for y must occur after w2(y), so the unlock by T1 for x must occur after this point (and before w1(x)). Thus, w3(x) cannot occur under 2PL where shown in S1 because T1 holds the x lock at that point.
- However, S1 is serializable (equivalent to T2, T1, T3).

If you need a bit more practice:

Are our schedules S_C and S_D 2PL schedules?

 S_c : w1(A) w2(A) w1(B) w2(B)

 S_D : w1(A) w2(A) w2(B) w1(B)

- Beyond this simple 2PL protocol, it is all a matter of improving performance and allowing more concurrency....
 - Shared locks
 - Multiple granularity
 - Avoid Deadlocks
 - Inserts, deletes and phantoms
 - Other types of C.C. mechanisms
 - Multiversioning concurrency control

Shared locks

So far:

$$S = ...I_1(A) r_1(A) u_1(A) ... I_2(A) r_2(A) u_2(A) ...$$

Do not conflict

Shared locks

So far:

$$S = ...I_1(A) r_1(A) u_1(A) ... I_2(A) r_2(A) u_2(A) ...$$

Do not conflict

Instead:

 $S = ... ls_1(A) r_1(A) ls_2(A) r_2(A) us_1(A) us_2(A)$

Lock actions

I-t_i(A): lock A in t mode (t is S or X)

u-t_i(A): unlock t mode (t is S or X)

Shorthand:

u_i(A): unlock whatever modes

Ti has locked A

Rule #1 Well formed transactions

$$T_i = ... I-S_1(A) ... r_1(A) ... u_1(A) ...$$

$$T_i = ... I-X_1(A) ... w_1(A) ... u_1(A) ...$$

 What about transactions that read and write same object?

Option 1: Request exclusive lock

 $T_i = ...I-X_1(A) ... r_1(A) ... w_1(A) ... u(A) ...$

ILLINOIS INSTITUTE OF TECHNOLOGY

 What about transactions that read and write same object?

Option 2: Upgrade

(E.g., need to read, but don't know if will write...)

$$T_i = ... I - S_1(A) ... r_1(A) ... I - X_1(A) ... w_1(A) ... u(A) ...$$

Think of

- Get 2nd lock on A, or
- Drop S, get X lock

Rule #2 Legal scheduler

$$S = \dots I - S_i(A) \dots u_i(A) \dots$$

$$no \ I - X_j(A)$$

$$S = \dots I - X_i(A) \dots u_i(A) \dots$$

$$no \ I - X_j(A)$$

$$no \ I - X_j(A)$$

$$no \ I - X_j(A)$$

A way to summarize Rule #2

Compatibility matrix

Comp

	S	X
S	true	false
X	false	false

Rule # 3 2PL transactions

No change except for upgrades:

- (I) If upgrade gets more locks $(e.g., S \rightarrow \{S, X\})$ then no change!
- (II) If upgrade releases read (shared) lock (e.g., S → X)
 - can be allowed in growing phase

Theorem Rules $1,2,3 \Rightarrow$ Conf.serializable for S/X locks schedules

Proof: similar to X locks case

Detail:

I-t_i(A), I-r_j(A) do not conflict if comp(t,r) I-t_i(A), u-r_j(A) do not conflict if comp(t,r)

Lock types beyond S/X

Examples:

- (1) increment lock
- (2) update lock

Example (1): increment lock

- Atomic increment action: IN_i(A)
 {Read(A); A ← A+k; Write(A)}
- IN_i(A), IN_j(A) do not conflict!

$$A=5 \xrightarrow{\text{IN}_{i}(A)} A=7 \xrightarrow{\text{IN}_{j}(A)} A=17$$

$$A=15 \xrightarrow{\text{IN}_{i}(A)} A=15 \xrightarrow{\text{IN}_{i}(A)} A=17$$

Comp

	S	X	I
S			
X			
Ι			

Comp

	S	X	I
S	Т	F	П
X	F	F	F
Ι	F	F	Т

<u>Update locks</u>

A common deadlock problem with upgrades:

T1 T2 I-S₁(A)

I-S₂(A)

]-X¹(Y)

]-X2(A)

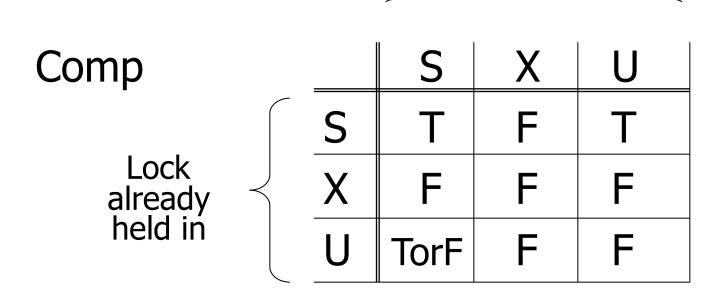
--- Deadlock ---

Solution

If Ti wants to read A and knows it may later want to write A, it requests update lock (not shared)

New request

New request



-> symmetric table?

Note: object A may be locked in different modes at the same time...

$$S_1=...I-S_1(A)...I-S_2(A)...I-U_3(A)...$$
 $I-S_4(A)...$? $I-U_4(A)...$?

Note: object A may be locked in different modes at the same time...

$$S_1=...I-S_1(A)...I-S_2(A)...I-U_3(A)...$$
 $I-S_4(A)...$? $I-U_4(A)...$?

 To grant a lock in mode t, mode t must be compatible with all currently held locks on object

How does locking work in practice?

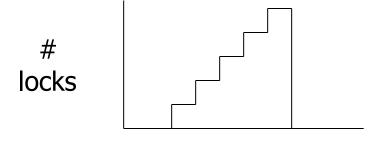
Every system is different

(E.g., may not even provide CONFLICT-SERIALIZABLE schedules)

But here is one (simplified) way ...

Sample Locking System:

- (1) Don't trust transactions to request/release locks
- (2) Hold all locks until transaction commits

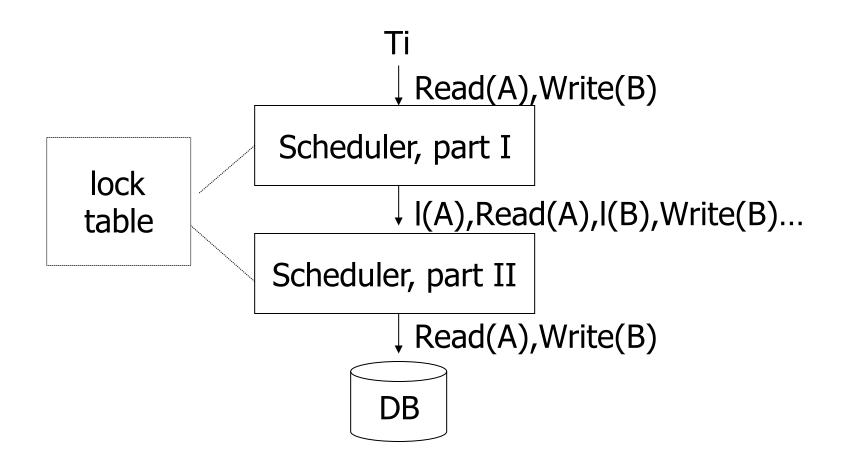


time

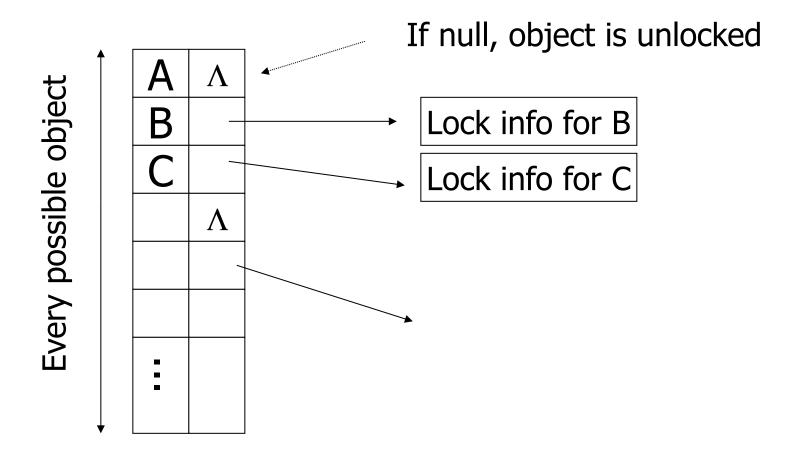
Strict Strong 2PL (SS2PL)

- 2PL + (2) from the last slide
- All locks are held until transaction end
- Compare with schedule class strict
 (ST) we defined for recovery
 - A transaction never reads or writes items written by an uncommitted transactions
- SS2PL = (ST \cap 2PL)

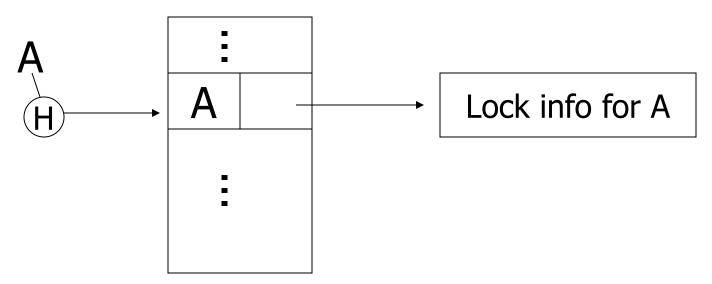
All schedules (ALL) Conflict Serializable (CSR) 2PL (**2PL**) SS2PL (SS2PL) Serial (S)



Lock table Conceptually



But use hash table:



If object not found in hash table, it is unlocked

Lock info for A - example

tran mode wait? Nxt T_link Object:A no Group mode:U Waiting:yes no List: T3 yes To other T3 records

What are the objects we lock?

Relation A

Relation B

=

Tuple A

Tuple B

Tuple C

-

Disk block

Α

Disk block

В

-

DB

DB

DB

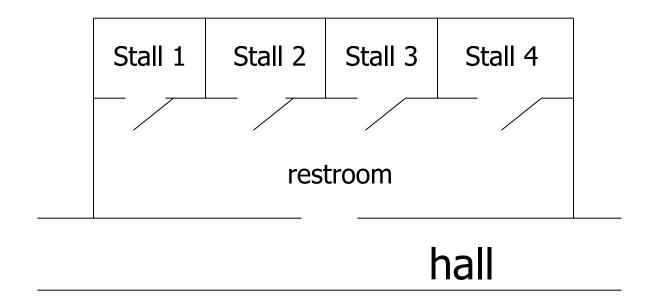
 Locking works in any case, but should we choose small or large objects?

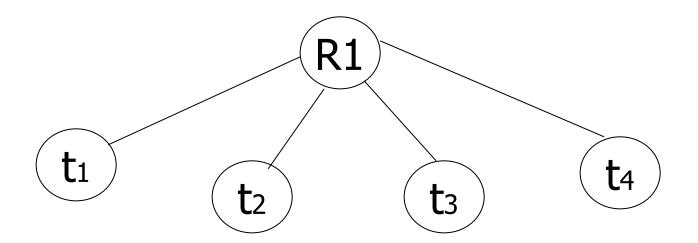
 Locking works in any case, but should we choose <u>small</u> or <u>large objects?</u>

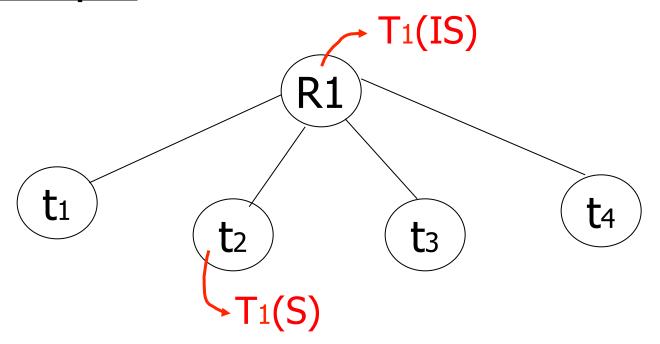
- If we lock <u>large</u> objects (e.g., Relations)
 - Need few locks
 - Low concurrency
- If we lock small objects (e.g., tuples, fields)
 - Need more locks
 - More concurrency

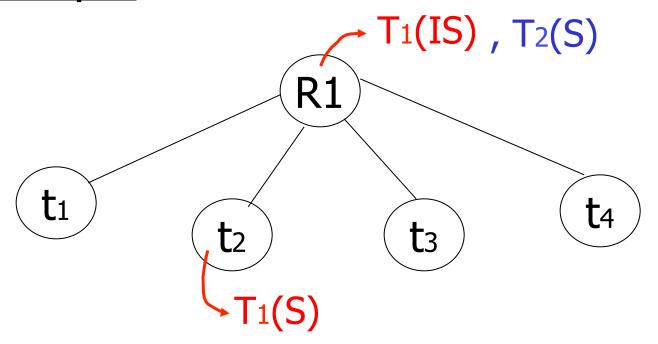
We can have it both ways!!

Ask any janitor to give you the solution...

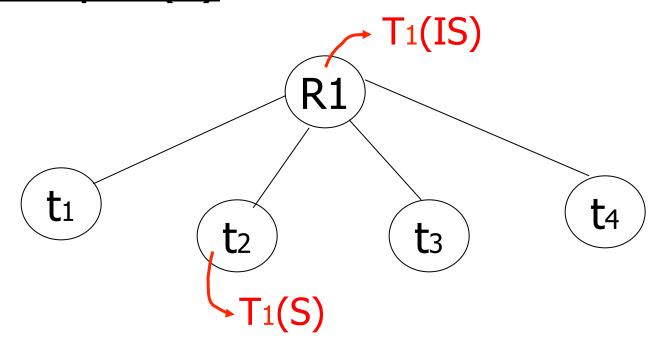


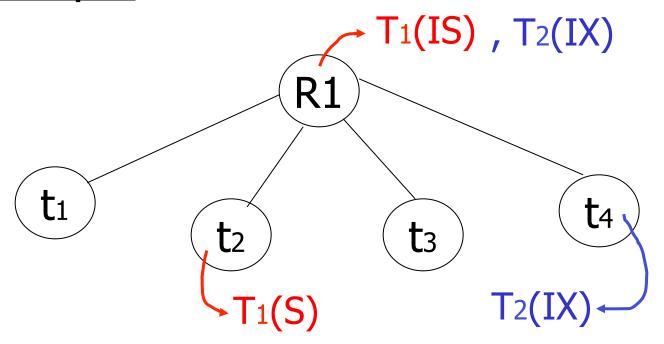






Example (b)





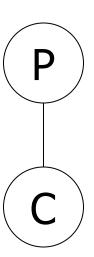
Multiple granularity

Comp Requestor IS IX S SIX X IS Holder IX SIX

Multiple granularity

Comp	Requestor					
		IS	IX	S	SIX	X
	IS	Т	Т	Т	T	F
Holder	IX	Т	Т	F	F	F
	S	T	H	H	F	F
	SIX	H	ш	H	F	F
	X	F	H	F	F	F

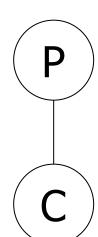
Parent locked in	Child can be locked in
IS IX	
S	
SIX	
X	



Parent	
locked	in

Child can be locked by same transaction in

IS	IS, S
IX	IS, S, IX, X, SIX
S	none
SIX	X, IX, [SIX]
X	none

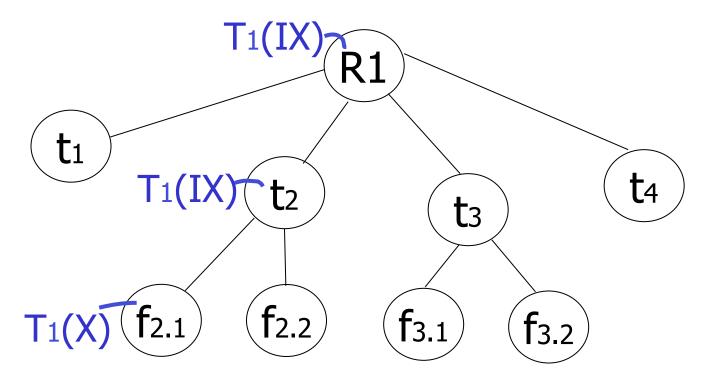


not necessary

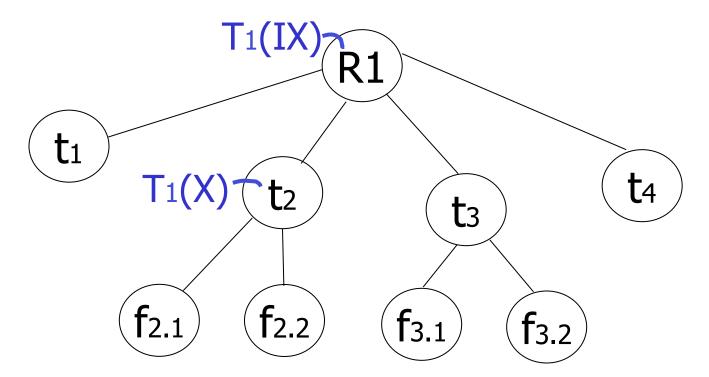
Rules

- (1) Follow multiple granularity comp function
- (2) Lock root of tree first, any mode
- (3) Node Q can be locked by Ti in S or IS only if parent(Q) locked by Ti in IX or IS
- (4) Node Q can be locked by Ti in X,SIX,IX only if parent(Q) locked by Ti in IX,SIX
- (5) Ti is two-phase
- (6) Ti can unlock node Q only if none of Q's children are locked by Ti

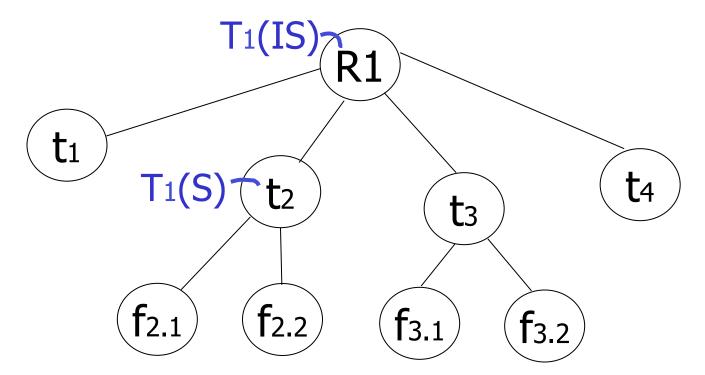
 Can T2 access object f2.2 in X mode? What locks will T2 get?



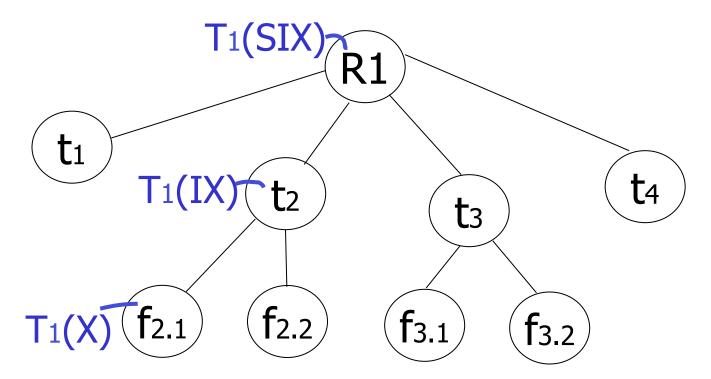
 Can T2 access object f2.2 in X mode? What locks will T2 get?



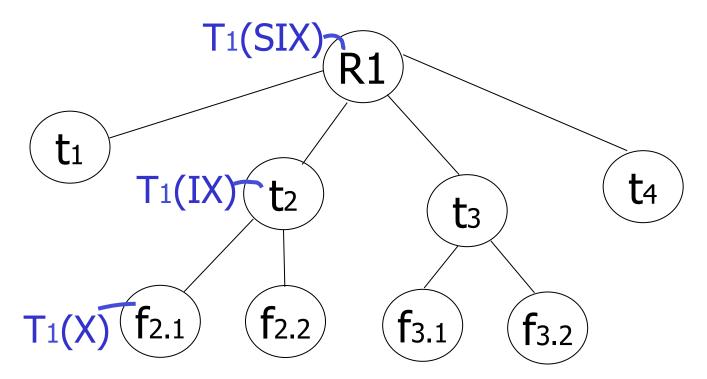
 Can T2 access object f3.1 in X mode? What locks will T2 get?



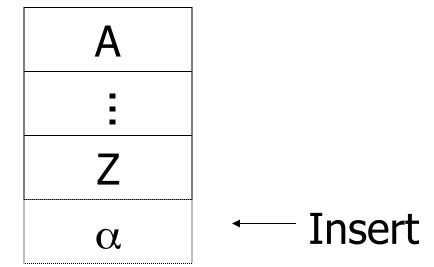
 Can T2 access object f2.2 in S mode? What locks will T2 get?



 Can T2 access object f2.2 in X mode? What locks will T2 get?



<u>Insert + delete operations</u>



Modifications to locking rules:

- (1) Get exclusive lock on A before deleting A
- (2) At insert A operation by Ti,
 Ti is given exclusive lock on A

Still have a problem: **Phantoms**

Example: relation R (E#,name,...)

constraint: E# is key

use tuple locking

R E# Nameo1 55 Smitho2 75 Jones

T₁: Insert <08,Obama,...> into R

T₂: Insert <08,McCain,...> into R

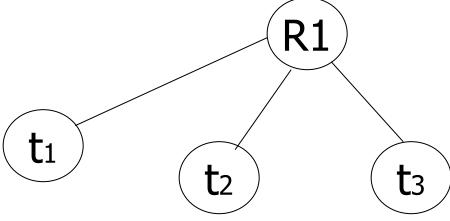
 T_2 T_1 S1(01) S2(01) S2(02) S1(02) **Check Constraint Check Constraint** Insert o3[08,Obama,...]

Insert o4[08,McCain,...]

Solution

- Use multiple granularity tree
- Before insert of node Q, lock parent(Q) in

X mode

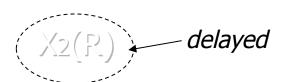


Back to example

T1: Insert<04,Kerry>

X1(R)

Check constraint Insert<04,Kerry> U(R) T2: Insert<04,Bush>



 $X_2(R)$ Check constraint Oops! e# = 04 already in R!

IIT College of

Instead of using R, can use index on R:

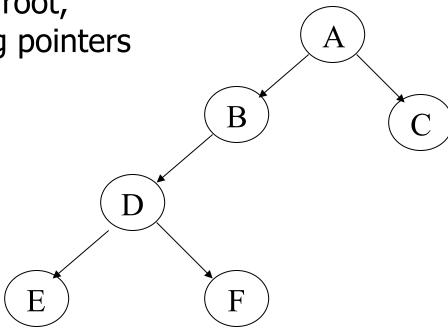


 This approach can be generalized to multiple indexes...

Next:

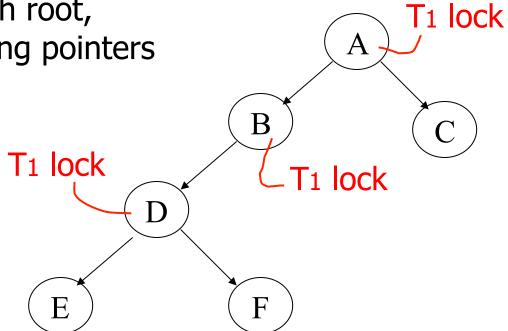
- Tree-based concurrency control
- Validation concurrency control

 all objects accessed through root, following pointers



Example

 all objects accessed through root, following pointers

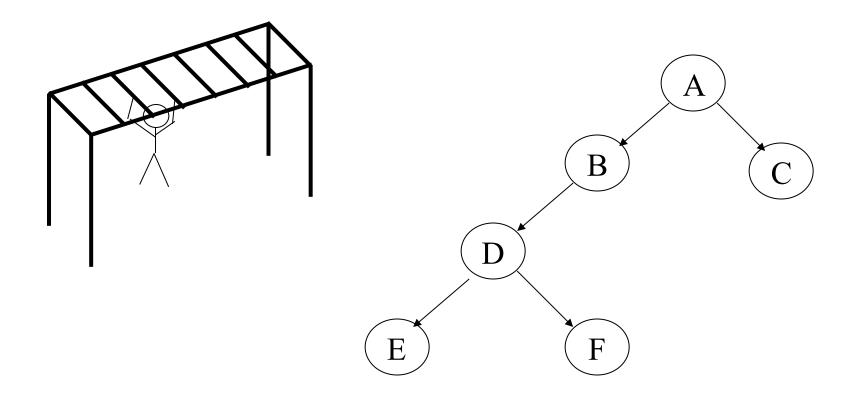


Example

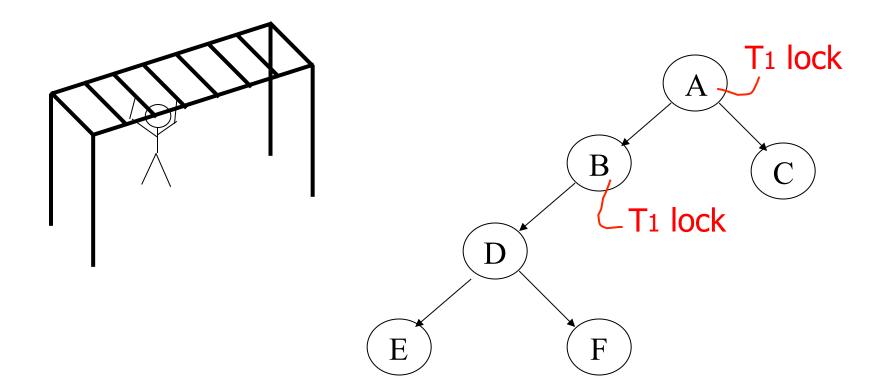
all objects accessed through root, following pointers
 T1 lock
 T1 lock

can we release A lock if we no longer need A??

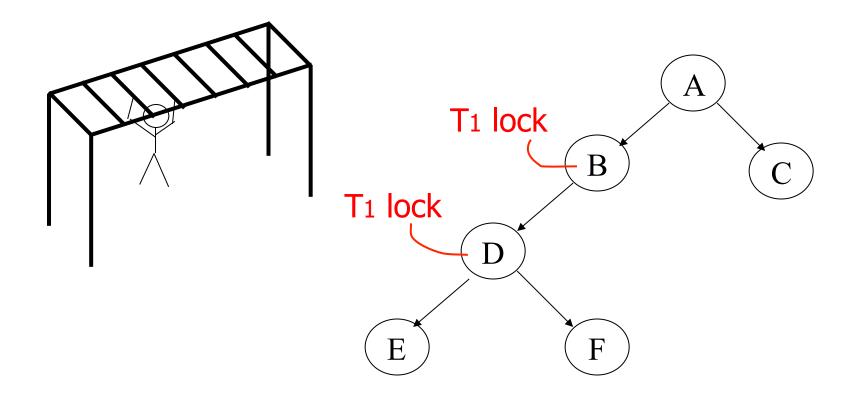
Idea: traverse like "Monkey Bars"



Idea: traverse like "Monkey Bars"

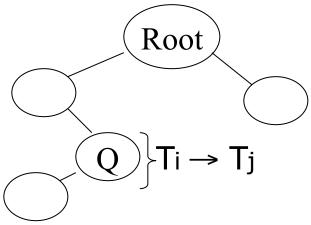


Idea: traverse like "Monkey Bars"



Why does this work?

- Assume all T_i start at root; exclusive lock
- $T_i \rightarrow T_j \Rightarrow T_i$ locks root before T_j

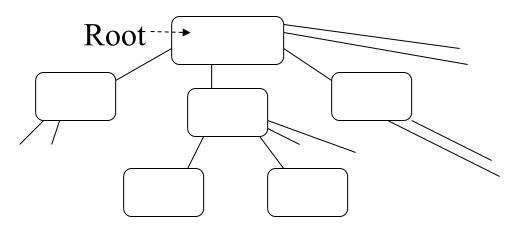


 Actually works if we don't always start at root

Rules: tree protocol (exclusive locks)

- (1) First lock by Ti may be on any item
- (2) After that, item Q can be locked by Ti only if parent(Q) locked by Ti
- (3) Items may be unlocked at any time
- (4) After Ti unlocks Q, it cannot relock Q

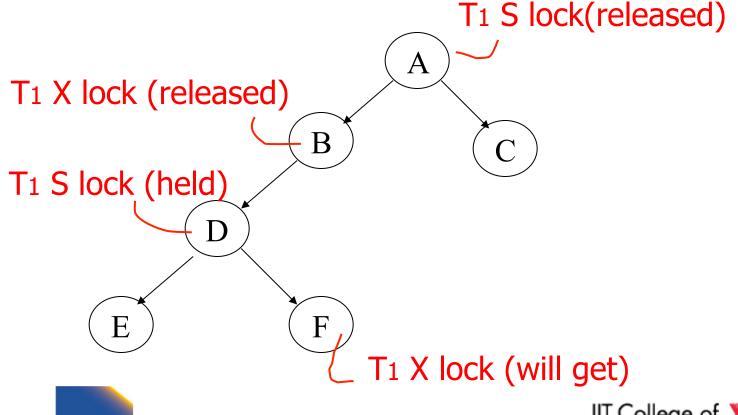
 Tree-like protocols are used typically for B-tree concurrency control



E.g., during insert, do not release parent lock, until you are certain child does not have to split

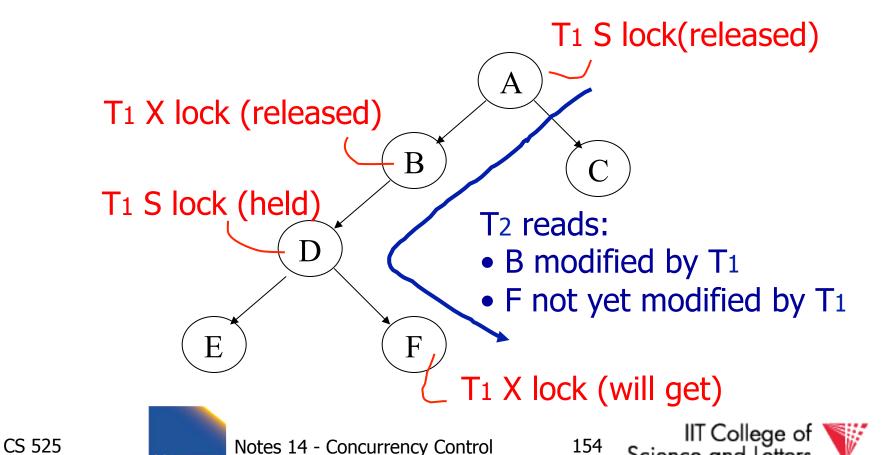
Tree Protocol with Shared Locks

Rules for shared & exclusive locks?



Tree Protocol with Shared Locks

Rules for shared & exclusive locks?



ILLINOIS INSTITUTE OF TECHNOLOGY

Tree Protocol with Shared Locks

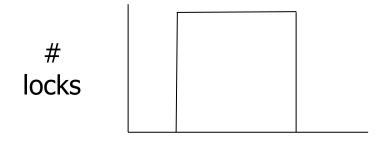
- Need more restrictive protocol
- Will this work??
 - Once T₁ locks one object in X mode,
 all further locks down the tree must be in X mode

Deadlocks (again)

- Before we assumed that we are able to detect deadlocks and resolve them
- Now two options
 - (1) Deadlock detection (and resolving)
 - (2) Deadlock prevention

• Option 1:

 2PL + transaction has to acquire all locks at transaction start following a global order



time

- Option 1:
 - Long lock durations ☺
 - Transaction has to know upfront what data items it will access
 - E.g.,

UPDATE R **SET** a = a + 1 **WHERE** b < 15

We don't know what tuples are in R!

- Option 2:
 - Define some global order of data items O
 - Transactions have to acquire locks according to this order
- Example (X < Y < Z)

Option 2:

- Accessed data items have to be known upfront ⊗
- or access to data has to follow the order

- Option 3 (**Preemption**)
 - Roll-back transactions that wait for locks under certain conditions
 - 3 a) **wait-die**
 - Assign timestamp to each transaction
 - If transaction T_i waits for T_i to release a lock
 - Timestamp $T_i < T_i$ -> wait
 - Timestamp $T_i > T_i$ -> roll-back T_i

- Option 3 (Preemption)
 - Roll-back transactions that wait for locks under certain conditions
 - -3 a) wound-wait
 - Assign timestamp to each transaction
 - If transaction T_i waits for T_i to release a lock
 - Timestamp $T_i < T_i$ -> roll-back T_i
 - Timestamp $T_i > T_i$ -> wait

- Option 3:
 - Additional transaction roll-backs (3)

Timeout-based Scheme

- Option 4:
 - After waiting for a lock longer than X, a transaction is rolled back

Timeout-based Scheme

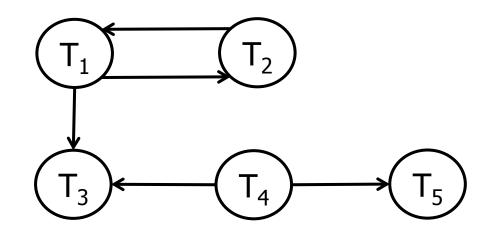
- Option 4:
 - − Simple scheme ☺
 - Hard to find a good value of X
 - To high: long wait times for a transaction before it gets eventually aborted
 - To low: to many transaction that are not deadlock get aborted

Deadlock Detection and Resolution

- Data structure to detect deadlocks: wait-for graph
 - One node for each transaction
 - Edge T_i->T_i if T_i is waiting for T_i
 - Cycle -> Deadlock
 - Abort one of the transaction in cycle to resolve deadlock

Deadlock Detection and Resolution

- When do we run the detection?
- How to choose the victim?



Optimistic Concurrency Control: **Validation**

Transactions have 3 phases:

(1) Read

- all DB values read
- writes to temporary storage
- no locking

(2) Validate

- check if schedule so far is serializable

(3) Write

if validate ok, write to DB

Key idea

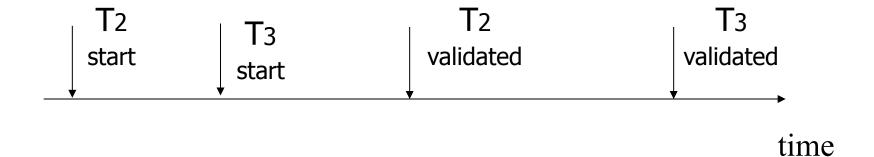
- Make validation atomic
- If T₁, T₂, T₃, ... is validation order, then resulting schedule will be conflict equivalent to S_s = T₁ T₂ T₃...

To implement validation, system keeps two sets:

- <u>FIN</u> = transactions that have finished phase 3 (and are all done)
- VAL = transactions that have successfully finished phase 2 (validation)

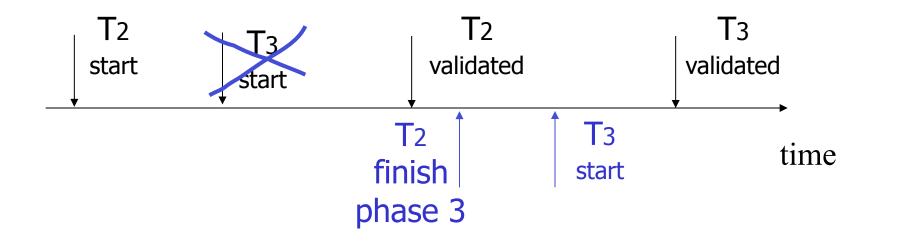
Example of what validation must prevent:

RS(T₂)={B}
$$\cap$$
 RS(T₃)={A,B} \neq ϕ WS(T₂)={B,D} WS(T₃)={C}

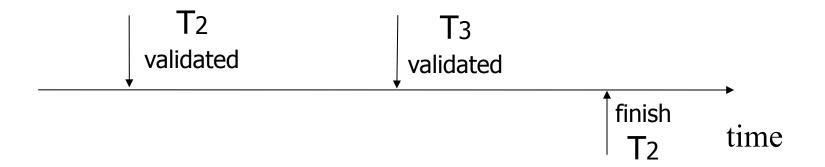


allow Example of what validation must prevent:

RS(T₂)={B}
$$\cap$$
 RS(T₃)={A,B} \neq ϕ WS(T₂)={B,D} WS(T₃)={C}

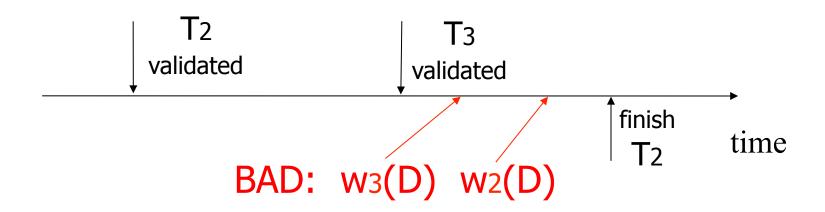


Another thing validation must prevent:

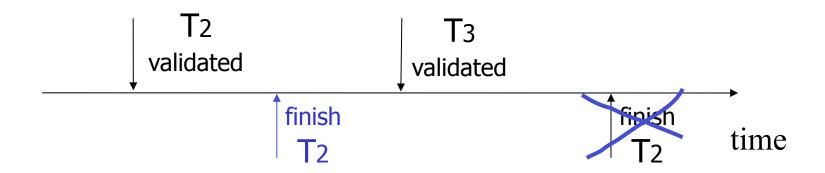


Another thing validation must prevent:

$$RS(T_2)=\{A\}$$
 $RS(T_3)=\{A,B\}$ $WS(T_2)=\{D,E\}$ $WS(T_3)=\{C,D\}$



allow Another thing validation must prevent:



Validation rules for Ti:

```
(1) When T<sub>j</sub> starts phase 1:
       ignore(T_i) \leftarrow FIN
(2) at T<sub>j</sub> Validation:
               if check (T<sub>j</sub>) then
                       [VAL \leftarrow VAL \cup \{T_j\};
                         do write phase;
                         FIN \leftarrowFIN U \{T_i\} ]
```

Check (T_j):

For $T_i \subseteq VAL$ - IGNORE (T_j) DO

IF [WS(T_i) \cap RS(T_j) $\neq \emptyset$ OR $T_i \notin FIN$] THEN RETURN false;

RETURN true;

Check (T_j):

For
$$T_i \subseteq VAL - IGNORE(T_j)$$
 DO

IF [WS(T_i) \cap RS(T_j) $\neq \emptyset$ OR

 $T_i \notin FIN$] THEN RETURN false;

RETURN true;

Is this check too restrictive?

Improving Check(T_j)

For $T_i \subseteq VAL - IGNORE(T_j)$ DO

IF [WS(T_i) \cap RS(T_j) $\neq \emptyset$ OR

($T_i \notin FIN \text{ AND WS}(T_i) \cap$ WS(T_j) $\neq \emptyset$)]

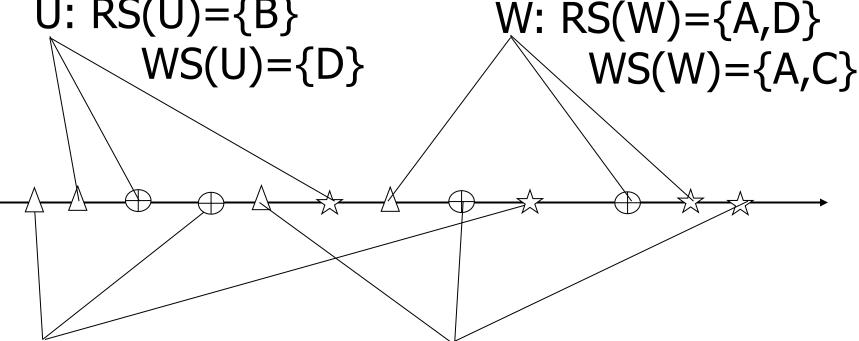
THEN RETURN false;

RETURN true;

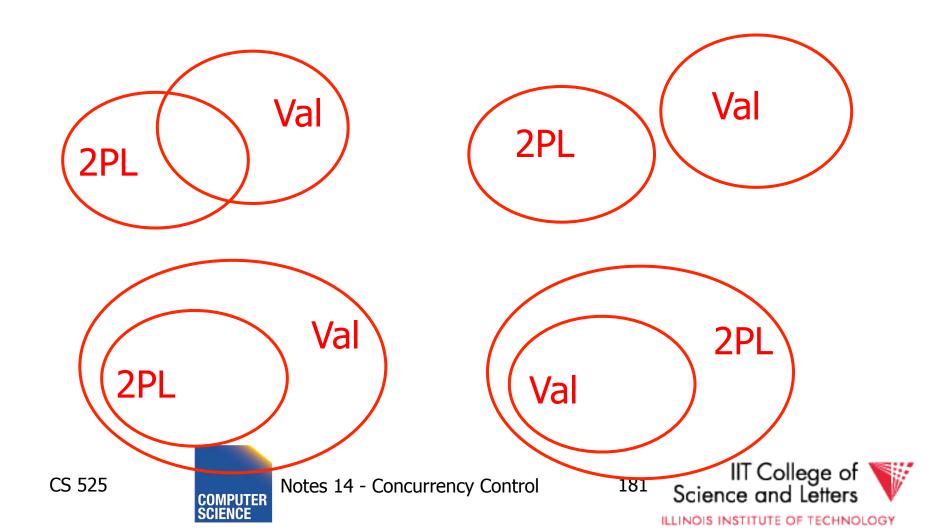
Exercise:

 \triangle start ⊕ validate 🖈 finish

$$U: RS(U) = \{B\}$$



Is Validation = 2PL?



S2: w2(y) w1(x) w2(x)

- S2 can be achieved with 2PL:
 I2(y) w2(y) I1(x) w1(x) u1(x) I2(x) w2(x) u2(y) u2(x)
- S2 cannot be achieved by validation:
 The validation point of T2, val2 must occur before w2(y) since transactions do not write to the database until after validation. Because of the conflict on x, val1 < val2, so we must have something like</p>

S2: val1 val2 w2(y) w1(x) w2(x) With the validation protocol, the writes of T2 should not start until T1 is all done with its writes, which is not the case.

Validation subset of 2PL?

- Possible proof (Check!):
 - Let S be validation schedule
 - For each T in S insert lock/unlocks, get S':
 - At T start: request read locks for all of RS(T)
 - At T validation: request write locks for WS(T); release read locks for read-only objects
 - At T end: release all write locks
 - Clearly transactions well-formed and 2PL
 - Must show S' is legal (next page)

Say S' not legal:

S': ... 11(x) w2(x) r1(x) val1 u2(x) ...

- At val1: T2 not in Ignore(T1); T2 in VAL
- T1 does not validate: WS(T2) \cap RS(T1) ≠ Ø
- contradiction!
- Say S' not legal:

S': ... val1 l1(x) w2(x) w1(x) u2(x) ...

- Say T2 validates first (proof similar in other case)
- At val1: T2 not in Ignore(T1); T2 in VAL
- T1 does not validate: $T2 \notin FIN AND WS(T1) \cap WS(T2) \neq \emptyset$
- contradiction!

Validation (also called **optimistic concurrency control**) is useful in some cases:

- Conflicts rare
- System resources plentiful
- Have real time constraints

Multiversioning Concurrency Control (MVCC)

- Keep old versions of data item and use this to increase concurrency
- Each write creates a new version of the written data item
- Use version numbers of timestamps to identify versions

Multiversioning Concurrency Control (MVCC)

- Different transactions operate over different versions of data items
- -> readers never have to wait for writers
- -> great for combined workloads
 - OLTP workload (writes, only access small number) of tuples, short)
 - OLAP workload (reads, access large portions of database, long running)

MVCC schemes

- MVCC timestamp ordering
- MVCC 2PL
- Snapshot isolation (SI)
 - We will only cover this one

Snapshot Isolation (SI)

- Each transaction T is assigned a timestamp
 S(T) when it starts
- Each write creates a new data item version timestamped with the current timestamp
- When a transaction commits, then the latest versions created by the transaction get a timestamp C(T) as of the commit

Snapshot Isolation (SI)

- Under snapshot isolation each transaction T sees a consistent snapshot of the database as of S(T)
 - It only sees data item versions of transactions that committed before T started
 - It also sees its own changes

First Updater Wins Rule (FUW)

- Two transactions Ti and Tj may update the same data item A
 - To avoid lost updates only one of the two can be safely committed

First Updater Wins Rules

- The transaction that updated A first is allowed to commit
- The other transaction is aborted

First Committer Wins Rule (FCW)

- Two transactions Ti and Tj may update the same data item A
 - To avoid lost updates only one of the two can be safely committed

First Committer Wins Rules

- The transaction that attempts to commit first is allowed to commit
- The other transaction is aborted

©Silberschatz, Korth and Sudarshan

				ı			
	X	Y	Z		T1	T2	Т3
Update not visible outside of T1	→ 0	1	5	1	W(Y := 1)		
Update becomes visible to	→ 0			2	Commit		
future transactions				3		Start	
				4		$R(X) \rightarrow 0$	
				5		R(Y)→ 1	
	2		3	6			W(X:=2)
	2		3	7 8			W(Z:=3)
				9			Commit
Concurrent updates not visible -				10		R(Z) → 5	
				11		$R(Y) \rightarrow 1$	
	3			12	>	W(X:=3)	
Not first-committer of X				13		Commit-Req	
Serialization error, T2 is rolled back -				14		Abort	

Why does that work?

- Since all transactions see a consistent snapshot and their changes are only made "public" once they commit
 - It looks like the transactions have been executed in the order of their commits*

* Recall the writes to the same data item are disallowed for concurrent transactions

Is that serializable?

- Almost ;-)
- There is still one type of conflict which cannot occur in serialize schedules called write-skew

Write Skew

Consider two data items A and B

$$-A = 5, B = 5$$

Concurrent Transactions T1 and T2

$$-T1: A = A + B$$

$$-T2: B = A + B$$

Final result under ST

$$-A = 10, B = 10$$

Write Skew

- Consider serial schedules:
 - -T1, T2: A=10, B=15
 - -T2, T1: A=15, B=10
- What is the problem
 - Under SI both T1 and T2 do not see each others changes
 - In any serial schedule one of the two would see the others changes

Example: Oracle

- Tuples are updated in place
- Old versions in separate ROLLBACK segment
 - GC once nobody needs them anymore
- How to implement the FCW or FUW?
 - Oracle uses write locks to block concurrent writes
 - Transaction waiting for a write lock aborts if transaction holding the lock commits

SI Discussion

Advantages

- Readers and writers do not block each other
- If we do not GC old row versions we can go back to previous versions of the database -> Time travel
 - E.g., show me the customer table as it was yesterday

Disadvantages

- Storage overhead to keep old row versions
- GC overhead
- Not strictly serializable

<u>Summary</u>

Have studied CC mechanisms used in practice

- 2 PL variants
- Multiple lock granularity
- Deadlocks
- Tree (index) protocols
- Optimistic CC (Validation)
- Multiversioning Concurrency Control (MVCC)