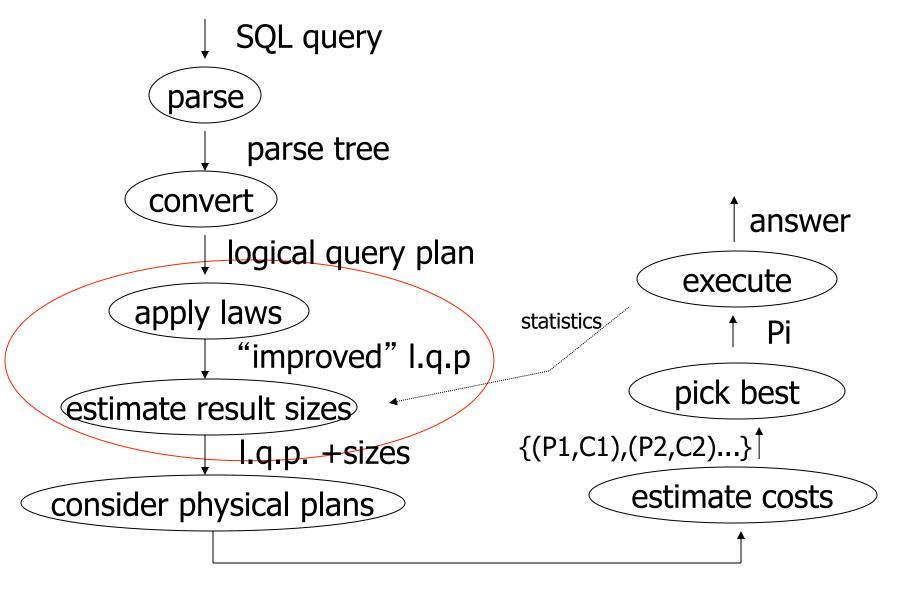
CS 525: Advanced Database Organisation

09: Query Optimization - Logical

Boris Glavic

Slides: adapted from a <u>course</u> taught by Hector Garcia-Molina, Stanford InfoLab



{P1,P2,....}

Notes 8 - Parsing and Analysis

Query Optimization

- Relational algebra level
- Detailed query plan level

Query Optimization

- Relational algebra level
- Detailed query plan level
 - Estimate Costs
 - without indexes
 - with indexes
 - Generate and compare plans

Relational algebra optimization

- Transformation rules (preserve equivalence)
- What are good transformations?
 - Heuristic application of transformations

Query Equivalence

- Two queries q and q' are equivalent:
 - If for every database instance I
 - Contents of all the tables
 - Both queries have the same result

$$q \equiv q' \text{ iff } \forall I: q(I) = q'(I)$$

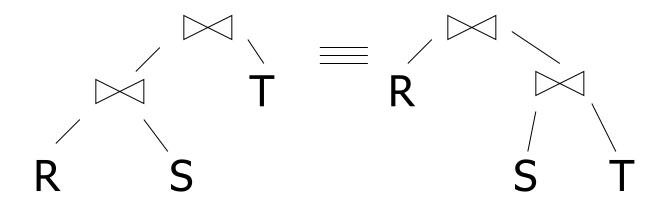
Rules: Natural joins & cross products & union

$$R \bowtie S = S \bowtie R$$

 $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

Note:

- Carry attribute names in results, so order is not important
- Can also write as trees, e.g.:



Rules: Natural joins & cross products & union

$$R \bowtie S = S \bowtie R$$

 $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

$$R \times S = S \times R$$

 $(R \times S) \times T = R \times (S \times T)$

$$R U S = S U R$$

 $R U (S U T) = (R U S) U T$

Rules: Selects

$$O_{p1 \wedge p2}(R) =$$

$$O_{p1vp2}(R) =$$

Rules: Selects

$$O_{p1 \wedge p2}(R) = O_{p1} [O_{p2}(R)]$$

$$\mathbf{O}_{p1vp2}(R) = [\mathbf{O}_{p1}(R)] \cup [\mathbf{O}_{p2}(R)]$$

Bags vs. Sets

```
R = {a,a,b,b,b,c}
S = {b,b,c,c,d}
RUS = ?
```


Bags vs. Sets

```
R = {a,a,b,b,b,c}
S = {b,b,c,c,d}
RUS = ?
```

- Option 1 SUM
 RUS = {a,a,b,b,b,b,c,c,c,d}
- Option 2 MAX
 RUS = {a,a,b,b,b,c,c,d}

Option 2 (MAX) makes this rule work:

 $\mathbf{O}_{p1}\mathbf{v}_{p2}(R) = \mathbf{O}_{p1}(R) \cup \mathbf{O}_{p2}(R)$

Example: R={a,a,b,b,b,c}

P1 satisfied by a,b; P2 satisfied by b,c

Option 2 (MAX) makes this rule work:

$$\mathbf{O}_{p1}\mathbf{v}_{p2}(R) = \mathbf{O}_{p1}(R) \cup \mathbf{O}_{p2}(R)$$

Example: R={a,a,b,b,b,c}

P1 satisfied by a,b; P2 satisfied by b,c

$$\mathbf{O}_{p1}\mathbf{v}_{p2}(R) = \{a,a,b,b,b,c\}$$

$$\mathbf{O}_{P1}(R) = \{a,a,b,b,b\}$$

$$\mathbf{O}_{P2}(R) = \{b,b,b,c\}$$

$$\mathbf{O}_{p1}(R) \cup \mathbf{O}_{p2}(R) = \{a,a,b,b,b,c\}$$

"Sum" option makes more sense:

Senators (.....)

Rep (.....)

 $T1 = \pi_{yr,state}$ Senators; $T2 = \pi_{yr,state}$ Reps

Yr State
97 CA
99 CA
98 AZ

T2	Yr	State
	99	CA
	99	CA
	98	CA

Executive Decision

- -> Use "SUM" option for bag unions
- -> Some rules cannot be used for bags

Rules: Project

Let: X = set of attributes Y = set of attributes XY = X U Y

$$\pi_{xy}(R) =$$

Rules: Project

Let: X = set of attributes Y = set of attributes XY = X U Y

$$\pi_{xy}(R) = \pi_x[\pi_y(R)]$$

Rules: Project

Let:
$$X = set$$
 of attributes
 $Y = set$ of attributes
 $XY = X U Y$
 $\pi_{xy}(R) = \pi_{xy}[\pi_{xy}(R)]$

Rules: $\sigma + \bowtie$ combined

Let p = predicate with only R attribs q = predicate with only S attribs m = predicate with only R,S attribs

$$O_p(R \bowtie S) =$$

$$O_q(R \bowtie S) =$$

Rules: $\sigma + \bowtie$ combined

Let p = predicate with only R attribs q = predicate with only S attribs m = predicate with only R,S attribs

$$O_p(R \bowtie S) = [O_p(R)] \bowtie S$$

$$O_q(R \bowtie S) = R \bowtie [O_q(S)]$$

Rules: $\sigma + \bowtie combined$ (continued)

Some Rules can be Derived:

$$\mathbf{O}_{\mathsf{p}\mathsf{A}\mathsf{q}} (\mathsf{R} \bowtie \mathsf{S}) =$$

$$\mathbf{O}_{pvq}(R \bowtie S) =$$

Do one:

$$\mathbf{O}_{pvq} (R \bowtie S) =$$

$$[(\sigma_p R) \bowtie S] \cup [R \bowtie (\sigma_q S)]$$

--> Derivation for first one:

$$\sigma_p \left[\sigma_q \left(R \bowtie S \right) \right] =$$

$$\sigma_p \left[R \bowtie \sigma_q(S) \right] =$$

$$[\mathbf{O}_{\mathsf{p}}(\mathsf{R})] \bowtie [\mathbf{O}_{\mathsf{q}}(\mathsf{S})]$$

Rules: π,σ combined

Let x = subset of R attributes z = attributes in predicate P (subset of R attributes)

$$\pi_x[\sigma_{P(R)}] =$$

Rules: π,σ combined

Let x = subset of R attributes z = attributes in predicate P (subset of R attributes)

$$\pi_{x}[\sigma_{p}(R)] = \{\sigma_{p}[\pi_{x}(R)]\}$$

ILLINOIS INSTITUTE OF TECHNOLOGY

Rules: π,σ combined

Let x = subset of R attributes z = attributes in predicate P (subset of R attributes)

$$\pi_{x}[\sigma_{p}(R)] = \pi_{x}\{\sigma_{p}[\pi_{x}(R)]\}$$

Rules: π , \bowtie combined

Let x =subset of R attributes

y = subset of S attributes

z = intersection of R,S attributes

$$\pi_{xy}(R \bowtie S) =$$

Rules: π , \bowtie combined

Let x =subset of R attributes

y = subset of S attributes

z = intersection of R,S attributes

$$\pi_{xy}(R \bowtie S) =$$

$$\pi_{xy}\{[\pi_{xz}(R)] \bowtie [\pi_{yz}(S)]\}$$

$$\pi_{xy}\{\sigma_p(R\bowtie S)\} =$$

$$\pi_{xy} \{ \sigma_p (R \bowtie S) \} =$$

$$\pi_{xy} \{ \sigma_p [\pi_{xz'} (R) \bowtie \pi_{yz'} (S)] \}$$

$$z' = z \cup \{ \text{attributes used in P } \}$$

Rules for σ , π combined with X

similar...

e.g.,
$$\sigma_{P}(RXS) = ?$$

Rules σ , U combined:

$$\sigma_p(R \cup S) = \sigma_p(R) \cup \sigma_p(S)$$

$$\sigma_p(R - S) = \sigma_p(R) - S = \sigma_p(R) - \sigma_p(S)$$

Which are "good" transformations?

$$\Box$$
 $Op1 \land p2$ (R) \rightarrow $Op1$ [$Op2$ (R)]

$$\square$$
 $\mathbf{O}_{\mathsf{P}}(\mathsf{R}\bowtie\mathsf{S})\rightarrow[\mathbf{O}_{\mathsf{P}}(\mathsf{R})]\bowtie\mathsf{S}$

$$\square R \bowtie S \rightarrow S \bowtie R$$

Conventional wisdom: do projects early

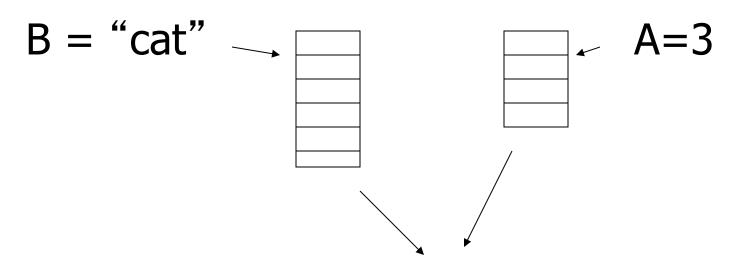
Example:
$$R(A,B,C,D,E) = x=\{E\}$$

P: $(A=3) \land (B="cat")$

$$\pi_{X} \{ \sigma_{P} (R) \}$$
 vs. $\pi_{E} \{ \sigma_{P} \{ \pi_{ABE}(R) \} \}$

ILLINOIS INSTITUTE OF TECHNOLOGY

But What if we have A, B indexes?



Intersect pointers to get pointers to matching tuples e.g., using bitmaps

Bottom line:

- No transformation is <u>always</u> good
- Usually good: early selections
 - Exception: expensive selection conditions
 - E.g., UDFs

More transformations

- Eliminate common sub-expressions
- Detect constant expressions
- Other operations: duplicate elimination

Pushing Selections

- Idea:
 - Join conditions equate attributes
 - For parts of algebra tree (scope) store which attributes have to be the same
 - Called Equivalence classes
- Example: R(a,b), S(c,d)

$$\mathbf{O}_{b=3}$$
 (R $\bowtie_{b=c} S$) = $\mathbf{O}_{b=3}$ (R) $\bowtie_{b=c} \mathbf{O}_{c=3}$ (S)

Outer-Joins

- Not commutative
 - $-R \bowtie S \neq S \bowtie R$
- p condition over attributes in A
- A list of attributes from R

$$\sigma_{p} (R \bowtie_{A=B} S) \equiv \sigma_{p} (R) \bowtie_{A=B} S$$
Not $\sigma_{p} (R \bowtie_{A=B} S) \equiv R \bowtie_{A=B} \sigma_{p} (S)$

Summary Equivalences

- Associativity: $(R \circ S) \circ T \equiv R \circ (S \circ T)$
- Commutativity: R ∘ S ≡ S ∘ R
- Distributivity: $(R \circ S) \otimes T \equiv (R \otimes T) \circ (S \otimes T)$
- Difference between Set and Bag Equivalences
- Only some equivalence are useful

Outline - Query Processing

- Relational algebra level
 - transformations
 - good transformations
- Detailed query plan level
 - estimate costs
 - generate and compare plans

Estimating cost of query plan

- (1) Estimating <u>size</u> of results
- (2) Estimating # of IOs

Estimating result size

- Keep statistics for relation R
 - -T(R): # tuples in R
 - S(R): # of bytes in each R tuple
 - B(R): # of blocks to hold all R tuples
 - V(R, A) : # distinct values in R for attribute A

Example

R

Α	В	С	D
cat	1	10	а
cat	1	20	b
dog	1	30	а
dog	1	40	С
bat	1	50	d

A: 20 byte string

B: 4 byte integer

C: 8 byte date

D: 5 byte string

Example

R

Α	В	С	D
cat	1	10	а
cat	1	20	b
dog	1	30	а
dog	1	40	С
bat	1	50	d

A: 20 byte string

B: 4 byte integer

C: 8 byte date

D: 5 byte string

$$T(R) = 5$$
 $S(R) = 37$
 $V(R,A) = 3$ $V(R,C) = 5$
 $V(R,B) = 1$ $V(R,D) = 4$

Size estimates for $W = R1 \times R2$

$$T(W) =$$

$$S(W) =$$

Size estimates for $W = R1 \times R2$

$$T(W) = T(R1) \times T(R2)$$

$$S(W) = S(R1) + S(R2)$$

Size estimate for $W = \sigma_{A=a}(R)$

$$S(W) = S(R)$$

$$T(W) = ?$$

Example

R

Α	В	С	D
cat	1	10	а
cat	1	20	b
dog	1	30	а
dog	1	40	С
bat	1	50	d

$$V(R,A) = 3$$

$$V(R,B)=1$$

$$V(R,C)=5$$

$$V(R,D)=4$$

$$W = \sigma_{z=val}(R) T(W) =$$

Example

?

Α	В	C	D
cat	1	10	а
cat	1	20	b
dog	1	30	а
dog	1	40	С
bat	1	50	d

$$V(R,A) = 3$$

$$V(R,B)=1$$

$$V(R,C)=5$$

$$V(R,D)=4$$

$$W = \sigma_{z=val}(R)$$

$$W = \sigma_{z=val}(R)$$
 $T(W) = \frac{T(R)}{V(R,Z)}$

Assumption:

Values in select expression Z = val are <u>uniformly distributed</u> over possible V(R,Z) values.

Alternate Assumption:

Values in select expression Z = val are <u>uniformly distributed</u> over domain with DOM(R,Z) values.

<u>Example</u>

R

Α	В	С	D
cat	1	10	а
cat	1	20	b
dog	1	30	а
dog	1	40	С
bat	1	50	d

Alternate assumption

$$V(R,A)=3$$
 DOM(R,A)=10

$$V(R,B)=1$$
 DOM(R,B)=10

$$V(R,C)=5$$
 DOM(R,C)=10

$$V(R,D)=4$$
 DOM(R,D)=10

$$W = \sigma_{z=val}(R) \quad T(W) = ?$$

C=val
$$\Rightarrow$$
 T(W) = $(1/10)1 + (1/10)1 + ...$
= $(5/10) = 0.5$

$$B=val \Rightarrow T(W)=(1/10)5+0+0=0.5$$

A=val
$$\Rightarrow$$
 T(W)= (1/10)2 + (1/10)2 + (1/10)1
= 0.5

<u>Example</u>

R

Α	В	С	۵
cat	1	10	а
cat	1	20	b
dog	1	30	а
dog	1	40	C
bat	1	50	d

$$V(R,A)=3$$
 DOM $(R,A)=10$

$$V(R,B)=1$$
 DOM(R,B)=10

$$V(R,C)=5$$
 DOM(R,C)=10

$$V(R,D)=4$$
 DOM(R,D)=10

$$W = \sigma_{z=val}(R)$$
 $T(W) = \frac{T(R)}{DOM(R,Z)}$

Selection cardinality

SC(R,A) = average # records that satisfy equality condition on R.A

$$SC(R,A) = \begin{cases} T(R) \\ V(R,A) \end{cases}$$

$$T(R) \\ T(R) \\ DOM(R,A)$$

What about
$$W = \sigma_{z \ge val}(R)$$
?

$$T(W) = ?$$

What about
$$W = \sigma_{z \ge val}(R)$$
?

$$T(W) = ?$$

Solution # 1:

$$T(W) = T(R)/2$$

What about
$$W = \sigma_{z \ge val}(R)$$
?

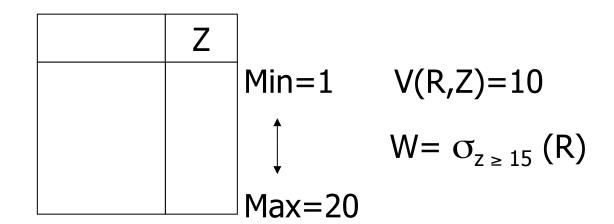
$$T(W) = ?$$

Solution # 1:
 T(W) = T(R)/2

• Solution # 2: T(W) = T(R)/3

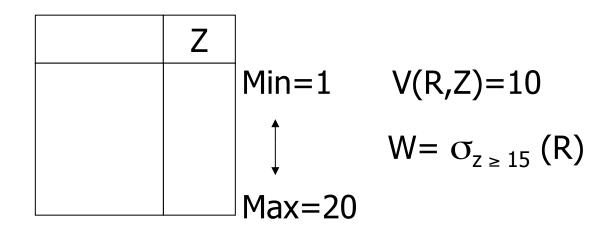
• Solution # 3: Estimate values in range

Example R



Solution # 3: Estimate values in range

Example R



$$f = 20-15+1 = 6$$
 (fraction of range)
20-1+1 20

$$T(W) = f \times T(R)$$

Equivalently:

$$f \times V(R,Z) = fraction of distinct values$$

 $T(W) = [f \times V(Z,R)] \times T(R) = f \times T(R)$
 $V(Z,R)$

Size estimate for $W = R1 \bowtie R2$

Let x = attributes of R1

y = attributes of R2

Size estimate for $W = R1 \bowtie R2$

Let x = attributes of R1

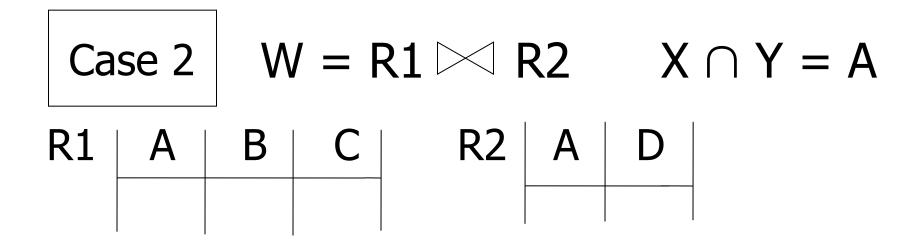
y = attributes of R2

Case 1

$$X \cap Y = \emptyset$$

Same as R1 x R2

Case 2 $W = R1 \bowtie R2$ $X \cap Y = A$

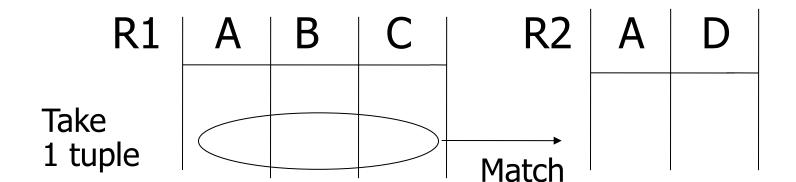


Assumption:

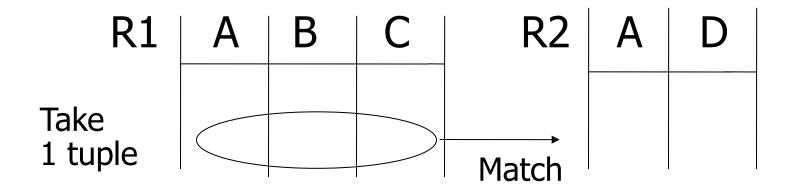
 $V(R1,A) \le V(R2,A) \Rightarrow Every A value in R1 is in R2$

 $V(R2,A) \le V(R1,A) \Rightarrow Every A value in R2 is in R1$

Computing T(W) when $V(R1,A) \leq V(R2,A)$



Computing T(W) when $V(R1,A) \leq V(R2,A)$



1 tuple matches with T(R2) tuples... V(R2,A)

so
$$T(W) = \frac{T(R2)}{V(R2, A)} \times T(R1)$$

ILLINOIS INSTITUTE OF TECHNOLOGY

•
$$V(R1,A) \le V(R2,A)$$
 $T(W) = T(R2) T(R1)$
 $V(R2,A)$

•
$$V(R2,A) \le V(R1,A)$$
 $T(W) = T(R2) T(R1)$
 $V(R1,A)$

[A is common attribute]

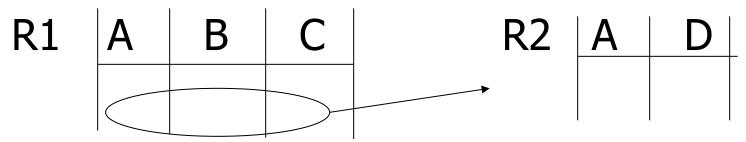
In general $W = R1 \bowtie R2$

$$T(W) = T(R2) T(R1)$$

 $max\{ V(R1,A), V(R2,A) \}$

Case 2 with alternate assumption

Values uniformly distributed over domain



This tuple matches T(R2)/DOM(R2,A) so

$$T(W) = \frac{T(R2) T(R1)}{DOM(R2, A)} = \frac{T(R2) T(R1)}{DOM(R1, A)}$$

Assume the same

In all cases:

$$S(W) = S(R1) + S(R2) - S(A)$$
size of attribute A

<u>Using similar ideas,</u> <u>we can estimate sizes of:</u>

 $\Pi_{AB}(R)$

 $\mathbf{O}_{A=a\wedge B=b}(R)$

R S with common attribs. A,B,C Union, intersection, diff,

Note: for complex expressions, need intermediate T,S,V results.

E.g.
$$W = [OA=a(R1)] \bowtie R2$$

Treat as relation U

$$T(U) = T(R1)/V(R1,A)$$
 $S(U) = S(R1)$

Also need V (U, *)!!

To estimate Vs

E.g.,
$$U = O_{A=a}(R1)$$

Say R1 has attribs A,B,C,D
 $V(U, A) =$
 $V(U, B) =$
 $V(U, C) =$
 $V(U, D) =$

Example

R1

Α	В	С	D
cat	1	10	10
cat	1	20	20
dog	1	30	10
dog	1	40	30
bat	1	50	10

$$V(R1,A) = 3$$

$$V(R1,B)=1$$

$$V(R1,C) = 5$$

$$V(R1,D)=3$$

$$U = \mathcal{O}_{A=a}(R1)$$

Example

R1

Α	В	С	D
cat	1	10	10
cat	1	20	20
dog	1	30	10
dog	1	40	30
bat	1	50	10

$$V(R1,A)=3$$

$$V(R1,B)=1$$

$$V(R1,C) = 5$$

$$V(R1,D)=3$$

$$U = OA=a(R1)$$

$$V(U,A) = 1$$
 $V(U,B) = 1$ $V(U,C) = T(R1)$
 $V(R1,A)$

V(D,U) ... somewhere in between

Possible Guess $U = \mathcal{O}_{A=a}(R)$

$$V(U,A) = 1$$

 $V(U,B) = V(R,B)$

For Joins $U = R1(A,B) \bowtie R2(A,C)$

Example:

$$Z = R1(A,B) \bowtie R2(B,C) \bowtie R3(C,D)$$

- R1 T(R1) = 1000 V(R1,A)=50 V(R1,B)=100
- R2 T(R2) = 2000 V(R2,B) = 200 V(R2,C) = 300
- R3 T(R3) = 3000 V(R3,C)=90 V(R3,D)=500

Partial Result: $U = R1 \bowtie R2$

$$T(U) = 1000 \times 2000$$
 $V(U,A) = 50$ $V(U,B) = 100$ $V(U,C) = 300$

$$Z = U \bowtie R3$$

$$T(Z) = 1000 \times 2000 \times 3000$$
 $V(Z,A) = 50$
 200×300 $V(Z,B) = 100$
 $V(Z,C) = 90$
 $V(Z,D) = 500$

ILLINOIS INSTITUTE OF TECHNOLOGY

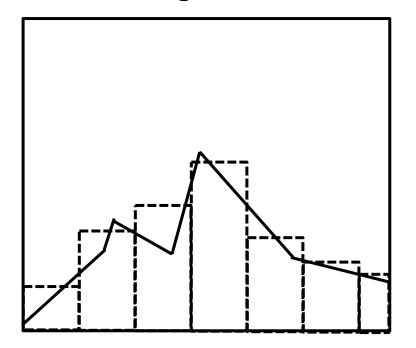
Approximating Distributions

- Summarize the distribution
 - Used to better estimate result sizes
 - Without the need to look at all the data
- Concerns
 - Error metric: How to measure preciseness
 - Memory consumption
 - Computational Complexity

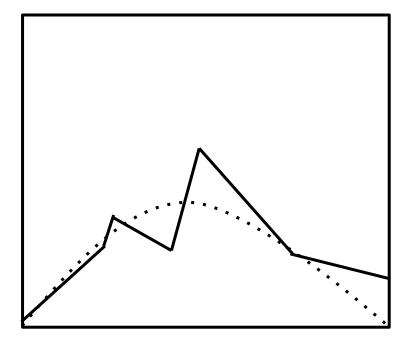
Approximating Distributions

- Parameterized distribution
 - E.g., gauss distribution
 - Adapt parameters to fit data
- Histograms
 - Divide domain into ranges (buckets)
 - Store the number of tuples per bucket
- Both need to be maintained

Histograms



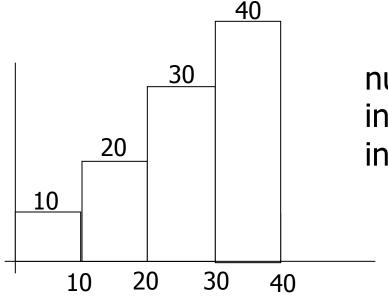
Parameterized Distribution



Maintaining Statistics

- Use separate command that triggers statistics collection
 - Postgres: ANALYZE
- During query processing
 - Overhead for queries
- Use Sampling?

Estimating Result Size using Histograms



number of tuples in R with A value in given range

$$\sigma_{A=val}(R) = ?$$

Estimating Result Size using Histograms

- $\sigma_{A=val}(R) = ?$
- |B| number of values per bucket
- #B number of records in bucket

Join Size using Histograms

- R ⋈ S
- Use

$$T(W) = \frac{T(R2) T(R1)}{\max\{ V(R1,A), V(R2,A) \}}$$

Apply for each bucket

Join Size using Histograms

• V(R1,A) = V(R2,A) = bucket size |B|

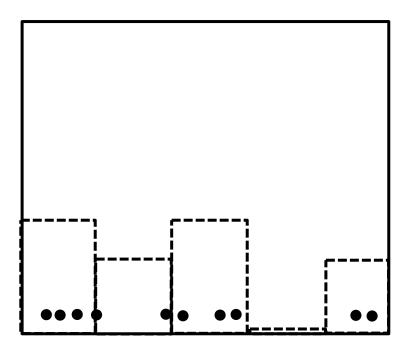
$$T(W) = \sum_{\text{buckets}} \frac{\#B(R2) \#B(R1)}{|B|}$$

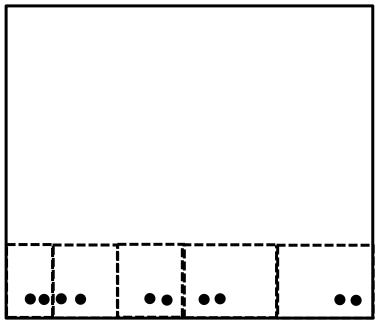
Equi-width vs. Equi-depth

- Equi-width
 - All buckets contain the same number of values
 - Easy, but inaccurate
- Equi-depth (used by most DBMS)
 - All buckets contain the same number of tuples
 - Better accuracy, need to sort data to compute

ILLINOIS INSTITUTE OF TECHNOLOGY

Equi-width vs. Equi-depth





Construct Equi-depth Histograms

- Sort input
- Determine size of buckets
 - #bucket / #tuples
- Example 3 buckets

```
1, 5,44, 6,10,12, 3, 6, 7
1, 3, 5, 6, 6, 7,10,12,44
[1-5][6-8][9-44]
```


Advanced Techniques

- Wavelets
- Approximate Histograms
- Sampling Techniques
- Compressed Histograms

<u>Summary</u>

• Estimating size of results is an "art"

Don't forget:
 Statistics must be kept up to date...
 (cost?)

<u>Outline</u>

- Estimating cost of query plan
 - Estimating size of results done!
 - Estimating # of IOs ← next...
 - Operator Implementations
- Generate and compare plans

