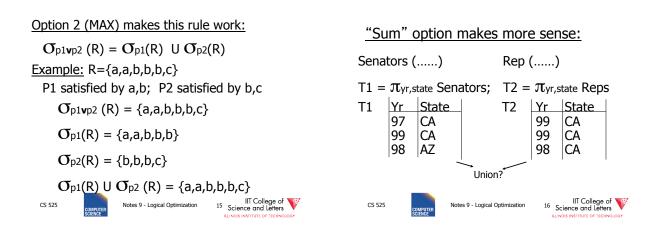


Rules: Natural joins & cross products & union


Note:

Option 2 (MAX) makes this rule work: $\sigma_{p1vp2}(R) = \sigma_{p1}(R) \cup \sigma_{p2}(R)$ Example: R={a,a,b,b,b,c} P1 satisfied by a,b; P2 satisfied by b,c

Executive Decision

- -> Use "SUM" option for bag unions
- -> Some rules cannot be used for bags

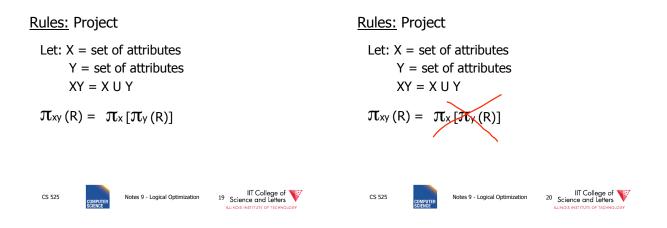
Rules: Project

Let:
$$X = set of attributes$$

 $Y = set of attributes$
 $XY = X U Y$

$$\pi_{xy}(R) =$$

CS 525


Notes 9 - Logical Optimization

CS 525

Notes 9 - Logical Optimization

IIT College of V Science and Letters

Let p = predicate with only R attribs q = predicate with only S attribs m = predicate with only R,S attribs

Rules: $\sigma + \bowtie$ combined (continued)

Some Rules can be Derived:

O_{p∧q} (R ⋈ S) =

O_{pvq} (R ⊳⊲ S) =

CS 525

 $O_{p_Aq_Am}$ (R \bowtie S) =

Rules: $\sigma + \bowtie$ combined

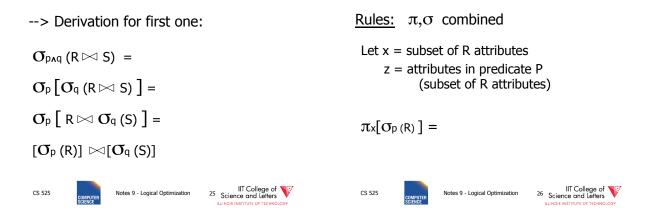
 O_p (R \bowtie S) =

 O_q (R \bowtie S) =

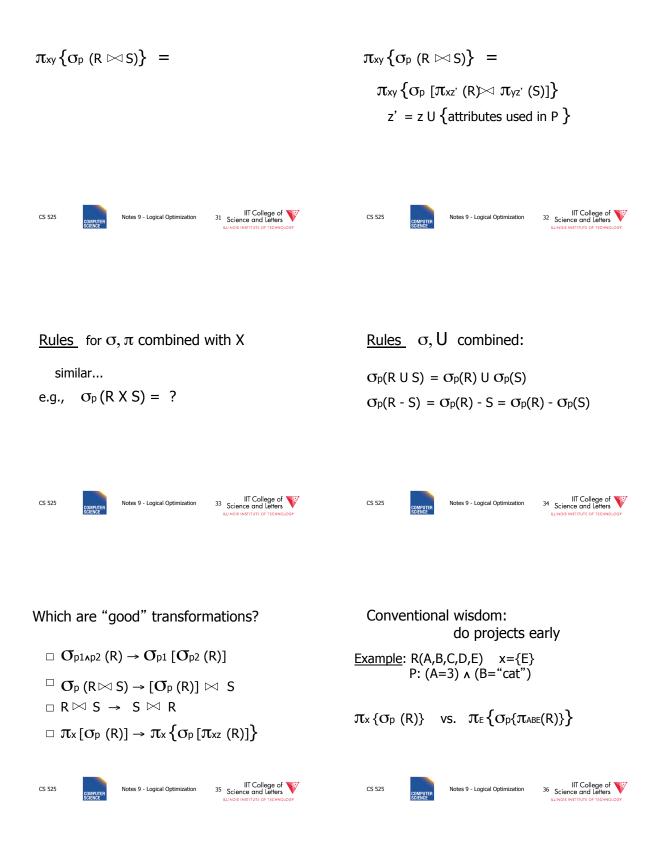
CS 525

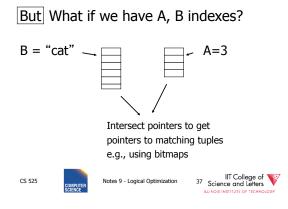
Notes 9 - Logical Optimization 21 Science and Letters

Notes 9 - Logical Optimization 23 Science and Letters


<u>Rules:</u> σ + \bowtie combined

Let p = predicate with only R attribs q = predicate with only S attribs m = predicate with only R,S attribs


$\sigma_{\scriptscriptstyle p}$ (R	. ⊳⊲ S) =	$[\mathbf{O}_{p}(R)] \Join$	S	
$\sigma_{\scriptscriptstyle q}$ (R	. ⊳⊲ S) =	R \bowtie [$m{O}_{q}$ (S	5)]	
CS 525	COMPUTER SCIENCE	Notes 9 - Logical Optimization		IIT College of Science and Letters


Do one:

$$\begin{split} & \boldsymbol{\sigma}_{pAq} \left(R \bowtie S \right) = [\boldsymbol{\sigma}_{p} \left(R \right)] \bowtie [\boldsymbol{\sigma}_{q} \left(S \right)] \\ & \boldsymbol{\sigma}_{pAqAm} \left(R \bowtie S \right) = \\ & \boldsymbol{\sigma}_{m} \left[\left(\boldsymbol{\sigma}_{p} R \right) \bowtie \left(\boldsymbol{\sigma}_{q} S \right) \right] \\ & \boldsymbol{\sigma}_{pvq} \left(R \bowtie S \right) = \\ & \left[\left(\boldsymbol{\sigma}_{p} R \right) \bowtie S \right] U \left[R \bowtie \left(\boldsymbol{\sigma}_{q} S \right) \right] \\ & \textbf{Stes 9- Logical Optimization} \end{split}$$

<u>Rules:</u> π,σ combined	<u>Rules:</u> π, σ combined		
Let x = subset of R attributes z = attributes in predicate P (subset of R attributes)	Let x = subset of R attributes z = attributes in predicate P (subset of R attributes)		
$\pi_{x}[\sigma_{p}(R)] = \{\sigma_{p}[\pi_{x}(R)]\}$	$\pi_{x}[\sigma_{p}(R)] = \pi_{x} \{\sigma_{p}[\pi_{x}(R)]\}$		
CS 525 Notes 9 - Logical Optimization 27 LIT College of Science and Letters LLINOS INSTITUTE OF TECHNOLOGY	CS 525 Notes 9 - Logical Optimization 28 IIT College of Construction CS 525 Links Institute of technology		
<u>Rules:</u> π , \bowtie combined	<u>Rules:</u> π , \bowtie combined		
Let x = subset of R attributes y = subset of S attributes z = intersection of R,S attributes	Let x = subset of R attributes y = subset of S attributes z = intersection of R,S attributes		
π _{xy} (R ⋈ S) =	π _{xy} (R ⋈ S) =		
	π _{xy} {[π _{xz (R)}] ▷ [π _{yz (S)}]}		
CS 525 Notes 9 - Logical Optimization 29 Science and Letters	CS 525 Notes 9 - Logical Optimization 30 Science and Lefters		

Bottom line:

- No transformation is always good
- Usually good: early selections

 Exception: expensive selection conditions
 E.g., UDFs

More transformations

- Eliminate common sub-expressions
- Detect constant expressions
- Other operations: duplicate elimination

CS 525	COMPUTER	Notes 9 - Logical Optimization	IIT College of V Science and Letters
	SCIENCE		ILLINOIS INSTITUTE OF TECHNOLOGY

Pushing Selections

- Idea:
 - Join conditions equate attributes
 - For parts of algebra tree (scope) store which attributes have to be the same
 Called Equivalence classes
- Example: R(a,b), S(c,d)

$\mathbf{O}_{b=3}$ (R $\bowtie_{b=c}$ S) = $\mathbf{O}_{b=3}$ (R) $\bowtie_{b=c}$ $\mathbf{O}_{c=3}$ (S)

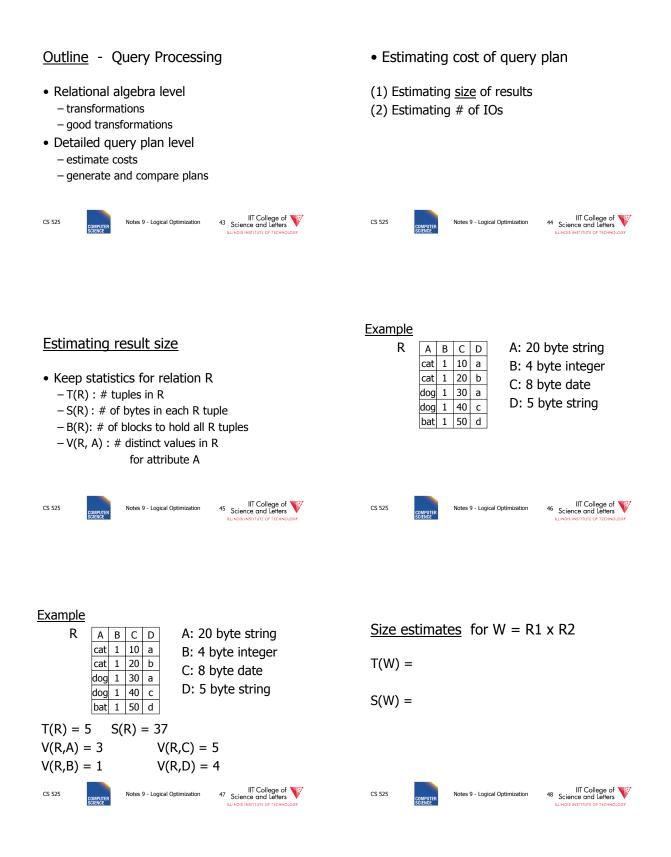
Outer-Joins

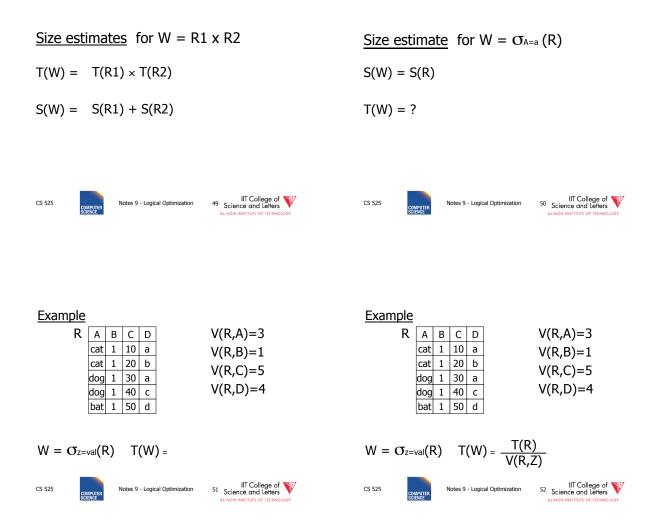
Not commutative

$$-R \bowtie S \neq S \bowtie R$$

- p condition over attributes in A
- A list of attributes from R
- $\sigma_{p} (\mathsf{R} \bowtie_{\mathsf{A}=\mathsf{B}} \mathsf{S}) \equiv \sigma_{p} (\mathsf{R}) \bowtie_{\mathsf{A}=\mathsf{B}} \mathsf{S}$

Not σ_p (R $\bowtie_{A=B}$ S) \equiv R $\bowtie_{A=B} \sigma_p$ (S)




IIT College of V 41 Science and Letters

Summary Equivalences

- Associativity: $(R \circ S) \circ T \equiv R \circ (S \circ T)$
- Commutativity: R \circ S \equiv S \circ R
- Distributivity: $(R \circ S) \otimes T \equiv (R \otimes T) \circ (S \otimes T)$
- Difference between Set and Bag Equivalences
- Only some equivalence are useful

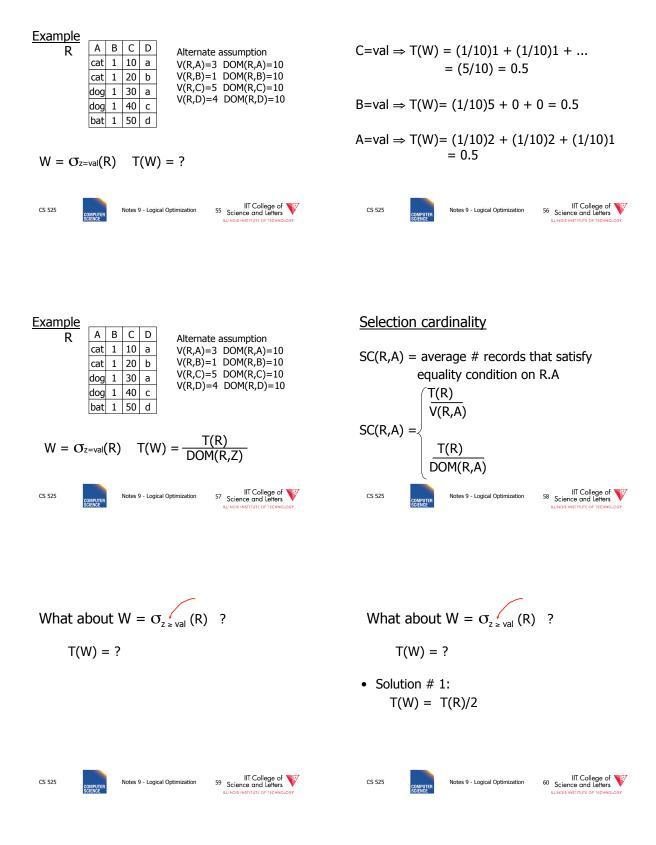
CS 525	COMPUTER	Notes 9 - Logical Optimization	IIT College of V 42 Science and Letters
	SCIENCE		ILLINOIS INSTITUTE OF TECHNOLOGY

Assumption:

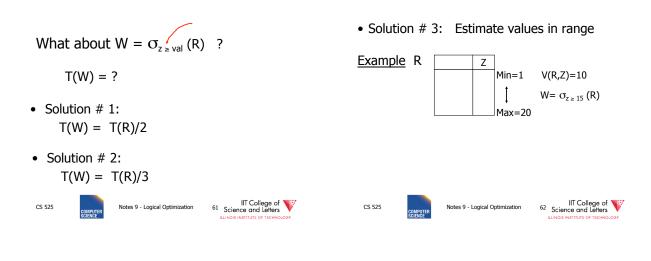
Values in select expression Z = valare <u>uniformly distributed</u> over possible V(R,Z) values.

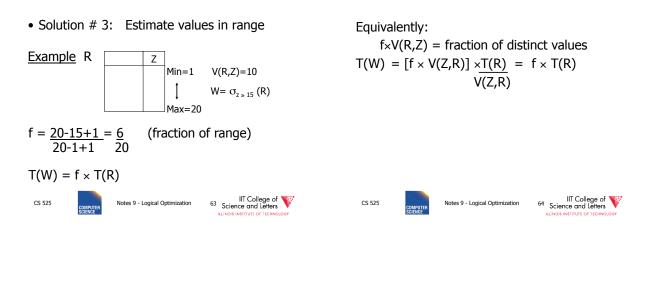
Alternate Assumption:

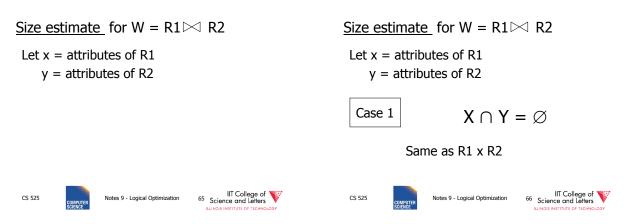
Values in select expression Z = valare <u>uniformly distributed</u> over domain with DOM(R,Z) values.

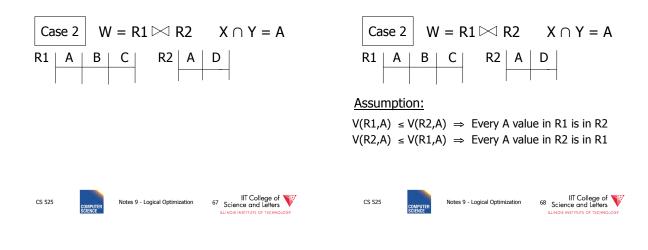

Notes 9 - Logical Optimization

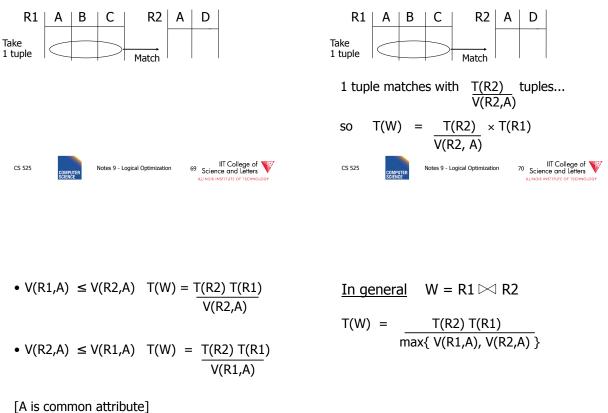
53 Science and Letters

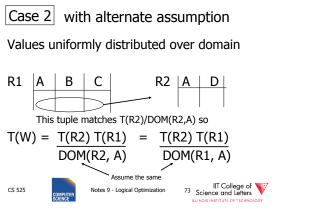

CS 525

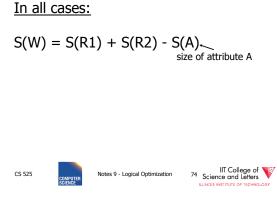

Notes 9 - Logical Optimization


IT College of V 54 Science and Letters



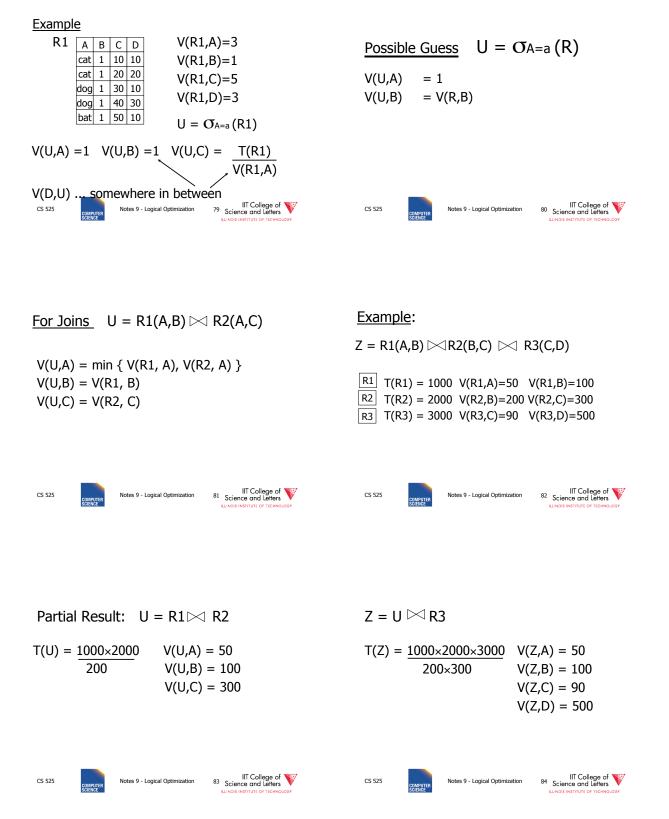


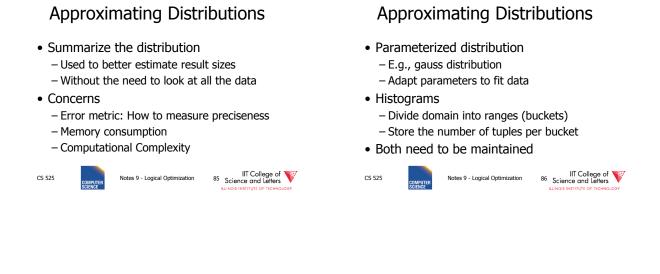


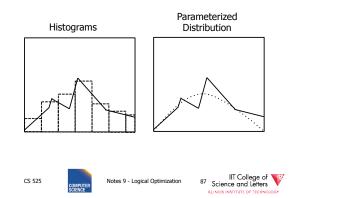


Computing T(W) when $V(R1,A) \leq V(R2,A)$

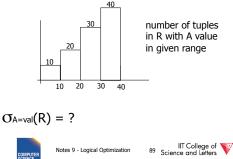
<u>Computing T(W)</u> when $V(R1,A) \leq V(R2,A)$






Using similar ideas, Note: for complex expressions, need we can estimate sizes of: intermediate T,S,V results. Пав (R) E.g. $W = [\sigma_{A=a}(R1)] \bowtie R2$ $O_{A=a \wedge B=b}(R)$ Treat as relation U R 🖂 S with common attribs. A,B,C T(U) = T(R1)/V(R1,A)S(U) = S(R1)Union, intersection, diff, Also need V (U, *) !! IIT College of V 75 Science and Letters Notes 9 - Logical Optimization 76 Science and Letters CS 525 Notes 9 - Logical Optimization CS 525

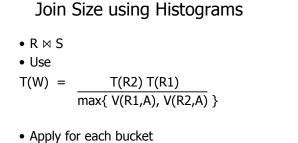
<u>To estimate Vs</u>
E.g., $U = \sigma_{A=a}(R1)$ Say R1 has attribs A,B,C,D V(U, A) = V(U, B) = V(U, C) = V(U, D) =
CS 525 Notes 9 - Logical Optimization 77 Science and Letters

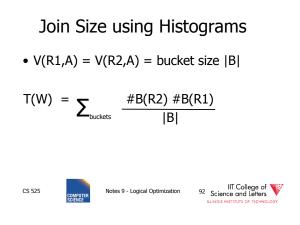

Exampl R1	_	D	6		V(R1,A)=3
	A	В	С	D	
	cat	1	10	10	V(R1,B)=1
	cat	1	20	20	V(R1,C)=5
	dog	1	30	10	
	dog	1	40	30	V(R1,D)=3
	bat	1	50	10	$U = O_{A=a}(R1)$
CS 525	COMP	UTER	No	tes 9 -	Logical Optimization 78 Science and Letters

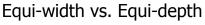
Estimating Result Size using Histograms

Maintaining Statistics

- Use separate command that triggers statistics collection


 Postgres: ANALYZE
- During query processing
- Overhead for queriesUse Sampling?
 - coc camping:




Estimating Result Size using Histograms

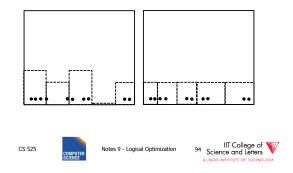
- $\sigma_{A=val}(R) = ?$
- |B| number of values per bucket
- #B number of records in bucket

Notes 9 - Logical Optimization

• Equi-width

CS 525

CS 525


- All buckets contain the same number of values
- Easy, but inaccurate
- Equi-depth (used by most DBMS)
 - All buckets contain the same number of tuples
 - Better accuracy, need to sort data to compute

Notes 9 - Logical Optimization

IIT College of V⁹³ Science and Letters

IIT College of V ⁹¹ Science and Letters

Equi-width vs. Equi-depth

Construct Equi-depth Histograms

- Determine size of buckets – #bucket / #tuples
- Example 3 buckets
- 1, 5,44, 6,10,12, 3, 6, 7
- 1, 3, 5, 6, 6, 7,10,12,44
- [1–5] [6–8] [9–44]

```
CS 525
```

Notes 9 - Logical Optimization 95 Science and Letters

Advanced Techniques

- Wavelets
- Approximate Histograms
- Sampling Techniques
- Compressed Histograms

<u>Summary</u>

- Estimating size of results is an "art"
- Don't forget: Statistics must be kept up to date ... (cost?)

CS 525

97 Science and Letters Notes 9 - Logical Optimization

<u>Outline</u>

- Estimating cost of query plan
 - − Estimating size of results ← done!
 − Estimating # of IOs ← next...
 - Operator Implementations
- Generate and compare plans

CS 525	COMPUTER	Notes 9 - Logical Optimization	IIT College of V Science and Letters
	SCIENCE		ILLINOIS INSTITUTE OF TECHNOLOGY