

Parsing, Analysis, Conversion

- 1. Parsing
 - Transform SQL text into syntax tree
- 2. Analysis
 - Check for semantic correctness
 - Use database catalog
 - E.g., unfold views, lookup functions and attributes, check scopes
- 3. Conversion
 - Transform into internal representation
 - Relational algebra or QBM

CS 525

Analysis and Conversion

- Usually intertwined
- The internal representation is used to store analysis information
- Create an initial representation and complete during analysis

Parsing, Analysis, Conversion

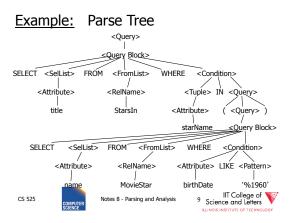
1. Parsing

- 2. Analysis
- 3. Conversion

Parsing

- SQL -> Parse Tree
- Covered in compiler courses and books
- Here only short overview


```
Notes 8 - Parsing and Analysis
```



CS 525

Notes 8 - Parsing and Analysis

IIT College of ⁶ Science and Letters

Example: SQL query SQL Standard SELECT title FROM StarsIn • Standardized language WHERE starName IN (-86, 89, 92, 99, 03, 06, 08, 11 SELECT name FROM MovieStar DBMS vendors developed their own WHERE birthdate LIKE '%1960' dialects); (Find the movies with stars born in 1960) 7 Science and Letters 8 Science and Letters CS 525 CS 525 Notes 8 - Parsing and Analysis Notes 8 - Parsing and Analysis

Organized in Query blocks
 SELECT <select_list>
 FROM <from_list>
 WHERE <where_condition>
 GROUP BY <group_by_expressions>
 HAVING <having_condition>
 ORDER BY <order_by_expressions>
 CS 525 Notes 8-Parsing and Analysis 10 Science and Letters

Query Blocks

• Only **SELECT** clause is mandatory – Some DBMS require **FROM**

SELECT (1 + 2) AS result

SELECT clause

- List of expressions and optional name assignment + optional **DISTINCT**
 - Attribute references: R.a, b
 - Constants: 1, 'hello', '2008-01-20'
 - Operators: (R.a + 3) * 2
 - Functions (maybe UDF): substr(R.a, 1,3)
 Single result or set functions
 - Renaming: (R.a + 2) AS x

CS 525	COMPUTER SCIENCE	Notes 8 - Parsing and Analysis	12	IIT College of Science and Letters	V
				LLINOIS INSTITUTE OF TECHNOL	.OGY

SELECT clause - example

SELECT substring(p.name,1,1) AS initial
 p.name
FROM person p

person			re	esult	
name	gender		initial	name	
Joe	male		J	Joe	
Jim	male		J	Jim	
CS 525	COMPUTER SCIENCE		ng and Analysis	IIT Cc 13 Science and ILLINOIS INSTITUTE	

SELECT clause – DISTINCT

SELECT clause – set functions

result

n

J

0

• Function extrChar(string)

SELECT extrChar(p.name) AS n
FROM person p

 SELECT DISTINCT gender
 • List of

 FROM person p
 - Acc

 FROM person p
 - Sull

 person
 result

 person
 result

 joe
 male

 jim
 male

 State
 8 - Parsing and Analysis

 15
 Science and Letters

 State
 8 - Parsing and Analysis

FROM clause

- List of table expressions
 - Access to relations
 - Subqueries (need alias)
 - Join expressions
 - Table functions
 - Renaming of relations and columns

CS 525	COMPUTER	Notes 8 - Parsing and Analysis	IIT College of V ¹⁶ Science and Letters
	SCIENCE		ILLINOIS INSTITUTE OF TECHNOLOGY

FROM clause examples

FROM	R
	-access table R
FROM	R, S
	-access tables R and S
FROM	R JOIN S ON (R.a = S.b)
	-join tables R and S on condition (R.a = S.b)
FROM	R x
FROM	R AS x
	-Access table R and assign alias 'x'
CS 525	Notes 8 - Parsing and Analysis 17 Science and Letters

FROM clause examples

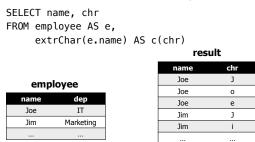
FROM R x(c,d)	
FROM R AS x(c,d)	
-using aliases x for R and c,d for its attribues	5
FROM (R JOIN S t ON (R.a = t.b)), T	
-join R and S, and access T	
FROM (R JOIN S ON (R.a = S.b)) JOIN T	
-join tables R and S and result with T	
<pre>FROM create_sequence(1,100) AS seq(a)</pre>	
-call table function	
CS 525 Notes 8 - Parsing and Analysis 18 Science on RELINOS INSTITUTE	

FROM clause examples

SELECT dep, headcnt
FROM (SELECT count(*) AS headcnt, dep
FROM employee
GROUP BY dep)
WHERE headcnt > 100
result

employee adcnt dep name dep IT 103 Joe IT 2506 Support Marketing Jim IIT College of Science and Letters CS 525 Notes 8 - Parsing and Analysis

FROM clause - correlation


- Correlation
 - Reference attributes from other FROM clause item
 - Attributes of i^{th} entry only available in j > i
 - Semantics:

COMPUTER

- For each row in result of ith entry:
- Substitute correlated attributes with value from current row and evaluate query

Correlation - Example

Notes 8 - Parsing and Analysis

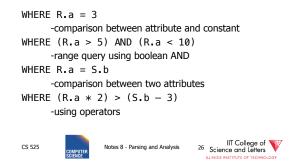
CS 525

IIT College of V Science and Letters

Correlation - Example

JELECI	SEEECT Hume						
FROM (SELECT max(salary) maxsal							
FROM employee) AS m,							
(SELECT name							
F	FROM employee x						
WHERE x.salary = m.maxsal) AS e							
employee result							
name salarv							
Joe	20,000		name				
Jim							
Jim 30,000							

WHERE clause


- A condition
 - Attribute references
 - Constants
 - Operators (boolean)
 - Functions

CS 525

- Nested subquery expressions
- Result has to be boolean

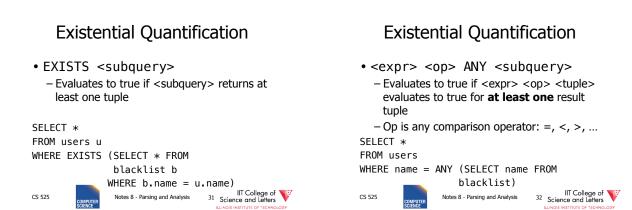
CS 525	COMPUTER SCIENCE	Notes 8 - Parsing and Analysis	25	IIT College of Science and Letters	V
		l		ILLINOIS INSTITUTE OF TECHNOL	.OGY

WHERE clause examples

blacklist)

Notes 8 - Parsing and Analysis

Nested Subqueries Nested Subqueries Semantics • Nesting a query within an expression For each tuple produced by the FROM clause execute the subquery Correlation allowed - If correlated attributes replace them with - Access FROM clause attributes tuple values Different types of nesting - Scalar subquery - Existential quantification - Universal quantification IIT College of V Science and Letters ²⁸ IIT College of Science and Letters CS 525 Notes 8 - Parsing and Analysis CS 525 Notes 8 - Parsing and Analysis **Existential Quantification** Scalar subquery • Subquery that returns one result tuple • <expr> IN <subquery> - Evaluates to true if <expr> equal to at - How to check? least one of the results of the subquery --> Runtime error SELECT * SELECT * FROM R FROM users WHERE R.a = (SELECT count(*) FROM S) WHERE name IN (SELECT name FROM


CS 525

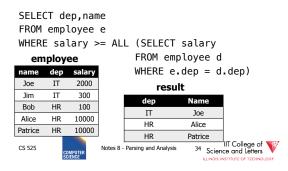
IIT College of V Science and Letters

Notes 8 - Parsing and Analysis

5

IIT College of W³⁰ Science and Letters

Universal Quantification


<expr> <op> ALL <subquery>
 Evaluates to true if <expr> <op> <tuple>
 evaluates to true for all result tuples

- Op is any comparison operator: =, <, >, ...
SELECT *
FROM nation
WHERE nname = ALL (SELECT nation FROM

blacklist)

CS 525 Notes 8 - Parsing and Analysis 33 LIT College of Science and Letters

Nested Subqueries Example

GROUP BY clause

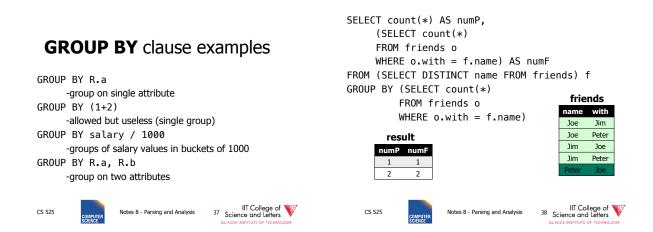
- A list of expressions
 - Same as WHERE

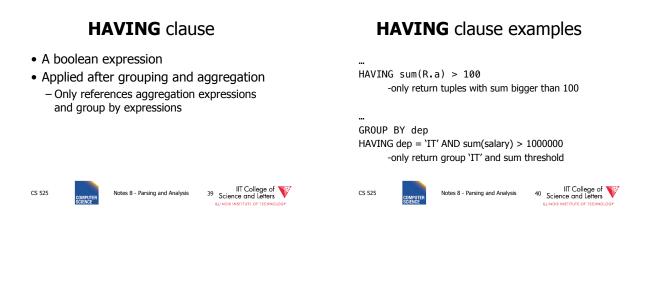
CS 525

- No restriction to boolean
- DBMS has to know how to compare = for data type
- Results are grouped by values of the expressions
- -> usually used for aggregation

```
Notes 8 - Parsing and Analysis 35 Science and Leifers
```

GROUP BY restrictions


- If group-by is used then
 - SELECT clause can only use group by expressions or aggregation functions


CS 525	COMPUT
	SCIENCE

Notes 8 - Parsing and Analysis

IIT College of Science and Letters

V

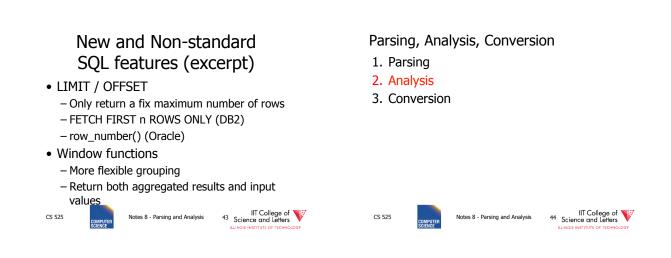
ORDER BY clause

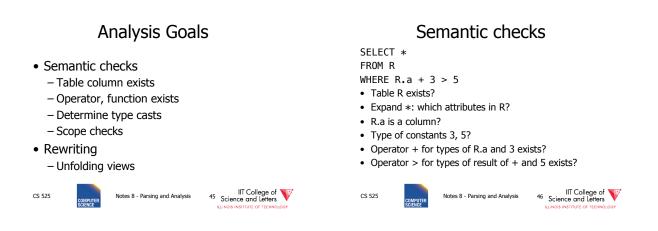
- A list of expressions
- Semantics: Order the result on these expressions

ORDER BY clause examples

ORDER BY R.a ASC
ORDER BY R.a
-order ascending on R.a
ORDER BY R.a DESC
-order descending on R.a
ORDER BY salary + bonus
-order by sum of salary and bonus

```
Notes 8 - Parsing and Analysis
```


```
IIT College of 


<sup>41</sup> Science and Letters
```

CS 525

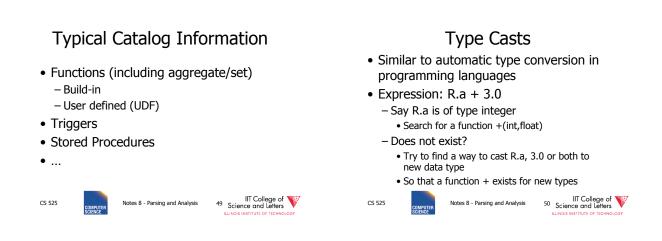
Notes 8 - Parsing and Analysis

alysis 42 IIT College of 42 Science and Letters

Database Catalog

- Stores information about database objects
- Aliases:
 - Information Schema
 - System tables
 - Data Dictionary

Typical Catalog Information


Tables

CS 525

- Name, attributes + data types, constraints
- Schema, DB
 - Hierarchical structuring of data
- Data types
 - Comparison operators
 - physical representation
 - Functions to (de)serialize to string

Notes 8 - Parsing and Analysis

IIT College of V 48 Science and Letters

Scope checks

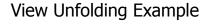
- Check that references are in correct scope
- E.g., if GROUP BY is present then SELECT clause expression can only reference group by expressions or aggregated values

CS 525

IIT College of V 51 Science and Letters Notes 8 - Parsing and Analysis

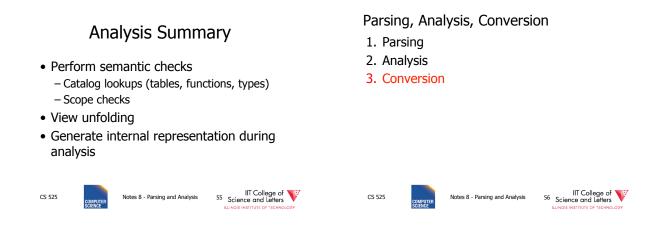
View Unfolding

- SQL allows for stored queries using CREATE VIEW
- Afterwards a view can be used in queries
- If view is not materialized, then need to replace view with its definition



View Unfolding Example

CREATE VIEW totalSalary AS SELECT name, salary + bonus AS total FROM employee


SELECT * FROM totalSalary WHERE total > 10000

CREATE VIEW totalSalary AS					
SELECT name, salary + bonus AS total					
FROM employee					
SELECT *					

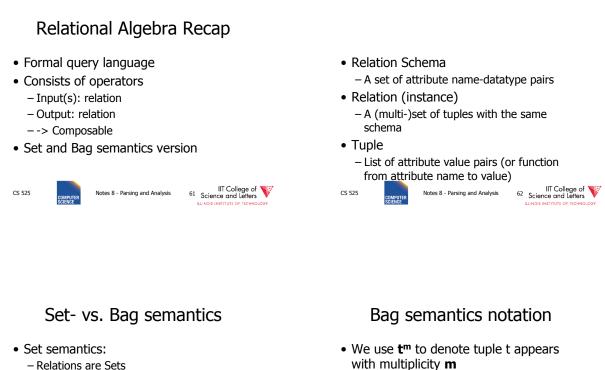
FROM (SELECT	name,	
	salary + bonus A	S total
FROM em	ployee) AS totalS	alary
WHERE total :	> 10000	
CS 525	Notes 8 - Parsing and Analysis	IIT College of Science and Letters

Other Internal Representations

- Practical implementations
 - Mostly following structure of SQL query blocks
 - Store data type and meta-data (where necessary)

00 020

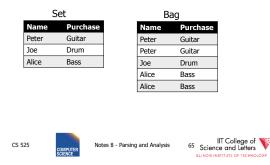
Notes 8 - Parsing and Analysis



Canonical Translation to Relational Algebra

- TEXTBOOK version of conversion
- Given an SQL query

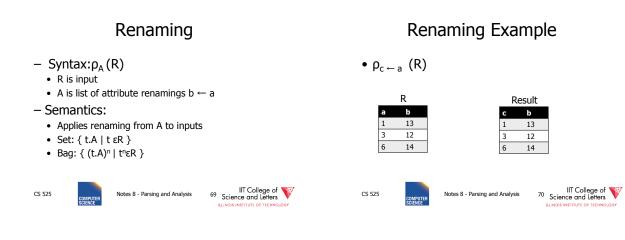
CS 525


• Return an equivalent relational algebra expression

- Used in most theoretical work
- Bag semantics
 - Relations are Multi-Sets
 - Each element (tuple) can appear more than once
 - SQL uses bag semantics
- CS 525

⁶³ IIT College of Science and Letters Notes 8 - Parsing and Analysis

Set- vs. Bag semantics


Operators

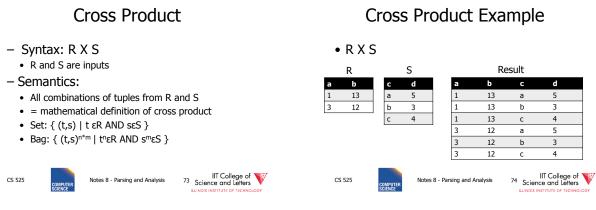
- Selection
- Renaming
- Projection
- Joins
 - Theta, natural, cross-product, outer, anti
- Aggregation
- Duplicate removal
- Set operations

CS 525	COMPUTER	Notes 8 - Parsing and Analysis		IIT College of V
	SUENCE		ILLINOIS I	INSTITUTE OF TECHNOLOGY

Selection Selection Example - Syntax: $\sigma_{c}(R)$ • $\sigma_{a>5}$ (R) R is input • C is a condition R Result – Semantics: b b • Return all tuples that match condition C 13 14 12 • Set: { t | t εR AND t fulfills C } 14 • Bag: { tⁿ | tⁿεR AND t fulfills C } IT College of V Science and Letters IIT College of V CS 525 CS 525 Notes 8 - Parsing and Analysis Notes 8 - Parsing and Analysis INSTITUTE OF T

Projection

- Syntax: $\Pi_A(R)$
 - R is input
 - A is list of projection expressions
 - Standard: only attributes in A
- Semantics:
 - Project all inputs on projection expressions
 - Set: { t.A | t εR }
 - Bag: { (t.A)ⁿ | tⁿεR }

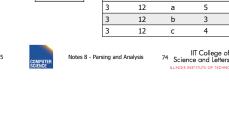


Notes 8 - Parsing and Analysis 71 Science and Letters

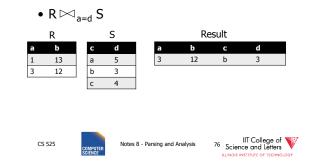
Projection Example

• П_b (R)

		R	Resul	lt
	а	b	b	
	1	13	13	
	3	12	12	1
	6	14	14	
CS 525	5	COMPUTER SCIENCE	Notes 8 - Parsing and Analysis	72 IIT College of Science and Letters


Join

- Syntax: R 🖂 C S
 - R and S are inputs
 - C is a condition
- Semantics:
 - All combinations of tuples from R and S that match C
 - Set: { (t,s) | t εR AND sεS AND (t,s) matches C}
 - Bag: { (t,s)^{n*m} | tⁿεR AND s^mεS AND (t,s)

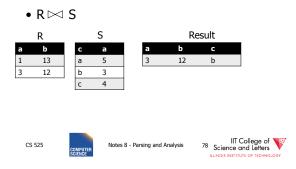

matches C}

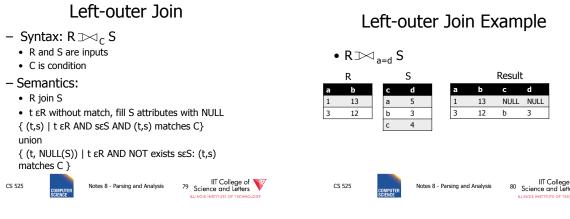
CS 525

 IIT College of
 ⁷⁵ Science and Letters Notes 8 - Parsing and Analysis

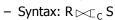
Join Example

Natural Join


- Syntax: R 🖂 S
 - R and S are inputs
- Semantics:

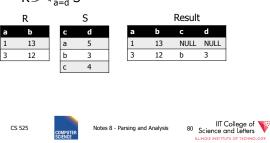

CS 525

- All combinations of tuples from R and S that match on common attributes
- A = common attributes of R and S
- C = exclusive attributes of S
- Set: { (t,s.C) | t εR AND sεS AND t.A=s.A}
- Bag: { (t,s.C)^{n*m} | tⁿεR AND s^mεS AND t.A=s.A}

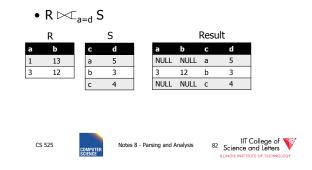


Natural Join Example

Right-outer Join


- R and S are inputs
- C is condition
- Semantics:
- R join S

- s ϵS without match, fill R attributes with NULL { (t,s) | t ɛR AND sɛS AND (t,s) matches C} union { (NULL(R),s) | s ϵ S AND NOT exists t ϵ R: (t,s)


matches C }

CS 525

IIT College of V ⁸¹ Science and Letters Notes 8 - Parsing and Analysis

Right-outer Join Example

Full-outer Join

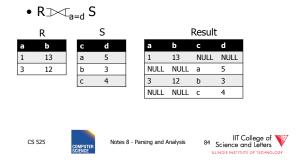
– Syntax: $R \supset C_C S$

```
• R and S are inputs and C is condition
```

- Semantics:

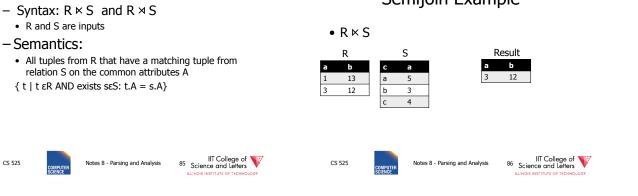
```
{ (t,s) | t \epsilonR AND s\epsilonS AND (t,s) matches C}
```

union


```
{ (NULL(R),s) | s \epsilon S AND NOT exists t\epsilon R: (t,s) matches C }
```

union { (t, NULL(S)) | t ɛR AND NOT exists sɛS: (t,s) matches C }

CS 525

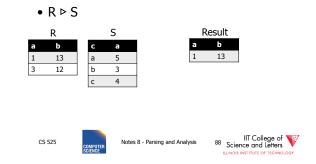


Full-outer Join Example

Semijoin

Semijoin Example

Antijoin


– Syntax: R ▷ S

CS 525

- R and S are inputs
- Semantics:
 - All tuples from R that have no matching tuple from relation S on the common attributes A
 - { t | t ϵ R AND NOT exists s ϵ S: t.A = s.A}

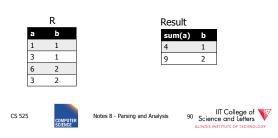
CS 525 COMPUTER Notes 8 - Parsing and Analy Science	ysis 87 Science and Letters
---	-----------------------------

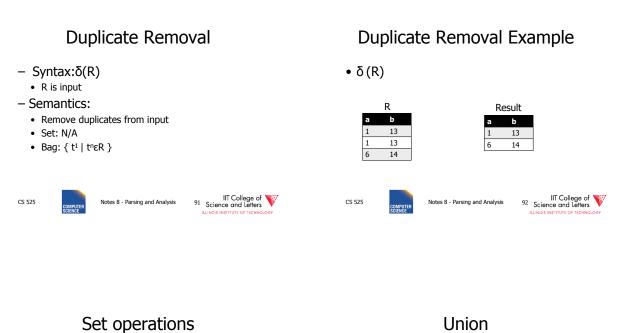
Antijoin Example

Aggregation

- Syntax:_G $a_A(R)$
 - A is list of aggregation functions
 - G is list of group by attributes
- Semantics:
 - Build groups of tuples according G and compute the aggregation functions from each group

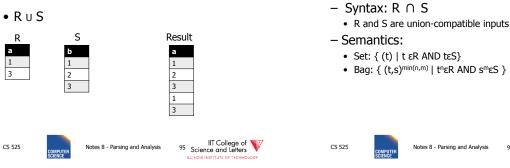
Notes 8 - Parsing and Analysis

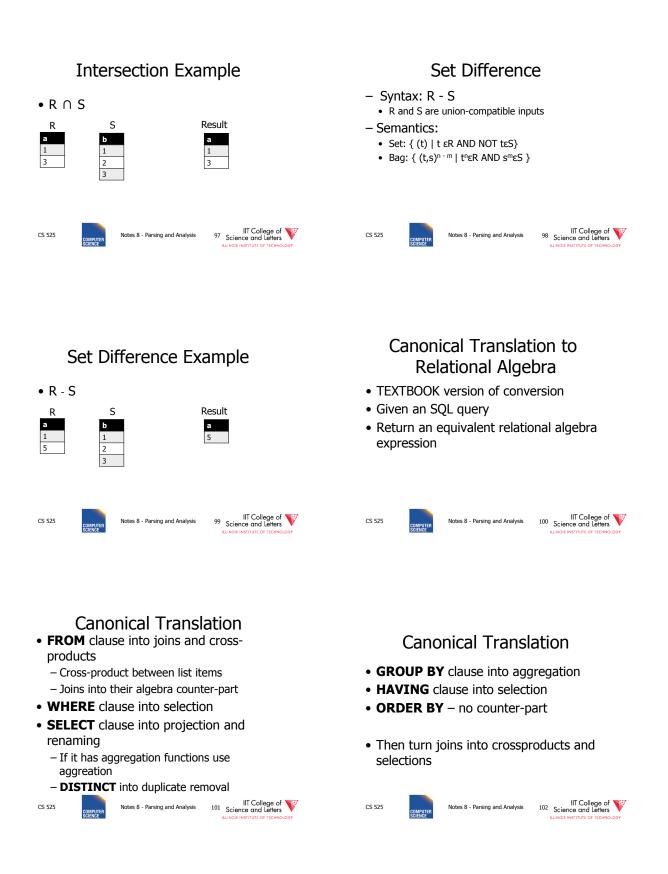

- { (t.G, agg(G(t)) | tɛR }
- G(t) = { t' | t' εR AND t'.G = t.G }

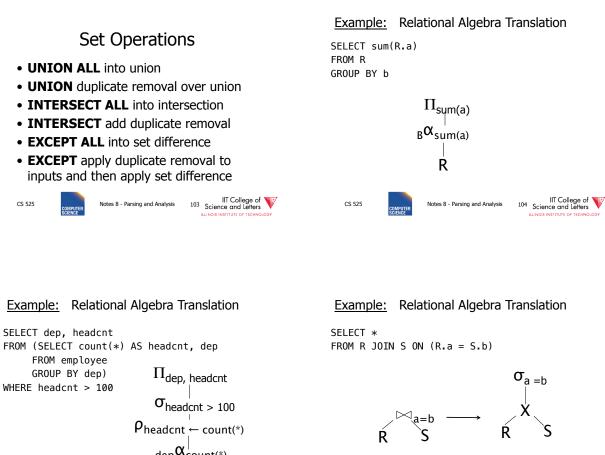


IIT College of V Science and Letters

Aggregation Example

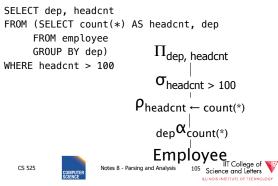

• _ba_{sum(a)} (R)




Union Example

Intersection

IIT College of V 96 Science and Letters



 $\bowtie_{a=b} \longrightarrow$

Notes 8 - Parsing and Analysis

CS 525

IIT College of Science and Letters

Parsing and Analysis Summary

- SQL text -> Internal representation
- Semantic checks
- Database catalog
- View unfolding

