
Name CWID

Quiz
2

April 15th, 2014

CS525 - Advanced Database
Organization
Solutions

Please leave this empty! 1 2 3 4 5 6 7

Sum

Instructions
• Multiple choice questions are graded in the following way: You get points for correct answers and points

subtracted for wrong answers. The minimum points for each questions is 0. For example, assume there
is a multiple choice question with 6 answers - each may be correct or incorrect - and each answer gives
1 point. If you answer 3 questions correct and 3 incorrect you get 0 points. If you answer 4 questions
correct and 2 incorrect you get 2 points. . . .

• For your convenience the number of points for each part and questions are shown in parenthesis.

• There are 3 parts in this quiz

1. Disk Organization and Buffering
2. Index Structures
3. Result Size Estimations
4. I/O Cost Estimation
5. Schedules
6. ARIES (Optional)
7. Physical Optimization (Optional)

DB - Spring 2014: Page 2 (of 22)

Part 1 Disk Organization and Buffering (Total: 15 Points)

Question 1.1 Page Replacement Clock (15 Points)

Consider a buffer pool with 3 pages using the Clock page replacement strategy. Initially the buffer pool is in
the state shown below. We use the following notation flag[page]dirty

fix to denote the state of each buffer frame.
page is the number of the page in the frame, fix is its fix count, dirty is indicating with an Asterix that the
page is dirty, and flag is the reference bit used by the Clock algorithm. E.g., 1[5]∗2 denotes that the frame stores
page 5 with a fix count 2, that the page is dirty, and that the reference bit is set to 1. Recall that Clock uses a
pointer S that points to the current page frame (the one to be checked for replacement next). The page frame
S is pointing to is shown in bold. In your solution draw an arrow to the page frame that S is pointing to.

Current Buffer State

1[4]0 0[10]0 0[3]0

Execute the following requests and write down state of the buffer pool after each request.

• p stands for pin

• u for unpin

• d for marking a page as dirty

p(7),p(6),u(6),p(1),p(2)

Solution
p(7)

0[4]0 1[7]1 0[3]0
p(6)

0[4]0 1[7]1 1[6]1
u(6)

0[4]0 1[7]1 1[6]0
p(1)

1[1]1 1[7]1 1[6]0
p(2)

0[1]1 0[7]1 1[2]1

DB - Spring 2014: Page 3 (of 22)

Part 2 Index Structures (Total: 25 Points)

Assume that you have the following table:

Item
id name price
1 Shovel 13
4 Spate 23
7 Lawnmover XL 499
15 Fertilizer 45
3 Sunflower seeds 3
2 Pine tree 299
20 Hop seeds 14

Question 2.1 Construction (9 Points)

Create a B+-tree for table Item on key id with n = 2 (up to two keys per node). You should start with an
empty B+-tree and insert the keys in the order shown in the table above. Write down the resulting B+-tree
after each step.
When splitting or merging nodes follow these conventions:

• Leaf Split: In case a leaf node needs to be split during insertion and n is even, the left node should get
the extra key. E.g, if n = 2 and we insert a key 4 into a node [1,5], then the resulting nodes should be
[1,4] and [5]. For odd values of n we can always evenly split the keys between the two nodes. In both
cases the value inserted into the parent is the smallest value of the right node.

• Non-Leaf Split: In case a non-leaf node needs to be split and n is odd, we cannot split the node evenly
(one of the new nodes will have one more key). In this case the “middle” value inserted into the parent
should be taken from the right node. E.g., if n = 3 and we have to split a non-leaf node [1,3,4,5], the
resulting nodes would be [1,3] and [5]. The value inserted into the parent would be 4.

• Node Underflow: In case of a node underflow you should first try to redistribute values from a sibling
and only if this fails merge the node with one of its siblings. Both approaches should prefer the left sibling.
E.g., if we can borrow values from both the left and right sibling, you should borrow from the left one.

Solution
4

3 7 20

1 2 3 4 7 15 20

DB - Spring 2014: Page 4 (of 22)

DB - Spring 2014: Page 5 (of 22)

Question 2.2 Operations (9 Points)

Given is the B+-tree shown below (n = 4). Execute the following operations and write down the resulting
B+-tree after each operation:

delete(24), delete(25), delete(23), delete(33), delete(20), insert(7), insert(220), insert(400)

Use the conventions for splitting and merging introduced in the previous question.

10 20 30 40

3 4 5 13 14 20 23 24 25 31 32 33 44 50 100 200

Solution
10 32 50 220

3 4 5 7 13 14 31 32 44 50 100 200 220 400

DB - Spring 2014: Page 6 (of 22)

DB - Spring 2014: Page 7 (of 22)

Question 2.3 Extensible Hashing (7 Points)

Consider the extensible Hash index shown below that is the result of inserting values 1 and 7. Each page holds
two keys. Execute the following operations
insert(3),insert(6),insert(8),insert(0),delete(1)

and write down the resulting index after each operation. Assume the hash function is defined as:
x h(x)
0 0000
1 0001
2 1010
3 1010
4 1101
5 0111
6 1110
7 0111
8 1100

0 1

0001 0111

Solution
insert(3)

0 1

0001 0111 1010

insert(6)

0 1

0001 0111 1010 1110

insert(8)

00 01 10 11

0001 0111 1010 1110 1100

insert(0)

00 01 10 11

0000 0001 0111 1010 1110 1100

delete(1)

00 01 10 11

0000 0111 1010 1110 1100

DB - Spring 2014: Page 8 (of 22)

DB - Spring 2014: Page 9 (of 22)

DB - Spring 2014: Page 10 (of 22)

Part 3 Result Size Estimations (Total: 20 Points)

Consider a table student with attributes CWID, name, major, credits, a table course with title, instructor,
credits, and a table registered with attributes student and course. registered.student is a foreign key to student
CWID. Attribute course of relation registered is a foreign key to attribute title of relation course. Given are
the following statistics:

T (student) = 30, 000 T (course) = 80 T (registered) = 10, 000
V (student, CWID) = 30, 000 V (course, title) = 80 V (registered, student) = 3, 000
V (student, name) = 29, 500 V (course, instructor) = 50 V (registered, course) = 30
V (student,major) = 20 V (course, credits) = 6
V (student, credits) = 32

The min and max values for some of the columns are:

min(course, credits) = 0 max(course, credits) = 36
min(student, credits) = 0 max(student, credits) = 36

Question 3.1 Estimate Result Size (4 Points)

Estimate the number of result tuples for the query q = σmajor=CS(student) using the first assumption presented
in class (values used in queries are uniformly distributed within the active domain).

Solution

T (q) = T (student)
V (student,major) = 30, 000

20 = 1, 500

Question 3.2 Estimate Result Size (5 Points)

Estimate the number of result tuples for the query q = σmajor=CS∨major=Bio(students) using the first assump-
tion presented in class.

DB - Spring 2014: Page 11 (of 22)

Solution
Because the disjunctive condition uses the same attributes, we can estimate it by summing up the probabilities.

T (q) = 2 ∗ T (student)
V (student,major) = 2 ∗ 30, 000

20 = 3, 000

However, we also accept the estimation using double negation

T (q) = (1− [(1− 1
V (student,major)) ∗ (1− 1

V (student,major))]) ∗ T (student)

= 1− (1− 1
20) ∗ (1− 1

20) ∗ 30, 000 = (1− 0.9025) ∗ 30, 000 = 2, 925

Question 3.3 Estimate Result Size (5 Points)

Estimate the number of result tuples for the query q = σcredits≥32∧credits≤34(students) using the first assumption
presented in class.

Solution

T (q) = (34− 32 + 1)× T (students)
max(students, credits)−min(students, credits) + 1 = 3× 30, 000

36− 0 + 1 = 90, 000
37 ≈ 2432.43

Question 3.4 Estimate Result Size (6 Points)

Estimate the number of result tuples for the query q = student ./CW ID=student registered ./course=title course
using the first assumption presented in class.

DB - Spring 2014: Page 12 (of 22)

Solution

T (q) = T (student)× T (registered)× T (course)
max(V (student, CWID), V (registered, student))×max(V (registered, course), V (course, title))

= 30, 000× 80× 10, 000
max(30, 000, 3, 000)×max(30, 80) = 10, 000

DB - Spring 2014: Page 13 (of 22)

Part 4 I/O Cost Estimation (Total: 20 Points)

Question 4.1 External Sorting (4 Points)

You haveM = 11 memory pages available and should sort a relation R with B(R) = 2, 000, 000 blocks. Estimate
the number of I/Os necessary to sort R using the external merge sort algorithm introduced in class.

Solution

IO = 2 ·B(R) · (1 + dlogM−1(B(R)
M

)e

= 2 · 2, 000, 000 · (1 + 6)
= 28, 000, 000

Question 4.2 External Sorting (4 Points)

You have M = 201 memory pages available and should sort a relation R with B(R) = 20, 000 blocks. Estimate
the number of I/Os necessary to sort R using the external merge sort algorithm introduced in class.

Solution

IO = 2 ·B(R) · (1 + dlogM−1(B(R)
M

)e

= 2 · 20, 000 · (1 + 1)
= 80, 000

Question 4.3 I/O Cost Estimation (6 = 2+2+2 Points)

Consider two relations R and S with B(R) = 3, 500 and B(S) = 2, 300. You have M = 101 memory pages
available. Compute the minimum number of I/O operations needed to join these two relations using block-
nested-loop join, merge-join (the inputs are not sorted), and hash-join. You can assume that the hash
function evenly distributes keys across buckets. Justify you result by showing the I/O cost estimation for each
join method.

DB - Spring 2014: Page 14 (of 22)

Solution
• BNL: S is smaller, thus, keep chunks of S in memory
dB(S)

M−1e · [B(R) +min(B(S), (M − 1))] = 23 · [3, 500 + 100] = 82, 800 I/Os

• MJ: We can generate sorted runs of size 100 that means the number of sorted runs from R and S is
low enough to keep one page from each run of both R and S in memory (35 runs for R and 23 runs
for S). We need 1 merge pass for the sort, but can execute the merge phase and join in one pass.
3 · (B(R) +B(S)) = 3 · (3, 500 + 2, 300) = 17, 400 I/Os.

• HJ: We need 1 partitioning pass, because we can create 100 buckets and the bucket sizes of R and S will
be 23 and 35. Thus, we can fit one bucket from R and one bucket from S into memory to join them. Cost
is (2 + 1) · (B(R) +B(S)) = 3 · (3, 500 + 2, 300) = 17, 400 I/Os.

Question 4.4 I/O Cost Estimation (6 = 2+2+2 Points)

Consider two relations R and S with B(R) = 3, 000, 000 and B(S) = 2, 000, 000. You have M = 101 memory
pages available. Compute the minimum number of I/O operations needed to join these two relations using
block-nested-loop join, merge-join (the inputs are not sorted), and hash-join. You can assume that the
hash function evenly distributes keys across buckets. Justify you result by showing the I/O cost estimation for
each join method.

Solution
• BNL: S is smaller, thus, keep chunks of S in memory
dB(S)

M−1e · [B(R) +min(B(S), (M − 1))] = 20, 000 · [3, 000, 000 + 100] = 60, 002, 000, 000 I/Os

• MJ: We can generate sorted runs of size 100 that means the number of sorted runs from R and S is low
enough after two merge passes to keep one page from each run of both R and S in memory (3 runs for R
and 2 runs for S). We need 3 merge passes for the sort, but can execute the last merge phase and join in
one pass. (6 + 1) · (B(R) +B(S)) = 7 · (3, 000, 000 + 2, 000, 000) = 35, 000, 000 I/Os.

• HJ: We need 3 partitioning passes, because we can create 100 buckets. The bucket sizes of R and S after
the third partitioning step will be 3 and 2. Thus, we can fit one bucket from R and one bucket from S
into memory to join them. Cost is (6 + 1) · (B(R) + B(S)) = 7 · (3, 000, 000 + 2, 000, 000) = 35, 000, 000
I/Os.

DB - Spring 2014: Page 15 (of 22)

Part 5 Schedules (Total: 20 Points)

Question 5.1 Schedule Classes (20 Points)

Indicate which of the following schedules belong to which class. Recall transaction operations are modelled as
follows:
w1(A) transaction 1 wrote item A
r1(A) transaction 1 read item A
c1 transaction 1 commits
a1 transaction 1 aborts

S1 = r2(D), r1(E), w1(A), r3(A), r2(C), w2(A), c2, r1(B), w1(B), c1, w4(C), c4, w3(B), c3

S2 = r1(C), w1(C), r2(B), w2(B), r2(C), w2(C), c2, w3(A), r3(B), w3(B), c3, w1(A), c1

S3 = r1(C), w1(C), c1, r2(B), w2(B), r2(C), w2(C), c2, w3(A), r3(B), w3(B), c3

S4 = w2(A), w2(B), w3(A), c2, c3, w1(B), c1

n S1 is recoverable

q S1 is cascade-less

q S1 is strict

n S1 is conflict-serializable

q S1 is 2PL

q S2 is recoverable

q S2 is cascade-less

q S2 is strict

q S2 is conflict-serializable

q S2 is 2PL

n S3 is recoverable

n S3 is cascade-less

n S3 is strict

n S3 is conflict-serializable

n S3 is 2PL

n S4 is recoverable

n S4 is cascade-less

q S4 is strict

n S4 is conflict-serializable

n S4 is 2PL

DB - Spring 2014: Page 16 (of 22)

DB - Spring 2014: Page 17 (of 22)

Part 6 Optional: ARIES (Total: 10 Optional Points)

Question 6.1 Recovery (10 Points)

Consider the state of the log and pages on disk shown below. For simplicity we do not show the actual undo/redo
actions for updates, but instead show only the affected page. Assume a crash occurred after the last log entry.
Answer the following questions:

1. Analysis: Write down the result of the analysis phase (RedoLSN, Transaction Table, Dirty Page Table)

2. Redo: Which pages will be loaded from disk during redo? Which pages will be modified during redo?

3. Undo: Write down the additional log entries that will be written during undo.

Log

LSN Type TID PrevLSN UndoNxtLSN
Data

1 begin 1 - - -
2 update 1 1 - Page 15
3 update 1 2 - Page 15
4 begin 2 - - -
5 update 2 4 - Page 6
6 update 1 3 - Page 7
7 begin_cp - - - -
8 begin 4 - -
9 update 4 8 - Page 7
10 update 2 5 - Page 1
11 end_cp - - - Transaction Table: < T1, u, 6,− >,< T2, u, 10,− >

,< T4, u, 9,− >, Dirty Page Table: < 1, 10 >
12 commit 1 6 - -
13 update 4 9 - Page 5
14 commit 4 13 - -

Disk

PageID PageLSN
1 0
5 0
6 5
7 9
15 3

Solution
(1):
RedoLSN: 10
Transaction Table: < T2, u, 10,− >
Dirty Page Table: < 1, 10 >,< 5, 13 >

(2):
All pages (1,5) have to be loaded from disk.
Both pages will be modified based on redo info from lock entries 10 and 13.

(3):
Transaction T2 will be rolled back. The CLRs written during undoing this update is shown below.
LSN Type TID PrevLSN UndoNxtLSN Data
15 CLR 2 - 5 Page 1
16 CLR 2 - 4 Page 6

DB - Spring 2014: Page 18 (of 22)

DB - Spring 2014: Page 19 (of 22)

Part 7 Optional: Physical Optimization (Total: 10 Optional Points)

Consider the following relations R(A,B), S(C,D,E), T (F,G) with S = 1
10 (10 tuples fit on each page). The

sizes and value distributions are:

N(R) = 20 V (R,A) = 20 V (R,B) = 2
N(S) = 3, 000, 000 V (S,C) = 20 V (S,D) = 5 V (S,E) = 3, 000, 000
N(T) = 5 V (T, F) = 5 V (T,G) = 3

Question 7.1 Greedy Join Enumeration (10 Points)

Use the greedy join enumeration algorithm to find the cheapest plan for the join R ./B=C S ./D=F T . Assume
that nested-loop (not the block based version) is the only available join implementation with the left input
being the “outer” (for each tuple from the outer we have to scan the whole inner relation). Furthermore, there
are no indicies defined on any of the relations (that is you have to use sequential scan for each of the relations).
As a cost model consider the total number of I/O operations. For example, if you join two relations with
5, 000 and 10, 000 tuples with S = 1

10 , where the 5, 000 tuple relation is the outer, then the cost would be
5, 000, 000 (scan the inner 5000 times) + 500 to scan the other once. The total cost is then 5, 000, 500 I/Os.
Assume that the system supports pipelining for the outer input of a join. That is if you join the result of a
join with a relation where the join result is the outer, then there is no I/O cost for scaning the outer. Also
under these assumptions you never have to store join results to disk. Hint: You will have to estimate the size
of intermediate results. Use the estimation based on the number of values and not the one based on the size of
the domain. Use the assumption that the number of values in a join attribute of a join result is the minimum
of the number of values in the join attribute of each input.

Write down the state after each iteration of the algorithm using the following notation. Write (((R1, R2), . . . , Rn−1), Rn)C,S

to denote a plan as shown below with I/O cost C and result size S. Alternatively you are also allowed to draw
join trees as shown below.

./

./

./

Rn

Rn−1

R2R1

Solution

DB - Spring 2014: Page 20 (of 22)

Initialization:

(R)2;20, (S)300,000;3,000,000, (T)1;5

n = 1:

Here we have 6 different options how to join two of the plans from the initialization:

(R,S)6,000,002;3,000,000, (R, T)22;100, (S,R)6,300,000;3,000,000, (S, T)3,300,000;3,000,000, (T,R)11;100, (T, S)1,500,001;3,000,000

As an example take the join (R,S). Here R is the outer and S is the inner. Using the formula from class the
estimated result size is N(R)·N(S)

max(V (R,B),V (S,C)) = 20·3,000,000
20 = 3, 000, 000. The cost is computed as: For each tuple

from R (N(R)) we have to scan S once (300, 000 I/Os). Thus, the cost is B(R)+N(R)·B(S) = 2+300, 000·20 =
6, 000, 002 I/Os. Greedy join enumeration chooses the plan with the lowest cost (T,R):

11; 100
./

RT

, (S)300,000;3,000,000

n = 2:

Now we need to consider two join options. To estimate the size of the final result you need to recognize that
the join between S and the result of T ./ R joins on two attributes from each relation (C and D from S and B
and F from T ./ R). Thus, the estimated result size is:

N(S) ·N(T ./ R)
max(V (S,C), V (T ./ R,B)) ·max(V (S,D), V (T ./ R, F)) = 3, 000, 000 · 100

20 · 5 = 3, 000, 000

For ((T,R), S) we pipeline the result of (T,R) so the cost is:

Cost(T,R) +N(T,R) ·B(S) = 11 + 100 · 300, 000 = 30, 000, 011

Recall that the assumption is that only the outer input of the join can be pipelined. For (S ./ (T ./ R)), the
result of the join between (T ./ R) is the “inner”, so we have to store the result of T ./ R on disk resulting in
B(T ./ R) additional I/O. Since (T ./ R) has 100 result tuples and S(T ./ R) = S(T) + S(R) = 1/10 + 1/10 =
1/5 it follows that B(T ./ R) = 20. Thus, the total cost is

Cost(T ./ R) +B(T ./ R) +B(S) +N(S) ·B(T,R) = 11 + 20 + 300, 000 + 3, 000, 000 · 20 = 60, 300, 031

(S, (T,R))60,300,031;3,000,000, ((T,R), S)30,000,011;3,000,000

30, 000, 011; 3, 000, 000
./

./ S

RT

DB - Spring 2014: Page 21 (of 22)

DB - Spring 2014: Page 22 (of 22)

