
Name CWID

Quiz
1

Feburary 19th, 2014
Due Feburary 26th, 11:59pm

Quiz 1: CS525 - Advanced Database
Organization

Results

Please leave this empty! 1.1 1.2 1.3 1.4 Sum

Instructions
• You have to hand in the assignment using your bitbucket account

• This is an individual and not a group assignment

• Multiple choice questions are graded in the following way: You get points for correct answers and points
subtracted for wrong answers. The minimum points for each questions is 0. For example, assume there
is a multiple choice question with 6 answers - each may be correct or incorrect - and each answer gives
1 point. If you answer 3 questions correct and 3 incorrect you get 0 points. If you answer 4 questions
correct and 2 incorrect you get 2 points. . . .

• For your convenience the number of points for each part and questions are shown in parenthesis.

• There are 4 parts in this quiz

1. SQL
2. Relational Algebra
3. Index Structures
4. Result Size Estimation

DB - Spring 2014: Page 2 (of 21)

Part 1.1 SQL (Total: 31 + 10 bonus points Points)

Consider the following transportation database schema and example instance. The example data should not be
used to formulate queries. SQL statements that you write should return the correct result for every instance of
the schema!

city
name state

New York NY
Chicago IL

Schaumburg IL
Seattle WA

bus
company number price fromCity toCity
Whitedog 13 210 New York Chicago
Whitedog 102 56 Schaumburg Chicago
Picobus 2 115 Seattle Chicago

schedule
company bnum departureTime arrivalTime
Whitedog 13 2014-01-12 08:13 2014-01-12 19:56
Whitedog 102 2014-01-13 12:15 2014-01-13 15:13
Picobus 2 2014-01-12 10:30 2014-01-13 05:44
Picobus 2 2014-01-13 10:30 2014-01-14 05:44

Hints:

• Attributes with black background are the primary key attributes of a relation

• The attributes fromCity and toCity of relation bus are both foreign keys to attribute name of relation city.

• The attributes company and bnum of relation schedule form a foreign key to attributes company and
number of relation bus.

DB - Spring 2014: Page 3 (of 21)

Question 1.1.1 (2 Points)

Write a query that returns cities for which both incoming and outgoing connections exists (toCity and fromCity
attributes of relation bus). Make sure that each such city is only returned once by the query.

Solution

SELECT toCity FROM bus
INTERSECT
SELECT fromCity FROM bus ;

or

SELECT name
FROM c i t y
WHERE name IN (SELECT toCity FROM bus)

AND name IN (SELECT fromCity FROM bus) ;

or

SELECT cName
FROM (SELECT fromCity AS cName FROM bus) fBus

NATURAL JOIN
(SELECT toCity AS cName FROM bus) tBus

Question 1.1.2 (3 Points)

Write an SQL query that returns the bus number, destination, and arrival time of ’Whitedog’ busses departing
from ’Chicago’ on Jan 1st 2014. You can assume that the data type of the arrivalTime and departureTime
columns are of type VARCHAR.

Solution

SELECT bnum, toCity , ar r iva lTime
FROM bus b JOIN schedu le s ON (b . company = s . company AND b . number = s .bnum)
WHERE b . company = ’Whitedog ’ AND fromCity = ’ Chicago ’ AND departureTime LIKE ’ 2014−01−01\% ’

DB - Spring 2014: Page 4 (of 21)

Question 1.1.3 (2 Points)

What is the result of evaluating the following SQL query over the example data? Write down the content of
the relation that will be returned.

SELECT DISTINCT company
FROM schedu le s
WHERE (SELECT count (∗) FROM schedu le o WHERE s . company = o . company) = 2 ;

Solution
company
Whitedog
Picobus

Question 1.1.4 (4 Points)

Write an SQL query that returns the cheapest price for round trips between Chicago and Washington (a bus
ride from Chicago to Washington plus a bus ride from Washington to Chicago). For this query you can ignore
the actual scheduled times of the busses.

Solution

SELECT min (f . p r i c e + t . p r i c e)
FROM bus f , bus t
WHERE f . fromCity = ’ Chicago ’

AND f . toCity = ’Washington ’
AND t . fromCity = ’Washington ’
AND t . toCity = ’ Chicago ’ ;

DB - Spring 2014: Page 5 (of 21)

Question 1.1.5 (3 Points)

Write an SQL query that returns companies that operate at least 5 bus lines.

Solution

SELECT company
FROM bus
GROUP BY company
HAVING count (∗) >= 5 ;

Question 1.1.6 (3 Points)

Write an SQL query that returns a departure time table for busses. This table should have three attributes:
the city, the bus number, and the departure time. The table should be ordered by city, then by bus number,
and finally by departure time.

Solution

SELECT fromCity AS c i ty , number AS busNumber , departureTime
FROM bus b JOIN schedu le s ON (b . company = s . company AND b . number = s .bnum)
ORDER BY fromCity , number , departureTime ;

DB - Spring 2014: Page 6 (of 21)

Question 1.1.7 (4 Points)

Write an SQL query that returns the name of cities which are neither the destination nor start point (fromCity
or toCity) of any bus route.

Solution

SELECT name
FROM c i t y c
WHERE NOT EXISTS (SELECT ∗

FROM bus b
WHERE b . fromCity = c . name OR b . toCity = c . name) ;

Question 1.1.8 (4 Points)

Write a query that returns the number of intra-state busses (bus lines with both fromCity and toCity within
the same state) per state.

Solution

SELECT fC . s ta te , count (∗) AS intraStateBusNum
FROM c i t y fC JOIN bus b ON (fC . name = b . fromCity) JOIN c i t y tC ON (b . toCity = tC . name)
WHERE fC . s t a t e = tC . s t a t e
GROUP BY fC . s t a t e

DB - Spring 2014: Page 7 (of 21)

Question 1.1.9 (6 Points)

Write an SQL query that returns the price of the cheapest route from New York to Houston using at most 3
bus lines. For example, a trip New York - Chicago, Chicago - Seattle, Seattle - Houston uses 3 bus lines. Do
not consider actual scheduling times for determining routes for this query. That is you are allowed to return
routes that would not work in practice because, e.g., one of the buses arrives after the next one has departed.

Hint: This is a relatively complex query. Recall that you can use WITH in SQL to define temporary
views.

Solution

WITH
(SELECT pr i ce , fromCity , toCity
FROM bus) AS oneStop ,

(SELECT b . p r i c e + o . p r i c e AS pr i ce , o . fromCity , b . toCity
FROM bus b JOIN oneStop o
WHERE b . fromCity = o . toCity) AS twoStop

(SELECT b . p r i c e + o . p r i c e AS pr i ce , o . fromCity , b . toCity
FROM bus b JOIN twoStop o
WHERE b . fromCity = o . toCity) AS threeStop

SELECT min (p r i c e) AS minPrice
FROM

(SELECT ∗ FROM oneStop
UNION ALL
SELECT ∗ FROM twoStop
UNION ALL
SELECT ∗ FROM threeStop) AS oneToThreeStops

WHERE fromCity = ’New␣York ’ AND toCity = ’Houston ’ ;

DB - Spring 2014: Page 8 (of 21)

Question 1.1.10 Optional Bonus Question (10 bonus points Points)

Improve the previous query by taking the bus schedule into account. Now you should only return bus trips
which actually work. E.g., if you are using two bus lines, then the second line should departe after the first one
arrives. Furthermore, trips that are longer than 18 hours should not be considered. You can assume that the
DBMS implements a ’-’ operator for the departureTime and arrivalTime columns that returns the difference
between the two dates in hours.

Solution

WITH
(
SELECT

fromCity , toCity , pr i ce ,
ar r iva lTime − departureTime AS tr ipLength ,
departureTime , arr iva lTime

FROM bus b JOIN schedu le s ON (b . company = s . company AND b . number = s .bnum)
) AS oneStop ,

(
SELECT

l . fromCity , r . toCity , l . p r i c e + r . p r i c e AS pr i ce ,
r . a r r iva lTime − l . departureTime AS tr ipLength ,
l . departureTime , r . ar r iva lTime

FROM oneStop l JOIN oneStop r
WHERE r . fromCity = l . toCity AND r . departureTime > l . ar r iva lTime
) AS twoStop ,

(
SELECT

l . fromCity , r . toCity , l . p r i c e + r . p r i c e AS pr i ce ,
r . a r r iva lTime − l . departureTime AS tr ipLength ,
l . departureTime , r . ar r iva lTime

FROM twoStop l JOIN oneStop r
WHERE r . fromCity = l . toCity AND r . departureTime > l . ar r iva lTime
) AS threeStop ,

SELECT min (p r i c e) AS minPrice
FROM

(SELECT ∗ FROM oneStop
UNION ALL
SELECT ∗ FROM twoStop
UNION ALL
SELECT ∗ FROM threeStop) AS oneToThreeStops

WHERE fromCity = ’New␣York ’ AND toCity = ’Houston ’ AND t r ipLength <= 18 ;

DB - Spring 2014: Page 9 (of 21)

Part 1.2 Relational Algebra (Total: 29 Points)

Question 1.2.1 Relational Algebra (3 Points)

Write a relational algebra expression over the schema from the SQL part (part 1) that returns bus numbers for
all busses from Picobus and Whitedog (bag semantics).

Solution

πcompany(σcompany=P icobus∨company=W hitedog(bus))

Question 1.2.2 Relational Algebra (4 Points)

Write a relational algebra expression over the schema from the SQL part (part 1) that returns all companies
that do not have busses leaving from Chicago (bag semantics).

Solution

πcompany(bus B (σfromCity=Chicago(bus)))

Question 1.2.3 Relational Algebra (4 Points)

Write a relational algebra expression over the schema from the SQL part (part 1) that returns the number of
all buses with more than 3 scheduled times (schedule table). (bag semantics)

Solution

DB - Spring 2014: Page 10 (of 21)

πbnum(σcount(∗)>3(bnumαcount(∗)(schedule)))

Question 1.2.4 SQL → Relational Algebra (3 Points)

Translate the SQL query from Question 1.1.1 into relational algebra (bag semantics).

Solution

δ(πtoCity(bus) ∩ πfromCity(bus))

Question 1.2.5 SQL → Relational Algebra (5 Points)

Translate the SQL query from question 1.1.3 into relational algebra (bag semantics).

Solution

πcompany(σcount(∗)=2(companyαcount(∗)(schedule)))

Question 1.2.6 SQL → Relational Algebra (5 Points)

Translate the SQL query from question 1.1.4 into relational algebra (bag semantics).

Solution

DB - Spring 2014: Page 11 (of 21)

cw = ρfP rice←price(σtoCity=Chicago∧fromCity=W ashington(bus))
wc = ρtP rice←price(σfromCity=Chicago∧toCity=W ashington(bus))
q = αmin(ttl)(ρttl←fP rice+tP rice(πfP rice+tP rice(cw × wc)))

Question 1.2.7 Equivalences (5 Points)

Consider the following relation schemas:

R(A,B), S(B,C), T (C,D).

Check equivalences that are correct under set semantics. For example R ./ R ≡ R should be checked, whereas
R ≡ S should not be checked.

n R ∪ (S −R) ≡ S ∪R

n R ∩ S ≡ R− (R− S)

n R X S ≡ πA,B(R ./ S)

n πA(R ./ S) ≡ πA(S ./ R)

q σB=5(R B S) ≡ R B σB=5(S)

n (R ∩ S) ∪ (R ∩ T) ≡ R ∩ (S ∪ T)

q σA=5(R ./ B=C T) ≡ σA=5(R) ./ B=C T

q σC=5(R ./ B=C T) ≡ σB=5(R) ./ B=C T

n R X S ≡ R− (R B S)

q (R ∪ S)− T ≡ R ∪ (S − T)

DB - Spring 2014: Page 12 (of 21)

Part 1.3 Index Structures (Total: 30 Points)

Assume that you have the following table:

Item
id name price
15 Shovel 13
44 Spate 23
3 Lawnmover 233
47 Lawnmover XL 499
48 Fertilizer 45
60 Sunflower seeds 3
32 Pine tree 299
23 Hop seeds 14

Question 1.3.1 Construction (12 Points)

Create a B+-tree for table Item on key id with n = 2 (up to two keys per node). You should start with an
empty B+-tree and insert the keys in the order shown in the table above. Write down the resulting B+-tree
after each step.
When splitting or merging nodes follow these conventions:

• Leaf Split: In case a leaf node needs to be split during insertion and n is even, the left node should get
the extra key. E.g, if n = 2 and we insert a key 4 into a node [1,5], then the resulting nodes should be
[1,4] and [5]. For odd values of n we can always evenly split the keys between the two nodes. In both
cases the value inserted into the parent is the smallest value of the right node.

• Non-Leaf Split: In case a non-leaf node needs to be split and n is odd, we cannot split the node evenly
(one of the new nodes will have one more key). In this case the “middle” value inserted into the parent
should be taken from the right node. E.g., if n = 3 and we have to split a non-leaf node [1,3,4,5], the
resulting nodes would be [1,3] and [5]. The value inserted into the parent would be 4.

• Node Underflow: In case of a node underflow you should first try to redistribute values from a sibling
and only if this fails merge the node with one of its siblings. Both approaches should prefer the left sibling.
E.g., if we can borrow values from both the left and right sibling, you should borrow from the left one.

Solution
44

23 32 48

3 15 23 32 44 47 48 60

DB - Spring 2014: Page 13 (of 21)

DB - Spring 2014: Page 14 (of 21)

Question 1.3.2 Operations (10 Points)

Given is the B+-tree shown below (n = 4). Execute the following operations and write down the resulting
B+-tree after each operation:

delete(68), delete(80), insert(3), delete(200), delete(66), delete(100)

Use the conventions for splitting and merging introduced in the previous question.

65

5 23 67 80 120

1 2 4 14 16 23 32 40 65 66 67 68 80 90 100 121 200 220

Solution
5 23 65 120

1 2 3 4 14 16 23 32 40 65 67 90 121 220

DB - Spring 2014: Page 15 (of 21)

DB - Spring 2014: Page 16 (of 21)

Question 1.3.3 Extensible Hashing (8 Points)

Consider the extensible Hash index shown below that is the result of inserting values 3, 4, and 5. Each page
holds two keys. Execute the following operations
insert(0),insert(7),insert(6),insert(1),delete(5)

and write down the resulting index after each operation. Assume the hash function is defined as:
x h(x)
0 1100
1 0001
2 0000
3 1010
4 1101
5 0111
6 1110
7 0000
8 1010

0 1

0111 1010 1101

Solution
insert(0)

00 01 10 11

0111 1010 1101 1100

insert(7)

00 01 10 11

0111 0000 1010 1101 1100

insert(6)

000 001 010 011 100 101 110 111

0111 0000 1010 1101 1100 1110

insert(1)

000 001 010 011 100 101 110 111

0001 0000 0111 1010 1101 1100 1110

delete(5)

000 001 010 011 100 101 110 111

0001 0000 1010 1101 1100 1110

DB - Spring 2014: Page 17 (of 21)

DB - Spring 2014: Page 18 (of 21)

DB - Spring 2014: Page 19 (of 21)

Part 1.4 Result Size Estimations (Total: 10 Points)

Consider a table beer with attributes brand, name, type, alc, a table brewery with brand, city, revenue, and a
table loc with attributes city and state. beer.brand is a foreign key to brewery brand. Attribute city of relation
brewery is a foreign key to attribute city of relation loc. Given are the following statistics:

T (beer) = 10, 000 T (brewery) = 400 T (loc) = 2, 000
V (beer, brand) = 300 V (brewery, brand) = 400 V (loc, city) = 2, 000
V (beer, name) = 8, 000 V (brewery, city) = 50 V (loc, state) = 50
V (beer, type) = 10 V (brewery, revenue) = 200
V (beer, alc) = 10, 000

Question 1.4.1 Estimate Result Size (3 Points)

Estimate the number of result tuples for the query q = σtype=W heat(beer) using the first assumption presented
in class (values used in queries are uniformly distributed within the active domain).

Solution

T (q) = T (beer)
V (beer, type) = 10, 000

10 = 1, 000

Question 1.4.2 Estimate Result Size (3 Points)

Estimate the number of result tuples for the query q = σrevenue>20,000,000(brewery) using the first assumption
presented in class. The minimum and maximum values of attribute revenue are 300, 000 and 4, 500, 000, 000.

Solution

DB - Spring 2014: Page 20 (of 21)

T (q) = (max(revenue)− 20, 000, 000)× T (brewery)
max(revenue)−min(revenue) = (4, 500, 000, 000− 20, 000, 000)× 400

4, 500, 000, 000− 300, 000) ≈ 398

Question 1.4.3 Estimate Result Size (4 Points)

Estimate the number of result tuples for the query q = beer ./ brewery ./ city using the first assumption
presented in class.

Solution

T (q) = T (beer)× T (brewery)× T (loc)
max(V (beer, brand), V (brewery, brand))×max(V (brewery, city), V (loc, city))

= 10, 000× 400× 2, 000
max(300, 400)×max(50, 2000) = 10, 000

DB - Spring 2014: Page 21 (of 21)

