
1

CS 525 Notes 13 - Failure and Recovery 1

CS 525: Advanced Database
Organization

13: Failure and
Recovery
Boris Glavic

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 13 - Failure and Recovery 2

Now

• Crash recovery

CS 525 Notes 13 - Failure and Recovery 3

Correctness (informally)

•  If we stop running transactions,
 DB left consistent

•  Each transaction sees a consistent DB

CS 525 Notes 13 - Failure and Recovery 4

How can constraints be violated?

•  Transaction bug
•  DBMS bug
•  Hardware failure
 e.g., disk crash alters balance of account

•  Data sharing
 e.g.: T1: give 10% raise to programmers

 T2: change programmers ⇒ systems analysts

CS 525 Notes 13 - Failure and Recovery 5

Recovery

•  First order of business:
 Failure Model

CS 525 Notes 13 - Failure and Recovery 6

Events Desired
 Undesired Expected
 Unexpected

2

CS 525 Notes 13 - Failure and Recovery 7

Our failure model

 processor

memory disk

CPU

M D

CS 525 Notes 13 - Failure and Recovery 8

Desired events: see product manuals….

Undesired expected events:
 System crash
 - memory lost
 - cpu halts, resets

CS 525 Notes 13 - Failure and Recovery 9

Desired events: see product manuals….

Undesired expected events:
 System crash
 - memory lost
 - cpu halts, resets

Undesired Unexpected: Everything else!

that’s it!!

CS 525 Notes 13 - Failure and Recovery 10

Examples:
•  Disk data is lost
•  Memory lost without CPU halt
•  CPU implodes wiping out universe….

Undesired Unexpected: Everything else!

CS 525 Notes 13 - Failure and Recovery 11

Is this model reasonable?

Approach: Add low level checks +
 redundancy to increase

 probability model holds

E.g., Replicate disk storage (stable store)
 Memory parity
 CPU checks

CS 525 Notes 13 - Failure and Recovery 12

Second order of business:

Storage hierarchy

Memory Disk

DB Buffer

x x

3

CS 525 Notes 13 - Failure and Recovery 13

Operations:

•  Input (x): block containing x → memory
•  Output (x): block containing x → disk

CS 525 Notes 13 - Failure and Recovery 14

Operations:

•  Input (x): block containing x → memory
•  Output (x): block containing x → disk

•  Read (x,t): do input(x) if necessary
 t ← value of x in block

•  Write (x,t): do input(x) if necessary
 value of x in block ← t

CS 525 Notes 13 - Failure and Recovery 15

Key problem Unfinished transaction

Example Constraint: A=B
 T1: A ← A × 2
 B ← B × 2

CS 525 Notes 13 - Failure and Recovery 16

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

CS 525 Notes 13 - Failure and Recovery 17

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

CS 525 Notes 13 - Failure and Recovery 18

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!

4

CS 525 Notes 13 - Failure and Recovery 19

•  Need atomicity:
– execute all actions of a transaction or

none at all

How to restore consistent
state after crash?

•  Desired state after recovery:
–  Changes of committed transactions are reflected

on disk
–  Changes of unfinished transactions are not

reflected on disk

•  After crash we need to
–  Undo changes of unfinished transactions that

have been written to disk
–  Redo changes of finished transactions that have

not been written to disk

CS 525 Notes 13 - Failure and Recovery 20

How to restore consistent
state after crash?

•  After crash we need to
–  Undo changes of unfinished transactions that

have been written to disk
–  Redo changes of finished transactions that have

not been written to disk

•  We need to either
–  Store additional data to be able to Undo/Redo
–  Avoid ending up in situations where we need to

Undo/Redo

CS 525 Notes 13 - Failure and Recovery 21 CS 525 Notes 13 - Failure and Recovery 22

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

memory disk

16

failure!

T1 is unfinished
-> need to undo the
write to A to recover
to consistent state

Logging
•  After crash need to

– Undo
– Redo

•  We need to know
– Which operations have been executed
– Which operations are reflected on disk

•  ->Log upfront what is to be done

CS 525 Notes 13 - Failure and Recovery 23

Buffer Replacement Revisited

•  Now we are interested in knowing how
buffer replacement influences recovery!

CS 525 Notes 13 - Failure and Recovery 24

5

Buffer Replacement Revisited

•  Steal: all pages with fix count = 0 are
replacement candidates
– Smaller buffer requirements

•  No steal: pages that have been
modified by active transaction -> not
considered for replacement
– No need to undo operations of unfinished

transactions after failure
CS 525 Notes 13 - Failure and Recovery 25

Buffer Replacement Revisited

•  Force: Pages modified by transaction
are flushed to disk at end of transaction
– No redo required

•  No force: modified (dirty) pages are
allowed to remain in buffer after end of
transaction
– Less repeated writes of same page

CS 525 Notes 13 - Failure and Recovery 26

Effects of Buffer Replacement

CS 525 Notes 13 - Failure and Recovery 27

force No force

No steal •  No Undo
•  No Redo

•  No Undo
•  Redo

steal •  Undo
•  No Redo

•  Redo
•  Undo

Schedules and Recovery

•  Are there certain schedules that are
easy/hard/impossible to recover from?

CS 525 Notes 13 - Failure and Recovery 28

Recoverable Schedules

•  We should never have to rollback an already
committed transaction (D in ACID)

•  Recoverable schedules require that
–  A transaction does not commit before every

transaction that is has read from has committed
–  A transaction T reads from another transaction T’

if it reads an item X that has last been written by
T’ and T’ has not aborted before the read

CS 525 Notes 13 - Failure and Recovery 29 CS 525 Notes 12 - Transaction
Management

30

T1 = w1(X),c1 !

T2 = r2(X),w2(X),c2 !

Recoverable Schedule

S1 = w1(X),r2(X),w2(X),c1,c2 !

S2 = w1(X),r2(X),w2(X),c2,c1 !

Nonrecoverable Schedule

6

Cascading Abort

•  Transaction T has written an item that is later
read by T’ and T aborts after that
–  we have to also abort T’ because the value it read

is no longer valid anymore
–  This is called a cascading abort
–  Cascading aborts are complex and should be

avoided

CS 525 Notes 13 - Failure and Recovery 31

S = … w1(X) … r2(X) … a1!

Cascadeless Schedules

•  Cascadeless schedules guarantee that there
are no cascading aborts
–  Transactions only read values written by already

committed transactions

CS 525 Notes 13 - Failure and Recovery 32

CS 525 Notes 12 - Transaction
Management

33

T1 = w1(X),c1 !

T2 = r2(X),w2(X),c2 !

Recoverable Schedule

S2 = w1(X),r2(X),w2(X),c1,c2 !

S3 = w1(X),r2(X),w2(X),c2,c1 !

Nonrecoverable Schedule

Cascadeless Schedule

S1 = w1(X),c1,r2(X),w2(X),c2 !

CS 525 Notes 12 - Transaction
Management

34

T1 = w1(X),a1 !

T2 = r2(X),w2(X),c2 !

Recoverable Schedule

S2 = w1(X),r2(X),w2(X),a1,a2 !

S3 = w1(X),r2(X),w2(X),c2,a1 !

Nonrecoverable Schedule

Cascadeless Schedule

S1 = w1(X),a1,r2(X),w2(X),c2 !

Consider what
happens if T1
aborts!

Strict Schedules

•  Strict schedules guarantee that to Undo the
effect of an transaction we simply have to
undo each of its writes
–  Transactions do not read nor write items written

by uncommitted transactions

CS 525 Notes 13 - Failure and Recovery 35 CS 525 Notes 12 - Transaction
Management

36

T1 = w1(X),c1 !

T2 = r2(X),w2(X),c2 !

Recoverable Schedule

S2 = w1(X),r2(X),w2(X),c1,c2 !

S3 = w1(X),r2(X),w2(X),c2,c1 !

Nonrecoverable Schedule

Cascadeless Schedule

S1 = w1(X),c1,r2(X),w2(X),c2 !

7

Compare Classes

ST ⊂ CL ⊂ RC ⊂ ALL

CS 525 Notes 13 - Failure and Recovery 37 CS 525 Notes 13 - Failure and Recovery 38

Strict
schedules

Cascadeless schedules

Recoverable schedules

All schedules

Logging and Recovery

•  We now discuss approaches for logging
and how to use them in recovery

CS 525 Notes 13 - Failure and Recovery 39 CS 525 Notes 13 - Failure and Recovery 40

One solution: undo logging (immediate
 modification)

due to: Hansel and Gretel, 782 AD

CS 525 Notes 13 - Failure and Recovery 41

One solution: undo logging (immediate
 modification)

due to: Hansel and Gretel, 782 AD

•  Improved in 784 AD to durable
 undo logging

CS 525 Notes 13 - Failure and Recovery 42

T1: Read (A,t); t ← t×2 A=B
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

8

CS 525 Notes 13 - Failure and Recovery 43

T1: Read (A,t); t ← t×2 A=B
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

CS 525 Notes 13 - Failure and Recovery 44

T1: Read (A,t); t ← t×2 A=B
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>

CS 525 Notes 13 - Failure and Recovery 45

T1: Read (A,t); t ← t×2 A=B
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>
16

CS 525 Notes 13 - Failure and Recovery 46

T1: Read (A,t); t ← t×2 A=B
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>
16

CS 525 Notes 13 - Failure and Recovery 47

One “complication”

•  Log is first written in memory
•  Not written to disk on every action
 memory
 DB

 Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

CS 525 Notes 13 - Failure and Recovery 48

One “complication”

•  Log is first written in memory
•  Not written to disk on every action
 memory
 DB

 Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

16
BAD STATE

1

9

CS 525 Notes 13 - Failure and Recovery 49

One “complication”

•  Log is first written in memory
•  Not written to disk on every action
 memory
 DB

 Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16
BAD STATE

2

<T1, B, 8>
<T1, commit>

...

CS 525 Notes 13 - Failure and Recovery 50

Undo logging rules

(1) For every action generate undo log
 record (containing old value)

(2) Before x is modified on disk, log
 records pertaining to x must be

 on disk (write ahead logging: WAL)
(3) Before commit is flushed to log, all

 writes of transaction must be
 reflected on disk

CS 525 Notes 13 - Failure and Recovery 51

Recovery rules: Undo logging

•  For every Ti with <Ti, start> in log:
 - If <Ti,commit> or <Ti,abort>

 in log, do nothing
 - Else For all <Ti, X, v> in log:

 write (X, v)
 output (X)
 Write <Ti, abort> to log

CS 525 Notes 13 - Failure and Recovery 52

Recovery rules: Undo logging

•  For every Ti with <Ti, start> in log:
 - If <Ti,commit> or <Ti,abort>

 in log, do nothing
 - Else For all <Ti, X, v> in log:

 write (X, v)
 output (X)
 Write <Ti, abort> to log

➽IS THIS CORRECT??

CS 525 Notes 13 - Failure and Recovery 53

Recovery rules: Undo logging

(1) Let S = set of transactions with
 <Ti, start> in log, but no

 <Ti, commit> (or <Ti, abort>) record in log
(2) For each <Ti, X, v> in log,

 in reverse order (latest → earliest) do:

 - if Ti ∈ S then - write (X, v)
 - output (X)

(3) For each Ti ∈ S do
 - write <Ti, abort> to log

CS 525 Notes 13 - Failure and Recovery 54

Question
•  Can writes of <Ti, abort> records

be done in any order (in Step 3)?
– Example: T1 and T2 both write A
– T1 executed before T2
– T1 and T2 both rolled-back
– <T1, abort> written but NOT <T2, abort>?
– <T2, abort> written but NOT <T1, abort>?

T1 write A T2 write A time/log

10

CS 525 Notes 13 - Failure and Recovery 55

What if failure during recovery?
 No problem! ✏ Undo idempotent

•  An operation is called idempotent
if the number of times it is applied
do not effect the result

•  For Undo:
•  Undo(log) = Undo(Undo(…

(Undo(log)) …))

Undo is idempotent

•  We store the values of data items
before the operation

•  Undo can be executed repeatedly
without changing effects
–  idempotent

CS 525 Notes 13 - Failure and Recovery 56

Physical vs. Logical Logging
•  How to represent values in log entries?
•  Physical logging

– Content of pages before and after

•  Logical operations
– Operation to execute for undo/redo

• E.g., delete record x

•  Hybrid (Physiological)
– Delete record x from page y

CS 525 Notes 13 - Failure and Recovery 57 CS 525 Notes 13 - Failure and Recovery 58

To discuss:

•  Redo logging
•  Undo/redo logging, why both?
•  Real world actions
•  Checkpoints
•  Media failures

CS 525 Notes 13 - Failure and Recovery 59

Redo logging (deferred modification)

T1: Read(A,t); t t×2; write (A,t);
 Read(B,t); t t×2; write (B,t);
 Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG
CS 525 Notes 13 - Failure and Recovery 60

Redo logging (deferred modification)

T1: Read(A,t); t t×2; write (A,t);
 Read(B,t); t t×2; write (B,t);
 Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

11

CS 525 Notes 13 - Failure and Recovery 61

Redo logging (deferred modification)

T1: Read(A,t); t t×2; write (A,t);
 Read(B,t); t t×2; write (B,t);
 Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

output
16
16

CS 525 Notes 13 - Failure and Recovery 62

Redo logging (deferred modification)

T1: Read(A,t); t t×2; write (A,t);
 Read(B,t); t t×2; write (B,t);
 Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>
<T1, end>

output
16
16

CS 525 Notes 13 - Failure and Recovery 63

Redo logging rules
(1) For every action, generate redo log
 record (containing new value)

(2) Before X is modified on disk (DB),
 all log records for transaction that
 modified X (including commit) must

 be on disk
(3) Flush log at commit
(4) Write END record after DB updates

 flushed to disk
CS 525 Notes 13 - Failure and Recovery 64

•  For every Ti with <Ti, commit> in log:
– For all <Ti, X, v> in log:
 Write(X, v)
 Output(X)

Recovery rules: Redo logging

CS 525 Notes 13 - Failure and Recovery 65

•  For every Ti with <Ti, commit> in log:
– For all <Ti, X, v> in log:
 Write(X, v)
 Output(X)

Recovery rules: Redo logging

➽IS THIS CORRECT??

CS 525 Notes 13 - Failure and Recovery 66

(1) Let S = set of transactions with
<Ti, commit> (and no <Ti, end>) in log

(2) For each <Ti, X, v> in log, in forward
 order (earliest → latest) do:
 - if Ti ∈ S then Write(X, v)
 Output(X)

(3) For each Ti ∈ S, write <Ti, end>

Recovery rules: Redo logging

12

Crash During Redo

•  Since Redo log contains values after
writes, repeated application of a log
entry does not change result
–  ->idempotent

CS 525 Notes 13 - Failure and Recovery 67 CS 525 Notes 13 - Failure and Recovery 68

Combining <Ti, end> Records

•  Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

CS 525 Notes 13 - Failure and Recovery 69

Combining <Ti, end> Records

•  Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

combined <end> (checkpoint)

CS 525 Notes 13 - Failure and Recovery 70

Solution: Checkpoint

Periodically:
(1) Do not accept new transactions
(2) Wait until all transactions finish
(3) Flush all log records to disk (log)
(4) Flush all buffers to disk (DB) (do not discard buffers)
(5) Write “checkpoint” record on disk (log)
(6) Resume transaction processing

•  no <ti, end> actions>
• simple checkpoint

CS 525 Notes 13 - Failure and Recovery 71

Example: what to do at recovery?

Redo log (disk):

<
T1

,A
,1

6>

 <
T1

,c
om

m
it>

 Ch

ec
kp

oi
nt

<
T2

,B
,1

7>

 <
T2

,c
om

m
it>

 <

T3
,C

,2
1>

Crash
...

Advantage of Checkpoints

•  Limits recovery to parts of the log after
the checkpoint
– Think about system that has been online

for months
•  ->Analyzing the whole log is too expensive!

•  Source of backups
–  If we backup checkpoints we can use them

for media recovery!

CS 525 Notes 13 - Failure and Recovery 72

13

Checkpoints Justification

•  Checkpoint should be consistent DB
state
– No active transactions

• Do not accept new transactions
• Wait until all transactions finish

– DB state reflected on disk
•  Flush log
•  Flush buffers

CS 525 Notes 13 - Failure and Recovery 73 CS 525 Notes 13 - Failure and Recovery 74

Key drawbacks:

•  Undo logging:
– cannot bring backup DB copies up to date

•  Redo logging:
– need to keep all modified blocks in memory

until commit

CS 525 Notes 13 - Failure and Recovery 75

Solution: undo/redo logging!

Update ⇒ <Ti, Xid, New X val, Old X val>
page X

CS 525 Notes 13 - Failure and Recovery 76

Rules

•  Page X can be flushed before or
 after Ti commit

•  Log record flushed before
corresponding updated page (WAL)

•  Flush at commit (log only)

CS 525 Notes 13 - Failure and Recovery 77

Example: Undo/Redo logging
 what to do at recovery?
log (disk):

<
ch

ec
kp

oi
nt

>

 <
T1

, A
, 1

0,
 1

5>

 <
T1

, B
, 2

0,
 2

3>

<
T1

, c
om

m
it>

 <
T2

, C
, 3

0,
 3

8>

 <
T2

, D
, 4

0,
 4

1>

Crash
...

Checkpoint Cost

•  Checkpoints are expensive
– No new transactions can start
– A lot of I/O

•  Flushing the log
•  Flushing dirty buffer pages

CS 525 Notes 13 - Failure and Recovery 78

14

CS 525 Notes 13 - Failure and Recovery 79

Non-quiesce checkpoint

L
O
G

 for

 undo dirty buffer
 pool pages
 flushed

Start-ckpt
active TR:
Ti,T2,...

end
ckpt

...

...

CS 525 Notes 13 - Failure and Recovery 80

Examples what to do at recovery time?

 no T1 commit
L
O
G

T1,-
a ... Ckpt

T1
... Ckpt

end ... T1-
b ...

CS 525 Notes 13 - Failure and Recovery 81

Examples what to do at recovery time?

 no T1 commit
L
O
G

T1,-
a ... Ckpt

T1
... Ckpt

end ... T1-
b ...

➽ Undo T1 (undo a,b)

CS 525 Notes 13 - Failure and Recovery 82

Example

L
O
G

... T1
a T1

b T1
c ... T1

cmt ... ckpt-
end

ckpt-s
T1

CS 525 Notes 13 - Failure and Recovery 83

Example

L
O
G

... T1
a T1

b T1
c ... T1

cmt ... ckpt-
end

ckpt-s
T1

➽ Redo T1: (redo b,c)

CS 525 Notes 13 - Failure and Recovery 84

Recover From Valid Checkpoint:

... ckpt
start T1

b T1
c ... ckpt-

start
ckpt
end

L
O
G

start
of latest
valid
checkpoint

15

CS 525 Notes 13 - Failure and Recovery 85

Recovery process:
•  Backwards pass (end of log ➜ latest valid checkpoint start)

–  construct set S of committed transactions
–  undo actions of transactions not in S

•  Undo pending transactions
–  follow undo chains for transactions in

 (checkpoint active list) - S

•  Forward pass (latest checkpoint start ➜ end of log)
–  redo actions of S transactions

backward pass

forward pass
start

check-
point

CS 525 Notes 13 - Failure and Recovery 86

Real world actions

E.g., dispense cash at ATM
 Ti = a1 a2 …... aj …... an

$

CS 525 Notes 13 - Failure and Recovery 87

Solution

(1) execute real-world actions after commit
(2) try to make idempotent

CS 525 Notes 13 - Failure and Recovery 88

 ATM
Give$$
(amt, Tid, time)

$
give(amt)

lastTid:
time:

CS 525 Notes 13 - Failure and Recovery 89

Media failure (loss of non-volatile
 storage)

A: 16

CS 525 Notes 13 - Failure and Recovery 90

Media failure (loss of non-volatile
 storage)

A: 16

Solution: Make copies of data!

16

CS 525 Notes 13 - Failure and Recovery 91

Example 1 Triple modular redundancy

•  Keep 3 copies on separate disks
•  Output(X) --> three outputs
•  Input(X) --> three inputs + vote

X1 X2 X3

CS 525 Notes 13 - Failure and Recovery 92

Example #2 Redundant writes,
 Single reads

•  Keep N copies on separate disks
•  Output(X) --> N outputs
•  Input(X) --> Input one copy

 - if ok,
done

 - else try another one
➳ Assumes bad data can be detected

CS 525 Notes 13 - Failure and Recovery 93

Example #3: DB Dump + Log

backup
database

active
database

log

•  If active database is lost,
–  restore active database from backup
–  bring up-to-date using redo entries in log

CS 525 Notes 13 - Failure and Recovery 94

When can log be discarded?

check-
point

db
dump

last
needed
undo

not needed for
media recovery redo

not needed for undo
after system failure

not needed for
redo after system failure

log

time

last
needed
undo

not needed for
media recovery

Practical Recovery with ARIES

•  ARIES
– Algorithms for Recovery and Isolation

Exploiting Semantics

•  Implemented in, e.g.,
– DB2
– MSSQL

CS 525 Notes 13 - Failure and Recovery 95

Underlying Ideas

•  Keep track of state of pages by relating them to
entries in the log

•  WAL
•  Recovery in three phases

–  Analysis, Redo, Undo

•  Log entries to track state of Undo for repeated
failures

•  Redo: page-oriented -> efficient
•  Undo: logical -> permits higher level of concurrency

CS 525 Notes 13 - Failure and Recovery 96

17

Log Entry Structure

•  LSN
– Log sequence number
– Order of entries in the log
– Usually log file id and offset for direct

access

CS 525 Notes 13 - Failure and Recovery 97

•  LSN
•  Entry type

–  Update, compensation, commit, …

•  TID
–  Transaction identifier

•  PrevLSN
–  LSN of previous log record for same transaction

•  UndoNxtLSN
–  Next undo operation for CLR (later!)

•  Undo/Redo data
–  Data needed to undo/redo the update

CS 525 Notes 13 - Failure and Recovery 98

Page Header Additions

•  PageLSN
– LSN of the last update that modified the

page
– Used to know which changes have been

applied to a page

CS 525 Notes 13 - Failure and Recovery 99

Forward Processing

•  Normal operations when no ROLLBACK is
required
–  WAL: write redo/undo log record for each action

of a transaction

•  Buffer manager has to ensure that
–  changes to pages are not persisted before the

corresponding log record has been presisted
–  Transactions are not considered commited before

all their log records have been flushed

CS 525 Notes 13 - Failure and Recovery 100

Dirty Page Table

•  PageLSN
– Entries <PageID,RecLSN>
– Whenever a page is first fixed in the buffer

pool with indention to modify
•  Insert <PageId,RecLSN> with RecLSN

being the current end of the log

– Flushing a page removes it from the Dirty
page table

CS 525 Notes 13 - Failure and Recovery 101

Dirty Page Table

•  Used for checkpointing
•  Used for recovery to figure out what to

redo

CS 525 Notes 13 - Failure and Recovery 102

18

Transaction Table

•  TransID
–  Identifier of the transaction

•  State
–  Commit state

•  LastLSN
–  LSN of the last update of the transaction

•  UndoNxtLSN
–  If last log entry is a CLR then UndoNxtLSN from that record
–  Otherwise = LastLSN

CS 525 Notes 13 - Failure and Recovery 103 CS 525 Notes 13 - Failure and Recovery 104

A: 16
B: 16

13
…
<13,U,2,10,-,-A=3+A=16>

disk buffer

T1=r1(A),A=A*2,w1(A) !

Page_LSN:
LSN of last
modification to page

Persistent
log

Transaction Table:
<1, U, -, ->

Dirty Page Table:

CS 525 Notes 13 - Failure and Recovery 105

A: 16
B: 16

13
…
<13,U,2,10,-,-A=3+A=16>

Persistent
log

disk buffer

T1=r1(A),A=A*2,w1(A) !

A: 16
B: 16

13

Transaction Table:
<1, U, -, ->

Dirty Page Table:
<100, 14>

CS 525 Notes 13 - Failure and Recovery 106

A: 16
B: 16

13
…
<13,U,2,10,-,-A=3+A=16>

Persistent
log

disk buffer

T1=r1(A),A=A*2,w1(A) !

A: 16
B: 16

13

<14,U,1,-,-,-A=16+A=32>

Write log entry

Transaction Table:
<1, U, -, ->

Dirty Page Table:
<100, 14>

CS 525 Notes 13 - Failure and Recovery 107

A: 16
B: 16

13
…
<13,U,2,10,-,-A=3+A=16>

Persistent
log

disk buffer

T1=r1(A),A=A*2,w1(A) !

A: 32
B: 16

14

<14,U,1,-,-,-A=16+A=32>

Update page

Transaction Table:
<1, U, 14, 14>

Dirty Page Table:
<100, 14>

CS 525 Notes 13 - Failure and Recovery 108

A: 16
B: 16

13
…
<13,U,2,10,-,-A=3+A=16>

Persistent
log

disk buffer

T1=r1(A),A=A*2,w1(A) !

A: 32
B: 16

14

<14,U,1,-,-,-A=16+A=32>

Can wait with
flushing page, but log
has to be flushed
first!

2

1

Transaction Table:
<1, U, 14, 14>

Dirty Page Table:
<100, 14>

19

Undo during forward
processing

•  Transaction was rolled back
–  User aborted, aborted because of error, …

•  Need to undo operations of transaction
•  During Undo

–  Write log entries for every undo
–  Compensation Log Records (CLR)
–  Used to avoid repeated undo when failures occur

CS 525 Notes 13 - Failure and Recovery 109

Undo during forward processing
•  Starting with the LastLSN of transaction

from transaction table
–  Traverse log entries of transaction last to first

using PrevLSN pointers
–  For each log entry use undo information to undo

action
•  <LSN, Type, TID, PrevLSN, -, Undo/Redo data>

–  Before modifying data write an CLR that stores
redo-information for the undo operation

•  UndoNxtLSN = PrevLSN of log entry we are undoing
•  Redo data = How to redo the undo

CS 525 Notes 13 - Failure and Recovery 110

CS 525 Notes 13 - Failure and Recovery 111

buffer

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6>
<2,U,1,2,-,-B=10+B=5>
<3,U,1,3,-,-C=5+C=10>
<4,U,1,4,-,-A=6+A=4>

Undo T1

Transaction Table:
<1, U, 4, 4>

A: 4
B: 5

4

C: 10
D: 20

3

CS 525 Notes 13 - Failure and Recovery 112

buffer

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6>
<2,U,1,1,-,-B=10+B=5>
<3,U,1,2,-,-C=5+C=10>
<4,U,1,3,-,-A=6+A=4>
<5,CLR,1,-,3,+A=6>

Undo T1

Transaction Table:
<1, U, 5, 3>

A: 6
B: 5

5

C: 10
D: 20

3

CS 525 Notes 13 - Failure and Recovery 113

buffer

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6>
<2,U,1,1,-,-B=10+B=5>
<3,U,1,2,-,-C=5+C=10>
<4,U,1,3,-,-A=6+A=4>
<5,CLR,1,-,3,+A=6>
<6,CLR,1,-,2,+C=5>

Undo T1

Transaction Table:
<1, U, 6, 2>

A: 6
B: 5

5

C: 5
D: 20

6

CS 525 Notes 13 - Failure and Recovery 114

buffer

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6>
<2,U,1,1,-,-B=10+B=5>
<3,U,1,2,-,-C=5+C=10>
<4,U,1,3,-,-A=6+A=4>
<5,CLR,1,-,3,+A=6>
<6,CLR,1,-,2,+C=5>
<7,CLR,1,-,1,+B=10>

Undo T1

Transaction Table:
<1, U, 7, 1>

A: 6
B: 10

7

C: 5
D: 20

6

20

CS 525 Notes 13 - Failure and Recovery 115

buffer

T1= w1(A), w1(B), w1(C), w1(A), a1 !

<1,U,1,-,-,-A=3+A=6>
<2,U,1,1,-,-B=10+B=5>
<3,U,1,2,-,-C=5+C=10>
<4,U,1,3,-,-A=6+A=4>
<5,CLR,1,-,3,+A=6>
<6,CLR,1,-,2,+C=5>
<7,CLR,1,-,1,+B=10>
<8,CLR,1,-,-,+A=3>

Undo T1

Transaction Table:
<1, U, 8, ->

A: 3
B: 10

8

C: 5
D: 20

6

Fuzzy Checkpointing in ARIES

•  Begin of checkpoint
– Write begin_cp log entry
– Write end_cp log entry with

• Dirty page table
• Transaction table

•  Master Record
– LSN of begin_cp log entry of last complete

checkpoint

CS 525 Notes 13 - Failure and Recovery 116

Restart Recovery

1.  Analysis Phase
2.  Redo Phase
3.  Undo Phase

CS 525 Notes 13 - Failure and Recovery 117

Analysis Phase

1) Determine LSN of last checkpoint
using Master Record
2) Log Dirty Page Table and Transaction
Table from checkpoint record
3) RedoLSN = min(RecLSN) from Dirty
Page Table or checkpoint LSN if no dirty
page

CS 525 Notes 13 - Failure and Recovery 118

Analysis Phase

4) Scan log forward starting from
RedoLSN
•  Update log entry from transaction

–  If necessary: Add to Page to Dirty Page Table
–  Add Transaction to Transaction Table or update

LastLSN

•  Transaction end entry
–  Remove transaction from Transaction Table

CS 525 Notes 13 - Failure and Recovery 119

Analysis Phase

•  Result
–  Transaction Table

•  Transactions to be later undone

–  RedoLSN
•  Log entry to start Redo Phase

–  Dirty Page Table
•  Pages that may not have been written back to

disk

CS 525 Notes 13 - Failure and Recovery 120

21

Redo Phase

•  Start at RedoLSN scan log forward
•  Unconditional Redo

– Even redo actions of transactions that will
be undone later

•  One redo once
– Only redo operations that have not been

reflected on disk (PageLSN)

CS 525 Notes 13 - Failure and Recovery 121

Redo Phase

•  For each update log entry
–  If affected page is not in Dirty Page Table

or RecLSN > LSN
•  skip log entry

– Fix page in buffer
•  If PageLSN >= LSN then operation already

reflected on disk
–  Skip log entry

• Otherwise apply update

CS 525 Notes 13 - Failure and Recovery 122

Redo Phase

•  Result
– State of DB before Failure

CS 525 Notes 13 - Failure and Recovery 123

Undo Phase

•  Scan log backwards from end using
Transaction Table
– Repeatedly take log entry with max LSN

from all the current action to be undone for
each transaction
• Write CLR
• Update Transaction Table

CS 525 Notes 13 - Failure and Recovery 124

Undo Phase

•  All unfinished transactions have been
rolled back

CS 525 Notes 13 - Failure and Recovery 125

Idempotence?

•  Redo
– We are not logging during Redo so

repeated Redo will result in the same state

•  Undo
–  If we see CLRs we do not undo this action

again

CS 525 Notes 13 - Failure and Recovery 126

22

CS 525 Notes 13 - Failure and Recovery 127

T1 = w1(A), w1(B), w1(C), w1(A), c1 !

<1,begin(T1), ->
<2,begin(T2), ->
<3,write(A,T1),1>
<4,write(X,T2),2>
<5,write(B,T1),3>
<6,write(C,T1),5>
<7,write(A,T1),6>
<8,commit(T1),7>
<9,write(A,T2),4>

T2 = w1(X), r(A), w(A) !

Log

CS 525 Notes 13 - Failure and Recovery 128

T1 = w1(A), w1(B), w1(C), w1(A), c1 !

<1,begin(T1), ->
<2,begin(T2), ->
<3,write(A,T1),1>
<4,write(X,T2),2>
<5,write(B,T1),3>
<6,write(C,T1),5>
<7,write(A,T1),6>
<8,commit(T1),7>
<9,write(A,T2),4>

T2 = w1(X), r(A), w(A) !

Log Analysis Phase:

 - start at log entry 1

 - add T1 to transaction table (rec. 1)
 - add T2 to transaction table (rec. 2)

 - add A to page table (RecLSN 3)
 - add X to page table (RecLSN 4)
 - add B to page table (RecLSN 5)
 - add C to page table (RecLSN 6)
 - remove T1 from Transaction Table (rec. 8)

CS 525 Notes 13 - Failure and Recovery 129

T1 = w1(A), w1(B), w1(C), w1(A), c1 !

<1,begin(T1), ->
<2,begin(T2), ->
<3,write(A,T1),1>
<4,write(X,T2),2>
<5,write(B,T1),3>
<6,write(C,T1),5>
<7,write(A,T1),6>
<8,commit(T1),7>
<9,write(A,T2),4>

T2 = w1(X), r(A), w(A) !

Log
Analysis Phase Result:

 - Transaction Table:
 <T2, 9>
 - Dirty Page Table:
 <A, 3>, <B, 5>, <C, 6>, <X, 4>
 - RedoLSN = min(3,5,6,4) = 3

CS 525 Notes 13 - Failure and Recovery 130

T1 = w1(A), w1(B), w1(C), w1(A), c1 !

<1,begin(T1), ->
<2,begin(T2), ->
<3,write(A,T1),1>
<4,write(X,T2),2>
<5,write(B,T1),3>
<6,write(C,T1),5>
<7,write(A,T1),6>
<8,commit(T1),7>
<9,write(A,T2),4>

T2 = w1(X), r(A), w(A) !

Log
Redo Phase (RedoLSN 3):
 - Read A if PageLSN < 3 apply write
 - Read X if PageLSN < 4 apply write
 - Read B if PageLSN < 5 apply write
 - Read C if PageLSN < 6 apply write
 - Read A if PageLSN < 7 apply write
 - Read A if PageLSN < 9 apply write

CS 525 Notes 13 - Failure and Recovery 131

T1 = w1(A), w1(B), w1(C), w1(A), c1 !

<1,begin(T1), ->
<2,begin(T2), ->
<3,write(A,T1),1>
<4,write(X,T2),2>
<5,write(B,T1),3>
<6,write(C,T1),5>
<7,write(A,T1),6>
<8,commit(T1),7>
<9,write(A,T2),4>
<10,CLR(A,T2),4>
<11,CLR(X,T2),->

T2 = w1(X), r(A), w(A) !

Log
Undo Phase (T2):
 - Undo entry 9
 -write CLR with UndoNxtLSN = 4
 -modify page A
 - Undo entry 4
 -write CLR with UndoNxtLSN = 2
 -modify page X
 - Done

ARIES take away messages
•  Provide good performance by

–  Not requiring complete checkpoints
–  Linking of log records
–  Not restricting buffer operations (no-force/steal is

ok)

•  Logical Undo and Physical (Physiological)
Redo

•  Idempotent Redo and Undo
–  Avoid undoing the same

CS 525 Notes 13 - Failure and Recovery 132

23

Media Recovery

•  What if disks where log or DB is stored
failes
–  ->keep backups of log + DB state

CS 525 Notes 13 - Failure and Recovery 133

Log Backup

•  Split log into several files
•  Is append only, backup of old files

cannot interfere with current log
operations

CS 525 Notes 13 - Failure and Recovery 134

Backup DB state

•  Copy current DB state directly from disk
•  May be inconsistent
•  ->Use log to know which pages are up-

to-date and redo operations not yet
reflected

CS 525 Notes 13 - Failure and Recovery 135 CS 525 Notes 13 - Failure and Recovery 136

Summary

•  Consistency of data
•  One source of problems: failures

 - Logging
 - Redundancy

•  Another source of problems:
 Data Sharing..... next

