
1

CS 525 Notes 12 - Transaction
Management

1

CS 525: Advanced Database
Organization

12: Transaction
Management

Boris Glavic
Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

Concurrency and Recovery
• DBMS should enable multiple

clients to access the database
concurrently
– This can lead to problems with correctness

of data because of interleaving of
operations from different clients

–  ->System should ensure correctness
(concurrency control)

CS 525 Notes 12 - Transaction
Management

2

Concurrency and Recovery
• DBMS should enable reestablish

correctness of data in the presence
of failures
–  ->System should restore a correct state

after failure (recovery)

CS 525 Notes 12 - Transaction
Management

3 CS 525 Notes 12 - Transaction
Management

4

Integrity or correctness of data

•  Would like data to be “accurate” or
 “correct” at all times

 EMP Name

White
Green
Gray

Age

52
3421

1

CS 525 Notes 12 - Transaction
Management

5

Integrity or consistency constraints

•  Predicates data must satisfy
•  Examples:

- x is key of relation R
- x → y holds in R
- Domain(x) = {Red, Blue, Green}
- α is valid index for attribute x of R
- no employee should make more than

 twice the average salary

CS 525 Notes 12 - Transaction
Management

6

Definition:

•  Consistent state: satisfies all constraints
•  Consistent DB: DB in consistent state

2

CS 525 Notes 12 - Transaction
Management

7

Constraints (as we use here) may
 not capture “full correctness”

Example 1 Transaction constraints
•  When salary is updated,
 new salary > old salary

•  When account record is deleted,
 balance = 0

CS 525 Notes 12 - Transaction
Management

8

Note: could be “emulated” by simple
 constraints, e.g.,

 account Acct # …. balance deleted?

CS 525 Notes 12 - Transaction
Management

9

Example 2 Database should reflect
 real world

DB
Reality

Constraints (as we use here) may
 not capture “full correctness”

CS 525 Notes 12 - Transaction
Management

10

?in any case, continue with constraints...

Observation: DB cannot be consistent
 always!

Example: a1 + a2 +…. an = TOT (constraint)

 Deposit $100 in a2: a2 ← a2 + 100
 TOT ← TOT + 100

CS 525 Notes 12 - Transaction
Management

11

 a2

 TOT

. .
50
. .

1000

. .
150

. .
1000

. .
150

. .
1100

Example: a1 + a2 +…. an = TOT (constraint)

 Deposit $100 in a2: a2 ← a2 + 100
 TOT ← TOT + 100

Transactions
• Transaction: Sequence of

operations executed by one
concurrent client that preserve
consistency

CS 525 Notes 12 - Transaction
Management

12

3

CS 525 Notes 12 - Transaction
Management

13

Transaction: collection of actions
 that preserve consistency

Consistent DB Consistent DB’ T

CS 525 Notes 12 - Transaction
Management

14

Big assumption:

If T starts with consistent state +
 T executes in isolation
⇒ T leaves consistent state

CS 525 Notes 12 - Transaction
Management

15

Correctness (informally)

•  If we stop running transactions,
 DB left consistent

•  Each transaction sees a consistent DB

Transactions - ACID
•  Atomicity

–  Either all or no commands of transaction are
executed

•  Consistency
–  After transaction DB is consistent

•  Isolation
–  Transactions are running isolated from each other

•  Durability
–  Modification executed by transaction are never

lost
CS 525 Notes 12 - Transaction

Management
16

CS 525 Notes 12 - Transaction
Management

17

How can constraints be violated?

•  Transaction bug
•  DBMS bug
•  Hardware failure
 e.g., disk crash alters balance of account

•  Data sharing
 e.g.: T1: give 10% raise to programmers

 T2: change programmers ⇒ systems analysts

CS 525 Notes 12 - Transaction
Management

18

How can we prevent/fix violations?

• Part 13 (Recovery):
– due to failures

• Part 14 (Concurrency Control):
– due to data sharing

4

CS 525 Notes 12 - Transaction
Management

19

Will not consider:

•  How to write correct transactions
•  How to write correct DBMS
•  Constraint checking & repair
 That is, solutions studied here do not need
 to know constraints

CS 525 Notes 12 - Transaction
Management

20

Operations:

•  Input (x): block containing x → memory
•  Output (x): block containing x → disk

CS 525 Notes 12 - Transaction
Management

21

Operations:

•  Input (x): block containing x → memory
•  Output (x): block containing x → disk

•  Read (x,t): do input(x) if necessary
 t ← value of x in block

•  Write (x,t): do input(x) if necessary
 value of x in block ← t

CS 525 Notes 12 - Transaction
Management

22

Key problem Unfinished transaction
 (Atomicity)

Example Constraint: A=B
 T1: A ← A × 2
 B ← B × 2

CS 525 Notes 12 - Transaction
Management

23

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

CS 525 Notes 12 - Transaction
Management

24

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

5

CS 525 Notes 12 - Transaction
Management

25

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!

Transactions in SQL

•  BEGIN TRANSACTION
– Start new transaction

•  COMMIT
– Finish and make all modifications of

transactions persistent

•  ABORT/ROLLBACK
– Finish and undo all changes of transaction

CS 525 Notes 12 - Transaction
Management

26

Example
BEGIN TRANSACTION; !
 UPDATE accounts !
 SET bal = bal + 40 !
 WHERE acc = 10; !
!
!
!
!
 UPDATE accounts !
 SET bal = bal - 40 !
 WHERE acc = 9; !
COMMIT; !

CS 525 Notes 12 - Transaction
Management

27

BEGIN TRANSACTION; !
 UPDATE accounts !
 SET bal = bal * 1.05; !
COMMIT; !

time Example
BEGIN TRANSACTION; !
 UPDATE accounts !
 SET bal = bal + 40 !
 WHERE acc = 10; !
!
!
!
!
 UPDATE accounts !
 SET bal = bal - 40 !
 WHERE acc = 9; !
COMMIT; !

CS 525 Notes 12 - Transaction
Management

28

BEGIN TRANSACTION; !
 UPDATE accounts !
 SET bal = bal * 1.05; !
COMMIT; !

time Bank customer
transfers money
from account 9
to account 10

Example
BEGIN TRANSACTION; !
 UPDATE accounts !
 SET bal = bal + 40 !
 WHERE acc = 10; !
!
!
!
!
 UPDATE accounts !
 SET bal = bal - 40 !
 WHERE acc = 9; !
COMMIT; !

CS 525 Notes 12 - Transaction
Management

29

BEGIN TRANSACTION; !
 UPDATE accounts !
 SET bal = bal * 1.05; !
COMMIT; !

time Bank adds interest
to all accounts

BEGIN TRANSACTION; !
 UPDATE accounts !
 SET bal = bal + 40 !
 WHERE acc = 10; !
!
!
!
!
 UPDATE accounts !
 SET bal = bal - 40 !
 WHERE acc = 9; !
COMMIT; !

CS 525 Notes 12 - Transaction
Management

30

BEGIN TRANSACTION; !
 UPDATE accounts !
 SET bal = bal * 1.05; !
COMMIT; !

time

Potential Problems:
1.  Transactions are interrupted
•  No reduction in bal of acc 9
•  Only some accounts got

interest
2.  Interleaving of Transaction
•  Acc 9 too much interest

(before 40 has been
deducted)

6

Modeling Transactions and
their Interleaving

•  Transaction is sequence of operations
– read: ri(x) = transaction i read item x
– write: wi(x) = transaction i wrote item x
– commit: ci = transaction i committed
– abort: ai =transaction i aborted

CS 525 Notes 12 - Transaction
Management

31

BEGIN TRANSACTION; !
 UPDATE accounts !
 SET bal = bal + 40 !
 WHERE acc = 10; !
!
!
!
!
 UPDATE accounts !
 SET bal = bal - 40 !
 WHERE acc = 9; !
COMMIT; !

CS 525 Notes 12 - Transaction
Management

32

time

T1 = r1(a10), w1(a10), r1(a9), w1(a9), c1 !

BEGIN TRANSACTION; !
 UPDATE accounts !
 SET bal = bal + 40 !
 WHERE acc = 10; !
!
!
!
!
 UPDATE accounts !
 SET bal = bal - 40 !
 WHERE acc = 9; !
COMMIT; !

CS 525 Notes 12 - Transaction
Management

33

BEGIN TRANSACTION; !
 UPDATE accounts !
 SET bal = bal * 1.05; !
COMMIT; !

time

T1=r1(a10),w1(a10),r1(a9),w1(a9),c1 !

T2=r2(a1),w2(a1),r2(a2),w2(a2),r2(a9),w2(a9),r2(a10),w2(a10),c1 !

Assume we have accounts:
a1,a2,a9,a10

Schedules
•  A schedule S for a set of transactions

T = {T1, …, Tn} is an partial order over
operations of T so that
– S contains a prefix of the operations of

each Ti

– Operations of Ti appear in the same order
in S as in Ti

– For any two conflicting operations they are
ordered

CS 525 Notes 12 - Transaction
Management

34

How to model execution
order?

•  Schedules model the order of the
execution for operations of a set of
transactions

CS 525 Notes 12 - Transaction
Management

35

Conflicting Operations
•  Two operations are conflicting if

– At least one of them is a write
– Both are accessing the same data item

•  Intuition
– The order of execution for conflicting

operations can influence result!

CS 525 Notes 12 - Transaction
Management

36

7

Conflicting Operations
•  Examples

– w1(X), r2(X) are conflicting
– w1(X), w2(Y) are not conflicting
–  r1(X), r2(X) are not conflicting
– w1(X), w1(X) are not conflicting

CS 525 Notes 12 - Transaction
Management

37

Complete Schedules = History
•  A schedule S for T is complete if it

contains all operations from each
transaction in T

•  We will call complete schedules
histories

CS 525 Notes 12 - Transaction
Management

38

CS 525 Notes 12 - Transaction
Management

39

time

T1=r1(a10),w1(a10),r1(a9),w1(a9),c1 !

T2=r2(a1),w2(a1),r2(a2),w2(a2),r2(a9),w2(a9),r2(a10),w2(a10),c1 !

Complete Schedule

Incomplete Schedule

Not a Schedule

S=r2(a1),r1(a10),w2(a1),r2(a2),w1(a10),w2(a2),r2(a9),w2(a9),
r1(a9),w1(a9),c1 r2(a10),w2(a10),c1 !

S=r2(a1),r1(a10),w2(a1),w1(a10) !

S=r2(a1),r1(a10),c1 !

CS 525 Notes 12 - Transaction
Management

40

time

T1=r1(a10),w1(a10),r1(a9),w1(a9),c1 !

T2=r2(a1),w2(a1),r2(a2),w2(a2),r2(a9),w2(a9),r2(a10),w2(a10),c1 !

Conflicting operations

S1 = … w2(a1) … w1(a10) !

S2 = … w1(a1) … w2(a10) !

•  Conflicting operations w1(a10) and w2(a10) !
•  Order of these operations determines value of a10 !
•  S1 and S2 do not generate the same result

Why Schedules?
•  Study properties of different execution

orders
– Easy/Possible to recover after failure
–  Isolation
–  -> preserve ACID properties

•  Classes of schedules and protocols to
guarantee that only “good” schedules
are produced

CS 525 Notes 12 - Transaction
Management

41

