
CS 525 Notes 11 - Physical Optimization 1 

CS 525: Advanced Database 
Organization 

11: Query Optimization 
Physical 
Boris Glavic 

Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  



CS 525 Notes 11 - Physical Optimization 2 

parse 

convert 

apply laws 

estimate result sizes 

consider physical plans estimate costs 

pick best 

execute 

{P1,P2,…..} 

{(P1,C1),(P2,C2)...} 

Pi 

   answer 

SQL query 

parse tree 

logical query plan 

“improved” l.q.p 

l.q.p. +sizes 

statistics 



Physical Optimization 

•  Apply after applying heuristics in logical 
optimization 

•  1) Enumerate potential execution plans 
– All? 
– Subset 

•  2) Cost plans 
– What cost function? 

CS 525 Notes 11 - Physical Optimization 3 



Physical Optimization 

•  To apply pruning in the search for the 
best plan 
– Steps 1 and 2 have to be interleaved 
– Prune parts of the search space  

•  if we know that it cannot contain any plan that 
is better than what we found so far 

CS 525 Notes 11 - Physical Optimization 4 



Example Query 

CS 525 Notes 11 - Physical Optimization 5 

SELECT e.name!
FROM Employee e, !
     EmpDep ed, !
     Department d !
WHERE e.name = ed.emp "  !

!AND ed.dep = d.dep!
"AND d.dep = ‘CS’ !

πname 

σdep=CS 

⋈dep=dep 

⋈name=emp 

Employee EmpDep Department 



Example Query – Possible Plan 

CS 525 Notes 11 - Physical Optimization 6 

SELECT e.name!
FROM Employee e, !
     EmpDep ed, !
     Department d !
WHERE e.name = ed.emp "  !

!AND ed.dep = d.dep!
"AND d.dep = ‘CS’ !

πname 

ISσdep=CS 

NL⋈dep=dep 

MJ⋈name=emp 

SSEmployee SSEmpDep Department 



Cost Model 
•  Cost factors 

–  #disk I/O 
–  CPU cost 
–  Response time 
–  Total execution time 

•  Cost of operators 
–  I/O as discussed in query execution (part 10) 
–  Need to know size of intermediate results 

(part 09) 

CS 525 Notes 11 - Physical Optimization 7 



Example Query – Possible Plan 

CS 525 Notes 11 - Physical Optimization 8 

SELECT e.name!
FROM Employee e, !
     EmpDep ed, !
     Department d !
WHERE e.name = ed.emp "  !

!AND ed.dep = d.dep!
"AND d.dep = ‘CS’ !

πname 

ISσdep=CS 

NL⋈dep=dep 

MJ⋈name=emp 

SSEmployee SSEmpDep Department 

Cost? 
Need input size! 



Cost Model Trade-off 
•  Precision 

–  Incorrect cost-estimation -> choose 
suboptimal plan 

•  Cost of computing cost 
– Cost of costing a plan 

•  We may have to cost millions or billions of plans 

– Cost of maintaining statistics 
•  Occupies resources needed for query processing 

CS 525 Notes 11 - Physical Optimization 9 



Plan Enumeration 
•  For each operator in the query 

– Several implementation options 

•  Binary operators (joins) 
– Changing the order may improve 

performance a lot! 

•  -> consider both different 
implementations and order of operators 
in plan enumeration 

CS 525 Notes 11 - Physical Optimization 10 



Example Join Ordering 
Result Sizes 

CS 525 Notes 11 - Physical Optimization 11 

σdep=CS 
⋈dep=dep 

⋈name=emp 

E ED D σdep=CS 

⋈dep=dep 

⋈name=emp 

E 

ED 

D 

10000 10000 30 

1 10000 

500 

10000 

30 

1 

10000 500 

500 



Example Join Ordering 
Cost (only NL) 

CS 525 Notes 11 - Physical Optimization 12 

σdep=CS 
⋈dep=dep 

⋈name=emp 

E ED D σdep=CS 

⋈dep=dep 

⋈name=emp 

E 

ED 

D 

10000 10000 30 

1 10000 

500 

10000 

30 

1 

10000 500 

500 

S(E) = S(ED) = S(D) = 1/10 block 
M = 101 



CS 525 Notes 11 - Physical Optimization 13 

σdep=CS 
⋈dep=dep 

⋈name=emp 

E ED D σdep=CS 

⋈dep=dep 

⋈name=emp 

E 

ED 

D 

10000 10000 30 

1 10000 

500 

10000 

30 

1 

10000 500 

500 

S(E) = S(ED) = S(D) = 1/10 block 
M = 101 
I/O costs only 

1100 x 10   3 

0? 2000? 

3 

1000 

1000 

1100 x 10 + 3 + 1000 = 12003 I/Os 1000 + 1000 + 3 = 2003 I/Os 



Plan Enumeration 

•  All 
– Consider all potential plans of a certain 

type (discussed later) 
– Prune only if sure 

•  Heuristics 
– Apply heuristics to prune search space 

•  Randomized Algorithms 

CS 525 Notes 11 - Physical Optimization 14 



Plan Enumeration Algorithms 
•  All 

–  Dynamic Programming (System R) 
–  A* search 

•  Heuristics 
–  Minimum Selectivity, Intermediate result size, … 
–  KBZ-Algorithm, AB-Algorithm 

•  Randomized 
–  Genetic Algorithms 
–  Simulated Annealing 

CS 525 Notes 11 - Physical Optimization 15 



Reordering Joins Revisited 

•  Equivalences (Natural Join) 
1.  R ⋈ S ≣ S ⋈ R 
2.  (R ⋈ S) ⋈ T ≣ R ⋈ (S ⋈ T) 

•  Equivalences Equi-Join 
1.  R ⋈a=b S ≣ S ⋈a=b R 
2.  (R ⋈a=b S) ⋈c=d T ≣R ⋈a=b (S ⋈c=d T)? 
3.  σa=b (R X S) ≣ R ⋈a=b S? 

CS 525 Notes 11 - Physical Optimization 16 



Equi-Join Equivalences 

•  (R ⋈a=b S) ⋈c=d T ≣ R ⋈a=b (S ⋈c=d T) 
–  What if c is attribute of R? 
(R ⋈a=b S) ⋈c=d T ≣ R ⋈a=b∧c=d (S X T) 
 
•  σa=b (R X S) ≣ R ⋈a=b S? 
–  Only if a is from R and S from b (vice-versa) 
 

CS 525 Notes 11 - Physical Optimization 17 



Why Cross-Products are bad 

•  We discussed efficient join algorithms 
– Merge-join O(n) resp. O(n log(n)) 
– Vs. Nested-loop O(n2) 

•  R X S 
– Result size is O(n2) 

• Cannot be better than O(n2) 

– Surprise, surprise: merge-join doesn’t work 

CS 525 Notes 11 - Physical Optimization 18 



Agenda 

•  Given some query 
– How to enumerate all plans? 

•  Try to avoid cross-products 
•  Need way to figure out if equivalences 

can be applied 
– Data structure: Join Graph 

CS 525 Notes 11 - Physical Optimization 19 



Join Graph 

•  Assumptions 
– Only equi-joins (a = b) 

• a and b are either constants or attributes 

– Only conjunctive join conditions (AND) 

CS 525 Notes 11 - Physical Optimization 20 



Join Graph 

•  Nodes: Relations R1, … , Rn of query 
•  Edges: Join conditions 

– Add edge between Ri and Rj labeled with C 
•  if there is a join condition C  
• That equates an attribute from Ri with an 

attribute from Rj 

– Add a self-edge to Ri for each simple 
predicate 

CS 525 Notes 11 - Physical Optimization 21 



Join Graph Example 

CS 525 Notes 11 - Physical Optimization 22 

SELECT e.name!
FROM Employee e, !
     EmpDep ed, !
     Department d !
WHERE e.name = ed.emp "  !

!AND ed.dep = d.dep!
"AND d.dep = ‘CS’ !

Department 

EmpDep 

Employee 

name=emp 

dep=dep 

dep=‘CS’ 



Notes on Join Graph  

•  Join Graph tells us in which ways we 
can join without using cross products 

•  However, … 
– Only if transitivity is considered 

CS 525 Notes 11 - Physical Optimization 23 

R S T 
a=b b=c 

a=c 



Join Graph Shapes 

CS 525 Notes 11 - Physical Optimization 24 

Chain queries Star queries Tree queries 

Cycle queries Clique queries 



Join Graph Shapes 

CS 525 Notes 11 - Physical Optimization 25 

Chain queries 

SELECT * !
FROM R,S,T !
WHERE R.a = S.b!

!AND S.c = T.d!



Join Graph Shapes 

CS 525 Notes 11 - Physical Optimization 26 

Star queries 

SELECT * !
FROM R,S,T,U !
WHERE R.a = S.a!

!AND R.b = T.b!
"AND R.c = U.c"



Join Graph Shapes 

CS 525 Notes 11 - Physical Optimization 27 

Tree queries 

SELECT * !
FROM R,S,T,U,V !
WHERE R.a = S.a!

!AND R.b = T.b!
"AND T.c = U.c!
!AND T.d = V.d"



Join Graph Shapes 

CS 525 Notes 11 - Physical Optimization 28 

Cycle queries 

SELECT * !
FROM R,S,T !
WHERE R.a = S.a!

!AND S.b = T.b!
"AND T.c = R.c!



Join Graph Shapes 

CS 525 Notes 11 - Physical Optimization 29 

Clique queries 

SELECT * !
FROM R,S,T !
WHERE R.a = S.a!

!AND S.b = T.b!
"AND T.c = R.c!



How many join orders? 

•  Assumption 
– Use cross products (can freely reorder) 
– Joins are binary operations 

• Two inputs 
• Each input either join result or relation access 

CS 525 Notes 11 - Physical Optimization 30 



How many join orders? 
•  Example 3 relations R,S,T 

– 12 orders 

CS 525 Notes 11 - Physical Optimization 31 

⋈ 

⋈ 

R S
T ⋈ 

⋈ 

S R
T ⋈ 

⋈ 

R T
S ⋈ 

⋈ 

S T
R ⋈ 

⋈ 

T R
S ⋈ 

⋈ 

T S
R

⋈ 

⋈ 

S T
R ⋈ 

⋈ 

R T
S ⋈ 

⋈ 

T S
R ⋈ 

⋈ 

T R
S ⋈ 

⋈ 

R S
T ⋈ 

⋈ 

S R
T



How many join orders? 

•  A join over n+1 relations requires n binary joins 
•  The root of the join tree joins k with n – k – 1 join 

operators (0 <= k <= n-1) 

CS 525 Notes 11 - Physical Optimization 32 

⋈ 

k joins n – k - 1 joins 



How many join orders? 

•  This are the Catalan numbers 

 
 

Cn =  ΣCk x Cn-k-1
 = (2n)! / (n+1)!n! 

CS 525 Notes 11 - Physical Optimization 33 

k=0 

n-1 



How many join orders? 

•  This are the Catalan numbers 
•  For each such tree we can permute the 

input relations (n+1)! Permutations 
 
(2n)! / (n+1)!n! * (n+1)! = (2n)!/n! 

CS 525 Notes 11 - Physical Optimization 34 



How many join orders? 

CS 525 Notes 11 - Physical Optimization 35 

#relations #join trees 

2 2 

3 12 

4 120 

5 1,680 

6 30,240 

7 665,280 

8 17,297,280 

9 17,643,225,600 

10  670,442,572,800 

11 28,158,588,057,600 



How many join orders? 

•  If for each join we consider k equal 
algorithms then for n relations we have 
– Multiply with a factor kn-1 

•  Example consider 
– Nested loop 
– Merge 
– Hash 

CS 525 Notes 11 - Physical Optimization 36 



How many join orders? 

CS 525 Notes 11 - Physical Optimization 37 

#relations #join trees 

2 6 

3 108 

4 3240 

5 136,080 

6 7,348,320 

7 484,989,120 

8 37,829,151,360 

9 115,757,203,161,600 

10  13,196,321,160,422,400 

11 1,662,736,466,213,222,400 



Too many join orders? 

•  Even if costing is cheap 
– Unrealistic assumption 1 CPU cycle 
– Realistic are thousands or millions of 

instructions 

•  Cost all join options for 11 relations 
– 3GHz CPU, 8 cores 
– 69,280,686 sec > 2 years 

CS 525 Notes 11 - Physical Optimization 38 



How to deal with excessive 
number of combinations? 

•  Prune parts based on optimality 
– Dynamic programming 
– A*-search 

•  Only consider certain types of join trees 
– Left-deep, Right-deep, zig-zag, bushy 

•  Heuristic and random algorithms 

CS 525 Notes 11 - Physical Optimization 39 



Dynamic Programming 

•  Assumption: Principle of Optimality 
– To compute the global optimal plan it is 

only necessary to consider the optimal 
solutions for its sub-queries 

•  Does this assumption hold? 
– Depends on cost-function 

CS 525 Notes 11 - Physical Optimization 40 



What is dynamic 
programming? 

•  Recall data structures and algorithms 101! 
•  Consider a Divide-and-Conquer problem 

–  Solutions for a problem of size n can be build from 
solutions for sub-problems of smaller size (e.g., 
n/2 or n-1) 

•  Memoize 
–  Store solutions for sub-problems 
–  -> Each solution has to be only computed once 
–  -> Needs extra memory 

CS 525 Notes 11 - Physical Optimization 41 



Example Fibonacci Numbers  

•  F(n) = F(n-1) + F(n-2) 
•  F(0) = F(1) = 1 

CS 525 Notes 11 - Physical Optimization 42 

Fib(n) !
{ !

"if (n = 0) return 0 !
"else if (n = 1) return 1 !
"else return Fib(n-1) + Fib(n-2) !

} !



Example Fibonacci Numbers  

CS 525 Notes 11 - Physical Optimization 43 

F(4) 

F(3) F(2) 

F(2) F(1) F(1) F(0) 

F(1) F(0) 



Complexity 

•  Number of calls 
– C(n) = C(n-1) + C(n-2) + 1 = Fib(n+2) 
– O(2n) 

CS 525 Notes 11 - Physical Optimization 44 



Using dynamic programming 

CS 525 Notes 11 - Physical Optimization 45 

Fib(n) !
{ !

"int[] fib; !
"fib[0] = 1; !
"fib[1] = 1; !

!
"for(i = 2; i < n; i++) !
" "fib[i] = fib[i-1] + fib[i-2] !

!
"return fib[n]; !

} !



Example Fibonacci Numbers  

CS 525 Notes 11 - Physical Optimization 46 

F(4) 

F(3) 

F(2) 

F(1) F(0) 



What do we gain? 

•  O(n) instead of O(2n) 

CS 525 Notes 11 - Physical Optimization 47 



Dynamic Programming for 
Join Enumeration 

•  Find cheapest plan for n-relation join in 
n passes 

•  For each i in 1 … n 
– Construct solutions of size i from best 

solutions of size < i 

CS 525 Notes 11 - Physical Optimization 48 



DP Join Enumeration 

CS 525 Notes 11 - Physical Optimization 49 

optPlan ← Map({R},{plan}) !
"
find_join_dp(q(R1,…,Rn)) !
{ !
  for i=1 to n !
    optPlan[{Ri}] ← access_paths(Ri) !
  for i=2 to n !
    foreach S ⊆ {R1,…,Rn} with |S|=i !
      optPlan[S] ← ∅!
      foreach O ⊂ S with O ≠ ∅!
        optPlan[S] ← optPlan[S] ∪ !
            possible_joins(optPlan(O), optPlan(S\O)) !
      prune_plans(optPlan[S]) !
  return optPlan[{R1,…,Rn}]!
} !



Dynamic Programming for 
Join Enumeration 

• access_paths (R) !
– Find cheapest access path for relation R 

• possible_joins(plan, plan) !
– Enumerate all joins (merge, NL, …) 

variants for between the input plans 

• prune_plans({plan}) !
– Only keep cheapest plan from input set 

CS 525 Notes 11 - Physical Optimization 50 



DP-JE Complexity 

•  Time: O(3n) 

•  Space: O(2n) 
•  Still to much for large number of joins 

(10-20) 

CS 525 Notes 11 - Physical Optimization 51 



Types of join trees 

CS 525 Notes 11 - Physical Optimization 52 

⋈ 

⋈ 

R T
S

⋈ 
U

⋈ 

⋈ 

R T
S

⋈ 
U

⋈ 

⋈ 

S R
T

⋈ 
U⋈ ⋈ 

R T S

⋈ 

U

Left-deep zig-zag bushy Right-deep 



Number of Join-Trees 

•  Number of join trees for n relations 
•  Left-deep: n! 
•  Right-deep: n! 
•  Zig-zag: 2n-2n! 

CS 525 Notes 11 - Physical Optimization 53 



How many join orders? 

CS 525 Notes 11 - Physical Optimization 54 

#relations #bushy join trees #left-deep join trees 

2 2 2 

3 12 6 

4 120 24 

5 1,680 120 

6 30,240 720 

7 665,280 5040 

8 17,297,280 40,230 

9 17,643,225,600 362,880 

10  670,442,572,800 3,628,800 

11 28,158,588,057,600 39,916,800 



DP with Left-deep trees only 

•  Reduced search-space 
•  Each join is with input relation 

–  ->can use index joins 
–  ->easy to pipe-line 

•  DP with left-deep plans was introduced 
by system R, the first relational 
database developed by IBM Research 

CS 525 Notes 11 - Physical Optimization 55 

⋈ 

⋈ 

R T
S

⋈ 
U



Revisiting the assumption 

•  Is it really sufficient to only look at the 
best plan for every sub-query? 

•  Cost of merge join depends whether the 
input is already sorted 
–  -> A sub-optimal plan may produce results 

ordered in a way the reduces cost of 
joining above 

– Keep track of interesting orders 

CS 525 Notes 11 - Physical Optimization 56 



Interesting Orders 

•  Number of interesting orders is usually 
small 

•  ->Extend DP join enumeration to keep 
track of interesting orders 
– Determine interesting orders 
– For each sub-query store best-plan for 

each interesting order 

CS 525 Notes 11 - Physical Optimization 57 



Example Interesting Orders 

CS 525 Notes 11 - Physical Optimization 58 

⋈ 

⋈ 

R S
T

Left-deep best plans: 3-way {R,S,T} 

Left-deep best plans: 2-way 

{R,S} 

⋈ 

R S

{R,T} 

⋈ 

R T

{S,T} 

⋈ 

T S

HJ HJ HJ 

⋈ 

⋈ 

R T
S ⋈ 

⋈ 

T S
R

HJ HJ HJ 

HJ HJ HJ 



Example Interesting Orders 

CS 525 Notes 11 - Physical Optimization 59 

⋈ 

⋈ 

R S
T

Left-deep best plans: 3-way {R,S,T} 

Left-deep best plans: 2-way 

{R,S} 

⋈ 

R S

{R,T} 

⋈ 

R T

{S,T} 

⋈ 

T S

HJ HJ HJ 

⋈ 

⋈ 

R T
S ⋈ 

⋈ 

T S
R

HJ HJ HJ 

HJ HJ HJ 

⋈ 

R S

MJ 

Not best 

⋈ 

⋈ 

R S
T

MJ 

MJ 
best 



Greedy Join Enumeration 

•  Heuristic method 
– Not guaranteed that best plan is found 

•  Start from single relation plans 
•  In each iteration greedily join to plans 

with the minimal cost 
•  Until a plan for the whole query has 

been generated 

CS 525 Notes 11 - Physical Optimization 60 



Greedy Join Enumeration 

CS 525 Notes 11 - Physical Optimization 61 

plans ← list({plan}) !
"
find_join_dp(q(R1,…,Rn)) !
{ !
  for i=1 to n !
    plans ← plans ∪ access_paths(Ri) !
  for i=n to 2 !
    cheapest = argminj,k∊{1,…,n} (cost(Pj ⋈ Pk)) !
      plans ← plans \ {Pj,Pk} ∪ {Pj ⋈ Pk}    !
  return plans // single plan left!
} !



Greedy Join Enumeration 

•  Time: O(n3) 
– Loop iterations: O(n) 
–  In each iterations looking of pairs of plans 

in of max size n: O(n2) 

•  Space: O(n2) 
– Needed to store the current list of plans 

CS 525 Notes 11 - Physical Optimization 62 



Randomized Join-Algorithms 

•  Iterative improvement 
•  Simulated annealing 
•  Tabu-search 
•  Genetic algorithms 

CS 525 Notes 11 - Physical Optimization 63 



Transformative Approach 

•  Start from (random) complete solutions 
•  Apply transformations to generate new 

solutions 
– Direct application of equivalences 

• Commutativity 
• Associativity 

– Combined equivalences 
• E.g., (R ⋈ S) ⋈ T ≣ T ⋈ (S ⋈ R) 

CS 525 Notes 11 - Physical Optimization 64 



Concern about Transformative 
Approach 

•  Need to be able to generate random 
plans fast 

•  Need to be able to apply 
transformations fast 
– Trade-off: space covered by 

transformations vs. number and complexity 
of transformation rules 

CS 525 Notes 11 - Physical Optimization 65 



Iterative Improvement 

CS 525 Notes 11 - Physical Optimization 66 

improve(q(R1,…,Rn)) !
{ !
  best ← random_plan(q) !
  while (not reached time limit) !
    curplan ← random_plan(q) !
    do !"
    !prevplan ← curplan!
      curplan ← apply_random_trans (prevplan) "
    while (cost(curplan) < cost(prevplan)) !
    if (cost(improved) < cost(best) !
      best ← improved!
  return best !
} !



Iterative Improvement 

•  Easy to get stuck in local minimum 
•  Idea: Allow transformations that result 

in more expensive plans with the hope 
to move out of local minima 
–  ->Simulated Annealing 

CS 525 Notes 11 - Physical Optimization 67 



Simulated Annealing 

CS 525 Notes 11 - Physical Optimization 68 

SA(q(R1,…,Rn)) !
{ !
  best ← random_plan(q) !
  curplan ← best !
  t ← tinit // “temperature”!
  while (t > 0) !
    newplan ← apply_random_trans(curplan) !
    if cost(newplan) < cost(curplan) !"
    !curplan ← newplan!
    else if random() < e-(cost(newplan)-cost(curplan))/t !
      curplan ← newplan!
    if (cost(improved) < cost(best) !
      best ← improved !
     reduce(t)!
  return best !
} !



Genetic Algorithms 

•  Represent solutions as sequences 
(strings) = genome 

•  Start with random population of 
solutions 

•  Iterations = Generations 
– Mutation = random changes to genomes 
– Cross-over = Mixing two genomes 

CS 525 Notes 11 - Physical Optimization 69 



Genetic Join Enumeration for 
Left-deep Plans 

•  A left-deep plan can be represented as 
a permutation of the relations 
– Represent each relation by a number 
– E.g., encode this tree as “1243” 

CS 525 Notes 11 - Physical Optimization 70 

⋈ 

⋈ 

R1 R2 

R4 

⋈ 
R3 



Mutation 

•  Switch random two random position 
•  Is applied with a certain fixed 

probability 
•  E.g., “1342” -> “4312” 

CS 525 Notes 11 - Physical Optimization 71 



Cross-over 

•  Sub-set exchange 
– For two solutions find subsequence 

• equals length with the same set of relations 

– Exchange these subsequences 

•  Example 
– J1 = “5632478” and J2 = “5674328” 
– Generate J’ = “5643278” 

CS 525 Notes 11 - Physical Optimization 72 



Survival of the fittest 

•  Probability of survival determined by 
rank within the current population 

•  Compute ranks based on costs of 
solutions 

•  Assign Probabilities based on rank 
– Higher rank -> higher probability to survive 

•  Roll a dice for each solution 

CS 525 Notes 11 - Physical Optimization 73 



Genetic Join Enumeration 

•  Create an initial population P random plans 
•  Apply crossover and mutation with a fixed 

rate 
–  E.g., crossover 65%, mutation 5% 

•  Apply selection until size is again P 
•  Stop once no improvement for at least X 

iterations 

CS 525 Notes 11 - Physical Optimization 74 



Comparison Randomized Join 
Enumeration 

•  Iterative Improvement 
–  Towards local minima (easy to get stuck) 

•  Simulated Annealing 
–  Probability to “jump” out of local minima 

•  Genetic Algorithms 
–  Random transformation 
–  Mixing solutions (crossover) 
–  Probabilistic change to keep solution based on 

cost 

CS 525 Notes 11 - Physical Optimization 75 



Join Enumeration Recap 
•  Hard problem 

– Large problem size 
• Want to reduce search space 

– Large cost differences between solutions 
• Want to consider many solution to increase 

chance to find a good one. 

CS 525 Notes 11 - Physical Optimization 76 



Join Enumeration Recap 
•  Tip of the iceberg 

– More algorithms 
– Combinations of algorithms 
– Different representation subspaces of the 

problem 
– Cross-products / no cross-products 
– … 

CS 525 Notes 11 - Physical Optimization 77 



From Join-Enumeration to 
Plan Enumeration 

•  So far we only know how to reorder 
joins 

•  What about other operations? 
•  What if the query does consist of 

several SQL blocks? 
•  What if we have nested subqueries? 

CS 525 Notes 11 - Physical Optimization 78 



CS 525 Notes 11 - Physical Optimization 79 

parse 

convert 

apply laws 

estimate result sizes 

consider physical plans estimate costs 

pick best 

execute 

{P1,P2,…..} 

{(P1,C1),(P2,C2)...} 

Pi 

   answer 

SQL query 

parse tree 

logical query plan 

“improved” l.q.p 

l.q.p. +sizes 

statistics 



From Join-Enumeration to 
Plan Enumeration 

•  Lets reconsider the input to plan 
enumeration! 
– We briefly touched on Query graph 

models 
– We discussed briefly why relational algebra 

is not sufficient 

CS 525 Notes 11 - Physical Optimization 80 



Query Graph Model 

•  Represents an SQL query as query 
blocks 
– A query block corresponds to the an SQL 

query block (SELECT FROM WHERE …) 
– Data type/operator/function information 

• Needed for execution and optimization 
decisions 

– Structured in a way suited for optimization 

CS 525 Notes 11 - Physical Optimization 81 



QGM example 
SELECT name, city !
FROM !

"(SELECT * !
"FROM person) AS p, !
"(SELECT * !
"FROM address) AS a !

WHERE p.addrId = a.id!

CS 525 Notes 11 - Physical Optimization 82 



Postgres Example 
{QUERY  

    :commandType 1  
    :querySource 0  
    :canSetTag true  
    :utilityStmt <>  
    :resultRelation 0  
    :intoClause <>  
    :hasAggs false  
    :hasSubLinks false  
    :rtable ( 
       {RTE  
       :alias  
          {ALIAS  
          :aliasname p  
          :colnames <> 
          } 
       :eref  
          {ALIAS  
          :aliasname p  
          :colnames ("name" "addrid") 
          } 
       :rtekind 1  
       :subquery  
          {QUERY  
          :commandType 1  
          :querySource 0  
          :canSetTag true  

… 
  

CS 525 Notes 11 - Physical Optimization 83 



How to enumerate plans for a 
QGM query 

•  Recall the correspondence between SQL 
query blocks and algebra expressions! 

•  If block is (A)SPJ 
– Determine join order 
– Decide which aggregation to use (if any) 

•  If block is set operation 
– Determine order 

CS 525 Notes 11 - Physical Optimization 84 



More than one query block 

•  Recursive create plans for subqueries 
– Start with leaf blocks 

•  Consider our example 
– Even if blocks are only SPJ we would not 

consider reordering of joins across blocks 
–  -> try to “pull up” subqueries before 

optimization 

CS 525 Notes 11 - Physical Optimization 85 



Subquery Pull-up 
SELECT name, city !
FROM !

"(SELECT * !
"FROM person) AS p, !
"(SELECT * !
"FROM address) AS a !

WHERE p.addrId = a.id!

CS 525 Notes 11 - Physical Optimization 86 

SELECT name, city !
FROM !

"person p, !
"address a !

WHERE p.addrId = a.id!



Parameterized Queries 

•  Problem 
– Repeated executed of similar queries 

•  Example 
– Webshop 
– Typical operation: Retrieve product with all 

user comments for that product 
– Same query modulo product id 

CS 525 Notes 11 - Physical Optimization 87 



Parameterized Queries 

•  Naïve approach 
– Optimize each version individually 
– Execute each version individually 

•  Materialized View 
– Store common parts of the query 
–  -> Optimizing a query with materialized 

views 
–  -> Separate topic not covered here 

CS 525 Notes 11 - Physical Optimization 88 



Caching Query Plans 

•  Caching Query Plans 
– Optimize query once 
– Adapt plan for specific instances 
– Assumption: varying values do not effect 

optimization decisions 
– Weaker Assumption: Additional cost of 

“bad” plan less than cost of repeated 
planning   

CS 525 Notes 11 - Physical Optimization 89 



Parameterized Queries 

•  How to represent varying parts of a 
query 
– Parameters 
– Query planned with parameters assumed 

to be unkown 
– For execution replace parameters with 

concrete values 

CS 525 Notes 11 - Physical Optimization 90 



PREPARE statement 

•  In SQL 
– PREPARE name (parameters) AS 
query !

– EXECUTE name (parameters) 

CS 525 Notes 11 - Physical Optimization 91 



Nested Subqueries 

CS 525 Notes 11 - Physical Optimization 92 

SELECT name !
FROM person p !
WHERE EXISTS (SELECT newspaper !

" "   FROM hasRead h !
" "   WHERE h.name = p.name "
" "AND h.newspaper = ‘Tribune’) !



How to evaluate nested 
subquery? 

•  If no correlations: 
– Execute once and cache results 

•  For correlations: 
– Create plan for query with parameters 

•  -> called nested iteration 

CS 525 Notes 11 - Physical Optimization 93 



Nested Iteration - Correlated 

CS 525 Notes 11 - Physical Optimization 94 

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) // parameterize q’ with values from t !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’)"



Nested Iteration - 
Uncorrelated 

CS 525 Notes 11 - Physical Optimization 95 

q ← outer query !
q’ ← inner query !
result ← execute(q) !
result’ ← execute (qt) "
foreach tuple t in result !
  evaluate_nested_condition (t,result’)"



Nested Iteration - Example 

CS 525 Notes 11 - Physical Optimization 96 

SELECT name !
FROM person p !
WHERE EXISTS (SELECT newspaper !

" "   FROM hasRead h !
" "   WHERE h.name = p.name " "!

                      AND h.newspaper = ‘Tribune’) !

name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 



Nested Iteration - Example 

CS 525 Notes 11 - Physical Optimization 97 

name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 

SELECT newspaper !
FROM hasRead h !
WHERE h.name = p.name !
      AND h.newspaper 

"   = ‘Tribune’) !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’)"



Nested Iteration - Example 

CS 525 Notes 11 - Physical Optimization 98 

name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 

SELECT newspaper !
FROM hasRead h !
WHERE h.name = ‘Alice’!
      AND h.newspaper 

"   = ‘Tribune’) !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’)"



Nested Iteration - Example 

CS 525 Notes 11 - Physical Optimization 99 

name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 

SELECT newspaper !
FROM hasRead h !
WHERE h.name = p.name !
      AND h.newspaper 

"   = ‘Tribune’) !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’)"

newspaper 

Tribune 

result’ 



Nested Iteration - Example 

CS 525 Notes 11 - Physical Optimization 100 

name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 

EXISTS evaluates to 
true! !
!
Output(Alice) !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’)"

newspaper 

Tribune 

result’ 



Nested Iteration - Example 

CS 525 Notes 11 - Physical Optimization 101 

name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 

Empty result set -> 
EXISTS evaluates to 
false !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’)"

newspaper 

result’ 



Nested Iteration - Example 

CS 525 Notes 11 - Physical Optimization 102 

name gender 

Alice female 

Bob male 

Joe male 

name newspaper 

Alice Tribune 

Alice Courier 

Joe Courier 

person hasRead 

Empty result set -> 
EXISTS evaluates to 
false !

q ← outer query !
q’ ← inner query !
result ← execute(q) !
foreach tuple t in result !
  qt ← q’(t) !
  result’ ← execute (qt) "
  evaluate_nested_condition (t,result’)"

newspaper 

result’ 



Nested Iteration - Discussion 

•  Repeated evaluation of nested subquery 
–  If correlated 
–  Improve:  

• Plan once and substitute parameters 
• EXISTS: stop processing after first result 
•  IN/ANY: stop after first match 

•  No optimization across nesting 
boundaries 

CS 525 Notes 11 - Physical Optimization 103 



Unnesting and Decorrelation 

•  Apply equivalences to transform nested 
subqueries into joins 

•  Unnesting: 
– Turn a nested subquery into a join 

•  Decorrelation: 
– Turn correlations into join expressions 

CS 525 Notes 11 - Physical Optimization 104 



Equivalences 

•  Classify types of nesting 
•  Equivalence rules will have 

preconditions 
•  Can be applied heuristically before plan 

enumeration or using a transformative 
approach 

CS 525 Notes 11 - Physical Optimization 105 



N-type Nesting 

•  Properties 
– Expression ANY comparison (or IN)!
– No Correlations 
– Nested query does not use aggregation 

•  Example 

CS 525 Notes 11 - Physical Optimization 106 

SELECT name !
FROM orders o!
WHERE o.cust IN (SELECT cId!

" "   FROM customer !
" "   WHERE region = ‘USA’) !



A-type Nesting 

•  Properties 
– Expression is ANY comparison (or scalar) 
– No Correlations 
– Nested query uses aggregation 
– No Group By 

•  Example 

CS 525 Notes 11 - Physical Optimization 107 

SELECT name !
FROM orders o!
WHERE o.amount = (SELECT max(amount) !

" "   FROM orders i) !



J-type Nesting 

•  Properties 
– Expression is ANY comparison (IN) 
– Nested query uses equality comparison 

with correlated attribute 
– No aggregation in nested query 

•  Example 

CS 525 Notes 11 - Physical Optimization 108 

SELECT name !
FROM orders o !
WHERE o.amount IN (SELECT amount !

" " FROM orders i !
" " WHERE i.cust = o.cust                !

                    AND i.shop = ‘New York’) !



JA-type Nesting 
•  Properties 

– Expression equality comparison 
– Nested query uses equality comparison 

with correlated attribute 
– Nested query uses aggregation and no 

GROUP BY 

•  Example 

CS 525 Notes 11 - Physical Optimization 109 

SELECT name !
FROM orders o !
WHERE o.amount = (SELECT max(amount) !

" "   FROM orders i !
" "   WHERE i.cust = o.cust) !



Unnesting A-type 

•  Move nested query to FROM clause 
•  Turn nested condition (op ANY, IN) into 

op with result attribute of nested query 

CS 525 Notes 11 - Physical Optimization 110 



Unnesting N/J-type 

•  Move nested query to FROM clause 
•  Add DISTINCT to SELECT clause of 

nested query 
•  Turn equality comparison with 

correlated attributes into join conditions 
•  Turn nested condition (op ANY, IN) into 

op with result attribute of nested query 

CS 525 Notes 11 - Physical Optimization 111 



Example 
1.  To FROM 

clause 
2.  Add 

DISTINCT 
3.  Correlation 

to join 
4.  Nesting 

condition to 
join 

CS 525 Notes 11 - Physical Optimization 112 

SELECT name !
FROM orders o !
WHERE o.amount IN (SELECT amount !

" " FROM orders i !
" " WHERE i.cust = o.cust                !

                    AND i.shop = ‘New York’) !

SELECT name !
FROM orders o, !
     (SELECT amount !
     FROM orders i !
     WHERE i.cust = o.cust                !
           AND i.shop = ‘New York’) AS sub !



Example 
1.  To FROM 

clause 
2.  Add 

DISTINCT 
3.  Correlation 

to join 
4.  Nesting 

condition to 
join 

CS 525 Notes 11 - Physical Optimization 113 

SELECT name !
FROM orders o !
WHERE o.amount IN (SELECT amount !

" " FROM orders i !
" " WHERE i.cust = o.cust                !

                    AND i.shop = ‘New York’) !

SELECT name !
FROM orders o, !
     (SELECT DISTINCT amount !
     FROM orders i !
     WHERE i.cust = o.cust                !
           AND i.shop = ‘New York’) AS sub !



Example 
1.  To FROM 

clause 
2.  Add 

DISTINCT 
3.  Correlation 

to join 
4.  Nesting 

condition to 
join 

CS 525 Notes 11 - Physical Optimization 114 

SELECT name !
FROM orders o !
WHERE o.amount IN (SELECT amount !

" " FROM orders i !
" " WHERE i.cust = o.cust                !

                    AND i.shop = ‘New York’) !

SELECT name !
FROM orders o, !
     (SELECT DISTINCT amount, cust!
     FROM orders i              !
     WHERE i.shop = ‘New York’) AS sub !
WHERE sub.cust = o.cust !



Example 
1.  To FROM 

clause 
2.  Add 

DISTINCT 
3.  Correlation 

to join 
4.  Nesting 

condition to 
join 

CS 525 Notes 11 - Physical Optimization 115 

SELECT name !
FROM orders o !
WHERE o.amount IN (SELECT amount !

" " FROM orders i !
" " WHERE i.cust = o.cust                !

                    AND i.shop = ‘New York’) !

SELECT name !
FROM orders o, !
     (SELECT DISTINCT amount, cust!
     FROM orders i              !
     WHERE i.shop = ‘New York’) AS sub !
WHERE sub.cust = o.cust!
      AND o.amount = sub.amount!



Unnesting JA-type 

•  Move nested query to FROM clause 
•  Turn equality comparison with 

correlated attributes into 
– GROUP BY 
– Join conditions 

•  Turn nested condition (op ANY, IN) into 
op with result attribute of nested query 

CS 525 Notes 11 - Physical Optimization 116 



Example 
1.  To FROM 

clause 
2.  Introduce 

GROUP BY 
and join 
conditions 

3.  Nesting 
condition to 
join 

CS 525 Notes 11 - Physical Optimization 117 

SELECT name !
FROM orders o !
WHERE o.amount = (SELECT max(amount) !

" "   FROM orders i !
" "   WHERE i.cust = o.cust) !

SELECT name !
FROM orders o, !
    (SELECT max(amount) !
    FROM orders I !
    WHERE i.cust = o.cust) sub !



Example 
1.  To FROM 

clause 
2.  Introduce 

GROUP BY 
and join 
conditions 

3.  Nesting 
condition to 
join 

CS 525 Notes 11 - Physical Optimization 118 

SELECT name !
FROM orders o !
WHERE o.amount = (SELECT max(amount) !

" "   FROM orders i !
" "   WHERE i.cust = o.cust) !

SELECT name !
FROM orders o, !
    (SELECT max(amount) AS ma, i.cust!
    FROM orders i !
    GROUP BY i.cust) sub !
WHERE i.cust = sub.cust!



Example 
1.  To FROM 

clause 
2.  Introduce 

GROUP BY 
and join 
conditions 

3.  Nesting 
condition to 
join 

CS 525 Notes 11 - Physical Optimization 119 

SELECT name !
FROM orders o !
WHERE o.amount = (SELECT max(amount) !

" "   FROM orders i !
" "   WHERE i.cust = o.cust) !

SELECT name !
FROM orders o, !
    (SELECT max(amount) AS ma, i.cust!
    FROM orders i !
    GROUP BY i.cust) sub !
WHERE sub.cust = o.cust!
      AND o.amount = sub.ma!



Unnesting Benefits Example 
•  N(orders) = 

1.000.000 
•  V(cust,orders) = 

10.000 
•  S(orders) =  
   1/10 block 

CS 525 Notes 11 - Physical Optimization 120 

SELECT name !
FROM orders o !
WHERE o.amount = (SELECT max(amount) !

" "   FROM orders i !
" "   WHERE i.cust = o.cust) !

SELECT name !
FROM orders o, !
    (SELECT max(amount) AS ma, i.cust!
    FROM orders i !
    GROUP BY i.cust) sub !
WHERE sub.cust = o.cust!
      AND o.amount = sub.ma!



CS 525 Notes 11 - Physical Optimization 121 

SELECT name !
FROM orders o !
WHERE o.amount = (SELECT max(amount) !

" "   FROM orders i !
" "   WHERE i.cust = o.cust) !

•  Inner query: 
–  One scan B(orders) = 100.000 I/Os 

•  Outer query: 
–  One scan B(orders) = 100.000 I/Os 
–  1.000.000 tuples 

•  Total cost: 1.000.001 x 100.000=~ 1011 I/Os 

•  N(orders) = 1.000.000 
•  V(cust,orders) = 10.000 
•  S(orders) = 1/10 block 
•  M = 10.000 



•  N(orders) = 1.000.000 
•  V(cust,orders) = 10.000 
•  S(orders) = 1/10 block 
•  M = 10.000 

CS 525 Notes 11 - Physical Optimization 122 

•  Inner queries: 
–  One scan B(orders) = 100.000 I/Os 

•  1.000.000 result tuples 

–  Sort (assume 1 pass) = 3 x 100.000 = 300.000 I/Os 
•  10.000 result tuples 

•  The join: use merge  
–  3 x (1.000 + 100.000) I/Os = 303.000 I/Os 

•  Total cost: 603.000 I/Os 

SELECT name !
FROM orders o, !
    (SELECT max(amount) AS ma, i.cust!
    FROM orders i !
    GROUP BY i.cust) sub !
WHERE sub.cust = o.cust!
      AND o.amount = sub.ma!


