

Query Optimization

- Relational algebra level
- Detailed query plan level
- Estimate Costs
- without indexes
- with indexes
- Generate and compare plans

Relational algebra optimization

- Transformation rules (preserve equivalence)
- What are good transformations?
- Heuristic application of transformations

Query Equivalence

- Two queries q and q^{\prime} are equivalent:
- If for every database instance I
- Contents of all the tables
- Both queries have the same result
$q \equiv q^{\prime}$ iff $\forall I: q(I)=q^{\prime}(I)$

Note:

- Carry attribute names in results, so order is not important
- Can also write as trees, e.g.:

Rules: Natural joins \& cross products \& union
Rules: Selects
$R \bowtie S \quad=\quad S \bowtie R$
$(R \bowtie S) \bowtie T \quad=R \bowtie(S \bowtie T)$
$R \times S=S \times R$
$(R \times S) \times T=R \times(S \times T)$
$R \cup S=S U R$
$R \cup(S \cup T)=(R \cup S) \cup T$

Rules: Selects

$\sigma_{\mathrm{p} 1 \wedge \mathrm{p} 2}(\mathrm{R})=$	$\sigma_{p 1}\left[\sigma_{p 2}(R)\right]$
$\sigma_{\text {p1vp2 }}(\mathrm{R})=$	$\left[\sigma_{p 1}(\mathrm{R})\right] \cup\left[\sigma_{\mathrm{p} 2}(\mathrm{R})\right.$]
cs 525	

Bags vs. Sets
$R=\{a, a, b, b, b, c\}$
$S=\{b, b, c, c, d\}$
RUS = ?

```
Bags vs. Sets
R={a,a,b,b,b,c}
S={b,b,c,c,d}
RUS = ?
- Option 1 SUM
    RUS = {a,a,b,b,b,b,b,c,c,c,d}
- Option 2 MAX
RUS = {a,a,b,b,b,c,c,d}
CS 525 computer Notes 9-Logical Optimization
- Option 1 SUM
RUS \(=\{a, a, b, b, b, b, b, c, c, c, d\}\)
- Option 2 MAX
RUS \(=\{a, a, b, b, b, c, c, d\}\)

Option 2 (MAX) makes this rule work:
\(\sigma_{p 1 v p 2}(R)=\sigma_{p 1}(R) \cup \sigma_{p 2}(R)\)
Example: \(\mathrm{R}=\{\mathrm{a}, \mathrm{a}, \mathrm{b}, \mathrm{b}, \mathrm{b}, \mathrm{c}\}\)
P1 satisfied by a,b; P2 satisfied by b,c

Notes 9 - Logical Optimizatio
IIT College of
Notes 9 - Logical Optimization 14 Science and Letters
Scios
Option \(2(M A X)\) makes this rule work:
\(\sigma_{p 1 v p 2}(R)=\sigma_{p 1}(R) \cup \sigma_{p 2}(R)\)
Example: \(R=\{a, a, b, b, b, c\}\)
P1 satisfied by \(a, b ; P 2\) satisfied by \(b, c\)
\(\sigma_{p 1 v p 2}(R)=\{a, a, b, b, b, c\}\)
\(\sigma_{p 1}(R)=\{a, a, b, b, b\}\)
\(\sigma_{p 2}(R)=\{b, b, b, c\}\)
\(\sigma_{p 1}(R) \cup \sigma_{p 2}(R)=\{a, a, b, b, b, c\}\)
cs 525
"Sum" option makes more sense:
Senators (......) Rep (......)
\(\mathrm{T} 1=\pi_{y r}\), state Senators; \(\quad \mathrm{T} 2=\pi_{\mathrm{yr}, \text { state }}\) Reps




\section*{Rules: Project}

Let: \(X=\) set of attributes
\(Y=\) set of attributes
\(X Y=X U Y\)
\(\pi_{x y}(R)=\)

Notes 9 - Logical Optimization \(\quad 18 \begin{gathered}\text { IIT College of } \\ \text { Science and letters }\end{gathered}\)

\section*{Rules: Project}

Let: \(X=\) set of attributes
\(Y=\) set of attributes
\(X Y=X U Y\)
\(\pi_{x y}(R)=\pi_{x}\left[\pi_{y}(R)\right]\)

\section*{Rules: Project}

Let: \(\mathrm{X}=\) set of attributes
\(Y=\) set of attributes
\(X Y=X U Y\)
\(\pi_{x y}(R)=\pi_{x}\left[\sigma_{x}(R)\right]\)

\section*{Rules: \(\sigma+\bowtie\) combined}

Let \(p=\) predicate with only \(R\) attribs
\(q=\) predicate with only \(S\) attribs
\(m=\) predicate with only \(R, S\) attribs
\(\sigma_{p}(R \bowtie S)=\left[\sigma_{p}(R)\right] \bowtie S\)
\(\sigma_{q}(R \bowtie S)=R \bowtie\left[\sigma_{q}(S)\right]\)

CS \(525 \begin{gathered}\text { ConMurER } \\ \text { SOlfNTE }\end{gathered} \quad\) Notes 9 - Logical Optimization \(22 \begin{gathered}\text { IIT College of } \\ \text { Science and letters }\end{gathered}\)

Do one:
\(\sigma_{p \wedge q}(R \bowtie S)=\left[\sigma_{p}(R)\right] \bowtie\left[\sigma_{q}(S)\right]\)
\(\sigma_{\text {p^q^m }}(R \bowtie S)=\)
\(\sigma_{\mathrm{m}}\left[\left(\sigma_{p} R\right) \bowtie\left(\sigma_{q} S\right)\right]\)
\(\sigma_{\mathrm{pvq}}(\mathrm{R} \bowtie \mathrm{S})=\)
\(\left[\left(\sigma_{p} R\right) \bowtie S\right] \cup\left[R \bowtie\left(\sigma_{q} S\right)\right]\)
CS 525
Notes 9 - Logical Optimization \(\quad 24 \begin{gathered}\text { IIT College of } \\ \text { Science and Letters }\end{gathered}\)
--> Derivation for first one:
\(\sigma_{\text {р } \wedge}(R \bowtie S)=\)
\(\sigma_{\mathrm{p}}\left[\sigma_{\mathrm{q}}(\mathrm{R} \bowtie \mathrm{S})\right]=\)
\(\sigma_{\mathrm{p}}\left[\mathrm{R} \bowtie \sigma_{\mathrm{q}}(\mathrm{S})\right]=\)
\(\left[\sigma_{p}(R)\right] \bowtie\left[\sigma_{q}(S)\right]\)

\section*{Rules: \(\pi, \sigma\) combined}

Let \(x=\) subset of \(R\) attributes
z = attributes in predicate P (subset of R attributes)
\(\pi_{x}[\sigma p(R)]=\)

Notes 9 - Logical Optimizatio IIT College of
Notes 9-Logical Optimization 26 Science and Letters

\section*{Rules: \(\pi, \sigma\) combined}

Let \(x=\) subset of \(R\) attributes z = attributes in predicate P (subset of R attributes)
\(\pi_{x}\left[\sigma_{p(R)}\right]=\pi_{x}\left\{\sigma_{p}\left[\pi_{x} \pi_{x z}(R)\right]\right\}\)

CS 525 \begin{tabular}{c|ccc} 
COMPUTER \\
SGIENGE
\end{tabular}\(\quad\) Notes 9 - Logical Optimization \(28 \begin{gathered}\text { IIT College of } \\
\text { Science and Letters }\end{gathered}\)

Rules: \(\pi, \bowtie\) combined
Let \(\mathrm{x}=\) subset of R attributes
\(y=\) subset of \(S\) attributes
\(z=\) intersection of \(R, S\) attributes
\(\pi_{x y}(R \bowtie S)=\)

Notes 9 - Logical Optimization \(29 \begin{gathered}\text { IIT College of } \\ \text { Science and Letters }\end{gathered}\)

Rules: \(\pi, \bowtie\) combined
Let \(x=\) subset of \(R\) attributes
\(y=\) subset of \(S\) attributes
\(z=\) intersection of \(R, S\) attributes
\(\pi_{x y}(R \bowtie \Delta)=\)
\[
\pi_{x y}\left\{\left[\pi_{x z}(\mathrm{R})\right] \bowtie\left[\pi_{y z}(\mathrm{~S})\right]\right\}
\]

CS 525 computer
Notes 9-Logical Optimization \(\quad 30 \begin{array}{r}\text { IIT College of } \\ \text { Science and Letters }\end{array}\)

\[
\begin{aligned}
& \pi_{x y}\left\{\sigma_{p}(R \bowtie S)\right\}= \\
& \pi_{x y}\left\{\sigma_{p}\left[\pi_{x z^{\prime}}(R) \bowtie \pi_{y z^{\prime}}(\mathrm{S})\right]\right\} \\
& z^{\prime}=z \cup\{\text { attributes used in } P\} \\
& c^{2} 525 \\
& \text { cs }
\end{aligned}
\]

Rules for \(\sigma, \pi\) combined with \(X\)
Rules \(\sigma, U\) combined:
similar...
e.g., \(\quad \sigma_{p}(R X S)=\) ?
\(\sigma_{p}(R \cup S)=\sigma_{p}(R) \cup \sigma_{p}(S)\)
\(\sigma_{p}(R-S)=\sigma_{p}(R)-S=\sigma_{p}(R)-\sigma_{p}(S)\)




\section*{Bottom line:}
- No transformation is always good
- Usually good: early selections
- Exception: expensive selection conditions
- E.g., UDFs

\footnotetext{
CS 525

Notes 9 - Logical Optimization \(38 \begin{array}{r}\text { IIT College of } \\ \text { Science and Letters }\end{array}\)
}

\section*{Pushing Selections}
- Idea:
- Join conditions equate attributes
- For parts of algebra tree (scope) store which attributes have be the same
- Called Equivalence classes
- Example: R(a,b), S(c,d)
\(\sigma_{b=3}\left(R \bowtie_{b=c} S\right)=\sigma_{b=3}(R) \bowtie_{b=c} \sigma_{c=3}(S)\)


\section*{Summary Equivalences}
- Associativity: \((\mathrm{R} \odot \mathrm{S}) \odot \mathrm{T} \equiv \mathrm{R} \odot(\mathrm{S} \odot \mathrm{T})\)
- Commutativity: \(\mathrm{R} \odot \mathrm{S} \equiv \mathrm{S} \odot \mathrm{R}\)
- Distributivity: \((R \odot S) \otimes T \equiv(R \otimes T) \odot(S \otimes T)\)
- Difference between Set and Bag Equivalences
- Only some equivalence are useful
\(\sigma_{p}\left(R \rtimes_{A=B} S\right) \equiv \sigma_{p}(R) \bowtie_{A=B} S\)
\(\operatorname{Not} \sigma_{p}\left(R \searrow_{A=B} S\right) \equiv R \searrow_{A=B} \sigma_{p}(S)\)


R
- p - condition over attributes in A
- A list of attributes from \(R\)

- Estimating cost of query plan
(1) Estimating size of results
(2) Estimating \# of IOs

Example
R \begin{tabular}{|c|c|c|c|}
\hline A & B & C & D \\
\hline cat & 1 & 10 & a \\
\hline cat & 1 & 20 & b \\
\hline \(\operatorname{dog}\) & 1 & 30 & a \\
\hline \(\operatorname{dog}\) & 1 & 40 & c \\
\hline & bat & 1 & 50 \\
\hline
\end{tabular}
A: 20 byte string
B: 4 byte integer
C: 8 byte date
D: 5 byte string
\(-S(R)\) : \# of bytes in each \(R\) tuple
\(-B(R)\) : \# of blocks to hold all \(R\) tuples
\(-V(R, A)\) : \# distinct values in \(R\)
for attribute A

Notes 9 - Logical Optimization



Size estimate for \(W=\sigma_{A=a}(R)\)
\(S(W)=S(R)\)
\(\mathrm{T}(\mathrm{W})=\) ?

CS \(525 \begin{gathered}\text { copmute } \\ \text { Solfict }\end{gathered} \quad\) Notes 9-Logical Optimization \(50 \begin{gathered}\text { IIT College of } \\ \text { Science and letters }\end{gathered}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Example} \\
\hline \multirow[t]{6}{*}{R} & A & C & D & \(V(R, A)=3\) \\
\hline & cat & 10 & a & \(V(R, B)=1\) \\
\hline & & 20 & b & \(V(R, C)=5\) \\
\hline & dog & 30 & a & \\
\hline & dog & 40 & c & \(V(R, D)=4\) \\
\hline & bat & 50 & d & \\
\hline \multicolumn{4}{|l|}{\(\mathrm{W}=\mathrm{O}_{\mathrm{z}=\mathrm{va}}(\mathrm{R}) \quad \mathrm{T}(\mathrm{V})\)} & \\
\hline c525 &  & does 9 & - ogeg & \({ }^{51}\) Science ondicter \\
\hline
\end{tabular}

Example
\begin{tabular}{|c|c|c|c|}
\hline\(A\) & \(B\) & \(C\) & \(D\) \\
\hline cat & 1 & 10 & a \\
\hline cat & 1 & 20 & b \\
\hline dog & 1 & 30 & a \\
\hline dog & 1 & 40 & C \\
\hline bat & 1 & 50 & d \\
\hline
\end{tabular}
\(W=\sigma_{z=\operatorname{val}(R)} \quad T(W)=\frac{T(R)}{V(R, Z)}\)


\section*{Assumption:}

Values in select expression \(Z=\) val
are uniformly distributed
over possible \(V(R, Z)\) values.

\section*{Alternate Assumption:}

Values in select expression \(\mathrm{Z}=\mathrm{val}\) are uniformly distributed over domain with \(\operatorname{DOM}(R, Z)\) values.

\[
\left.\begin{array}{rl}
\mathrm{C}=\mathrm{val} \Rightarrow \mathrm{~T}(\mathrm{~W}) & =(1 / 10) 1+(1 / 10) 1+\ldots \\
& =(5 / 10)=0.5
\end{array}\right] \begin{aligned}
\mathrm{B}=\mathrm{val} \Rightarrow \mathrm{~T}(\mathrm{~W})= & (1 / 10) 5+0+0=0.5 \\
\mathrm{~A}=\mathrm{val} \Rightarrow \mathrm{~T}(\mathrm{~W})= & (1 / 10) 2+(1 / 10) 2+(1 / 10) 1 \\
& =0.5
\end{aligned}
\]


\section*{Selection cardinality}
\(S C(R, A)=\) average \# records that satisfy equality condition on R.A
\(S C(R, A)=\left\{\begin{array}{l}\frac{T(R)}{V(R, A)} \\ \frac{T(R)}{\operatorname{DOM}(R, A)}\end{array}\right.\)


What about \(W=\sigma_{z}\) val \((R)\) ?
\[
T(W)=?
\]
- Solution \# 1:
\[
T(W)=T(R) / 2
\]

Notes 9 - Logical Optimization \(60 \begin{gathered}\text { IIT College of } \\ \text { Science and Letters }\end{gathered}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{What about \(\mathrm{W}=\sigma_{z \geq \text { val }}(\mathrm{R})\) ?} \\
\hline \(\mathrm{T}(\mathrm{W})=\) ? & \\
\hline - Solution \# 1:
\[
T(W)=T(R) / 2
\] & \\
\hline - Solution \# 2:
\[
T(W)=T(R) / 3
\] & \\
\hline C5525 Notes 9 - Logaca oopinazaton & \({ }^{61}\) Science ond digeteres \(\mathbf{I T}\) \\
\hline
\end{tabular}
- Solution \# 3: Estimate values in range

CS 525
SOOPPNEER
Notes 9 - Logical Optimization \(62 \begin{gathered}\text { IIT College of } \\ \text { Science and Letters }\end{gathered}\)
- Solution \# 3: Estimate values in range
xample R

\(f=\frac{20-15+1}{20-1+1}=\frac{6}{20} \quad\) (fraction of range)
\(T(W)=f \times T(R)\)
CS 525 somputer
Notes 9 - Logical Optimization
63 Science and Letters
Equivalently:
\(f \times V(R, Z)=\) fraction of distinct values \(T(W)=[f \times V(Z, R)] \times T(R)=f \times T(R)\) \(\overline{v(Z, R)}\)


Notes 9 - Logical Optimization \(64 \begin{gathered}\text { IIT College of } \\ \text { Science and Letters }\end{gathered}\)


Size estimate for \(W=R 1 \bowtie R 2\)
Let \(\mathrm{x}=\) attributes of R1
\(y=\) attributes of R2



Case \(2 \quad W=R 1 \bowtie R 2 \quad X \cap Y=A\)


\section*{Assumption:}
\(V(R 1, A) \leq V(R 2, A) \Rightarrow\) Every \(A\) value in \(R 1\) is in \(R 2\) \(\mathrm{V}(\mathrm{R} 2, \mathrm{~A}) \leq \mathrm{V}(\mathrm{R} 1, \mathrm{~A}) \Rightarrow\) Every A value in R 2 is in R 1

- \(V(R 1, A) \leq V(R 2, A) \quad T(W)=\frac{T(R 2) T(R 1)}{V(R 2, A)}\)
- \(V(R 2, A) \leq V(R 1, A) \quad T(W)=\frac{T(R 2) T(R 1)}{V(R 1, A)}\)
[ A is common attribute]


In general \(\quad W=R 1 \bowtie R 2\)
\[
\mathrm{T}(\mathrm{~W})=\frac{\mathrm{T}(\mathrm{R} 2) \mathrm{T}(\mathrm{R} 1)}{\max \{\mathrm{V}(\mathrm{R} 1, \mathrm{~A}), \mathrm{V}(\mathrm{R} 2, \mathrm{~A})\}}
\]

Case 2 with alternate assumption
Values uniformly distributed over domain


In all cases:
\(S(W)=S(R 1)+S(R 2)-S(A)\) size of attribute \(A\)

Note: for complex expressions, need intermediate \(\mathrm{T}, \mathrm{S}, \mathrm{V}\) results.
E.g. \(W=[\underbrace{\left[\sigma_{A=a}(R 1)\right.}] \bowtie R 2\)

Treat as relation \(U\)
\(T(U)=T(R 1) / V(R 1, A) \quad S(U)=S(R 1)\)
\(R \bowtie S\) with common attribs. A,B,C
Union, intersection, diff,
Using similar ideas,
we can estimate sizes of:
ПАв \(^{(R)}\)
\(\sigma_{A=a B=b}(R)\)


Also need V \((\mathrm{U}, *)\) !!


\section*{To estimate Vs}
E.g., \(U=\sigma_{A=a}(R 1)\)

Say R1 has attribs A,B,C,D
\(V(U, A)=\)
\(V(U, B)=\)
\(V(U, C)=\)
\(V(U, D)=\)

\section*{Example}

c5525
Notes 9 - Logical Optimization \(\quad 78 \begin{gathered}\text { IIT College of } \\ \text { Science and Letters }\end{gathered}\)



For Joins \(U=R 1(A, B) \bowtie R 2(A, C)\)
\(\mathrm{V}(\mathrm{U}, \mathrm{A})=\min \{\mathrm{V}(\mathrm{R} 1, \mathrm{~A}), \mathrm{V}(\mathrm{R} 2, A)\}\)
\(\mathrm{V}(\mathrm{U}, \mathrm{B})=\mathrm{V}(\mathrm{R1}, \mathrm{~B})\)
\(\mathrm{V}(\mathrm{U}, \mathrm{C})=\mathrm{V}(\mathrm{R} 2, \mathrm{C})\)
C

\section*{Example:}
\(Z=R 1(A, B) \bowtie R 2(B, C) \bowtie R 3(C, D)\)
\(\begin{array}{llll}\text { R1 } & T(R 1)=1000 \quad V(R 1, A)=50 \quad V(R 1, B)=100 \\ \text { R2 } & T(R 2)=2000 \quad V(R 2, B)=200 \quad V(R 2, C)=300 \\ R 3 & T(R 3)=3000 \quad V(R 3, C)=90 \quad V(R 3, D)=500\end{array}\)
\(525 \begin{gathered}\text { Coppurze } \\ \text { SOlfNGE }\end{gathered} \quad\) Notes 9 - Logical Optimization \(82 \begin{gathered}\text { IIT College of } \\ \text { Science and Letters }\end{gathered}\)

Partial Result: \(\quad \mathrm{U}=\mathrm{R} 1 \bowtie \mathrm{R} 2\)
\[
Z=U \bowtie R 3
\]
\[
T(Z)=\frac{1000 \times 2000 \times 3000}{200 \times 300}
\]
\[
V(Z, A)=50
\]
\[
V(Z, B)=100
\]
\[
V(Z, C)=90
\]
\[
V(Z, D)=500
\]
\[
\begin{array}{ll} 
& \\
& \\
& \\
\text { c5 } 525 & \\
\hline
\end{array}
\]

Notes 9 - Logical Optimization \(\quad 84 \begin{gathered}\text { IIT College of } \\ \text { Science and Letters }\end{gathered}\)

\section*{Approximating Distributions}
- Summarize the distribution
- Used to better estimate result sizes
- Without the need to look at all the data
- Concerns
- Error metric: How to measure preciseness
- Memory consumption
- Computational Complexity

Notes 9 - Logical Optimization

\section*{Approximating Distributions}
- Parameterized distribution
- E.g., gauss distribution
- Adapt parameters to fit data
- Histograms
- Divide domain into ranges (buckets)
- Store the number of tuples per bucket
- Both need to be maintained
CS \(525 \xrightarrow[\substack{\text { coppurier } \\ \text { SGlence }}]{\substack{ \\\hline}}\)
Notes 9 - Logical Optimization \(\quad 86 \begin{gathered}\text { IIT College of } \\ \text { Science and Letters }\end{gathered}\) Scion insmume


\section*{Maintaining Statistics}
- Use separate command that triggers statistics collection
- Postgres: ANALYZE
- During query processing
- Overhead for queries
- Use Sampling?

\section*{Estimating Result Size using Histograms}

\(\sigma_{A=v a l}(R)=\) ?

\section*{Estimating Result Size using Histograms}
- \(\sigma_{A=v a l}(R)=\) ?
- \(|B|\) - number of values per bucket
- \#B - number of records in bucket
\(\frac{\# B}{|B|}\)


\section*{Join Size using Histograms}
- \(\mathrm{R} \bowtie \mathrm{S}\)
- Use
\(\left.T(W)=\frac{T(R 2) T(R 1)}{\max \{V(R 1, A), V(R 2, A)}\right\}\)
- Apply for each bucket

\section*{Join Size using Histograms}
- \(\mathrm{V}(\mathrm{R} 1, \mathrm{~A})=\mathrm{V}(\mathrm{R} 2, \mathrm{~A})=\) bucket size \(|\mathrm{B}|\)
\[
\mathrm{T}(\mathrm{~W})=\sum_{\text {buckets }} \frac{\# \mathrm{~B}(\mathrm{R} 2) \# \mathrm{~B}(\mathrm{R} 1)}{|\mathrm{B}|}
\]

Equi-width vs. Equi-depth


Advanced Techniques
- Wavelets
- Approximate Histograms
- Sampling Techniques
- Compressed Histograms
- Example 3 buckets

1, 5,44, 6,10,12, 3, 6, 7
\(1,3,5,6,6,7,10,12,44\)
[1-5] [6-8] [9-44]

\section*{Construct Equi-depth} Histograms
- Sort input
- Determine size of buckets
- \#bucket / \#tuples

\section*{Summary}
- Estimating size of results is an "art"
- Don't forget:

Statistics must be kept up to date...
(cost?)


\section*{Outline}
- Estimating cost of query plan
- Estimating size of results - done!
- Estimating \# of IOs \(\quad\) next...
- Operator Implementations
- Generate and compare plans

CS 525

Notes 9-Logical Optimization 98 ITT College of```

