

R-tree - Insert Similar to B-tree, but more complex Overlap -> multiple choice where to add entry Split harder because more choice how to split node (compare B-tree = 1 choice) 1) Find potential subtrees for current node Choose one for insert (heuristic, e.g., the one the would grow the least) Continue until leaf is found

Run length encoding (RLE) Instead of actual 0-1 sequence encode length of 0 or 1 runs One bit to indicate whether 0/1 run + several bits to encode run length But how many bits to use to encode a run length? Gamma codes or similar to have variable number of bits

Hybrid Encoding

- · Run length encoding
 - Can waste space
 - And/or run length not aligned to byte/word boundaries
- Encode some bytes of sequence as is and only store long runs as run length
 - EWAH
 - BBC (that's what Oracle uses)

COMPUTER SCIENCE

Notes 6 - More Indices

IIT College of Science and Letters

Extended Word aligned Hybrid (EWAH)

- Segment sequence in machine words (64bit)
- Use two types of words to encode
 - Literal words, taken directly from input sequence
 - Run words
 - ½ word is used to encode a run
 - ½ word is used to encode how many literals follow

Bitmap Indices

- · Fast for read intensive workloads
 - Used a lot in datawarehousing
- · Often build on the fly during query processing
 - As we will see later in class

CS 525 COMP SCIEN

COMPUTER SCIENCE

Notes 6 - More Indices

IIT College of Science and Letters

Trie

- From Retrieval
- Tree index structure
- Keys are sequences of values from a domain D
 - $-D = \{0,1\}$
 - $-D = \{a,b,c,...,z\}$
- · Key size may or may not be fixed
 - Store 4-byte integers using D = {0,1} (32 elements)
 - Strings using D={a,...,z} (arbitrary length)

Notes 6 - More Indices

IIT College of Science and Letters

Trie

- Each node has pointers to |D| child nodes
 - One for each value of D
- Searching for a key $k = [d_1, ..., d_n]$
 - Start at the root
 - Follow child for value d_i

CS 525

COMPUTER

Notes 6 - More Indices

IIT College of Science and Letters

