
CS 525 Notes 3 1 

CS 525: Advanced Database 
Organization 

03: Disk Organization 

Boris Glavic 

Slides: adapted from a course taught by  
Hector Garcia-Molina, Stanford InfoLab  



CS 525 Notes 3 2 

•  How to lay out data on disk 
•  How to move it to/from memory 

Topics for today 



CS 525 Notes 3 3 

What are the data items we want to store? 

•  a salary 
•  a name 
•  a date 
•  a picture 



CS 525 Notes 3 4 

What are the data items we want to store? 

•  a salary 
•  a name 
•  a date 
•  a picture 

What we have available: Bytes 

8 
bits 



CS 525 Notes 3 5 

To represent: 

•  Integer (short): 2 bytes 
 e.g., 35 is  

00000000 00100011 

•  Real, floating point 
n bits for mantissa, m for exponent…. 

Endian! Could as well be 

00000000 00100011 



CS 525 Notes 3 6 

•  Characters 
 → various coding schemes suggested, 
  most popular is ASCII (1 byte encoding) 

To represent: 

Example: 
A:    1000001 
a:     1100001 
5:     0110101 
LF:   0001010 



CS 525 Notes 3 7 

•  Boolean 
 e.g., TRUE

    FALSE 
1111 1111 
0000 0000 

To represent: 

•  Application specific 
 e.g., enumeration 
    RED → 1     GREEN → 3 
    BLUE → 2    YELLOW → 4  … 



CS 525 Notes 3 8 

•  Boolean 
 e.g., TRUE

    FALSE 
1111 1111 
0000 0000 

To represent: 

•  Application specific 
 e.g.,  RED → 1    GREEN → 3 
    BLUE → 2    YELLOW → 4  … 

 Can we use less than 1 byte/code? 
Yes, but only if desperate... 



CS 525 Notes 3 9 

•  Dates 
 e.g.:  - Integer, # days since Jan 1, 1900 
      - 8 characters, YYYYMMDD 
      - 7 characters, YYYYDDD 
    (not YYMMDD! Why?) 

•  Time 
 e.g.   - Integer, seconds since midnight 
      - characters, HHMMSSFF 

To represent: 



CS 525 Notes 3 10 

•  String of characters 
– Null terminated 
  e.g., 

 
– Length given 
  e.g., 

 
- Fixed length 

c t a 

c t a 3 

To represent: 



CS 525 Notes 3 11 

•  Bag of bits 

 
Length Bits 

To represent: 



CS 525 Notes 3 12 

Key Point 

•  Fixed length items 

•  Variable length items 
 - usually length given at beginning 



CS 525 Notes 3 13 

•  Type of an item:  Tells us how to  
     interpret 
     (plus size if fixed) 

    

Also 



CS 525 Notes 3 14 

Data Items 
 

Records 
 

Blocks 
 

Files 
 

Memory 

Overview 



CS 525 Notes 3 15 

Record - Collection of related data 
  items (called FIELDS) 

E.g.: Employee record: 
   name field, 
   salary field, 
   date-of-hire field, ... 



CS 525 Notes 3 16 

Types of records: 

•  Main choices: 
– FIXED vs VARIABLE FORMAT 
– FIXED vs VARIABLE LENGTH 



CS 525 Notes 3 17 

A SCHEMA (not record) contains 
 following information 
  - # fields 
  - type of each field 
  - order in record 
  - meaning of each field 

Fixed format 



CS 525 Notes 3 18 

Example: fixed format and length 

Employee record 
 (1) E#, 2 byte integer 
 (2) E.name, 10 char.   Schema 
 (3) Dept, 2 byte code 

55 s m i  t   h 02 

83 j o n  e  s 01 

Records 



CS 525 Notes 3 19 

•  Record itself contains format 
 “Self Describing” 

Variable format 



CS 525 Notes 3 20 

Example: variable format and length 

4 I 5 2 4 S D R O F 46 

 
 
Field name codes could also be strings, i.e. TAGS 

  
  
  
  
#

 F
ie

ld
s 

Co
de

 id
en

tif
yi

ng
 

  
 f

ie
ld

 a
s 

E#
 

In
te

ge
r 

ty
pe

 
  Co

de
 f
or

 E
na

m
e 

St
rin

g 
ty

pe
 

Le
ng

th
 o

f 
st

r. 



CS 525 Notes 3 21 

Variable format useful for: 

•  “sparse” records 
•  repeating fields 
•  evolving formats 

But may waste space... 



CS 525 Notes 3 22 

•  EXAMPLE: var format record with 
    repeating fields 
 Employee  →  one or more  → children 

3 E_name: Fred Child: Sally Child: Tom 



CS 525 Notes 3 23 

Note: Repeating fields does not imply 
   - variable format, nor 
   - variable size 

John Sailing Chess -- 



CS 525 Notes 3 24 

Note: Repeating fields does not imply 
   - variable format, nor 
   - variable size 

John Sailing Chess -- 

•  Key is to allocate maximum number of 
 repeating fields (if not used  →  null) 



CS 525 Notes 3 25 

 Many variants between 
  fixed - variable format: 

Example: Include record type in record 
 
 
record type        record length 
tells me what 
to expect 
(i.e. points to schema) 

5 27  . . . .  



CS 525 Notes 3 26 

Record header - data at beginning 
   that describes record 

May contain: 
  - record type 
  - record length 
  - time stamp 
  - null-value bitmap 
  - other stuff ... 



CS 525 Notes 3 27 

Other interesting issues: 

•  Compression 
– within record - e.g. code selection 
– collection of records - e.g. find common 

patterns 

•  Encryption 

•  Splitting of large records 
– E.g., image field, store pointer 



Record Header – null-map 

•  SQL: NULL is special value for every 
data type 
– Reserve one value for each data type as 

NULL? 

•  Easier solution 
– Record header has a bitmap to store 

whether field is NULL 
– Only store non-NULL fields in record 

   
CS 525 Notes 3 28 



Separate Storage of Large 
Values 

•  Store fields with large values separately 
– E.g., image or binary document 
– Records have pointers to large field 

content 

•  Rationale 
– Large fields mostly not used in search 

conditions 
– Benefit from smaller records 

CS 525 Notes 3 29 



CS 525 Notes 3 30 

Encrypting Records 

trusted 
processor 

new 
record 

r 
dbms 

E(r) 

E(r1) 
E(r2) 
E(r3) 
E(r4) 
... 



CS 525 Notes 3 31 

Encrypting Records 

trusted 
processor 

search 
F(r)=x 

dbms 
?? 

E(r1) 
E(r2) 
E(r3) 
E(r4) 
... 



CS 525 Notes 3 32 

Search Key in the Clear 

trusted 
processor 

search 
k=2 

dbms 
Q: k=2 

[1, E(b1)] 
[2, E(b2)] 
[3, E(b3)] 
[4, E(b4)] 

... 

•  each record is [k,b] 
•  store [k, E(b)] 
•  can search for records with k=x 

A: [2, E(b2)] 



CS 525 Notes 3 33 

Encrypt Key 

trusted 
processor 

search 
k=2 

dbms 
Q: k’=E(2) 

[E(1), E(b1)] 
[E(2), E(b2)] 
[E(3), E(b3)] 
[E(4), E(b4)] 

... 

•  each record is [k,b] 
•  store [E(k), E(b)] 
•  can search for records with k=E(x) 

A: [E(2), E(b2)] 



CS 525 Notes 3 34 

Issues 

•  Hard to do range queries 
•  Encryption not good 
•  Better to use encryption that does not 

always generate same cyphertext 

E 
k 

D 
E(k, random) k 

simplification 



CS 525 Notes 3 35 

How Do We Search Now? 

trusted 
processor 

search 
k=2 

dbms 
Q: k’=E(2) 

[E(1, abc), E(b1)] 
[E(2, dhe), E(b2)] 
[E(3, nft), E(b3)] 
[E(2, lkz), E(b4)] 

... 

•  each record is [k,b] 
•  store [E(k, rand), E(b)] 
•  can search for records with k=E(x,???)? 

A: [E(2,dhe), E(b2)] 
   [E(2, lkz), E(b4)] 

??? 



CS 525 Notes 3 36 

Solution? 
•  Develop new decryption function: 

   D(f(k1), E(k2, rand)) is true if k1=k2 



CS 525 Notes 3 37 

Solution? 
•  Develop new decryption function: 

   D(f(k1), E(k2, rand)) is true if k1=k2 

trusted 
processor 

search 
k=2 

dbms 

Q: check if D(f(2),*) true 

[E(1, abc), E(b1)] 
[E(2, dhe), E(b2)] 
[E(3, nft), E(b3)] 
[E(2, lkz), E(b4)] 

... 

A: [E(2,dhe), E(b2)] 
  [E(2, lkz), E(b4)] 



CS 525 Notes 3 38 

Issues? 

•  Cannot do non-equality predicates 
•  Hard to build indexes 



CS 525 Notes 3 39 

Next: placing records into blocks 

blocks      ... 

    a file 



CS 525 Notes 3 40 

Next: placing records into blocks 

blocks      ... 

    a file 

assume fixed 
length blocks 

assume a single file (for now) 



CS 525 Notes 3 41 

(1) separating records 
(2) spanned vs. unspanned 
(3) sequencing 
(4) indirection 

Options for storing records in blocks: 



CS 525 Notes 3 42 

Block 
 
(a) no need to separate - fixed size recs. 
(b) special marker 
(c) give record lengths (or offsets) 
  - within each record 
  - in block header 

 
 
  

(1) Separating records 

R2 R1 R3 



CS 525 Notes 3 43 

•  Unspanned: records must be within one 
block 
   block 1         block 2 
              ... 

•  Spanned      
   block 1         block 2

        

          ... 

(2) Spanned vs. Unspanned 

R1 R2 

R1 

R3 R4 R5 

R2 R3 
(a) 

R3 
(b) R6 R5 R4 R7 

(a) 



CS 525 Notes 3 44 

 
 
  need indication    need indication 

  of partial record   of continuation 
  “pointer” to rest    (+ from where?) 

R1 R2 R3 
(a) 

R3 
(b) R6 R5 R4 R7 

(a) 

With spanned records: 



CS 525 Notes 3 45 

•  Unspanned is much simpler, but may 
waste space… 

•  Spanned essential if  
  record size > block size 

Spanned vs. unspanned: 



CS 525 Notes 3 46 

•  Ordering records in file (and block) by 
some key value 
  
 Sequential file (  ⇒ sequenced) 

(3) Sequencing 



CS 525 Notes 3 47 

Why sequencing? 

Typically to make it possible to efficiently 
read records in order 
 (e.g., to do a merge-join  — discussed later) 



CS 525 Notes 3 48 

Sequencing Options 

(a) Next record physically contiguous 

        ... 
 
(b) Linked 
 

Next (R1) R1 

R1 Next (R1) 



CS 525 Notes 3 49 

(c)  Overflow area 
 
Records 
in sequence 

R1 
R2 
R3 
R4 
R5 

Sequencing Options 



CS 525 Notes 3 50 

(c)  Overflow area 
 
Records 
in sequence 

R1 
R2 
R3 
R4 
R5 

Sequencing Options 

header 

R2.1 
R1.3 
R4.7 



CS 525 Notes 3 51 

•  How does one refer to records? 
 

(4) Indirection 

Rx 



CS 525 Notes 3 52 

•  How does one refer to records? 
 

(4) Indirection 

Rx 

Many options: 
    Physical    Indirect 



CS 525 Notes 3 53 

 Purely Physical 

     Device ID 
E.g.,  Record   Cylinder # 
  Address  =  Track #    
  or ID   Block # 
     Offset in block 

Block ID 



CS 525 Notes 3 54 

 Fully Indirect 

E.g.,  Record ID is arbitrary bit string 
 
     map 

rec ID 
   r       address   
            a 

Physical 
addr. Rec ID 



CS 525 Notes 3 55 

Tradeoff 

 Flexibility           Cost 
 to move records   of indirection 
 (for deletions, insertions) 



CS 525 Notes 3 56 

  Physical     Indirect 
 
    Many options 
    in between … 



CS 525 Notes 3 57 

Example: Indirection in block 

          Header 
 

A block:       Free space 

R3 

R4 

R1    R2 



Tuple Identifier (TID) 

•  TID is 
– Page identifier 
– Slot number 

•  Slot stores either record or pointer 
(TID) 

•  TID of a record is fixed for all time 

CS 525 Notes 3 58 



TID Operations 

•  Insertion 
– Set TID to record location (page, slot) 

•  Moving record  
– e.g., update variable-size or reorganization 
– Case 1: TID point to record 

• Replace record with pointer (new TID) 

– Case 2: TID points to pointer (TID) 
• Replace pointer with new pointer 

 CS 525 Notes 3 59 



TID Properties 

•  TID of record never changes 
– Can be used safely as pointer to record 

(e.g., in index) 

•  At most one level of indirection 
– Relatively efficient 
– Changes to physical address - changing 

max 2 pages 

CS 525 Notes 3 60 



CS 525 Notes 3 61 

Block header - data at beginning that 
     describes block 

May contain: 
 - File ID (or RELATION or DB ID) 

   - This block ID 
  - Record directory 

 - Pointer to free space 
 - Type of block (e.g. contains recs type 4;  
    is overflow, …) 
 - Pointer to other blocks “like it” 
 - Timestamp ... 



CS 525 Notes 3 62 

(1) separating records 
(2) spanned vs. unspanned 
(3) sequencing 
(4) indirection 

Options for storing records in blocks: 



CS 525 Notes 3 63 

Case Study: salesforce.com 
•  salesforce.com provides CRM services 
•  salesforce customers are tenants 
•  Tenants run apps and DBMS as service 

tenant A 

tenant B 

tenant C 

salesforce.com 

data 

 

CRM App 

 



CS 525 Notes 3 64 

Options for Hosting 

•  Separate DBMS per tenant 
•  One DBMS, separate tables per tenant 
•  One DBMS, shared tables 



CS 525 Notes 3 65 

Tenants have similar data 

customer   A  B   C  D  E  F   
               a1 b1 c1 d1 e1  - 
               a2 b2 c2  -  e2  f2 

customer   A  B   C  D  G    
               a3 b3 c2  -   -  
               a1 b1 c1  -  g1 
               a4  -    -  d1 

tenant 1: 

tenant 2: 



CS 525 Notes 3 66 

salesforce.com solution 
customer  tenant  A   B   C 
                   1     a1 b1 c1 
                   1     a2 b2 c2 
                   2     a3 b3 c2 
                   2     a1 b1 c1 

cust-other  tenant  A   f1  v1  f2  v2 ... 
                   1      a1  D   d1  E   e1 
                   1      a2  E    e2  F   f2  
                   2      a1  G   g1 
                   3      a4  D   d1 

fixed schema for 
all tenants 

var schema for 
all tenants 



CS 525 Notes 3 67 

(1) Insertion/Deletion 
(2) Buffer Management 
(3) Comparison of Schemes 

Other Topics 



CS 525 Notes 3 68 

Block 

Deletion 

Rx 



CS 525 Notes 3 69 

Options: 

(a)  Immediately reclaim space 
(b)  Mark deleted 



CS 525 Notes 3 70 

Options: 

(a)  Immediately reclaim space 
(b)  Mark deleted 

– May need chain of deleted records 

  (for re-use) 
– Need a way to mark: 

•  special characters 
• delete field 
•  in map 



CS 525 Notes 3 71 

     As usual, many tradeoffs... 

•  How expensive is to move valid record 
to free space for immediate reclaim? 

•  How much space is wasted? 
– e.g.,  deleted records, delete fields, free 

space chains,... 

 



CS 525 Notes 3 72 

Dangling pointers 

Concern with deletions 

R1 ? 



CS 525 Notes 3 73 

Solution #1: Do not worry 



CS 525 Notes 3 74 

E.g., Leave “MARK” in map or old 
location 

Solution #2: Tombstones 



CS 525 Notes 3 75 

E.g., Leave “MARK” in map or old 
location 

Solution #2: Tombstones 

•  Physical IDs 

    A block 

   

  This space   This space can 
  never re-used  be re-used 

 



CS 525 Notes 3 76 

•  Logical IDs 

ID LOC 

7788 

map 

Never reuse 
ID 7788 nor  

   space in map... 

E.g., Leave “MARK” in map or old location 

Solution #2: Tombstones 



CS 525 Notes 3 77 

Easy case: records not in sequence 
  → Insert new record at end of file or 

  in deleted slot 
  → If records are variable size, not  

  as easy... 

Insert 



CS 525 Notes 3 78 

Hard case: records in sequence 
 → If free space “close by”, not too bad... 
 → Or use overflow idea... 

Insert 



CS 525 Notes 3 79 

Interesting problems: 

•  How much free space to leave in each 
block, track, cylinder? 

•  How often do I reorganize file + overflow? 



CS 525 Notes 3 80 

Free 
space 



CS 525 Notes 3 81 

•  DB features needed 
•  Buffer Replacement Strategies 

– E.g., LRU, clock 

•  Pinned blocks    
•  Forced output 
•  Double buffering 
•  Swizzling 

Buffer Management 

in Notes02 



Buffer Manager 

•  Manages blocks cached from disk in 
main memory 

•  Usually -> fixed size buffer (M pages) 
•  DB requests page from Buffer Manager 

– Case 1: page is in memory -> return 
address 

– Case 2: page is on disk -> load into 
memory, return address 

CS 525 Notes 3 82 



Goals 

•  Reduce the amount of I/O 
•  Maximize the hit rate 

– Ratio of number of page accesses that are 
fulfilled without reading from disk 

•  -> Need strategy to decide when to  
 

CS 525 Notes 3 83 



Buffer Manager Organization 

•  Bookkeeping 
– Need to map (hash table) page-ids to 

locations in buffer (page frames) 
– Per page store fix count, dirty bit, … 
– Manage free space 

•  Replacement strategy 
–  If page is requested but buffer is full 
– Which page to emit remove from buffer 

CS 525 Notes 3 84 



FIFO 
•  First In, First Out 
•  Replace page that has been in the 

buffer for the longest time 
•  Implementation: E.g., pointer to oldest 

page (circular buffer) 
– Pointer->next = Pointer++ % M 

•  Simple, but not prioritizing frequently 
accessed pages 

CS 525 Notes 3 85 



LRU 
•  Least Recently Used 
•  Replace page that has not been 

accessed for the longest time 
•  Implementation: 

– List, ordered by LRU 
– Access a page, move it to list tail 

•  Widely applied and reasonable 
performance 

CS 525 Notes 3 86 



Clock 

•  Frames are organized clock-wise  
•  Pointer S to current frame 
•  Each frame has a reference bit 

– Page is loaded or accessed -> bit = 1 

•  Find page to replace (advance pointer) 
– Return first frame with bit = 0 
– On the way set all bits to 0 

CS 525 Notes 3 87 



Clock Example 

CS 525 Notes 3 88 

0 Page 0 

1 Page 1 

1 Page 2 

0 Page 3 

1 Page 4 

S 

Reference bit 



Other Replacement Strategies 

•  LRU-K 
•  GCLOCK 
•  Clock-Pro 
•  ARC 
•  LFU 

CS 525 Notes 3 89 



CS 525 Notes 3 90 

Swizzling 

        Memory        Disk 
 

Rec A 

block 1 

block 2 

block 1 



CS 525 Notes 3 91 

Swizzling 

        Memory        Disk 
 

Rec A 

block 1 

Rec A block 2 block 2 

block 1 



CS 525 Notes 3 92 

Row vs Column Store 
•  So far we assumed that fields of a 

record are stored contiguously (row 
store)... 

•  Another option is to store like fields 
together (column store) 



CS 525 Notes 3 93 

•  Example: Order consists of 
–  id, cust, prod, store, price, date, qty 

Row Store 

id1 cust1 prod1 store1 price1 date1 qty1

id2 cust2 prod2 store2 price2 date2 qty2

id3 cust3 prod3 store3 price3 date3 qty3



CS 525 Notes 3 94 

•  Example: Order consists of 
–  id, cust, prod, store, price, date, qty 

Column Store 

id1 cust1
id2 cust2
id3 cust3
id4 cust4
... ...

id1 prod1
id2 prod2
id3 prod3
id4 prod4
... ...

id1 price1 qty1
id2 price2 qty2
id3 price3 qty3
id4 price4 qty4
... ... ...

ids may or may not be stored explicitly 



CS 525 Notes 3 95 

Row vs Column Store 
•  Advantages of Column Store 

– more compact storage (fields need not 
start at byte boundaries) 

– efficient reads on data mining operations 

•  Advantages of Row Store 
– writes (multiple fields of one record)more 

efficient 
– efficient reads for record access (OLTP) 



CS 525 Notes 3 96 

•  There are 10,000,000 ways to organize 
my data on disk… 

   Which is right for me? 

Comparison 



CS 525 Notes 3 97 

Issues: 

Flexibility    Space Utilization 
 
 
Complexity   Performance 



CS 525 Notes 3 98 

 To evaluate a given strategy, compute      
following parameters: 
 -> space used for expected data 
 -> expected time to 
   - fetch record given key 
   - fetch record with next key 
   - insert record 
   - append record 
   - delete record 
   - update record 
   - read all file 
   - reorganize file 



CS 525 Notes 3 99 

Example 

How would you design Megatron 3000 
storage system? (for a relational DB, low end) 
– Variable length records? 
– Spanned? 
– What data types? 
– Fixed format? 
– Record IDs ? 
– Sequencing? 
– How to handle deletions? 



CS 525 Notes 3 100 

•  How to lay out data on disk 

   Data Items 

     Records 

      Blocks 

       Files 

     Memory 

      DBMS 

    

Summary 



CS 525 Notes 3 101 

 How to find a record quickly, 
  given a key 

Next 


