
Name CWID

Quiz
2

April 15th, 2013

CS525 - Advanced Database
Organization

Solutions

Please leave this empty! 1 2 3 Sum

Instructions
• Things that you are allowed to use

– Textbook
– Printed lecture notes

• Things that you are not allowed to use

– Personal notes

• The quiz is 45 minutes long

• Multiple choice questions are graded in the following way: You get points for correct answers and points
subtracted for wrong answers. The minimum points for each questions is 0. For example, assume there
is a multiple choice question with 6 answers - each may be correct or incorrect - and each answer gives
1 point. If you answer 3 questions correct and 3 incorrect you get 0 points. If you answer 4 questions
correct and 2 incorrect you get 2 points. . . .

• For your convenience the number of points for each part and questions are shown in parenthesis.

• There are 3 parts in this quiz

1. Physical Optimization
2. Schedules
3. ARIES

DB - Spring 2013: Page 2 (of 9)

Part 1 Physical Optimization (Total: 40 Points)

Consider the following relations R(A, B), S(C), T (D, E) with S = 1
100 (100 tuples fit on each page). The sizes

and value distributions are:

N(R) = 10000 V (R, A) = 10000 V (R, B) = 100
N(S) = 300 V (S, C) = 300
N(T) = 5000 V (T, D) = 5000 V (T, E) = 600

Question 1.1 Greedy Enumeration (40 Points)

Use the greedy join enumeration algorithm to find the cheapest plan for the join R ><B=C S ><C=D T . Assume
that nested-loop is the only available join implementation with the left input being the “outer” (for each tuple
from the outer we have to scan the whole inner relation). Furthermore, there are no indicies defined on any of
the relations (that is you have to use sequential scan for each of the relations). As a cost model consider the
total number of I/O operations. For example, if you join two relations with 5, 000 and 10, 000 tuples with
S = 1

10 , where the 5, 000 tuple relation is the outer, then the cost would be 5, 000, 000. Assume that the system
supports pipelining for the outer input of a join. That is if you join the result of a join with a relation where
the join result is the outer, then there is no I/O cost for scaning the outer. Hint: You will have to estimate
the size of intermediate results. Use the estimation based on the number of values and not the one based on
the size of the domain. Use the assumption that the number of values in a join attribute of a join result is the
minimum of the number of values in the join attribute of each input.
Write down the state after each iteration of the algorithm using the following notation. Write (((R1, R2), . . . , Rn−1), Rn)C,S

to denote a plan as shown below with I/O cost C and result size S.

><

><

><

Rn

Rn−1

R2R1

Solution

DB - Spring 2013: Page 3 (of 9)

Initialization:

(R)100,10000, (S)3,300, (T)50,5000

n = 1:

Here we have 6 different options how to join two of the plans from the initialization:

(R, S)30100,10000, (R, T)500100,10000, (S, R)30003,10000, (S, T)15003,300, (T, R)500050,10000, (T, S)15050,300

As an example take the join (R, S). Here R is the outer and S is the inner. Using the formula from class the
estimated result size is N(R)·N(S)

max(V (R,B),V (S,C)) = 10000·300
300 = 10000. The cost is computed as: For each tuple from

R (N(R)) we have to scan S once (3 I/Os). Thus, the cost is B(R) + N(R) · B(S) = 100 + 10000 · 3 = 30100
I/Os.

15003, 300
><

TS

, (R)100,10000

n = 2:

Now we need to consider two join options:

(R, (S, T))45103,10000, ((S, T), R)45003,10000

45003, 10000
><

>< R

TS

DB - Spring 2013: Page 4 (of 9)

Part 2 Schedules (Total: 20 Points)

Question 2.1 Schedule Classes (12 Points)

Indicate which of the following schedules belong to which class. Recall transaction operations are modelled as
follows:

w1(A) transaction 1 wrote item A
r1(A) transaction 1 read item A

c1 transaction 1 commits
a1 transaction 1 aborts

S1 = r1(A), w2(A), r1(B), c1, w3(B), r3(B), w3(A), c3, r2(C), c2

S2 = r1(A), w2(B), r1(B), c1, c2

S3 = r1(A), w2(B), c2, r1(B), w1(B), c1

S4 = w1(A), w2(A), c2, w1(A), c1

n S1 is recoverable

n S1 is cascade-less

q S1 is strict

q S2 is recoverable

q S2 is cascade-less

q S2 is strict

n S3 is recoverable

n S3 is cascade-less

n S3 is strict

n S4 is recoverable

n S4 is cascade-less

q S4 is strict

DB - Spring 2013: Page 5 (of 9)

Question 2.2 Create a Strict Schedule (8 Points)

Consider the following set of transactions:

T1 = r1(A), w1(A), c1

T2 = r2(B), r2(A), w2(B), w2(A), c2

T3 = r3(B), w3(B)

1. Write a strict history involving these three transactions.

Solution

Several solutions are correct. For example,

S = r1(a), w1(A), c1, r2(B), r2(A), w2(B), w2(A), c2, r3(C), w3(C)

In a correct solution, if one transaction Ti writes an item, then the others cannot read nor write the same item
until Ti commits.

DB - Spring 2013: Page 6 (of 9)

Part 3 ARIES (Total: 30 Points)

Question 3.1 Transaction Rollback (12 Points)

Consider the state of the log shown below. For simplicity we do not show the actual undo/redo actions for
updates, but instead show only the affected page. Assume that transaction T1 aborts. Write down the new
entries that would be added to the log during the rollback of T1.

Log
LSN Type TID PrevLSN UndoNxtLSN

Data
1 begin 1 - - -
2 update 1 1 - Page 1
3 begin 2 - - -
4 update 2 3 - Page 1
5 update 1 2 - Page 2
6 update 1 5 - Page 2
7 update 2 4 - Page 4
8 commit 2 7 - -
9 update 1 6 - Page 3

Solution

LSN Type TID PrevLSN UndoNxtLSN
Data

10 CLR 1 - 6 Page 3
11 CLR 1 - 5 Page 2
12 CLR 1 - 2 Page 2
13 CLR 1 - 1 Page 1

DB - Spring 2013: Page 7 (of 9)

Question 3.2 Recovery (18 Points)

Consider the state of the log and pages on disk shown below. For simplicity we do not show the actual undo/redo
actions for updates, but instead show only the affected page. Assume a crash occurred after the last log entry.
Answer the following questions:

1. Analysis: Write down the result of the analysis phase (RedoLSN, Transaction Table, Dirty Page Table)

2. Redo: Which pages will be loaded from disk during redo? Which pages will be modified during redo?

3. Undo: Write down the additional log entries that will be written during undo.

Log
LSN Type TID PrevLSN UndoNxtLSN

Data
1 begin 1 - - -
2 begin 2 - - -
3 update 2 2 - Page 3
4 begin 3 - - -
5 begin 4 - - -
6 commit 2 - - -
7 begin_cp - - - -
8 update 1 1 - Page 4
9 update 3 4 - Page 5
10 end_cp - - - Transaction Table: < T1, 1 >, < T3, 4 >, < T4, 5 >,

Dirty Page Table: < 3, 3 >
11 update 3 9 - Page 3
12 commit 3 11 - -
13 begin 5 - - -

Disk
PageID PageLSN
3 0
4 8
5 0

Solution
(1):
RedoLSN: 3
Transaction Table: < T1, 8 >, < T4, 5 >, < T5, 13 >
Dirty Page Table: < 3, 3 >, < 4, 8 >, < 5, 9 >

(2):
All pages (3,4,5) have to be loaded from disk.
Only pages 3 and 5 will be modified, for page 4 the update from log entry 8 is already reflected on disk.

(3):
Transaction T1, T4, T5 have to be rolled back. Since T1 is the only transaction that executed an update. The
CLR written during undoing this update is shown below.
LSN Type TID PrevLSN UndoNxtLSN Data
14 CLR 1 - 1 Page 4

DB - Spring 2013: Page 8 (of 9)

DB - Spring 2013: Page 9 (of 9)

