
Name CWID

Exam
1

March 13th, 2013

CS525 - Midterm Exam
Solutions

Please leave this empty! 1 2 3 4 5 Sum

Instructions
• Things that you are not allowed to use

– Personal notes
– Textbook
– Printed lecture notes

• The quiz is 90 minutes long

• Multiple choice questions are graded in the following way: You get points for correct answers and points
subtracted for wrong answers. The minimum points for each questions is 0. For example, assume there
is a multiple choice question with 6 answers - each may be correct or incorrect - and each answer gives
1 point. If you answer 3 questions correct and 3 incorrect you get 0 points. If you answer 4 questions
correct and 2 incorrect you get 2 points. . . .

• For your convenience the number of points for each part and questions are shown in parenthesis.

• There are 5 parts in this quiz

1. Disk Organization
2. SQL
3. Relational Algebra
4. Index Structures
5. Operator Implementations

DB - Spring 2013: Page 2 (of 15)

Part 1 Disk Organization (Total: 14 Points)

Question 1.1 Record Layout and Identification (4 Points)

Check all of the following statements that are true.

q Given a TID of a record, the record can be loaded from disk with up to 3 disk assesses.

n Using the TID approach, the identifier of a record does never change in its lifetime.

n The space occupied by a tombstone is never reused.

q A fixed length representation requires the same amount of space as a variable length representation to
represent a given record.

n Without using a null-map we would have to reserve one value of each datatype to represent NULL.

q Using variable length records and pages with a header at the beginning of a page, it is a good idea to
store records starting at the beginning page. E.g., the first record on a page will be placed right after
the page header.

Question 1.2 Disk Access (3 Points)

Consider a disk with the following properties:

• Blocks size: 1KB

• Avg. seek time: 25ms

• RPM: 3000

• Transfer rate: 10 MB/sec

Compute the time to read 1000 blocks using random I/O (the 1000 blocks are randomly distributed over the
disk) and sequential I/O (the 1000 blocks are in sequence). After locating a block on disk you can assume that
sequential access is operating at transfer rate.

Solution
Avg. rotational delay: 50 revolutions per sec - so 20ms per revolution which means 10ms.
Random I/O: 1000 ∗ (25 + 10 + 0.1)ms = 1000 ∗ 35.1ms = 35.1sec
Sequential I/O: 25 + 10 + 1000 ∗ (0.1)ms = 135ms

DB - Spring 2013: Page 3 (of 15)

Question 1.3 Page Replacement LRU (7 Points)

Consider a buffer pool with 6 pages using the LRU page replacement strategy. Initially the buffer pool is in the
state shown below. We use the following notation [page]dirty

fix to denote the state of each buffer frame. page is
the number of the page in the frame, fix is its fix count, and dirty is indicating with an asterix if the page is
dirty. E.g., [5]∗2 denotes that the frame stores page 5 with a fix count 2 and that the page is dirty. The current
state was the result of executing the sequence of operations shown below. Here p stands for pin, u for unpin,
and d for marking a page as dirty.

p(3),p(2),p(5),u(3),u(2),p(7),d(7),u(7),p(10),p(11),p(5),u(5)

[11]1[2]0[5]1[7]∗0[10]1

Write down the state of the buffer pool after executing the following requests.

u(5),p(13),p(14),p(15),u(10),u(15),p(20)

Solution

[11]1[13]1[15]0[14]1[20]1

DB - Spring 2013: Page 4 (of 15)

Part 2 SQL (Total: 22 Points)

Consider the following database schema and instance:

movie
title length year

Citizen Kane 119 1941
Batman Begins 140 2005
American Psycho 102 2000

person
name

Orson Welles
Christopher Nolan
Agnes Moorehead
Christian Bale
Mary Harron

directedBy
person movie

Orson Welles Citizen Kane
Christopher Nolan Batman Begins

Mary Harron American Psycho

played
playedBy character movie

Agnes Moorehead Mary Kane Citizen Kane
Orson Welles Kane Citizen Kane
Christian Bale Batman Batman Begins
Christian Bale Patrick Bateman American Psycho

Hints:

• When writing queries do only take the schema into account and not the example data given here. That
is you queries should return correct results for all potential instances of this schema.

• Underlined attribute form the primary key of an relation.

• The attribute person and movie of relation directedBy are foreign keys to the attributes name in relation
person and title in relation movie respectively.

• The attribute playedBy and movie of relation played are foreign key to the attributes name in relation
person and title in relation movie respectively.

DB - Spring 2013: Page 5 (of 15)

Question 2.1 (6 Points)

Write an SQL statement that returns persons (the name) that are both directors and actors, i.e., have directed
at least one movie and have played a character in at least one movie.

Solution
SELECT DISTINCT name
FROM person p , d irectedBy d , played l
WHERE p . name = d . person AND p . name = l . playedBy

The access to relation person can actually be avoided here by executing the join on person = playedBy.
Alternatively:

SELECT person AS name FROM directedBy
INTERSECT
SELECT playedBy FROM played

Question 2.2 (9 Points)

Write an SQL statement that returns the five directors (names) that directed the most movies.

Solution
SELECT person
FROM directedBy
GROUP BY person
HAVING count (∗) >= ANY (SELECT count (∗)

FROM directedBy
GROUP BY person
ORDER BY count (∗) DESC
LIMIT 5)

ORDER BY count (∗) DESC
LIMIT 5 ;

Alternatively, using applying a min to the subquery to get the 5th directory and join with aggregation on <.

DB - Spring 2013: Page 6 (of 15)

Question 2.3 (7 Points)

Write an SQL query that returns the names of movie characters and persons where the name contains both the
substring “Bat” and “man”.

Solution
SELECT name FROM person WHERE name LIKE ’%Bat%’ AND name LIKE ’%man%’
UNION
SELECT cha rac t e r FROM playedBy WHERE cha rac t e r LIKE ’%Bat%’ AND name LIKE ’%man%’

or

SELECT ∗
FROM

(SELECT name FROM person
UNION
SELECT cha rac t e r FROM playedBy) names

WHERE name LIKE ’%Bat%’ AND name LIKE ’%man%’

DB - Spring 2013: Page 7 (of 15)

Part 3 Relational Algebra (Total: 24 Points)

Question 3.1 Relational Algebra (10 Points)

Write an relational algebra expression over the schema from the SQL part (part 2) that returns all actors (their
names) that played in the movie “Citizen Kane” and have acted in at least three movies (bag-semantics).

Solution

q = kaneActors ∩moreThreeActors
kaneActors = δ(πplayedBy(σmovie=′CitizenKane′(played)))

moreThreeActors = πplayedBy(σcount(∗)>2(count(∗)αplayedBy(δ(πplayedBy,movie(played)))))

Alternatively, using a join.

Question 3.2 SQL → Relational Algebra (8 Points)

Translate the following SQL query into relational algebra (bag semantics).

SELECT count (∗) , year
FROM movies m, d i r e c t ed d
WHERE m. movie = d . movie AND d . person = ’Orson␣Welles ’
GROUP BY year

Solution

q = πcount(∗),year(count(∗)αyear(movies><m.title=d.movie σperson=′OrsonW elles′(directed)))

DB - Spring 2013: Page 8 (of 15)

Question 3.3 Equivalences (6 Points)

Consider the following relational schemata:
R(A,B), S(B,C), T (C,D).
Check the equivalences that are correct (bag semantics). For example R ≡ R should be checked, whereas R ≡ S
should not be checked.

n δ(σC1(R) ∩ σC2(R)) ≡ δ(σC1∧C2(R))

n δ(sum(A)αB(R)) ≡sum(A) αB(R)

n R>< (S ><T) ≡ (T ><R)><S

q R><R ≡ R

n σB=3(R)><S ≡ R><σB=3(S)

q R− δ(R) ≡ ∅

DB - Spring 2013: Page 9 (of 15)

Part 4 Index Structures (Total: 24 Points)

Question 4.1 B+-tree Operations (14 Points)

Given is the B+-tree shown below (n = 3 or n = 2). Execute the following operations and write down the
resulting B+-tree:

delete(17),insert(24),delete(23),delete(24)

13 23

1 11 13 17 23 52

13 23

1 11 13 17 23 52

Solution

DB - Spring 2013: Page 10 (of 15)

delete(17)

13 23

1 11 13 23 52

insert(24)

23

13 24

1 11 13 23 24 52

delete(23)

23

13 52

1 11 13 24 52

delete(24)

13 23

1 11 13 52

DB - Spring 2013: Page 11 (of 15)

Solution

DB - Spring 2013: Page 12 (of 15)

delete(17)

13

1 11 13 23 52

or

23

1 11 13 23 52

insert(24)

13 24

1 11 13 23 24 52

or

23

1 11 13 23 24 52

delete(23)

13

1 11 13 24 52

or

23

1 11 13 24 52

delete(24)

13

1 11 13 52

or

13

1 11 13 52

DB - Spring 2013: Page 13 (of 15)

Question 4.2 Extensible Hashing (10 Points)

Consider the extensible Hash index shown below. Each page holds two keys. Write down the resulting index
after inserting keys 3, 4, 5 with hash values h(3) = 1000, h(4) = 1100, h(5) = 0000.

00 01 10 11

0001 0010 0100 0111 1111

Solution
insert(3)

00 01 10 11

0001 0010 0100 0111 1111 1000

insert(4)

00 01 10 11

0001 0010 0100 0111 1000 1100 1111

insert(5)

000 001 010 011 100 101 110 111

0000 0001 0010 0100 0111 1000 1100 1111

DB - Spring 2013: Page 14 (of 15)

Part 5 Operator Implementations (Total: 16 Points)

Question 5.1 External Sorting (7 = 3.5 + 3.5 Points)

Assume we haveM = 101 memory pages available for sorting and have to sort a relation R with B(R) = 30, 000
pages and N(R) = 600, 000 records.

1. Compute the number of I/O operations needed to sort R using external merge sort without using a
min-heap during run generation.

2. Assume there is a B+-tree index on the sort attribute(s) with K = 100 keys in each leaf node and height
3. How many I/Os operations are needed to sort relation R if at the beginning of the sort none of the
pages of the B+-tree are in memory.

Solution

1. 2 ·B(R) · (1 + dlogM−1(B(R)/M)e) = 2 · 30, 000 · (1 + 2) = 60, 000 · 3 = 180, 000 I/Os

2. B+-tree

• Clustered N(R)/K +HT (I) +B(R) = 600, 000/100 + 3 + 30, 000 = 36, 003 I/Os
• Unclustered N(R)/K +HT (I) +N(R) = 600, 000/100 + 3 + 600, 000 = 636, 003 I/Os

Question 5.2 Join I/O Cost Estimation (9 = 3+3+3 Points)

Consider two relations R and S with B(R) = 3, 000 and B(S) = 5, 000. You have M = 201 memory pages
available. Compute the minimum number of I/O operations needed to join these two relations using block-
nested-loop join, merge-join (the inputs are not sorted), and hash-join.

Solution

• NL: (B(S) + (M − 1)) · B(R)
M−1 = (5, 000 + 200) · 3,000

200 = 5, 200 · 15 = 78, 000 I/Os

• MJ: We can generate sorted runs of size 200 that means the number of sorted runs from both R and S is
low enough to keep one page from each run in memory. Thus, we can execute the merge phase and join
in one path. 3 · (B(R) +B(S)) = 3 · 8, 000 = 24, 000 I/Os.

• HJ:
√
B(R) < M and

√
R(S) < M . This means we only need one partition pass. 3 · 8, 000 = 24, 000

I/Os.

DB - Spring 2013: Page 15 (of 15)

