
Name CWID

Exam
2

May 10th, 2013

CS525 - Final Exam
Solutions

Please leave this empty! 1 2 3 4 5 Sum

Instructions
• Things that you are not allowed to use

– Personal notes
– Textbook
– Printed lecture notes

• The quiz is 120 minutes long

• Multiple choice questions are graded in the following way: You get points for correct answers and points
subtracted for wrong answers. The minimum points for each questions is 0. For example, assume there
is a multiple choice question with 6 answers - each may be correct or incorrect - and each answer gives
1 point. If you answer 3 questions correct and 3 incorrect you get 0 points. If you answer 4 questions
correct and 2 incorrect you get 2 points. . . .

• For your convenience the number of points for each part and questions are shown in parenthesis.

• There are 5 parts in this quiz

1. SQL and Relational Algebra
2. Index Structures
3. Sorting
4. Schedules and Concurrency Control
5. Physical Optimization

DB - Spring 2013: Page 2 (of 13)

Part 1 SQL and Relational Algebra (Total: 40 Points)

Consider the following database schema and instance:

politician
name party gender
Obama Democrats m
Bush Republicans m
Paul Republicans m

Clinton Democrats f

office
title salary

President 500.000
Governor 100.000

Mister of Defence 600.000
Secretary of State 30.000

lobbyist
company industry

BP gas & oil
Nestle food

Bushmaster arms
Boeing arms

held
politician office year
Obama President 1990
Obama Governor 2004
Clinton President 2030
Bush President 1985
Bush Secretary of State 2013
Paul Minister of Defence 2003
Paul Minister of Defence 2004

sponsored
lobbyist politician year amount

BP Obama 1990 1,000,000
BP Obama 2004 30,000,000

Bushmaster Bush 1985 100,000
Bushmaster Bush 2013 15,000,000

Boeing Bush 2013 5,000,000
BP Bush 1985 350,000

Boeing Paul 2003 10,000
Boeing Paul 2004 400,000
Nestle Clinton 2030 40,000

Hints:

• When writing queries do only take the schema into account and not the example data given here. That
is you queries should return correct results for all potential instances of this schema.

• Underlined attribute form the primary key of an relation.

• The attribute politician and office of relation help are foreign keys to the attributes name in relation
politician and title in relation office respectively.

• The attribute lobbyist and politician of relation sponsored are foreign key to the attributes company in
relation lobbyist and name in relation politician respectively.

DB - Spring 2013: Page 3 (of 13)

Question 1.1 (8 Points)

Write an SQL statement that returns the company of all lobbyists that have sponsored at least one democrat
politician during a year where this politician became President.

Solution
SELECT DISTINCT l . company
FROM p o l i t i c i a n p , o f f i c e o , l o bby i s t l , he ld h , sponsored s
WHERE p . name = h . p o l i t i c i a n

AND o . t i t l e = h . o f f i c e
AND l . company = s . company
AND p . name = s . p o l i t i c i a n
AND s . year = h . year
AND o . t i t l e = ’ Pres ident ’
AND p . party = ’Democrats ’

The access to relations office and lobbyist can actually be avoided here:

SELECT DISTINCT s . l o bby i s t AS company
FROM p o l i t i c i a n p , he ld h , sponsored s
WHERE p . name = h . p o l i t i c i a n

AND p . name = s . p o l i t i c i a n
AND s . year = h . year
AND h . o f f i c e = ’ Pres ident ’
AND p . party = ’Democrats ’

Question 1.2 (8 Points)

Write an SQL statement that returns the total amount of lobbyist money retrieved per political party and
company. For example, an example output that may be produced by this query is (Democrats, BP, 10,000)
that is the format is (Party, Company, Sum of money). The example was wrong, solutions that group by
politician and company are correct too.

Solution

SELECT party , l obby i s t , sum (amount) AS t o t a l
FROM p o l i t i c i a n p , sponsored s
WHERE p . name = s . p o l i t i c i a n
GROUP BY party , l o bby i s t

Alternatively, an redundant additional join with relation lobbyist may be used.

DB - Spring 2013: Page 4 (of 13)

Question 1.3 (10 Points)

Write an SQL statements that returns the name of the politician that retrieved the highest total amount of
sponsorship.

Solution
SELECT name
FROM

(SELECT p . name , sum (amount) AS t o t a l
FROM p o l i t i c i a n p JOIN sponsored s ON (p . name = s . p o l i t i c i a n)
GROUP BY name) AS sub

WHERE t o t a l = (SELECT max(t o t a l)
FROM

(SELECT p . name , sum (amount) AS t o t a l
FROM p o l i t i c i a n p JOIN sponsored s ON (p . name = s . p o l i t i c i a n)
GROUP BY name) AS sub

) ;

or using limit and order by

SELECT p . name , sum (amount) AS t o t a l
FROM p o l i t i c i a n p JOIN sponsored s ON (p . name = s . p o l i t i c i a n)
GROUP BY name
ORDER BY sum (amount) DESC
LIMIT 1 ;

Question 1.4 SQL → Relational Algebra (7 Points)

Translate the following SQL query into relational algebra (bag semantics).

SELECT sum (s a l a r y) AS a l l S a l , party
FROM p o l i t i c i a n p ,

o f f i c e o ,
he ld h ,
(SELECT DISTINCT p o l i t i c i a n
FROM sponsored
WHERE l o bby i s t = ’BP ’ OR l o bby i s t = ’ Boeing ’) s

WHERE p . name = h . p o l i t i c i a n AND o . t i t l e = h . o f f i c e AND s . p o l i t i c i a n = p . name
GROUP BY party

Solution

q = ρallSal←sum(salary)(πsum(salary),party(sum(salary)αparty(join)))
join = ((politician><name=politician held)><office=title office)><name=politician s

s = δ(πpolitician(σlobbyist=′BP ′∨lobbyist=′Boeing′(sponsored)))

DB - Spring 2013: Page 5 (of 13)

Question 1.5 Equivalences (7 Points)

Consider the following relational schemata:
R(A,B), S(C,D).
Prove or disprove the equivalence (set semantics) shown below using the operator definition and algebra equiva-
lence discussed in class. In each step of the proof write down which equivalence you are using (e.g., associativity
of union or pushing selections).

σ(A=5)∧(B>3)(R><B=C S) ≡ σ(A=5)∧(B>3)(R)><σC>3(S)

The join condition is missing in the right-hand side: B = C

Solution
Since the equivalence above is missing a join condition this is actually wrong. Thus, everybody that is disproving
this is correct too.

σ(A=5)∧(B>3)(R><B=C S) ≡ σA=5(σB>3(R><B=C S))
(Splitting of conjunctive selections into several selections)

σA=5(σB>3(R><B=C S)) ≡ σB>3(σA=5(R><B=C S)) (Commutativity of selection)
σB>3(σA=5(R><B=C S)) ≡ σB>3(σA=5(R)><B=C S) (Direct pushdown of selections through joins)
σB>3(σA=5(R)><B=C S) ≡ σB>3(σA=5(R))><B=C σC>3(S)

(Direct pushdown of selections through joins, and implied selection conditions)
σB>3(σA=5(R))><B=C σC>3(S) ≡ σ(A=5)∧(B>3)(R)><σC>3(S)

(Combining adjacent selections using conjunction and commutativity of boolean AND.)

DB - Spring 2013: Page 6 (of 13)

Part 2 Index Structures (Total: 25 Points)

Question 2.1 B+-tree Operations (15 Points)

Given is the B+-tree shown below (n = 2). When splitting or merging nodes follow the conventions used in
the last assignment:

• Leaf Split: In case a leaf node need to be split during insertion and n is even, the left node should get
the extra key. E.g, if n = 2 and we insert a key 4 into a node [1,5], then the resulting nodes should be
[1,4] and [5]. For odd values of n we can always evenly split the keys between the two nodes. In both
cases the value inserted into the parent is the smallest value of the right node.

• Non-Leaf Split: In case a non-leaf node needs to be split and n is odd, we cannot split the node evenly
(one of the new nodes will have one more key). In this case the “middle” value inserted into the parent
should be taken from the right node. E.g., if n = 3 and we have to split a non-leaf node [1,3,4,5], the
resulting nodes would be [1,3] and [5]. The value inserted into the parent would be 4.

• Leaf Underflow: In case of a leaf underflow your implementation should first try to redistribute values
from a sibling and only if this fails merge the node with one of its siblings. Both approaches should prefer
the left sibling. E.g., if we can borrow values from both the left and right sibling, you should borrow from
the left one.

Execute the following operations and write down the resulting B+-tree after each operation.

insert(6),insert(9),insert(8),delete(2),delete(6)

4 15

2 4 7 15

Solution

DB - Spring 2013: Page 7 (of 13)

insert(6)

7

4 15

2 4 6 7 15

insert(9)

7

4 15

2 4 6 7 9 15

insert(8)

7

4 15

2 4 6 7 8 9 15

delete(2)

7

6 15

4 6 7 8 9 15

delete(6)

9

7 15

4 7 8 9 15

DB - Spring 2013: Page 8 (of 13)

Question 2.2 Extensible Hashing (10 Points)

Consider the extensible Hash index shown below. Each page holds two keys. Execute the following operations
insert(6),insert(2),insert(7),delete(2) and write down the resulting index after each operation. Assume
the hash function assigns values as follows: h(6) = 0011, h(2) = 0000, h(7) = 1111. The original version was
h(6) = 0010. Using this variant is correct too!

0 1

0010 0100 1010 1011

Solution
insert(6)

00 01 10 11

0010 0011 0100 1010 1011

insert(2)

000 001 010 011 100 101 110 111

0000 0010 0011 0100 1010 1011

insert(7)

000 001 010 011 100 101 110 111

0000 0010 0111 0100 1010 1011 1111

delete(2)

00 01 10 11

0010 0011 0100 1010 1011 1111

DB - Spring 2013: Page 9 (of 13)

Part 3 Sorting (Total: 10 Points)

Question 3.1 External Sorting (10 = 5 + 5 Points)

Assume we haveM = 101 memory pages available for sorting and have to sort a relation R with B(R) = 20, 000
pages and N(R) = 80, 000 records.

1. Compute the number of I/O operations needed to sort R using external merge sort without using a
min-heap during run generation.

2. Assume there is a clustered B+-tree index on the sort attribute(s) with K = 50 keys in each leaf node
and height 4. How many I/Os operations are needed to sort relation R if at the beginning of the sort
none of the pages of the B+-tree are in memory.

Solution

1. 2 ·B(R) · (1 + dlogM−1(B(R)/M)e) = 2 · 20, 000 · (1 + 2) = 120, 000 I/Os

2. clustered B+-tree

• N(R)/K +HT (I) +B(R) = 80, 000/50 + 4 + 20, 000 = 21, 604 I/Os

DB - Spring 2013: Page 10 (of 13)

Part 4 Schedules and Concurrency Control (Total: 15 Points)

Question 4.1 Schedule Classes (15 Points)

Indicate which of the following schedules belong to which class. Recall transaction operations are modelled as
follows:
w1(A) transaction 1 wrote item A
r1(A) transaction 1 read item A
c1 transaction 1 commits
a1 transaction 1 aborts

S1 = r1(A), w2(A), r1(B), c1, w3(B), r3(B), c3, c2

S2 = r2(B), r1(B), r3(A), w1(B), r2(C), w2(C), c2, w1(B), c1, w3(A), c3

S3 = r1(A), w2(B), r1(B), w1(B), r2(A), c1, w2(A), c2

S4 = r2(B), r1(B), r2(A), w2(A), w1(B), c2, c1

n S1 is recoverable

n S1 is cascade-less

n S1 is conflict serializable

n S1 is 2PL

q S1 is SS2PL

n S2 is recoverable

n S2 is cascade-less

n S2 is conflict serializable

n S2 is 2PL

q S2 is SS2PL

q S3 is recoverable

q S3 is cascade-less

q S3 is conflict serializable

q S3 is 2PL

q S3 is SS2PL

n S4 is recoverable

n S4 is cascade-less

n S4 is conflict serializable

n S4 is 2PL

q S4 is SS2PL

DB - Spring 2013: Page 11 (of 13)

Part 5 Physical Optimization (Total: 30 Points)

Consider the following relations R(A,B), S(C,D), T (E,F) with S(R) = S(S) = S(T) = 1
5 (5 tuples fit on each

page). The sizes and value distributions are shown below. Recall that N(R) is the number of tuples in R, B(R)
is the number of pages of relation R, and V (R,A) is the number of distinct values or relation R in attribute A.

N(R) = 3000 V (R,A) = 3000 V (R,B) = 1000
N(S) = 1000 V (S,C) = 500 V (S,D) = 500
N(T) = 50 V (T,E) = 10 V (T, F) = 50

Question 5.1 Dynamic Programming (30 Points)

Use the dynamic programming join enumeration algorithm to find the cheapest left-deep plan for the join
R><B=C S ><D=E T . Assume that block nested-loop is the only available join implementation with the left
input being the “outer” (for each chunk from the outer we have to scan the whole inner relation). Furthermore,
there are no indicies defined on any of the relations (that is you have to use sequential scan for each of the
relations). As a cost model consider the total number of I/O operations. For example, if you join two
relations with 5, 000 and 10, 000 tuples with S = 1

10 , where the 5, 000 tuple relation is the outer and M = 101
memory pages are available, then the cost would be 5, 500. Assume that the system does not support pipelining
at all. That is you need to consider the cost of writing the result of a join to disk and reading it from disk when
executing the next level join. Note that you do not have to consider any I/O to write the final result. Ignore
plans containing cross-products. Hint: You will have to estimate the size of intermediate results. Use the
estimation based on the number of values and not the one based on the size of the domain. Use the assumption
that the number of values in a join attribute of a join result is the minimum of the number of values in the join
attribute of each input.
Write down the memoized query plans in optPlan after each iteration of the algorithm using the following
notation. Write {R1, R2, . . . , Rn} : (R1, R2, . . . , Rn)C,S to denote that the plan shown below with I/O cost C
and result size S is the bet plan for the set {R1, . . . , Rn}.

><

><

><

Rn

Rn−1

R2R1

Solution

DB - Spring 2013: Page 12 (of 13)

Initialization:

{R} = (R)600,3000 {S} = (S)200,1000 {T} = (T)10,50

i = 2:

Here we have 4 different options how to join two of the plans from the initialization (the other options contain
cross-products and, thus, are not considered):

(R,S)2400,3000, (S,R)2000,3000, (S, T)240,100, (T, S)230,100

As an example take the join (R,S). Here R is the outer and S is the inner. Using the formula from class the
estimated result size is N(R)·N(S)

max(V (R,B),V (S,C)) = 3000·1000
1000 = 3000. The cost is computed as: For each chunk of size

M − 1 from R (B(R)
M−1) we have to scan S once (200 I/Os) plus we have to read R once (600 I/Os). Thus, the

cost is B(R) + B(R)/100 · B(S) = 600 + 6 · 200 = 1800 I/Os. In addition we have to account for the cost of
writing the results to disk: 600 I/Os. Thus, the total cost is 2400 I/Os.

{R,S} = (S,R)2400,3000 {S, T} = (T, S)230,100

i = 3:

Now we need to consider all partitions of {R,S, T} that do not contain cross-products. These are (R), (S, T)
and (R,S), T . For each partition S,O we consider all join options between optP lan({S} with optP lan({O}).
Since we only allow for left-deep plans the only valid option is to join the result of the two element subset with
the singleton subset.

(T, S,R)980,300, (S,R, T)3050,300

The final state of optPlan is

{R,S, T} = (T, S,R)980,300

DB - Spring 2013: Page 13 (of 13)

