
Outline

0) Course Info
1)  Introduction
2)  Data Preparation and Cleaning
3)   Schema matching and mapping
4)  Virtual Data Integration
5)  Data Exchange
6)  Data Warehousing
7)  Big Data Analytics
8)  Data Provenance

 1 CS520 - 3) Matching and Mapping

3. Why matching and mapping?

•  Problem: Schema Heterogeneity
– Sources with different schemas store overlapping

information
– Want to be able to translate data from one schema

into a different schema
•  Datawarehousing
•  Data exchange

– Want to be able to translate queries against one
schema into queries against another schema

•  Virtual dataintegration

2 CS520 - 3) Matching and Mapping

3. Why matching and mapping?

•  Problem: Schema Heterogeneity
– We need to know how elements of different

schemas are related!
– Schema matching

•  Simple relationships such as attribute name of
relation person in the one schema corresponds to
attribute lastname of relation employee in the other
schema

– Schema mapping
•  Also model correlations and missing information such

as links caused by foreign key constraints

3 CS520 - 3) Matching and Mapping

3. Why matching and mapping?

•  Why both mapping and matching
– Split complex problem into simpler subproblems

•  Determine matches and then correlate with constraint
information into mappings

– Some tasks only require matches
•  E.g., matches can be used to determine attributes storing

the same information in data fusion

– Mappings are naturally an generalization of
matchings

4 CS520 - 3) Matching and Mapping

3. Overview

•  Topics covered in this part
– Schema Matching
– Schema Mappings and Mapping Languages

5 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Problem: Schema Matching
– Given two (or more schemas)

•  For now called source and target

– Determine how elements are related
•  Attributes are representing the same information

–  name = lastname
•  Attribute can be translated into an attribute

– MonthlySalary * 12 = Yearly Salary

•  1-1 matches vs. M-N matches
–  name to lastname
–  name to concat(firstname, lastname)

6 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Why is this hard?
– Insufficient information: schema does not

capture full semantics of a domain
– Schemas can be misleading:

•  E,g., attributes are not necessarily descriptive
•  E.g., finding the right way to translate attributes not

obvious

7 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  What information to consider?
– Attribute names

•  or more generally element names

– Structure
•  e.g., belonging to the same relation

– Data
•  Not always available

•  Need to consider multiple types to get
reasonable matching quality
– Single types of information not predictable enough

8 CS520 - 3) Matching and Mapping

3.1 Schema Mapping

9 CS520 - 3) Matching and Mapping

Example:	 Types	 of	 Matching	

Person
Name
Address

Address
Id
City
Office-contact

Person
Name
Address
Office-phone
Office-address
Home-phone

Name	 Address	 Office-‐phone	 Office-‐address	 Home-‐phone	

Peter	 Chicago	 (312)	 123	 4343	 Chicago,	 IL	 60655	 (333)	 323	 3344	

Alice	 Chicago	 (312)	 555	 7777	 Chicago,	 IL	 60633	 (123)	 323	 3344	

Bob	 New	 York	 (465)	 123	 1234	 New	 York,	 NY	 55443	 (888)	 323	 3344	

Id	 City	 Office-‐contact	

1	 Chicago	 (312)	 123	 4343	

2	 Chicago	 (312)	 555	 7777	

3	 New	 York	 (465)	 123	 1234	

Name	 Address	

Peter	 1	

Alice	 3	

Bob	 3	

3.1 Schema Mapping

10 CS520 - 3) Matching and Mapping

Example:	 Types	 of	 Matching	

Person
Name
Address

Address
Id
City
Office-contact

Person
Name
Address
Office-phone
Office-address
Home-phone

Name	 Address	 Office-‐phone	 Office-‐address	 Home-‐phone	

Peter	 Chicago	 (312)	 123	 4343	 Chicago,	 IL	 60655	 (333)	 323	 3344	

Alice	 Chicago	 (312)	 555	 7777	 Chicago,	 IL	 60633	 (123)	 323	 3344	

Bob	 New	 York	 (465)	 123	 1234	 New	 York,	 NY	 55443	 (888)	 323	 3344	

Id	 City	 Office-‐contact	

1	 Chicago	 (312)	 123	 4343	

2	 Chicago	 (312)	 555	 7777	

3	 New	 York	 (465)	 123	 1234	

Name	 Address	

Peter	 1	

Alice	 3	

Bob	 3	

Based	 on	 element	 names	 we	 could	 match	 	
	 	 	 	 Office-‐contact	 to	 both	 Office-‐phone	 and	 Office-‐address	
Based	 on	 data	 we	 could	 match	
	 	 	 	 Office-‐contact	 to	 both	 Office-‐phone	 and	 Home-‐phone	

3.1 Schema Matching

•  Typical Matching System Architecture

11 CS520 - 3) Matching and Mapping

Matcher	 Matcher	

Combiner	

Constraint	
Enforcer	

Match	
Selector	

Determine actual matches

Use constraints to modify
similarity matrix

Combine individual similarity
matrices

Each matcher uses one type of
information to compute
similarity matrix

3.1 Schema Matching

•  Matcher
– Input: Schemas

•  Maybe also data, documentation

– Output: Similarity matrix
•  Storing value [0,1] for each pair of elements from the

source and the target schema

12 CS520 - 3) Matching and Mapping

Matcher	 Matcher	

Combiner	

Constraint	
Enforcer	

Match	
Selector	

Person
Name
Address

Address
Id
City
Office-contact

Person
Name
Address
Office-phone
Office-address
Home-phone

3.1 Schema Matching

•  Name-Based Matchers
– String similarities measures

•  E.g., Jaccard and other measure we have discussed

– Preprocessing
•  Tokenization?
•  Normalization

–  Expand abbreviations and replace synonyms

•  Remove stop words
–  In, and, the

13 CS520 - 3) Matching and Mapping

3.1 Schema Mapping

14 CS520 - 3) Matching and Mapping

	
	
	

	

Example:	 Types	 of	 Matching	

Person
Name
Address

Address
Id
City
Office-contact

Person
Name
Address
Office-phone
Office-address
Home-phone

Name	 Address	 Office-‐
phone	

Office-‐
address	

Home-‐
phone	

Name	 1	 0	 0	 0	 0	

Address	 0	 1	 0	 0.4	 0	

Id	 0	 0	 0	 0	 0	

City	 0	 0	 0	 0	 0	

Office-‐contact	 0	 0	 0.5	 0.5	 0	

3.1 Schema Matching

•  Data-Based Matchers
– Determine how similar the values of two attributes

are
– Some techniques

•  Recognizers
– Dictionaries, regular expressions, rules

•  Overlap matcher
–  Compute overlap of values in the two attributes

•  Classifiers

15 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Recognizers
– Dictionaries

•  Countries, states, person names

– Regular expression matchers
•  Phone numbers: (\+\d{2})? \(\d{3}\) \d{3} \d{4}

16 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Overlap of attribute domains
– Each attribute value is a token
– Use set-based similarity measure such as Jaccard

•  Classifier
– Train classifier to identify values of one attribute A

from the source
•  Training set are values from A as positive examples and

values of other attributes as negative examples
– Apply classifier to all values of attributes from

target schema
•  Aggregate into similarity score

17 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Combiner
– Input: Similarity matrices

•  Output of the individual matchers

– Output: Single Similarity matrix

18 CS520 - 3) Matching and Mapping

Matcher	 Matcher	

Combiner	

Constraint	
Enforcer	

Match	
Selector	

3.1 Schema Matching

•  Combiner
– Merge similarity matrices produced by the

matchers into single matrix
– Typical strategies

•  Average, Minimum, Max
•  Weighted combinations
•  Some script

19 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Constraint Enforcer
– Input: Similarity matrix

•  Output of Combiner

– Output: Similarity matrix

20 CS520 - 3) Matching and Mapping

Matcher	 Matcher	

Combiner	

Constraint	
Enforcer	

Match	
Selector	

3.1 Schema Matching

•  Constraint Enforcer
– Determine most probably match by assigning each

attribute from source to one target attribute
•  Multiple similarity scores to get likelihood of match

combination to be true

– Encode domain knowledge into constraints
•  Hard constraints: Only consider match combinations

that fulfill constraints
•  Soft constraints: violating constraints results in penalty

of scores
– Assign cost for each constraint

– Return combination that has the maximal score
21 CS520 - 3) Matching and Mapping

3.1 Schema Matching

22 CS520 - 3) Matching and Mapping

Constraint 1: An attribute matched to source.cust-phone
has to get a score of 1 from the phone regexpr matcher

Constraint 2: Any attribute matched to source.fax has to
have fax in its name

Constraint 3: If an attribute is matched to
source.firstname with score > 0.9 then there has to be
another attribute from the same target table that is
matched to source.lastname with score > 0.9

Example:	 Constraints	

3.1 Schema Matching

•  How to search match combinations
– Full search

•  Exponentially many combinations potentially

–  Informed search approaches
•  A* search

– Local propagation
•  Only local optimizations

23 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  A* search
– Given a search problem

•  Set of states: start state, goal states
•  Transitions about states
•  Costs associated with transitions
•  Find cheapest path from start to goal states

– Need admissible heuristics h
•  For a path p, h computes lower bound for any path from

start to goal with prefix p
– Backtracking best-first search

•  Choose next state with lowest estimated cost
•  Expand it in all possible ways 24 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  A* search
– Estimated cost of a state f(n) = g(n) + h(n)

•  g(n) = cost of path from start state to n
•  h(n) = lower bound for path from n to goal state

– No path reaching the goal state from n can have a
total cost lower than f(n)

25 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Algorithm
– Data structures

•  Keep a priority queue q of states sorted on f(n)
–  Initialize with start state

•  Keep set v of already visited nodes
–  Initially empty

– While q is not empty
•  pop state s from head of q
•  If s is goal state return
•  Foreach s’ that is direct neighbor of s

–  If s’ not in v
–  Compute f(s’) and insert s’ into q

26 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Application to constraint enforcing
– Source attributes: A1 to An

– Target attributes: B1 to Bm

– States
•  Vector of length n with values Bi or * indicating that no

choice has not been taken
•  [B1, *, *, B3]

–  Initial state
•  [*, *, *, *]

– Goal states
•  All states without *

27 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Match Selector
– Input: Similarity matrix

•  Output of the individual matchers

– Output: Matches

28 CS520 - 3) Matching and Mapping

Matcher	 Matcher	

Combiner	

Constraint	
Enforcer	

Match	
Selector	

3.1 Schema Matching

•  Match Selection
– Merge similarity matrices produced by the

matchers into single matrix
– Typical strategies

•  Average, Minimum, Max
•  Weighted combinations
•  Some script

29 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Many-to-many matchers
– Combine multiple columns using a set of functions

•  E.g., concat, +, currency exchange, unit exchange

– Large or even unlimited search space
–  -> need method that explores interesting part of the

search space
– Specific searchers

•  Only concatenation of columns (limit number of
combinations, e.g., 2)

30 CS520 - 3) Matching and Mapping

3. Overview

•  Topics covered in this part
– Schema Matching
– Schema Mappings and Mapping Languages

31 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

32 CS520 - 3) Matching and Mapping

	
	
	
	
	
	
	
	
	
	
	
Assume:	 We	 have	 data	 in	 the	 source	 as	 shown	 above	
	
What	 data	 should	 we	 create	 in	 the	 target?	 Copy	 values	 based	 on	 matches?	
	

Example:	 Matching	 Result	

Person
Name
Address

Address
Id
City
Office-contact

Person
Name
Address
Office-phone
Office-address
Home-phone

Id	 City	 Office-‐contact	

1	 Chicago	 (312)	 123	 4343	

2	 Chicago	 (312)	 555	 7777	

3	 New	 York	 (465)	 123	 1234	

Name	 Address	

Peter	 1	

Alice	 3	

Bob	 3	

3.2 Schema Mapping

•  Matches do not determine completely how to
create the target instance data! (Data
Exchange)
– How do we choose values for attributes that do not

have a match?
– How do we combine data from different source

tables?
•  Matches do not determine completely what the

answers to queries over a mediated schema
should be! (Virtual Data Integration)

33 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

34 CS520 - 3) Matching and Mapping

Example:	 Types	 of	 Matching	

Person
Name
Address

Address
Id
City
Office-contact

Person
Name
Address
Office-phone
Office-address
Home-phone

Name	 Address	 Office-‐phone	 Office-‐address	 Home-‐phone	

Peter	 Chicago	 (312)	 123	 4343	

Alice	 Chicago	 (312)	 555	 7777	

Bob	 New	 York	 (465)	 123	 1234	

Id	 City	 Office-‐contact	

1	 Chicago	 (312)	 123	 4343	

2	 Chicago	 (312)	 555	 7777	

3	 New	 York	 (465)	 123	 1234	

Name	 Address	

Peter	 1	

Alice	 3	

Bob	 3	

What	 values	 should	 we	 use	 for	
Office-‐address	 and	 Home-‐
phone	

How	 do	 we	 know	 that	 we	
should	 join	 tables	 Person	 and	
Address	 to	 get	 the	 matching	
address	 for	 a	 name?	

3.2 Schema Mapping

•  Schema mappings
– Generalize matches
– Describe relationship between instances of

schemas
– Mapping languages

•  LAV, GAV, GLAV
•  Mapping as Dependencies: tuple-generating

dependencies

•  Mapping generation
– Input: Matches, Schema constraints
– Output: Schema mappings

35 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Instance-based definition of mappings
– Global schema G
– Local schemas S1 to Sn

– Mapping M can be expressed as for each set of
instances of the local schemas what are allowed
instances of the global schema

•  Subset of (IG x I1 x … x In)

– Useful as a different way to think about mappings,
but not a practical way to define mappings

36 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Certain answers
– Given mapping M and Q
–  Instances I1 to In for S1 to Sn

– Tuple t is a certain answer for Q over I1 to In
•  If for every instance IG so that (IG x I1 x … x In) in M

then t in Q(IG)

37 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Languages for Specifying Mappings
•  Describing mappings as inclusion

relationships between views:
– Global as View (GAV)
– Local as View (LAV)
– Global and Local as View (GLAV)

•  Describing mappings as dependencies
– Source-to-target tuple-generating dependencies

(st-tgds)

38 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Describing mappings as inclusion
relationships between views:
– Global as View (GAV)
– Local as View (LAV)
– Global and Local as View (GLAV)

•  Terminology stems from virtual integration
– Given a global (or mediated, or virtual) schema
– A set of data sources (local schemas)
– Compute answers to queries written against the

global schema using the local data sources
39 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Excursion Virtual Data Integration
– More in next section of the course

40 CS520 - 3) Matching and Mapping

Global	
Schema	

Local	
Schema	

1	

Local	
Schema	

2	

Local	
Schema	

n	

Query	

Mappings	

3.2 Schema Mapping

•  Global-as-view (GAV)
– Express the global schema as views over the local

schemata
– What query language do we support?

•  CQ, UCQ, SQL, …?

– Closed vs. open world assumption
•  Closed world: R = Q(S1,…,Sn)

–  Content of global relation R is defined as the result of query Q
over the sources

•  Open world: R ⊇Q(S1,…,Sn)
–  Relation R has to contain the result of query Q, but may

contain additional tuples

41 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

42 CS520 - 3) Matching and Mapping

	
	
	
	
	
	

Person(X’,Y’,Z’,A’,B’)
= Q(X,Z,A, NULL, NULL) :- Person(X,Y), Address(Y,Z,A)

Since heads of LHS and RHS have to be the same we can use
simpler notation without the head of the view expression:

Person(X,Z,A, NULL, NULL) = Person(X,Y), Address(Y,Z,A)

Example:	 Types	 of	 Matching	

Local Schema
Person

Name
Address

Address
Id
City
Office-contact

Global Schema
Person

Name
Address
Office-phone
Office-address
Home-phone

3.2 Schema Mapping

43 CS520 - 3) Matching and Mapping

	
	
	
	
	
	

Consider switching local and global schema

Person(X,NULL) = Person(X,Y,Z,A,B)
Address(NULL,Y,Z) = Person(X,Y,Z,A,B)

Example:	 Types	 of	 Matching	

Local Schema
Person

Name
Address

Address
Id
City
Office-contact

Global Schema
Person

Name
Address
Office-phone
Office-address
Home-phone

3.2 Schema Mapping

•  Global-as-view (GAV)
•  Solutions (mapping M)

– Unique solutions (1 solution!)
–  Intuitively, execute queries over local instance that

produced global instance

44 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Global-as-view (GAV)
•  Answering Queries

– Simply replace references to global tables with the
view definition

•  Mapping R(X,Y) = S(X,Y), T(Y,Z)
•  Q(X) :- R(X,Y)
•  Rewrite into
•  Q(X) :- S(X,Y), T(Y,Z)

45 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Global-as-view (GAV) Discussion
– Hard to add new source

•  -> have to rewrite the view definitions

– Does not deal gracefully with missing values
– Easy query processing

•  -> view unfolding

46 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Local-as-view (LAV)
– Express the local schema as views over the global

schemata
– What query language do we support?

•  CQ, UCQ, SQL, …?

– Closed vs. open world assumption
•  Closed world: Sij = Q(G)

–  Content of local relation Sij is defined as the result of query Q
over the sources

•  Open world: Sij ⊇Q(G)
–  Local relation Sij has to contain the result of query Q, but
 may contain additional tuples

47 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

48 CS520 - 3) Matching and Mapping

	
	
	
	

Person(X,NULL) = Person(X,Y,Z,A,B)
Address(NULL,Y,Z) = Person(X,Y,Z,A,B)

Example:	 Types	 of	 Matching	

Local Schema
Person

Name
Address

Address
Id
City
Office-contact

Global Schema
Person

Name
Address
Office-phone
Office-address
Home-phone

3.2 Schema Mapping

•  Local-as-view (LAV)
•  Solutions (mapping M)

– May be many solutions

49 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Local-as-view (GAV)
•  Answering Queries

– Need to find equivalent query using only the views
(this is a hard problem, more in next course
section)

•  Mapping S(X,Z) = R(X,Y), T(Y,Z)
•  Q(X) :- R(X,Y)
•  Rewrite into ???

– Need to come up with missing values
– Give up query equivalence?

50 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Local-as-view (LAV) Discussion
– Easy to add new sources

•  -> have to write a new view definition
•  May take some time to get used to expressing sources

like that

– Still does not deal gracefully with all cases of
missing values

•  Loosing correlation

– Hard query processing
•  Equivalent rewriting using views only
•  Later: give up equivalence

51 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Global-Local-as-view (GLAV)
– Express both sides of the constraint as queries
– What query language do we support?

•  CQ, UCQ, SQL, …?
– Closed vs. open world assumption

•  Closed world: Q’(G) = Q(S)
•  Open world: Q’(G) ⊇Q(S)

52 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

53 CS520 - 3) Matching and Mapping

Source: Q(X,Y,Z) :- Person(X’,Y’), Address(Y’,Z’,A’)
=
Target: Q(X’,Y’,Z’) :- Person(X’,Y’,Z’,A’,B’)

Example:	 Types	 of	 Matching	

Local Schema
Person

Name
Address

Address
Id
City
Office-contact

Global Schema
Person

Name
Address
Office-phone
Office-address
Home-phone

3.2 Schema Mapping

•  Local-as-view (GLAV) Discussion
– Kind of best of both worlds (almost)
– Complexity of query answering is the same as for

LAV
– Can address the lost correlation and missing values

problems we observed using GAV and LAV

54 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Source-to-target tuple-generating
dependencies (st-tgds)
– Local way of expressing GLAV mappings

– Equivalence to a containment constraint:
 Q’(G) ⊇Q(S)

55 CS520 - 3) Matching and Mapping

8~x : �(~x) ! 9~y : (~x, ~y)

3.2 Schema Mapping

56 CS520 - 3) Matching and Mapping

Source: Q(X,Y,Z) :- Person(X’,Y’), Address(Y’,Z’,A’)
=
Target: Q(X’,Y’,Z’) :- Person(X’,Y’,Z’,A’,B’)

Example:	 Types	 of	 Matching	

Local Schema
Person

Name
Address

Address
Id
City
Office-contact

Global Schema
Person

Name
Address
Office-phone
Office-address
Home-phone

8x, y, z, a : Person(x, y) ^Address(y, z, a) ! 9b, c : Person(x, z, a, b, c)

3.2 Schema Mapping

•  Generating Schema Mappings
– Input: Schemas (Constraints), matches
– Output: Schema mappings

•  Ideas:
– Schema matches tell us which source attributes

should be copied to which target attributes
– Foreign key constraints tell us how to join in the

source and target to not loose information

57 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Clio
– Clio is a data exchange system prototype

developed by IBM and University of Toronto
researchers

– The concepts developed for Clio have been
implemented in IBM InfoSphere Data Architect

– Clio does matching, mapping generation, and data
exchange

•  For now let us focus on the mapping generation

58 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Clio Mapping Generation Algorithm
– Inputs: Source and Target schemas, matches
– Output: Mapping from source to target schema
– Note, Clio works for nested schemas such as XML

too not just for relational data.
•  Here we will look at the relational model part only

59 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Clio Algorithm Steps
– 1) Use foreign keys to determine all reasonable

ways of joining data within the source and the
target schema

•  Each alternative of joining tables in the source/target is
called a logical association

– 2) For each pair of source-target logical
associations: Correlate this information with the
matches to determine candidate mappings

60 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Clio Algorithm: 1) Find logical associations
– This part relies on the chase procedure that first

introduced to test implication of functional
dependencies (‘77)

– The idea is that we start use a representation of
foreign keys are inclusion dependencies (tgds)

•  There are also chase procedures that consider edgs (e.g.,
PKs)

– Starting point are all single relational atoms
•  E.g., R(X,Y)

61 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Chase step
– Works on tabelau: set of relational atoms
– A chase step takes one tgd t where the LHS is

fulfilled and the RHS is not fulfilled
•  We fulfill the tgd t by adding new atoms to the tableau

and mapping variables from t to the actually occuring
variables from the current tablau

•  Chase
– Applying the chase until no more changes
– Note: if there are cyclic constraints this may not

terminate
62 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Clio Algorithm: 1) Find logical associations
– Compute chase R(X) for each atom R in source

and target
– Each chase result is a logical association
–  Intuitively, each such logical association is a

possible way to join relations in a schema based on
the FK constraints

63 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Clio Algorithm: 2) Generate Candidate
Mappings
– For each pair of logical association AS in the

source and AT in the target produced in step 1
– Find the matches that are covered by AS and AT

•  Matches that lead from an element of AS to an element
from AT

–  If there is at least one such match then create
mapping by equating variables as indicated by the
matches and create st-tgd with AS in LHS and AT
in RHS

64 CS520 - 3) Matching and Mapping

Outline

0) Course Info
1)  Introduction
2)  Data Preparation and Cleaning
3)  Schema matching and mapping
4)   Virtual Data Integration
5)  Data Exchange
6)  Data Warehousing
7)  Big Data Analytics
8)  Data Provenance

 65 CS520 - 3) Matching and Mapping

