
1

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

CS425 – Fall 2016

Boris Glavic

Course Information

©Silberschatz, Korth and Sudarshan0.2CS425 – Fall 2016 – Boris Glavic

Hi, I am Boris Glavic,

 Assistant Professor in

CS

©Silberschatz, Korth and Sudarshan0.3CS425 – Fall 2016 – Boris Glavic

Hi, I am Boris Glavic,

 Assistant Professor in
CS

I am a database guy!

©Silberschatz, Korth and Sudarshan0.4CS425 – Fall 2016 – Boris Glavic

Hi, I am Boris Glavic,
 Assistant Professor in

CS

I am a database guy!

I will teach you:
database stuff

©Silberschatz, Korth and Sudarshan0.5CS425 – Fall 2016 – Boris Glavic

Why are Databases Important?

■ What do Databases do?

1. Provide persistent storage

2. Efficient declarative access to data -> Querying

3. Protection from hardware/software failures

4. Safe concurrent access to data

©Silberschatz, Korth and Sudarshan0.6CS425 – Fall 2016 – Boris Glavic

Who uses Databases?

■ Most big software systems involve DBs!

● Business Intelligence ⇒ e.g., IBM Cognos

● Web based systems

● …

■ You! (desktop software)

● Your music player ⇒ e.g., Amarok

● Your Web Content Management System

● Your email client

● …

■ Every big company

● Banks

● Insurance

● Government

● Google, …

● …

2

©Silberschatz, Korth and Sudarshan0.7CS425 – Fall 2016 – Boris Glavic

Who Produces Databases?

■ Traditional relational database systems is big
business

● IBM ⇒ DB2

● Oracle ⇒Oracle J

● Microsoft ⇒ SQLServer

● Open Source ⇒MySQL, Postgres, …

■ Emerging distributed systems with DB
characteristics and Big Data

● Cloud storage and Key-value stores ⇒Amazon S3,
Google Big Table, . . .

● Big Data Analytics ⇒Hadoop, Google Map &
Reduce, . . .

● SQL over Distributed Platforms ⇒ Hive, Tenzing,
…

©Silberschatz, Korth and Sudarshan0.8CS425 – Fall 2016 – Boris Glavic

Why are Database Interesting (for

Students)?
■ The pragmatic perspective

● Background in databases make you competitive in the job market
;-)

■ Systems and theoretical research

● Database research has a strong systems aspect

4 Hacking complex and large systems

4 Low-level optimization

– cache-conscious algorithms

– Exploit modern hardware

● Databases have a strong theoretical foundation

4 Complexity of query answering

4 Expressiveness of query languages

4 Concurrency theory

4 …

©Silberschatz, Korth and Sudarshan0.9CS425 – Fall 2016 – Boris Glavic

Why are Database Interesting (for

Students)?
■ Connection to many CS fields

● Distributed systems

4 Getting more and more important

● Compilers

● Modeling

● AI and machine learning

4 Data mining

● Operating and file systems

● Hardware

4 Hardware-software co-design

©Silberschatz, Korth and Sudarshan0.10CS425 – Fall 2016 – Boris Glavic

Webpage and Faculty

■ Course Info

● Course Webpage: http://cs.iit.edu/~cs425

● Google Group: https://groups.google.com/d/forum/cs425-2016-
fall-group

4 Used for announcements

4 Use it to discuss with me, TA, and fellow students

● Syllabus: http://cs.iit.edu/~cs425/files/syllabus.pdf

■ Faculty

● Boris Glavic (http://cs.iit.edu/~glavic)

● Email: bglavic@iit.edu

● Phone: 312.567.5205

● Office: Stuart Building, room 226C

● Office Hours: Mondays, 12pm-1pm (and by appointment)

©Silberschatz, Korth and Sudarshan0.11CS425 – Fall 2016 – Boris Glavic

TAs

■ Tas

● TBA

©Silberschatz, Korth and Sudarshan0.12CS425 – Fall 2016 – Boris Glavic

Workload and Grading

■ Exams

● Midterm (25%)

● Final (35%)

■ Homework Assignments (preparation for exams!) – 20%

● HW1 (Relational algebra)

● HW2 (SQL)

● HW3 (Database modeling)

■ Course Project (20%)

● In groups of 3 students

● Given an example application (e.g., ticketing system)

4 Develop a database model

4 Derive a database schema from the model

4 Implement the application accessing the database

3

©Silberschatz, Korth and Sudarshan0.13CS425 – Fall 2016 – Boris Glavic

Course Objectives

■ Understand the underlying ideas of database systems

■ Understand the relational data model

■ Be able to write and understand SQL queries and data definition
statements

■ Understand relational algebra and its connection to SQL

■ Understand how to write programs that access a database server

■ Understand the ER model used in database design

■ Understand normalization of database schemata

■ Be able to create a database design from a requirement analysis for
a specific domain

■ Know basic index structures and understand their importance

■ Have a basic understanding of relational database concepts such as
concurrency control, recovery, query processing, and access
control

©Silberschatz, Korth and Sudarshan0.14CS425 – Fall 2016 – Boris Glavic

Course Project

■ Forming groups

● Your responsibility!

● Inform me + TA

● Deadline: TBA

■ Oracle Server Accounts

■ Git repositories

● Create an account on Bitbucket.org (https://bitbucket.org/)

● We will create a repository for each student

● Use it to exchange code with your fellow group members

● The project has to be submitted via the group repository

■ Timeline:

● Brainstorming on application (by Sep 11th)

● Design database model (by Nov 12th)

● Derive relational model (by Nov 25th)

● Implement application (by end of the semester)

©Silberschatz, Korth and Sudarshan0.15CS425 – Fall 2016 – Boris Glavic

Fraud and Late Assignments

■ All work has to be original!

● Cheating = 0 points for assignment/exam

● Possibly E in course and further administrative sanctions

● Every dishonesty will be reported to office of academic honesty

■ Late policy:

● -20% per day

● No exceptions!

■ Course projects:

● Every student has to contribute in every phase of the project!

● Don’t let others freeload on you hard work!

4 Inform me or TA immediately

©Silberschatz, Korth and Sudarshan0.16CS425 – Fall 2016 – Boris Glavic

Reading and Prerequisites

■ Textbook: Silberschatz, Korth and Sudarsham

● Database System Concepts, 6th edition

● McGraw Hill

● publication date:2006,

● ISBN 0-13-0-13-142938-8.

■ Prerequisites:

● CS 331 or CS401 or CS403

©Silberschatz, Korth and Sudarshan0.17CS425 – Fall 2016 – Boris Glavic

Outline

■ Introduction

■ Relational Data Model

■ Formal Relational Languages (relational algebra)

■ SQL

■ Database Design

■ Transaction Processing, Recovery, and Concurrency Control

■ Storage and File Structures

■ Indexing and Hashing

■ Query Processing and Optimization

1/20/16

1

CS520

Data Integration, Warehousing, and

Provenance

1. Introduction

Boris Glavic

http://www.cs.iit.edu/~glavic/

http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 1 CS520 - 1) Introduction

Overview

•  Topics covered in this part

– Heterogeneity and Autonomy

– Data Integration Tasks

– Data Integration Architectures (Methods)

– Some Formal Background (sorry!)

2 CS520 - 1) Introduction

1.1 Heterogeneity +Autonomy

•  Taxonomy of Heterogeneity

3 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 System Heterogeneity

•  Hardware/Software

– Different hardware capabilities of sources

– Different protocols, binary file formats, …

– Different access control mechanism

•  Interface Heterogeneity

– Different interfaces for accessing data from a

source

•  HTML forms

•  XML-Webservices

•  Declarative language

4 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 System Heterogeneity

•  Hardware/Software

– Different hardware capabilities of sources

•  Mobile phone vs. server: Cannot evaluate cross-

product of two 1GB relations on a mobile phone

– Different protocols, binary file formats, …

•  Order information stored in text files: line ending

differs between Mac/Window/Linux, character encoding

– Different access control mechanism

•  FTP-access to files: public, ssh authentication, ..

5 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1/20/16

2

1.1 System Heterogeneity

•  Interface Heterogeneity

– Different interfaces for accessing data from a

source

•  HTML forms

•  Services (SOA)

•  Declarative language

•  Files

•  Proprietary network protocol

•  …

6 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 System Heterogeneity

•  Interface Heterogeneity – Expressiveness

– Keyword-search vs. query language

– Predicates: equality (=), inequality (<, !=)

– Logical connectives: conjunctive (AND),

disjunctive (OR), negation

– Complex operations: aggregation, quantification

– Limitations: restriction to particular tables,

predicates, fixed queries with parameters, …

7 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 System Heterogeneity

•  Interface Heterogeneity – Examples

– Google search (+/-, site:, intitle:, filetype:

8 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 System Heterogeneity

•  Interface Heterogeneity – Examples

– SQL

9 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 System Heterogeneity

•  Interface Heterogeneity – Examples

– SQL

10 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 System Heterogeneity

•  Interface Heterogeneity – Examples

– Web-form (with DB backend?)

11 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Keyword	

search	

“Bound	

parameter”	

Fixed	

choices	

1/20/16

3

1.1 System Heterogeneity

•  Interface Heterogeneity – Examples

– Email-client

12 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Name	

Query	
Disjunc(ve	or	

conjunc(ve	

Comparison	

operator	

1.1 System Heterogeneity

•  Problems with interface heterogeneity

– Global query language is more powerful

•  User queries may not be executable

•  Integration system has to evaluate part of the query

– Bound parameters are incompatible with query

•  User query may not be executable

13 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 System Heterogeneity

•  Example: more expressive global language

– SQL with one table

•  books (title, author, year, isbn, genre)

– Web form for books about history shown below

– What problems do may arise translating user

queries?

14 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Steven King	

1.1 System Heterogeneity

•  Integration system has to process part of the

query
SELECT title

FROM books

WHERE author = ‘Steven King’

 AND year = 2012;

15 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Steven King	

Stephen	King,	2012,	Misery	

Stephen	King,	2014,	…	

Stephen	Kine,	1990,	…	

Stephen	King,	2012,	Misery	

1.1 System Heterogeneity

•  Query requires multiple requests
SELECT title

FROM books

WHERE author LIKE ‘%King%;

16 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Structural	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Steven King	

Stephen	King,	2012,	Misery	

Stephen	King,	2014,	…	

Stephen	Kine,	1990,	…	

Larry	Kin,	…	

Stephen	King,	2012,	Misery	

Stephen	King,	2012,	Misery	

…	

Larry King	
King Author	

Larry	King,	…	

How	do	we	

know	what	

authors	exist?	

1.1 System Heterogeneity

•  Query cannot be answered
SELECT title

FROM books

WHERE genre = ‘SciFi’;

17 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Web	form	is	

for	history	

book	only!	

1/20/16

4

1.1 Heterogeneity +Autonomy

•  Taxonomy of Heterogeneity

18 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 Structural Heterogeneity

•  Data model

– Different semantic/expressiveness

– Different structure

•  Schema

– Integrity constraints, keys

– Schema elements:

•  use attribute or separate relations)

– Structure:

•  e.g., normalized vs. denormalized relational schema

19 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 Structural Heterogeneity

•  Data model

– Relational model

– XML model

– Object-oriented model

– Ontological model

– JSON

– …

20 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 Structural Heterogeneity

•  Example: data model

– Relational model

– XML model

– JSON

– OO

•  Person and their addresses

21 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 Structural Heterogeneity

•  Schema

– Modeling choices

•  Relation vs. attribute

•  Attribute vs. value

•  Relation vs. value

– Naming

– Normalized vs. denormalized (relational concept)

– Nesting vs. reference

22 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 Structural Heterogeneity

23 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example:	Modeling	choices	

Male(Id, firstname, lastname)

Female(id, firstname, lastname)

Person(Id, firstname, lastname, gender)

Person(Id, firstname, lastname, male, female) Rela2on	vs.	Value	

Rela2on	vs.	AXribute	

Value	vs.	AXribute	

1/20/16

5

1.1 Structural Heterogeneity

•  Relation-relation conflicts

– Naming conflicts

•  Relations with different name representing the same

data (synonym)

•  Relations with same name representing different

information (homonym)

– Structural conflicts

•  Missing attributes

•  Many-to-one

•  Missing, but derivable attributes

–  Integrity constraint conflicts

24 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 Structural Heterogeneity

25 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Structural	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example:	Conflicts	between	rela(ons	

Person(Id, name, gender, birthday)

Person(Id, firstname, lastname, male, female)

Manager(Id, name, gender, age)

1.1 Structural Heterogeneity

26 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Structural	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example:	Conflicts	between	rela(ons	

Person(Id, name, gender, birthday)

Person(Id, firstname, lastname, male, female)

Manager(Id, name, gender, age)

Mutliple	a>ribtue	

vs	one	a>ribute	

Derivable	

a>ribute:	

Compute	age	

from	birthday	

Missing	derivable	

a>ribute:	

Role	

1.1 Structural Heterogeneity

•  Attribute-attribute conflicts

– Naming conflicts

•  Attributes with different name representing the same

data (synonym)

•  Attributes with same name representing different

information (homonym)

– Default value conflict

–  Integrity constraint conflicts

•  Datatype

•  Constraints restricting values

27 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 Structural Heterogeneity

28 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Structural	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example:	Conflicts	between	a>ributes	and	a>ributes	

SSN	 FirstName	

VARCHAR(40)	

LastName	 Age	

CHECK(Age	>	18)	

333-333-3333	 Peter	 Schmeter	 30	

333-333-9999	 Hans	 Glanz	 NULL	

SSN	 FirstName	

VARCHAR(25)	

SurName	 Age	

3333333333	 Peter	 Schmeter	 30	

3333339999	 Hans	 Glanz	 -1	

1.1 Structural Heterogeneity

29 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Structural	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example:	Conflicts	between	a>ributes	and	a>ributes	

SSN	 FirstName	

VARCHAR(40)	

LastName	 Age	

CHECK(Age	>	18)	

333-333-3333	 Peter	 Schmeter	 30	

333-333-9999	 Hans	 Glanz	 NULL	

SSN	 FirstName	

VARCHAR(25)	

SurName	 Age	

3333333333	 Peter	 Schmeter	 30	

3333339999	 Hans	 Glanz	 -1	

Conflic(ng	format	 Conflic(ng	

datatype	

synonym	

Conflic(ng	

constraint	

Conflic(ng	default	

value	

1/20/16

6

1.1 Structural Heterogeneity

•  Normalized vs. denormalized

– E.g., relational model: Association between entities

can be represented using multiple relations and

foreign keys or one relation

30 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example	

Person

Name

Address

Address

Id

City

Zip

Person

Name

City

Zip

1.1 Structural Heterogeneity

•  Nested vs. flat

– Association between entities can be represented

using nesting or references (previous slides)

31 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example	

Person

Name

 {Address

 Id

 City

 Zip

}

Person

Name

City

Zip

1.1 Structural Heterogeneity

•  Problems caused by schema heterogeneity

– Unified access to multiple schemas or integrate

schemas into new schema

•  Schema level: schema mapping, model management

operators, schema languages

•  Data Level: virtual data integration, data exchange,

warehousing (ETL)

32 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 Heterogeneity +Autonomy

•  Taxonomy of Heterogeneity

33 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 Semantic Heterogeneity

•  Semantic Heterogeneity

– Naming Conflicts

–  Identity Conflicts (Entity resolution)

– Value Conflicts (Data Fusion)

34 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 Semantic Heterogeneity

•  Naming Conflicts

– Ontological (concepts)

•  Birds vs. Animals

– Synonyms

•  Surname vs. last name

– Homonyms

– Units

•  Gallon vs. liter

– Values

•  Manager vs. Boss

35 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1/20/16

7

1.1 Semantic Heterogeneity

•  Ontological concepts

– Relationships between concepts

•  A = B - Equivalence

•  A ⊆B - Inclusion

•  A ∩ B - Overlap

•  A ≠ B - Disjunction

36 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 Semantic Heterogeneity

•  Ontological concepts

– Relationships between concepts

•  A = B - Equivalence

•  A ⊆B - Inclusion

•  A ∩ B - Overlap

•  A ≠ B - Disjunction

37 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example	

Equivalence: Human vs Homo sapiens

Inclusion: Bird vs Animal

Overlap: Animal vs aquatic lifeform

Disjunction: Fish vs Mamal

1.1 Semantic Heterogeneity

•  Naming concepts (synonyms)

•  Different words with same meaning

38 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example	

Person(Name,Age)

Human(LastName,Age)

1.1 Semantic Heterogeneity

•  Naming concepts (homonyms)

•  Same words with different meaning

39 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example	

Person(Title,Name)

Movie(Title,Year)

1.1 Semantic Heterogeneity

•  Naming concepts (units)

40 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example	

Person(Title,Name,Salary)

Person(Title,Name,Salary)

$	

CAD	

1.1 Semantic Heterogeneity

•  Identity Conflicts

– What is an object?

•  E.g., multiple tuples in relational model

– Central question:

•  Does object A represent the same entity as B

– This problem has been called

•  Entity resolution

•  Record linkage

•  Deduplication

•  …

41 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1/20/16

8

1.1 Semantic Heterogeneity

•  Identity Conflicts

42 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example	

(IBM,300000000,USA)

(International Business Machines Corporation,50000)

1.1 Semantic Heterogeneity

•  Value Conflicts

– Objects representing the same entities have

conflicting values for semantically equivalent

attributes

•  We have to identified that these objects are represent the

same entitity first!

– Resolving such conflicts require Data Fusion

•  Pick value from conflicting values

•  Numerical methods: e.g., average

•  Preferred value

•  …

43 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

1.1 Autonomy

•  How autonomous are data sources

– One company

•  Can enforce, e.g., schema and software

– …

– The web

•  Website decides

–  Interface

– Determines access restrictions and limits

– Availability

–  Format

– Query restrictions

– …

44 CS520 - 1) Introduction

1.2 Data integration tasks

•  Cleaning and prepreparation

•  Entity resolution

•  Data Fusion

•  Schema matching

•  Schema mapping

•  Query rewrite

•  Data translation

45 CS520 - 1) Introduction

1.3 Data integration architectures

•  Virtual data integration

•  Data Exchange

•  Peer-to-peer data integration

•  Datawarehousing

•  Big Data analytics

46 CS520 - 1) Introduction

1.4 Formal Background

•  Query Equivalence

– Complexity for different query classes

•  Query Containment

– Complexity for different query classes

•  Datalog

– Recursion + Negation

•  Integrity Constraints

– Logical encoding of integrity constraints

•  Similarity Measures/Metrics

47 CS520 - 1) Introduction

1/20/16

9

1.4 Integrity constraints

•  You know some types of integrity

constraints already

– Functional dependencies

•  Keys are a special case

– Foreign keys

•  We have not really formalized that

48 CS520 - 1) Introduction

1.4 Integrity constraints

•  Other types are

– Conditional functional dependencies

•  E.g., used in cleaning

– Equality-generating dependencies

– Multi-valued dependencies

– Tuple-generating dependencies

– Join dependencies

– Denial constraints

– …

49 CS520 - 1) Introduction

1.4 Integrity constraints

•  How to manage all these different types of

constraints?

– Has been shown that these constraints can be

expressed in a logical formalism.

– Formulas which consist of relational and

comparison atoms. Variables represent values

•  R(x,y,z)

•  x = y

50 CS520 - 1) Introduction

1.4 Integrity Constraints

51 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example	

Primary Key R(A,B):

Functional Dependency R(A,B) with A->B:

Foreign Key R(A,B), S(C,D) where D is FK to R:

∀x, y, z, a : R(x, y) ∧R(z, a) ∧ x = z → y = a

∀x, y, z : R(x, y) ∧R(x, z) → y = z

∀x, y : S(x, y) → ∃z : R(y, z)

1.4 Integrity constraints

•  Types of constraints we will use a lot

– Tuple-generating dependencies (tgds)

•  Implication with conjunction of relational atoms

•  Foreign keys and schema mappings (later)

– Equality-generating dependencies (egds)

•  Generalizes keys, FDs

52 CS520 - 1) Introduction

∀~x : �(~x) → ∃~y : (~x, ~y)

∀~x : �(~x) → ∧
n
k=1

xik = xjk

1.4 Datalog

•  What is datalog?

– Prolog for databases (syntax very similar)

– A logic-based query language

•  Queries (Program) expressed as set of rules

•  One Q is specified as the answer relation (the

relation returned by the query)

53 CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

1/20/16

10

1.4 Datalog - Intuition

•  A Datalog rule

•  For all bindings of variables in the right-hand

side (RHS) that makes the RHS true

(conjunction) return bindings of

54 CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

Q(Name):- Person(Name,Age).

Return names of persons

Example	

1.4 Datalog - Syntax

•  A Datalog program is a set of datalog rules

– Optionally a distinguished answer predicate

•  A Datalog rule is

•  X’s are lists of variables and constants

•  Ri’s are relation names

•  Q is a relation name

55 CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

1.4 Datalog - Terminology

•  Left-hand side of a rule is called it’s head

•  Right-hand side of a rule is called it’s body

•  Relation are called predicates

•  is called an atom

•  An instance I of a database is the data

•  The active domain adom(I) of an instance I is

the set of all constants that occur in I

56 CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

1.4 Datalog - Terminology

57 CS520 - 1) Introduction

Q(N):- Person(N,A).

N, A are variables

Q(N) is an atom

Person and Q are predicates

Activate domain

adom(I) = {peter,bob,34,45}

Example	

Name	 Age	

peter	 34	

bob	 45	

1.4 Datalog - Terminology

•  Intensional vs. extensional

– Extensional database (edb)

•  What we usually call database

–  Intensional database (idb)

•  Relations that occur in the head of rules (are populated

by the query)

– Usually we assume that these do not overlap

58 CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

1.4 Datalog - Safety

•  A datalog program is safe if all its rules are

safe

•  A rule is safe if all variables in occur in at

least one

59 CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

Q(Name):- Person(Name,Age). (safe)

Q(Name,Sal):-Peron(Name,Age).(unsafe)

Example	

1/20/16

11

1.4 Datalog - Semantics

•  The instance of an idb predicate Q in a datalog

program for an edb instance I contains all facts

that can be derived by applying rules with Q in

the head

•  A rule derives a fact Q(c) if we can find a

binding of variables of the rule to constants

from adom(I) such that x is bound to c and the

body is true

60 CS520 - 1) Introduction

Q(~x) : −R1(~x1), . . . , Rn(~xn).

1.4 Datalog - Semantics

61 CS520 - 1) Introduction

Q(N):- Person(N,A).

N=peter,A=peter: Q(peter):- Person(peter,peter).

N=peter,A=bob: Q(peter):- Person(peter,bob).

N=peter,A=34: Q(peter):- Person(peter,34).

N=bob,A=peter: Q(bob):- Person(peter,peter).

N=bob,A=bob: Q(bob):- Person(peter,bob).

N=bob,A=34: Q(bob):- Person(peter,34).

N=34,A=peter: Q(34):- Person(34,peter).

N=34,A=bob: Q(34):- Person(34,bob).

N=34,A=34: Q(34):- Person(34,34).

Activate domain

adom(I) = {peter,bob,34}

Example	

Name	 Age	

peter	 34	

bob	 34	

N	

peter	

bob	

1.4 Datalog

•  Different flavors of datalog

– Conjunctive query

•  Only one rule

•  Expressible as Select-project-join (SPJ) query in

relational algebra

– Union of conjunctive queries

•  Also allow union

•  SPJ + set union in relational algebra

•  Rules with the same head in Datalog

– Conjunctive queries with inequalities

•  Also allow inequivalities, e.g., <

62 CS520 - 1) Introduction

1.4 Datalog

•  Different flavors of datalog

– Recursion

•  Rules may have recursion:

–  E.g., head predicate in the body

•  Fix point semantics based on immediate consequence

operator

– Negation (first-order queries)

•  Negated relational atoms allowed

•  Require that every variable used in a negated atom also

occurs in at least on positive atom (safety)

– Combined Negation + recursion

•  Stronger requirements (stratification)
63 CS520 - 1) Introduction

1.4 Datalog

64 CS520 - 1) Introduction

Example	

 Q1(x,y): R(x,y), R(x,z).

 Q2(x,y): R(x,y).

 Q3(x,x): R(x,x).

 Q4(x,y): R(x,y).

 Q5(x,x): R(x,y), R(x,x).

 Q6(x,z): R(x,y), R(y,z).

1.4 Datalog

65 CS520 - 1) Introduction

Example	

Relation hops(A,B) storing edges

of a graph.

Q2hop(x,z): hop(x,y),hop(x,z).

Qreach(x,y): hop(x,y).

Qreach(x,z): Qreach(x,y),Qreach(y,z).

Qnode(x): hop(x,y).

Qnode(x): hop(y,x).

1/20/16

12

1.4 Datalog

66 CS520 - 1) Introduction

Example	

Relation hops(A,B) storing edges

of a graph.

Qnode(x): hop(x,y).

Qnode(x): hop(y,x).

QnotReach(x,y): Qnode(x), Qnode(y),

 not Qreach(x,y).

1.4 Containment and

Equivalence

67 CS520 - 1) Introduction

Query	Q	is	equivalent	to	Q’	iff	for	every	database	instance	I	both	queries	return	

the	same	result	

	

	

	

Defini(on:	Query	Equivalence	

Q ≡ Q0
⇔ ∀I : Q(I) = Q0(I)

Query	Q	is	contained	in	query	Q’	iff	for	every	database	instance	I	the	result	of	Q	

is	contained	in	the	result	of	Q’	

	

	

	

Defini(on:	Query	Containment	

Q v Q0 , 8I : Q(I) ✓ Q0(I)

1.4 Equivalence

•  The problem of checking query equivalence is

of different complexity depending on the

query language and whether we consider set

or bag semantics

68 CS520 - 1) Introduction

1.4 Containment and Equiv.

69 CS520 - 1) Introduction

Example	

 Q1(x,y): R(x,y), R(x,z).

 Q2(x,y): R(x,y).

 Q3(x,x): R(x,x).

 Q4(x,y): R(x,y).

 Q5(x,x): R(x,y), R(x,x).

 Q6(x,z): R(x,y), R(y,z).

1.4 Containment and Equiv.

70 CS520 - 1) Introduction

Example	

Relation hops(A,B) storing edges

of a graph.

Q2hop(x,z): hop(x,y),hop(x,z).

Qup2Hop(x,z): hop(x,y),hop(x,z).

Qup2Hop(x,z): hop(x,z).

Qsym(x,y): hop(x,y).

Qsym(x,y): hop(y,x).

Qsym2Hop(x,y): Qsym(x,y),Qsym(y,z).

1.4 Complexity of Eq. and Cont.

71 CS520 - 1) Introduction

Set	

seman(cs	

Rela(onal	

Algebra	

Conjunc(ve	

Queries	(CQ)	

Union	of	

Conjunc(ve	

Queries	

(UCQ)	

Monotone	

Queries/	

CQ≠	

Query	

Evalua2on	

(Combined	

Complexity)	

PSPACE-

complete	

NP-complete	 NP-complete	 NP-complete	

Query	

Evalua2on	

(Data	

Complexity)	

LOGSPACE	

(that	means	

in	P)	

LOGSPACE	

(that	means	

in	P)	

LOGSPACE	

(that	means	

in	P)	

LOGSPACE	

(that	means	

in	P)	

Query	

Equivalence	

Undecidable	

	

NP-complete	 NP-complete	 Π2
p-complete	

Query	

Containment	

Undecidable	 NP-complete	

	

NP-complete	 Π2
p-complete	

	

1/20/16

13

1.4 Complexity of Eq. and Cont.

72 CS520 - 1) Introduction

Bag	

seman(cs	

Rela(onal	

Algebra	

Conjunc(ve	

Queries	(CQ)	

Union	of	

Conjunc(ve	

Queries	(UCQ)	

Monotone	

Queries/	

CQ≠	

Query	

Equivalence	

Undecidable	

	

Equivalent	to	

graph	

isomorphism	

It	is	in	PSPACE,	

lower-bound	

unknown	

Query	

Containment	

Undecidable	 Open	Problem	 Undecidable	 Π2
p-complete	

	

1.4 Containment Mappings

•  NP-completeness for set semantics CQ and

UCQ for the containment, evaluation, and

equivalence problems is based on reducing

these problems to the same problem

–  [Chandra & Merlin, 1977]

•  Notational Conventions:

– head(Q) = variables in head of query Q

– body(Q) = atoms in body of Q

– vars(Q) = all variable in Q

73 CS520 - 1) Introduction

1.4 Boolean Conjunctive Queries

•  A conjunctive query is boolean if the head

does not have any variables

– Q() :- hop(x,y), hop(y,z)

– We will use Q :- … as a convention for Q() :- …

– What is the result of a boolean query

•  Empty result {}, e.g., no hop(x,y), hop(y,z)

•  If there are tuples matching the body, then a tuple with

zero attributes is returned {()}

–  -> We interpret {} as false and {()} as true

– Boolean query is essentially an existential check

74 CS520 - 1) Introduction

1.4 Boolean Conjunctive Queries

•  BCQ in SQL

75 CS520 - 1) Introduction

Example	

Hop relation: Hop(A,B)

Q :- hop(x,y) 	

	

SELECT EXISTS (SELECT * FROM hop)

Note: in Oracle and DB2 we need a

from clause

1.4 Boolean Conjunctive Queries

76 CS520 - 1) Introduction

Example	

SELECT

 CASE WHEN EXISTS (SELECT *

 FROM hop)

 THEN 1 ELSE 0

 END AS x

FROM dual;

Notes:

- Oracle and DB2 FROM not optional

- Oracle has no boolean datatype

1.4 Boolean Conjunctive Queries

•  BCQ in SQL

77 CS520 - 1) Introduction

Example	

Q :- hop(x,y), hop(y,z)	

	

SELECT EXISTS

 (SELECT *

 FROM hop l, hop r

 WHERE l.B = r.A)

1/20/16

14

1.4 Containment Mappings

•  How to check for containment of CQs (set)

78 CS520 - 1) Introduction

A	variable	mapping	ψ	from	query	Q	to	query	Q’	maps	the	variables	of	Q	to	

constants	or	variables	from	Q’	

	

Defini(on:	Variable	Mapping	

A	containment	mapping	from	query	Q	to	Q’	is	a	variable	mapping	ψ	such	that:	

			

	

	

	

	

	

Defini(on:	Containment	Mapping	

Ψ(head(Q)) = head(Q0)

∀R(~xi) ∈ body(Q) : Ψ(~xi) ∈ body(Q0)

1.4 Containment Mappings

79 CS520 - 1) Introduction

Query	Q	is	contained	in	query	Q’	iff	there	exists	a	containment		mapping	ψ	from	

Q’	to	Q	

	

Theorem:	Containment	Mapping	and	Query	Containment	

Example	

 Q1(u,z): R(u,z).

 Q2(x,y): R(x,y).

	

Can	we	find	a	containment	mapping?	

	

1.4 Containment Mappings

80 CS520 - 1) Introduction

Query	Q	is	contained	in	query	Q’	iff	there	exists	a	containment		mapping	ψ	from	

Q’	to	Q	

	

Theorem:	Containment	Mapping	and	Query	Containment	

Example	

 Q1(u,z): R(u,z).

 Q2(x,y): R(x,y).

	

 Q1 ->	Q2	:Ψ(u)=x,	Ψ(z)=y	

 Q2 ->	Q1	:Ψ(x)=u,	Ψ(y)=z	

1.4 Containment Mappings

81 CS520 - 1) Introduction

Example	

 Q1(a,b): R(a,b), R(c,b).

 Q2(x,y): R(x,y).

1.4 Containment Mappings

82 CS520 - 1) Introduction

Example	

 Q1(a,b): R(a,b), R(b,c).

 Q2(x,y): R(x,y).

Do containment mappings exist?

Q1 ->	Q2:	none	exists	

Q2 ->	Q1:	Ψ(x)=a,	Ψ(y)=b	

1.4 Containment Mappings

83 CS520 - 1) Introduction

Example	

 Q1(a,b): R(a,b), R(c,b).

 Q2(x,y): R(x,y).

Q1 ->	Q2	:Ψ(a)=x,	Ψ(b)=y,	Ψ(c)=y

Q2 ->	Q1	:Ψ(x)=a,	Ψ(y)=b	

1/20/16

15

1.4 Containment Background

•  It was shown that query evaluation,

containment, equivalence as all reducible to

homomorphism checking for CQ

– Canonical conjunctive query QI for instance I

•  Interpret attribute values as variables

•  The query is a conjunction of all atoms for the tuples

•  I = {hop(a,b), hop(b,c)} -> QI :- hop(a,b), hop(b,c)

– Canonical instance IQ for query Q

•  Interpret each conjunct as a tuple

•  Interpret variables as constants

•  Q :- hop(a,a) -> IQ = {hop(a,a)}

84 CS520 - 1) Introduction

1.4 Containment Background

•  Containment Mapping <-> Containment

•  Proof idea (boolean queries)

–  (if direction)

•  Assume we have a containment mapping Q1 to Q2

•  Consider database D

•  Q2(D) is true then we can find a mapping from vars(Q2)

to D

•  Compose this with the containment mapping and prove

that this is a result for Q1

85 CS520 - 1) Introduction

1.4 Containment Mappings

86 CS520 - 1) Introduction

Example	

 Q1(): R(a,b), R(c,b).

 Q2(): R(x,y).

 Q2 ->	Q1	:Ψ(x)=a,	Ψ(y)=b

D={R(1,1), R(1,2)}

Q1(D)={(1,1),(1,2)}

 φ(a)=1, φ(b)=2, φ(c)=1

Ψ	φ(x)=1,	Ψ	φ(y)=2

1.4 Containment Background

•  Containment Mapping <-> Containment

•  Proof idea (boolean queries)

–  (only-if direction)

•  Assume Q2 contained in Q1

•  Consider canonical (frozen) database IQ2

•  Evaluating Q1 over IQ2 and taking a variable mapping

that is produced as a side-effect gives us a containment

mapping

87 CS520 - 1) Introduction

1.4 Containment Mappings

88 CS520 - 1) Introduction

Example	

 Q1(): R(a,b), R(c,b).

 Q2(): R(x,y).

 Q2 ->	Q1	:Ψ(x)=a,	Ψ(y)=b

IQ1 = {(a,b),(c,b)}

Q2(I
Q1)={()}

 φ(x)=a, φ(y)=b

φ is our containment mapping Ψ

1.4 Containment Background

•  If you are not scared and want to know more:

– Look up Chandra and Merlins paper(s)

– The text book provides a more detailed overview

of the proof approach

– Look at the slides from Phokion Kolaitis excellent

lecture on database theory

•  https://classes.soe.ucsc.edu/cmps277/Winter10/

89 CS520 - 1) Introduction

1/20/16

16

1.4 Containment Background

•  A more intuitive explanation why containment

mappings work

– Variable naming is irrelevant for query results

–  If there is a containment mapping Q to Q’

•  Then every condition enforced in Q is also enforced by

Q’

•  Q’ may enforce additional conditions

90 CS520 - 1) Introduction

1.4 Containment Mappings

91 CS520 - 1) Introduction

Example	

 Q1(): R(a,b), R(c,b).

 Q2(): R(x,y).

 Q2 ->	Q1	:Ψ(x)=a,	Ψ(y)=b

If there exists tuples

 R(a,b) and R(c,b)

in R that make Q1 true, then we

take

 R(a,b)

to fulfill Q2

1.4 Containment Background

•  From boolean to general conjunctive queries

–  Instead of returning true or false, return bindings

of variables

– Recall that containment mappings enforce that the

head is mapped to the head

–  -> same tuples returned, but again Q’ s condition is

more restrictive

92 CS520 - 1) Introduction

1.4 Containment Mappings

93 CS520 - 1) Introduction

Example	

 Q1(a): R(a,b), R(c,b).

 Q2(x): R(x,y).

 Q2 ->	Q1	:Ψ(x)=a,	Ψ(y)=b

For every

 R(a,b) and R(c,b)

Q1 returns (a) and for every

 R(a,b)

Q2 returns (a)

1.4 Similarity Measures

•  Problem faced by multiple integration tasks

– Given two objects, how similar are they

– E.g., given two attribute names in schema

matching, given two values in data fusion/entity

resolution, …

94 CS520 - 1) Introduction

1.4 Similarity Measures

•  Object models

– Multidimensional (feature vector model)

•  Object is described as a vector of values - one for each

dimension out of a given set of dimensions

•  E.g., Dimensions are gender (male/female), age (0-120),

and salary (0-1,000,000). An example object is [male,

80,70,000]

– Strings

•  E.g., how similar is “Poeter” to “Peter”

– Graphs and Trees

•  E.g., how similar are two XML models

95 CS520 - 1) Introduction

1/20/16

17

1.4 Similarity Measures

•  Interpretation: the lower the score the “more

similar” the objects are

•  We require d(p,p)=0, because nothing can be more

similar to an object than itself

•  Note: often scores are normalized to the range [0,1]

96 CS520 - 1) Introduction

Func2on	d(p,q)	where	p	and	q	are	objects,	that	returns	a	real	score	with	

•  d(p,p)	=	0	

•  d(p,q)	>=	0	

Defini(on:	Similarity	Measure	

1.4 Similarity Measures

97 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 Seman2c	

So3ware	 Interface	 Datamodel	 Schema	 Naming	 Iden2ty	
Value	

conflicts	

Example	

String equality: d(p,q) = 0 if p=q

strings d(p,q) = 1 else

Euclidian distance: d(p,q) =

N-dimensional space

Edit distance: d(p,q) = minimum number of

strings single character

 insertions, deletions,

 replacements to

 transform p into q

v

u

u

t

n
X

i=1

(p[i]− q[i])2

1.4 Similarity Measures

– Metric is a stricter definition

– Which of the previous similarity measure is a

metric?

98 CS520 - 1) Introduction

Func2on	d(p,q)	where	p	and	q	are	objects,	that	returns	a	real	score	with	

•  Non-nega(ve	 	 	 	d(p,q)	>=	0	

•  Symmetry	 	 	 	d(p,q)	=	d(q,p)	

•  Iden(ty	of	indiscernibles		 	d(p,q)	=	0	iff	p=q	

•  Triangle	inequality	 	 	d(p,q)	+	d(q,r)	>=	d(p,r)	

Defini(on:	Metric	

1.4 Similarity Measures

– Metric is a stricter definition

– Which of the previous similarity measure is a

metric?

•  All of them!

99 CS520 - 1) Introduction

Func2on	d(p,q)	where	p	and	q	are	objects,	that	returns	a	real	score	with	

•  Non-nega(ve	 	 	 	d(p,q)	>=	0	

•  Symmetry	 	 	 	d(p,q)	=	d(q,p)	

•  Iden(ty	of	indiscernibles		 	d(p,q)	=	0	iff	p=q	

•  Triangle	inequality	 	 	d(p,q)	+	d(q,r)	>=	d(p,r)	

Defini(on:	Metric	

1.4 Similarity Measures

•  Why do we care whether d is a metric?

– Some data mining algorithms only work for

metrics

•  E.g., some clustering algorithms such as k-means

•  E.g., clustering has been used in entity resolution

– Metric spaces allow optimizations of some

methods

•  E.g., Nearest Neighboorhood-search: find the most

similar object to an object p. This problem can be

efficiently solved using index structures that only

apply to metric spaces

100 CS520 - 1) Introduction

Summary

•  Heterogeneity

– Types of heterogeneity

– Why do they arise?

– Hint at how to address them

•  Autonomy

•  Data Integration Tasks

•  Data Integration Architectures

•  Background

– Datalog + Query equivalence/containment +

Similarity + Integrity constraints
101 CS520 - 1) Introduction

1/20/16

18

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 102 CS520 - 1) Introduction

2/5/16

1

CS520

Data Integration, Warehousing, and

Provenance

2. Data Preparation and Cleaning

Boris Glavic

http://www.cs.iit.edu/~glavic/

http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 1 CS520 - 1) Introduction

2. Overview

•  Topics covered in this part

– Causes of Dirty Data

– Constraint-based Cleaning

– Outlier-based and Statistical Methods

– Entity Resolution

– Data Fusion

2 CS520 - 1) Introduction

2. Causes of “Dirty” Data

•  Manual data entry or result of erroneous

integration

– Typos:

•  “Peter” vs. “Pteer”

– Switching fields

•  “FirstName: New York, City: Peter”

–  Incorrect information

•  “City:New York, Zip: 60616”

– Missing information

•  “City: New York, Zip: “

3 CS520 - 1) Introduction

2. Causes of “Dirty” Data

•  Manual data entry or result of erroneous

integration (cont.)

– Redundancy:

•  (ID:1, City: Chicago, Zip: 60616)

•  (ID:2, City: Chicago, Zip: 60616)

–  Inconsistent references to entities

•  Dept. of Energy, DOE, Dep. Of Energy, …

4 CS520 - 1) Introduction

2. Cleaning Methods

•  Enforce Standards

– Applied in real world

– How to develop a standard not a fit for this lecture

– Still relies on no human errors

•  Constraint-based cleaning

– Define constraints for data

– “Make” data fit the constraints

•  Statistical techniques

– Find outliers and smoothen or remove

•  E.g., use a clustering algorithm

5 CS520 - 1) Introduction

2/5/16

2

2. Overview

•  Topics covered in this part

– Causes of Dirty Data

– Constraint-based Cleaning

– Outlier-based and Statistical Methods

– Entity Resolution

– Data Fusion

6 CS520 - 1) Introduction

2.1 Cleaning Methods

•  Constraint-based cleaning

– Choice of constraint language

– Detecting violations to constraints

– Fixing violations (automatically?)

7 CS520 - 1) Introduction

2.1 Constraint Languages

•  First work focused on functional dependencies

(FDs)

•  Extensions of FDs have been proposed to

allow rules that cannot be expressed with FDs

– E.g., conditional FDs only enforce the FD is a

condition is met

•  -> finer grained control, e.g., zip -> city only if country

is US

•  Constraints that consider master data

– Master data is highly reliable data such as a

government issued zip, city lookup table
8 CS520 - 1) Introduction

2.1 Constraint Languages (cont.)

•  Denial constraints

– Generalize most other proposed constraints

– State what should not be true

– Negated conjunction of relational and comparison

atoms

•  Here we will look at FDs mainly and a bit at

denial constraints

– Sometimes use logic based notation introduced

previously

9 CS520 - 1) Introduction

∀~x : ¬(�(~x))

2.1 Example Constraints

10 CS520 - 1) Introduction

Example:	Constraints	Languages	

C1: The zip code uniquely determines the city

C2: Nobody should earn more than their direct superior

C3: Salaries are non-negative

SSN	 zip	 city	 name	 boss	 salary	

333-333-3333	 60616	 New	York	 Peter	 Gert	 50,000	

333-333-9999	 60615	 Chicago	 Gert	 NULL	 40,000	

333-333-5599	 60615	 Schaumburg	 Gertrud	 Hans	 10,000	

333-333-6666	 60616	 Chicago	 Hans	 NULL	 1,000,000	

333-355-4343	 60616	 Chicago	 Malcom	 Hans	 20,000	

2.1 Example Constraints

11 CS520 - 1) Introduction

Example:	Constraints	Languages	

C1: The zip code uniquely determines the city

 - expressible as functional dependency

C2: Nobody should earn more than their direct superior

 - e.g., denial constraint

C3: Salaries are non-negative

 - e.g., denial constraint

SSN	 zip	 city	 name	 boss	 salary	

333-333-3333	 60616	 New	York	 Peter	 Gert	 50,000	

333-333-9999	 60615	 Chicago	 Gert	 NULL	 40,000	

333-333-5599	 60615	 Schaumburg	 Gertrud	 Hans	 10,000	

333-333-6666	 60616	 Chicago	 Hans	 NULL	 1,000,000	

333-355-4343	 60616	 Chicago	 Malcom	 Hans	 20,000	

2/5/16

3

2.1 Example Constraints

12 CS520 - 1) Introduction

Example:	Constraints	Languages	

C1: The zip code uniquely determines the city

FD1: zip -> city

C2: Nobody should earn more than their direct superior

C3: Salaries are non-negative

SSN	 zip	 city	 name	 boss	 salary	

333-333-3333	 60616	 New	York	 Peter	 Gert	 50,000	

333-333-9999	 60615	 Chicago	 Gert	 NULL	 40,000	

333-333-5599	 60615	 Schaumburg	 Gertrud	 Hans	 10,000	

333-333-6666	 60616	 Chicago	 Hans	 NULL	 1,000,000	

333-355-4343	 60616	 Chicago	 Malcom	 Hans	 20,000	

8¬(E(x, y, z, u, v, w) ^ E(x0, y0, z0, u0, v0, w0) ^ x = x0 ^ y 6= y0)

∀¬(E(x, y, z, u, v, w) ∧ E(x0, y0, z0, u0, v0, w0) ∧ v = u0
∧ w > w0)

∀¬(E(x, y, z, u, v, w) ∧ w < 0)

2.1 Constraint based Cleaning

Overview

•  Define constraints

•  Given database D

– 1) Detect violations of constraints

•  We already saw example of how this can be done using

queries. Here a bit more formal

– 2) Fix violations

•  In most cases there are many different ways to fix the

violation by modifying the database (called solution)

– What operations do we allow: insert, delete, update

– How do we choose between alternative solutions

13 CS520 - 1) Introduction

2.1 Constraint Repair Problem

•  This would allow us to take any I’

– E.g., empty for FD constraints

•  We do not want to loose the information in I

(unless we have to)

•  Let us come back to that later

14 CS520 - 1) Introduction

Given	set	of	constraints	Σ	and	an	database	instance	I	which	violates	the	

constraints	find	a	clean	instance	I’	so	that	I’	fulfills	Σ	

Defini>on:	Constraint	Repair	Problem	

2.1 Constraint based Cleaning

Overview

•  Study 1) + 2) for FDs

•  Given database D

– 1) Detect violations of constraints

•  We already saw example of how this can be done using

queries. Here a bit more formal

– 2) Fix violations

•  In most cases there are many different ways to fix the

violation by modifying the database (called solution)

– What operations do we allow: insert, delete, update

– How do we choose between alternative solutions

15 CS520 - 1) Introduction

2.1 Example Constraints

16 CS520 - 1) Introduction

Example:	Constraints	

FD1: zip -> city

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

2.1 Example Constraints

17 CS520 - 1) Introduction

Example:	Constraint	Viola>ons	

FD1: zip -> city

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

2/5/16

4

2.1 Example Constraints

18 CS520 - 1) Introduction

Example:	Constraint	Viola>ons	

How to repair?

Deletion:

 - remove some conflicting tuples

 - quite destructive

Update:

 - modify values to resolve the conflict

 - equate RHS values (city here)

 - disequate LHS value (zip)

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

2.1 Constraint based Cleaning

Overview

•  How to repair?

•  Deletion:

–  remove some conflicting tuples

– quite destructive

•  Update:

– modify values to resolve the conflict

– equate RHS values (city here)

– disequate LHS value (zip)

•  Insertion?

– Not for FDs, but e.g., FKs
19 CS520 - 1) Introduction

2.1 Example Constraints

20 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

Deletion:

Delete Chicago or Schaumburg?

Delete New York or the two Chicago tuples?

 - one tuple deleted vs. two tuples deleted

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

2.1 Example Constraints

21 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

Update equate RHS:

Update Chicago->Schaumburg or Schaumburg->Chicago

Update New York->Chicago or Chicago->New York

 - one tuple deleted vs. two cells updated

Update disequate LHS:

Which tuple to update?

What value do we use here? How to avoid creating other conflicts?

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

2.1 Constraint based Cleaning

Overview

•  Principle of minimality

– Choose repair that minimally modifies database

– Motivation: consider the solution that deletes every

tuple

•  Most update approaches equate RHS because

there is usually no good way to choose LHS

values unless we have master data

– E.g., update zip to 56423 or 52456 or 22322 …

22 CS520 - 1) Introduction

2.1 Detecting Violations

•  Given FD A -> B on R

– Recall logical representation

– Forall X, X’: R(X) and R(X’) and A=A’ -> B=B’

– Only violated if we find two tuples where A=A’,

but B != B’

–  In datalog

•  Q(): R(X), R(X’), A=A’, B!=B’

–  In SQL

SELECT EXISTS (SELECT *

 FROM R x, R y

 WHERE A=A’ AND B<>B’)

23 CS520 - 1) Introduction

2/5/16

5

2.1 Example Constraints

24 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	SQL	Viola>on	Detec>on	

Relation: Person(name,city,zip)

FD1: zip -> city

Violation Detection Query

SELECT EXISTS (SELECT *

 FROM Person x, Person y

 WHERE x.zip = y.zip

 AND x.city <> y.city)

To know which tuples caused the conflict:

SELECT *

FROM Person x, Person y

WHERE x.zip = y.zip

 AND x.city <> y.city)

2.1 Fixing Violations

•  Principle of minimality

– Choose solution that minimally modifies the

database

– Updates:

•  Need a cost model

– Deletes:

•  Minimal number of deletes

25 CS520 - 1) Introduction

2.1 Constraint Repair Problem

•  Cost metrics that have been used

– Deletion + Insertion

•  S-repair: minimize measure above under set inclusion

•  C-repair: minimize cardinality

– Update

•  Assume distance metric d for attribute values

26 CS520 - 1) Introduction

Given	set	of	constraints	Σ	and	an	database	instance	I	which	violates	the	

constraints	find	a	clean	instance	I’	(does	not	violate	the	constraints)	with	

cost(I,I’)	being	minimal	

Defini>on:	Constraint	Repair	Problem	(restated)	

∆(I, I 0) = (I − I 0) ∪ (I 0 − I)

2.1 Cost Metrics

•  Deletion + Insertion

•  S-repair: minimize measure above under set inclusion

•  C-repair: minimize cardinality

•  Update

•  Assume single relation R with uniquely identified tuples

•  Assume distance metric d for attribute values

•  Schema(R) = attributes in schema of relation R

•  t’ is updated version of tuple t

•  Minimize:

27 CS520 - 1) Introduction

∆(I, I 0) = (I − I 0) ∪ (I 0 − I)

X

t2R

X

A2Schema(R)

d(t.A, t0.A)

2.1 Cost Metrics

•  Update

•  Assume single relation R with uniquely identified tuples

•  Assume distance metric d for attribute values

•  Schema(R) = attributes in schema of relation R

•  t’ is updated version of tuple t

•  Minimize:

•  We focus on this one

•  This is NP-hard

– Heuristic algorithm

28 CS520 - 1) Introduction

X

t2R

X

A2Schema(R)

d(t.A, t0.A)

2.1 Naïve FD Repair Algorithm

•  FD Repair Algorithm: 1. Attempt

– For each FD X -> Y in Σ run query to find pairs of

tuples that violate the constraint

– For each pair of tuples t and t’ that violate the

constraint

•  update t.Y to t’.Y

–  choice does not matter because cost is symmetric, right?

29 CS520 - 1) Introduction

2/5/16

6

2.1 Constraint Repair

30 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

t1 and t4: set t1.city = Chicago

t1 and t5: set t1.city = Chicago
t2 and t3: set t2.city = Schaumburg

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 1. Attempt

– For each FD X -> Y in Σ run query to find pairs of

tuples that violate the constraint

– For each pair of tuples t and t’ that violate the

constraint: t.X = t’.X and t.Y != t’.Y

•  update t.Y to t’.Y

–  choice does not matter because cost is symmetric, right?

– Our updates may cause new violations!

31 CS520 - 1) Introduction

2.1 Constraint Repair

32 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

t4 and t1: set t4.city = New York

t1 and t5: set t1.city = Chicago
t2 and t3: set t2.city = Schaumburg

Now t1 and t4 and t4 and t5 in violation!

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 2. Attempt

–  I’ = I

– 1) For each FD X -> Y in Σ run query to find pairs

of tuples that violate the constraint

– 2) For each pair of tuples t and t’ that violate the

constraint: t.X = t’.X and t.Y != t’.Y

•  update t.Y to t’.Y

–  choice does not matter because cost is symmetric, right?

– 3) If we changed I’ goto 1)

33 CS520 - 1) Introduction

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 2. Attempt

–  I’ = I

– 1) For each FD X -> Y in Σ run query to find pairs

of tuples that violate the constraint

– 2) For each pair of tuples t and t’ that violate the

constraint: t.X = t’.X and t.Y != t’.Y

•  update t.Y to t’.Y

–  choice does not matter because cost is symmetric, right?

– 3) If we changed I’ goto 1)

•  May never terminate

34 CS520 - 1) Introduction

2.1 Constraint Repair

35 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

t4 and t1: set t4.city = New York

t1 and t5: set t1.city = Chicago

Now t1 and t4 and t4 and t5 in violation!

t4 and t1: set t1.city = New York

T5 and t4: set t4.city = Chicago

repeat

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	

2/5/16

7

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 2. Attempt

– Even if we succeed the repair may not be

minimal. There may be many tuples with the

same X values

•  They all have to have the same Y value

•  Choice which to update matters!

36 CS520 - 1) Introduction

2.1 Constraint Repair

37 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

Cheaper: t1.city = Chicago

Not so cheap: set t4.city and t5.city = New York

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 3. Attempt

– Equivalence Classes

•  Keep track of sets of cells (tuple,attribute) that have to

have the same values in the end (e.g., all Y attribute

values for tuples with same X attribute value)

•  These classes are updated when we make a choice

•  Choose Y value for equivalence class using minimality,

e.g., most common value

– Observation

•  Equivalence Classes may merge, but never split if we

only update RHS of all tuples with same X at once

•  -> we can find an algorithm that terminates

38 CS520 - 1) Introduction

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 3. Attempt

– Initialize:

•  Each cell in its own equivalence class

•  Put all cells in collection unresolved

– While unresolved is not empty

•  Remove tuple t from unresolved

•  Pick FD X->Y (e.g., random)

•  Compute set of tuples S that have same value in X

•  Merge all equivalence classes for all tuples in S and

attributes in Y

•  Pick values for Y (update all tuples in S to Y)

39 CS520 - 1) Introduction

2.1 Problems with the Algorithm

•  FD Repair Algorithm: 3. Attempt

•  Algorithm using this idea:

– More heuristics to improve quality and

performance

•  Cost-based pick of next EQ’s to merge

– Also for FKs (Inclusion Constraints)

 A Cost-Based Model and Effective Heuristic for Repairing Constraints by Value Modification

40 CS520 - 1) Introduction

2.1 Consistent Query Answering

•  As an alternative to fixing the database which

requires making a choice we could also leave it

dirty and try to resolve conflicts at query time

– Have to reason over answers to the query without

knowing which of the possible repairs will be

chosen

– Intuition: return tuples that would be in the query

result for every possible repair

41 CS520 - 1) Introduction

2/5/16

8

2.1 Constraint Repair

42 CS520 - 1) Introduction

Heterogeneity	

System	 Structural	 SemanNc	

SoOware	 Interface	 Datamodel	 Schema	 Naming	 IdenNty	
Value	

conflicts	

Example:	Constraint	Repair	

Cheaper: t1.city = Chicago

Not so cheap: set t4.city and t5.city = New York

SSN	 zip	 city	 name	

333-333-3333	 60616	 New	York	 Peter	

333-333-9999	 60615	 Chicago	 Gert	

333-333-5599	 60615	 Schaumburg	 Gertrud	

333-333-6666	 60616	 Chicago	 Hans	

333-355-4343	 60616	 Chicago	 Malcom	

t1	
t2	
t3	
t4	
t5	
	

2. Overview

•  Topics covered in this part

– Causes of Dirty Data

– Constraint-based Cleaning

– Outlier-based and Statistical Methods

– Entity Resolution

– Data Fusion

43 CS520 - 1) Introduction

2.2 Statistical and Outlier

•  Assumption

– Errors can be identified as outliers

•  How do we find outliers?

– Similarity-based:

•  Object is dissimilar to all (many) other objects

•  E.g., clustering, objects not in cluster are

outliers

– Some type of statistical test:

•  Given a distribution (e.g., fitted to the data)

•  How probable is it that the point has this value?

•  If low probability -> outlier

 44 CS520 - 1) Introduction

2. Overview

•  Topics covered in this part

– Causes of Dirty Data

– Constraint-based Cleaning

– Outlier-based and Statistical Methods

– Entity Resolution

– Data Fusion

45 CS520 - 1) Introduction

2.3 Entity Resolution

•  Entity Resolution (ER)

•  Alternative names

– Duplicate detection

– Record linkage

– Reference reconciliation

– Entity matching

– …

46 CS520 - 1) Introduction

2.3 Entity Resolution

•  Intuitively, E should be based on how

similar t and t’ are

– Similarity measure?

•  E should be an equivalence relation

–  If t is the same as t’ and t’ is the same as t’’

then t should be the same as t’’

47 CS520 - 1) Introduction

Given	sets	of	tuples	A	compute	equivalence	relaNon	E(t,t’)	which	denotes	that	

tuple	t	and	t’	represent	the	same	enNty.	

	

Defini>on:	En>ty	Resolu>on	Problem	

2/5/16

9

2.3 Entity Resolution

48 CS520 - 1) Introduction

Example:	Two	tuples	(objects)	that	represent	the	same	en>ty	

SSN	 zip	 city	 name	

333-333-3333	 60616	 Chicago	 Peter	

SSN	 zip	 city	 name	

3333333333	 IL	60616	 Petre	

2.3 Entity Resolution

•  Similarity based on similarity of attribute

values

– Which distance measure is appropriate?

– How do we combine attribute-level distances?

– Do we consider additional information?

•  E.g., foreign key connections

– How similar should duplicates be?

•  E.g., fixed similarity threshold

– How to guarantee transitivity of E

•  E.g., do this afterwards

49 CS520 - 1) Introduction

2.3 Entity Resolution

50 CS520 - 1) Introduction

Example:	Per	aMribute	similarity	

SSN	 zip	 city	 name	

333-333-3333	 60616	 Chicago	 Peter	

SSN	 zip	 city	 name	

3333333333	 IL	60616	 Petre	

1	 0.8	 0?	 0.6	

2.3 Entity Resolution – Distance

Measures

•  Edit-distance

– measures similarity of two strings

– d(s,s’) = minimal number of insert, replace,

delete operations (single character) that

transform s into s’

–  Is symmetric (actually a metric)

•  Why?

51 CS520 - 1) Introduction

2.3 Entity Resolution

52 CS520 - 1) Introduction

Given	two	strings	s,	s’	we	define	the	edit	distance	d(s,s’)	as	the	minimum	

number	of	single	character	insert,	replacements,	deleNons	that	transforms	s	

into	s’	

	

Defini>on:	Edit	Distance	

NEED -> STREET

Trivial solution: delete all chars in NEED, then

insert all chars in STREET

- gives upper bound on distance len(NEED) +

 len(STREET) = 10

Example:	

2.3 Entity Resolution

53 CS520 - 1) Introduction

NEED -> STREET

Minimal solution:

 - insert S

 - insert T

 - replace N with R

 - replace D with T

d(NEED,STREET) = 4

Example:	

2/5/16

10

2.3 Entity Resolution

•  Principal of optimality

– Best solution of a subproblem is part of the best

solution for the whole problem

•  Dynamic programming algorithm

– D(i,j) is the edit distance between prefix of len i of

s and prefix of len j of s’

– D(len(s),len(s’)) is the solution

– Represented as matrix

– Populate based on rules shown on the next slide

54 CS520 - 1) Introduction

2.3 Entity Resolution

•  Recursive definition

– D(i,0) = i

•  Cheapest way of transforming prefix s[i] into empty

string is by deleting all i characters in s[i]

– D(0,j) = j

•  Same holds for s’[j]

– D(i,j) = min {

•  D(i-1,j) + 1

•  D(i,j-1) + 1

•  D(i-1,j-1) + d(i,j) with d(i,j) = 1 if s[i] != s[j] and 0 else

}

55 CS520 - 1) Introduction

2.3 Entity Resolution

56 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1

E 2

E 3

D 4

2.3 Entity Resolution

57 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1

E 2

E 3

D 4

2.3 Entity Resolution

58 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1 2

E 2 2

E 3

D 4

2.3 Entity Resolution

59 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3

E 2 2 2

E 3 3

D 4

2/5/16

11

2.3 Entity Resolution

60 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3 4

E 2 2 2 3

E 3 3 3

D 4 4

2.3 Entity Resolution

61 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3 4 5

E 2 2 2 3 3

E 3 3 3 3

D 4 4 4

2.3 Entity Resolution

62 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3 4 5 6

E 2 2 2 3 3 4

E 3 3 3 3 3

D 4 4 4 4

2.3 Entity Resolution

63 CS520 - 1) Introduction

NEED -> STREET

Example:	

S T R E E T

0 1 2 3 4 5 6

N 1 1 2 3 4 5 6

E 2 2 2 3 3 4 5

E 3 3 3 3 3 3 4

D 4 4 4 4 4 4 4

2.3 Entity Resolution – Distance

Measures

•  Other sequence-based measures for string

similarity

– Needleman-Wunsch

•  Missing character sequences can be penalized

differently from character changes

– Affine Gap Measure

•  Limit influence of longer gaps

•  E.g., Peter Friedrich Mueller vs. Peter Mueller

– Smith-Waterman Measure

•  More resistant to reordering of elements in the string

•  E.g., Prof. Franz Mueller vs. F. Mueller, Prof.

64 CS520 - 1) Introduction

2.3 Entity Resolution – Distance

Measures

•  Other sequence-based measures for string

similarity

– Jaro-Winkler

•  Consider shared prefixes

•  Consider distance of same characters in strings

•  E.g., johann vs. ojhann vs. ohannj

– See textbook for details!

65 CS520 - 1) Introduction

2/5/16

12

2.3 Entity Resolution – Distance

Measures

•  Token-set based measures

– Split string into tokens

•  E.g., single characters

•  E.g., words if string represents a longer text

– Potentially normalize tokens

•  E.g., word tokens replace word with its stem

– Generating, generated, generates are all replaced with

generate

– Represent string as set (multi-set) of tokens

 66 CS520 - 1) Introduction

2.3 Entity Resolution

67 CS520 - 1) Introduction

Input string:

S = “the tokenization of strings is commonly used in

information retrieval”

Set of tokens:

Tok(S) = {commonly, in, information, is, of,

 retrieval, strings, the, tokenization, used}

Bag of tokens:

Tok(S) = {commonly:1, in:1, information:1, is:1,

 of:1, retrieval:1,strings:1, the:1,

 tokenization:1, used:1}

Example:	Tokeniza>on	

2.3 Entity Resolution – Distance

Measures

•  Jaccard-Measure

– Bs = Tok(s) = token set of string s

– Jaccard measures relative overlap of tokens in

two strings

•  Number of common tokens divided by total number

of tokens

68 CS520 - 1) Introduction

djacc(s, s
0) =

kBs \Bs0k

kBs [Bs0k

2.3 Entity Resolution

69 CS520 - 1) Introduction

Input string:

S = “nanotubes are used in these experiments to…”

S’= “we consider nanotubes in our experiments…”

S’’= “we prove that P=NP, thus solving …”

Tok(S) = {are,experiments,in,nanotubes,these,to,used}

Tok(S’) = {consider,experiments,in,nanotubes,our,we}

Tok(S’’)= {P=NP,prove,solving,that,thus,we}

djacc(S,S’)=

djacc(S,S’’)=

djacc(S’,S’’)=

Example:	Tokeniza>on	

2.3 Entity Resolution

70 CS520 - 1) Introduction

Input string:

S = “nanotubes are used in these experiments to…”

S’= “we consider nanotubes in our experiments…”

S’’= “we prove that P=NP, thus solving …”

Tok(S) = {are,experiments,in,nanotubes,these,to,used}

Tok(S’) = {consider,experiments,in,nanotubes,our,we}

Tok(S’’)= {P=NP,prove,solving,that,thus,we}

djacc(S,S’) = 3 / 10 = 0.3

djacc(S,S’’) = 0 / 13 = 0

djacc(S’,S’’)= 1 / 11 = 0.0909

Example:	Tokeniza>on	

2.3 Entity Resolution

•  Other set-based measures

– TF/IDF: term frequency, inverse document

frequency

•  Take into account that certain tokens are more common

than others

•  If two strings (called documents for TF/IDF) overlap on

uncommon terms they are more likely to be similar than

if they overlap on common terms

–  E.g., the vs. carbon nanotube structure

71 CS520 - 1) Introduction

2/5/16

13

2.3 Entity Resolution

•  TF/IDF: term frequency, inverse document

frequency

– Represent documents as feature vectors

•  One dimension for each term

•  Value computed as frequency times IDF

–  Inverse of frequency of term in the set of all documents

– Compute cosine similarity between two feature

vectors

•  Measure how similar they are in term distribution

(weighted by how uncommon terms are)

•  Size of the documents does not matter

– See textbook for details
72 CS520 - 1) Introduction

2.3 Entity Resolution

•  Entity resolution

– Concatenate attribute values of tuples and use

string similarity measure

•  Loose information encoded by tuple structure

•  E.g., [Gender:male,Salary:9000]

-> “Gender:male,Salary:9000”

or -> “male,9000”

– Combine distance measures for single attributes

•  Weighted sum or more complex combinations

–  E.g.,

– Use quadratic distance measure

•  E.g., earth-movers distance
73 CS520 - 1) Introduction

d(t, t0) = w1 × dA(t.A, t
0.A) + w2 × dB(t.B, t0.B)

2.3 Entity Resolution

•  Entity resolution

– Rule-based approach

•  Set of if this than that rules

– Learning-based approaches

– Clustering-based approaches

– ProbabilisNc	approaches	to	matching	

– Collective matching

74 CS520 - 1) Introduction

2.3 Entity Resolution

•  Weighted linear combination

– Say tuples have n attributes

– wi: predetermined weight of an attribute

– di(t,t’): similarity measure for the ith attribute

•  Tuples match if d(t,t’) > β for a threshold β

75 CS520 - 1) Introduction

d(t, t0) =

nX

i=0

wi × di(t, t
0)

2.3 Entity Resolution

76 CS520 - 1) Introduction

	

	

	

	

	

	

	

	

	

Assumption: SSNs and names are most important, city and

zip are not very predictive

Example:	Weighted	sum	of	aMribute	similari>es	

SSN	 zip	 city	 name	

333-333-3333	 60616	 Chicago	 Peter	

SSN	 zip	 city	 name	

3333333333	 IL	60616	 Petre	

1	 0.8	 0?	 0.6	

wSSN = 0.4, wzip = 0.05, wcity = 0.15, wname = 0.4

d(t, t0) = 0.4× 1 + 0.05× 0.8 + 0.15× 0 + 0.4× 0.6

= 0.4 + 0.04 + 0 + 0.24

= 0.68

2.3 Entity Resolution

•  Weighted linear combination

– How to determine weights?

•  E.g., have labeled training data and use ML to learn

weights

– Use non-linear function?

77 CS520 - 1) Introduction

2/5/16

14

2.3 Entity Resolution

•  Entity resolution

– Rule-based approach

– Learning-based approaches

– Clustering-based approaches

– ProbabilisNc	approaches	to	matching	

– Collective matching

78 CS520 - 1) Introduction

2.3 Entity Resolution

•  Rule-based approach

– Collection (list) of rules

–  if dname(t,t’) < 0.6 then unmatched

–  if dzip(t,t’) = 1 and t.country = USA then matched

–  if t.country != t’.country then unmatched

•  Advantages

– Easy to start, can be incrementally improved

•  Disadvantages

– Lot of manual work, large rule-bases hard to

understand

79 CS520 - 1) Introduction

2.3 Entity Resolution

•  Entity resolution

– Rule-based approach

– Learning-based approaches

– Clustering-based approaches

– Probabilistic approaches to matching

– Collective matching

80 CS520 - 1) Introduction

2.3 Entity Resolution

•  Learning-based approach

– Build all pairs (t,t’) for training dataset

– Represent each pair as feature vector from, e.g.,

similarities

– Train classifier to return {match,no match}

•  Advantages

– automated

•  Disadvantages

– Requires training data

81 CS520 - 1) Introduction

2.3 Entity Resolution

•  Entity resolution

– Rule-based approach

– Learning-based approaches

– Clustering-based approaches

– Probabilistic approaches to matching

– Collective matching

82 CS520 - 1) Introduction

2.3 Entity Resolution

•  Clustering-based approach

– Apply clustering method to group inputs

– Typically hierarchical clustering method

– Clusters now represent entities

•  Decide how to merge based on similarity between

clusters

•  Advantages

– Automated, no training data required

•  Disadvantages

– Choice of cluster similarity critical

83 CS520 - 1) Introduction

2/5/16

15

2.3 Entity Resolution

•  Entity resolution

– Rule-based approach

– Learning-based approaches

– Clustering-based approaches

– Probabilistic approaches to matching

– Collective matching

•  See text book

84 CS520 - 1) Introduction

2. Overview

•  Topics covered in this part

– Causes of Dirty Data

– Constraint-based Cleaning

– Outlier-based and Statistical Methods

– Entity Resolution

– Data Fusion

85 CS520 - 1) Introduction

2.4 Data Fusion

•  Data Fusion = how to combine (possibly

conflicting) information from multiple objects

representing the same entity

– Choose among conflicting values

•  If one value is missing (NULL) choose the other one

•  Numerical data: e.g., median, average

•  Consider sources: have more trust in certain data

sources

•  Consider value frequency: take most frequent value

•  Timeliness: latest value

86 CS520 - 1) Introduction

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 87 CS520 - 1) Introduction

2/18/15

1

CS520

Data Integration, Warehousing, and

Provenance

3. Schema Matching and Mapping

Boris Glavic

http://www.cs.iit.edu/~glavic/

http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 1 CS520 - 3) Matching and Mapping

3. Why matching and mapping?

•  Problem: Schema Heterogeneity

– Sources with different schemas store overlapping

information

– Want to be able to translate data from one schema

into a different schema

•  Datawarehousing

•  Data exchange

– Want to be able to translate queries against one

schema into queries against another schema

•  Virtual dataintegration

2 CS520 - 3) Matching and Mapping

3. Why matching and mapping?

•  Problem: Schema Heterogeneity

– We need to know how elements of different

schemas are related!

– Schema matching

•  Simple relationships such as attribute name of

relation person in the one schema corresponds to

attribute lastname of relation employee in the other

schema

– Schema mapping

•  Also model correlations and missing information such

as links caused by foreign key constraints

3 CS520 - 3) Matching and Mapping

3. Why matching and mapping?

•  Why both mapping and matching

– Split complex problem into simpler subproblems

•  Determine matches and then correlate with constraint

information into mappings

– Some tasks only require matches

•  E.g., matches can be used to determine attributes storing

the same information in data fusion

– Mappings are naturally an generalization of

matchings

4 CS520 - 3) Matching and Mapping

3. Overview

•  Topics covered in this part

– Schema Matching

– Schema Mappings and Mapping Languages

5 CS520 - 3) Matching and Mapping

2/18/15

2

3.1 Schema Matching

•  Problem: Schema Matching

– Given two (or more schemas)

•  For now called source and target

– Determine how elements are related

•  Attributes are representing the same information

–  name = lastname

•  Attribute can be translated into an attribute

– MonthlySalary * 12 = Yearly Salary

•  1-1 matches vs. M-N matches

–  name to lastname

–  name to concat(firstname, lastname)

6 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Why is this hard?

– Insufficient information: schema does not

capture full semantics of a domain

– Schemas can be misleading:

•  E,g., attributes are not necessarily descriptive

•  E.g., finding the right way to translate attributes not

obvious

7 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  What information to consider?

– Attribute names

•  or more generally element names

– Structure

•  e.g., belonging to the same relation

– Data

•  Not always available

•  Need to consider multiple types to get

reasonable matching quality

– Single types of information not predictable enough

8 CS520 - 3) Matching and Mapping

3.1 Schema Mapping

9 CS520 - 3) Matching and Mapping

Example:)Types)of)Matching)

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name) Address) Office<phone) Office<address) Home<phone)

Peter% Chicago% (312)%123%4343% Chicago,%IL%60655% (333)%323%3344%

Alice% Chicago% (312)%555%7777% Chicago,%IL%60633% (123)%323%3344%

Bob% New%York% (465)%123%1234% New%York,%NY%55443% (888)%323%3344%

Id) City) Office<contact)

1% Chicago% (312)%123%4343%

2% Chicago% (312)%555%7777%

3% New%York% (465)%123%1234%

Name) Address)

Peter% 1%

Alice% 3%

Bob% 3%

3.1 Schema Mapping

10 CS520 - 3) Matching and Mapping

Example:)Types)of)Matching)

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name) Address) Office<phone) Office<address) Home<phone)

Peter% Chicago% (312)%123%4343% Chicago,%IL%60655% (333)%323%3344%

Alice% Chicago% (312)%555%7777% Chicago,%IL%60633% (123)%323%3344%

Bob% New%York% (465)%123%1234% New%York,%NY%55443% (888)%323%3344%

Id) City) Office<contact)

1% Chicago% (312)%123%4343%

2% Chicago% (312)%555%7777%

3% New%York% (465)%123%1234%

Name) Address)

Peter% 1%

Alice% 3%

Bob% 3%

Based%oe%elemeet%eames%we%could%match%%

%%%%OfficeJcoetact%to%both%OfficeJphoee%aed%OfficeJaddress%

Based%oe%data%we%could%match%

%%%%OfficeJcoetact%to%both%OfficeJphoee%aed%HomeJphoee%

3.1 Schema Matching

•  Typical Matching System Architecture

11 CS520 - 3) Matching and Mapping

Matcher% Matcher%

Combieer%

Coestraiet%

Eeforcer%

Match%

Selector%

Determine actual matches

Use constraints to modify
similarity matrix

Combine individual similarity
matrices

Each matcher uses one type of
information to compute
similarity matrix

2/18/15

3

3.1 Schema Matching

•  Matcher

– Input: Schemas

•  Maybe also data, documentation

– Output: Similarity matrix

•  Storing value [0,1] for each pair of elements from the

source and the target schema

12 CS520 - 3) Matching and Mapping

Matcher% Matcher%

Combieer%

Coestraiet%

Eeforcer%

Match%

Selector%

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

3.1 Schema Matching

•  Name-Based Matchers

– String similarities measures

•  E.g., Jaccard and other measure we have discussed

– Preprocessing

•  Tokenization?

•  Normalization

–  Expand abbreviations and replace synonyms

•  Remove stop words

–  In, and, the

13 CS520 - 3) Matching and Mapping

3.1 Schema Mapping

14 CS520 - 3) Matching and Mapping

%

%

%

%

Example:)Types)of)Matching)

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name) Address) Office<

phone)

Office<

address)

Home<

phone)

Name% 1) 0% 0% 0% 0%

Address% 0% 1) 0% 0.4) 0%

Id% 0% 0% 0% 0% 0%

City% 0% 0% 0% 0% 0%

OfficeJcoetact% 0% 0% 0.5) 0.5) 0%

3.1 Schema Matching

•  Data-Based Matchers

– Determine how similar the values of two attributes

are

– Some techniques

•  Recognizers

– Dictionaries, regular expressions, rules

•  Overlap matcher

–  Compute overlap of values in the two attributes

•  Classifiers

15 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Recognizers

– Dictionaries

•  Countries, states, person names

– Regular expression matchers

•  Phone numbers: (\+\d{2})? \(\d{3}\) \d{3} \d{4}

16 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Overlap of attribute domains

– Each attribute value is a token

– Use set-based similarity measure such as Jaccard

•  Classifier

– Train classifier to identify values of one attribute A

from the source

•  Training set are values from A as positive examples and

values of other attributes as negative examples

– Apply classifier to all values of attributes from

target schema

•  Aggregate into similarity score

17 CS520 - 3) Matching and Mapping

2/18/15

4

3.1 Schema Matching

•  Combiner

– Input: Similarity matrices

•  Output of the individual matchers

– Output: Single Similarity matrix

18 CS520 - 3) Matching and Mapping

Matcher% Matcher%

Combieer%

Coestraiet%

Eeforcer%

Match%

Selector%

3.1 Schema Matching

•  Combiner

– Merge similarity matrices produced by the

matchers into single matrix

– Typical strategies

•  Average, Minimum, Max

•  Weighted combinations

•  Some script

19 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Constraint Enforcer

– Input: Similarity matrix

•  Output of Combiner

– Output: Similarity matrix

20 CS520 - 3) Matching and Mapping

Matcher% Matcher%

Combieer%

Coestraiet%

Eeforcer%

Match%

Selector%

3.1 Schema Matching

•  Constraint Enforcer

– Determine most probably match by assigning each

attribute from source to one target attribute

•  Multiple similarity scores to get likelihood of match

combination to be true

– Encode domain knowledge into constraints

•  Hard constraints: Only consider match combinations

that fulfill constraints

•  Soft constraints: violating constraints results in penalty

of scores

– Assign cost for each constraint

– Return combination that has the maximal score
21 CS520 - 3) Matching and Mapping

3.1 Schema Matching

22 CS520 - 3) Matching and Mapping

Constraint 1: An attribute matched to source.cust-phone

has to get a score of 1 from the phone regexpr matcher

Constraint 2: Any attribute matched to source.fax has to

have fax in its name

Constraint 3: If an attribute is matched to

source.firstname with score > 0.9 then there has to be

another attribute from the same target table that is

matched to source.lastname with score > 0.9

Example:)Constraints)

3.1 Schema Matching

•  How to search match combinations

– Full search

•  Exponentially many combinations potentially

–  Informed search approaches

•  A* search

– Local propagation

•  Only local optimizations

23 CS520 - 3) Matching and Mapping

2/18/15

5

3.1 Schema Matching

•  A* search

– Given a search problem

•  Set of states: start state, goal states

•  Transitions about states

•  Costs associated with transitions

•  Find cheapest path from start to goal states

– Need admissible heuristics h

•  For a path p, h computes lower bound for any path from

start to goal with prefix p

– Backtracking best-first search

•  Choose next state with lowest estimated cost

•  Expand it in all possible ways 24 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  A* search

– Estimated cost of a state f(n) = g(n) + h(n)

•  g(n) = cost of path from start state to n

•  h(n) = lower bound for path from n to goal state

– No path reaching the goal state from n can have a

total cost lower than f(n)

25 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Algorithm

– Data structures

•  Keep a priority queue q of states sorted on f(n)

–  Initialize with start state

•  Keep set v of already visited nodes

–  Initially empty

– While q is not empty

•  pop state s from head of q

•  If s is goal state return

•  Foreach s’ that is direct neighbor of s

–  If s’ not in v

–  Compute f(s’) and insert s’ into q

26 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Application to constraint enforcing

– Source attributes: A1 to An

– Target attributes: B1 to Bm

– States

•  Vector of length n with values Bi or * indicating that no

choice has not been taken

•  [B1, *, *, B3]

–  Initial state

•  [*, *, *, *]

– Goal states

•  All states without *

27 CS520 - 3) Matching and Mapping

3.1 Schema Matching

•  Match Selector

– Input: Similarity matrix

•  Output of the individual matchers

– Output: Matches

28 CS520 - 3) Matching and Mapping

Matcher% Matcher%

Combieer%

Coestraiet%

Eeforcer%

Match%

Selector%

3.1 Schema Matching

•  Match Selection

– Merge similarity matrices produced by the

matchers into single matrix

– Typical strategies

•  Average, Minimum, Max

•  Weighted combinations

•  Some script

29 CS520 - 3) Matching and Mapping

2/18/15

6

3.1 Schema Matching

•  Many-to-many matchers

– Combine multiple columns using a set of functions

•  E.g., concat, +, currency exchange, unit exchange

– Large or even unlimited search space

–  -> need method that explores interesting part of the

search space

– Specific searchers

•  Only concatenation of columns (limit number of

combinations, e.g., 2)

30 CS520 - 3) Matching and Mapping

3. Overview

•  Topics covered in this part

– Schema Matching

– Schema Mappings and Mapping Languages

31 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

32 CS520 - 3) Matching and Mapping

%

%

%

%

%

%

%

%

%

%

%

Assume:%We%have%data%ie%the%source%as%showe%above%

%

What%data%should%we%create%ie%the%target?%Copy%values%based%oe%matches?%

%

Example:)Matching)Result)

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Id) City) Office<contact)

1% Chicago% (312)%123%4343%

2% Chicago% (312)%555%7777%

3% New%York% (465)%123%1234%

Name) Address)

Peter% 1%

Alice% 3%

Bob% 3%

3.2 Schema Mapping

•  Matches do not determine completely how to

create the target instance data! (Data

Exchange)

– How do we choose values for attributes that do not

have a match?

– How do we combine data from different source

tables?

•  Matches do not determine completely what the

answers to queries over a mediated schema

should be! (Virtual Data Integration)

33 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

34 CS520 - 3) Matching and Mapping

Example:)Types)of)Matching)

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name) Address) Office<phone) Office<address) Home<phone)

Peter% Chicago% (312)%123%4343%

Alice% Chicago% (312)%555%7777%

Bob% New%York% (465)%123%1234%

Id) City) Office<contact)

1% Chicago% (312)%123%4343%

2% Chicago% (312)%555%7777%

3% New%York% (465)%123%1234%

Name) Address)

Peter% 1%

Alice% 3%

Bob% 3%

What%values%should%we%use%for%

Office<address%aed%Home<

phone)

How%do%we%keow%that%we%

should%joie%tables%Person%aed%

Address%to%get%the%matchieg%

address%for%a%name?)

3.2 Schema Mapping

•  Schema mappings

– Generalize matches

– Describe relationship between instances of

schemas

– Mapping languages

•  LAV, GAV, GLAV

•  Mapping as Dependencies: tuple-generating

dependencies

•  Mapping generation

– Input: Matches, Schema constraints

– Output: Schema mappings
35 CS520 - 3) Matching and Mapping

2/18/15

7

3.2 Schema Mapping

•  Instance-based definition of mappings

– Global schema G

– Local schemas S1 to Sn

– Mapping M can be expressed as for each set of

instances of the local schemas what are allowed

instances of the global schema

•  Subset of (IG x I1 x … x In)

– Useful as a different way to think about mappings,

but not a practical way to define mappings

36 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Certain answers

– Given mapping M and Q

–  Instances I1 to In for S1 to Sn

– Tuple t is a certain answer for Q over I1 to In

•  If for every instance IG so that (IG x I1 x … x In) in M

then t in Q(IG)

37 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Languages for Specifying Mappings

•  Describing mappings as inclusion

relationships between views:

– Global as View (GAV)

– Local as View (LAV)

– Global and Local as View (GLAV)

•  Describing mappings as dependencies

– Source-to-target tuple-generating dependencies

(st-tgds)

38 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Describing mappings as inclusion

relationships between views:

– Global as View (GAV)

– Local as View (LAV)

– Global and Local as View (GLAV)

•  Terminology stems from virtual integration

– Given a global (or mediated, or virtual) schema

– A set of data sources (local schemas)

– Compute answers to queries written against the

global schema using the local data sources

39 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Excursion Virtual Data Integration

– More in next section of the course

40 CS520 - 3) Matching and Mapping

Global%

Schema%

Local%

Schema%

1%

Local%

Schema%

2%

Local%

Schema%

e%

Query%

Mappiegs%

3.2 Schema Mapping

•  Global-as-view (GAV)

– Express the global schema as views over the local

schemata

– What query language do we support?

•  CQ, UCQ, SQL, …?

– Closed vs. open world assumption

•  Closed world: R = Q(S1,…,Sn)

–  Content of global relation R is defined as the result of query Q

over the sources

•  Open world: R Q(S1,…,Sn)

–  Relation R has to contain the result of query Q, but may

contain additional tuples

41 CS520 - 3) Matching and Mapping

2/18/15

8

3.2 Schema Mapping

42 CS520 - 3) Matching and Mapping

%

%

%

%

%

%

Person(X’,Y’,Z’,A’,B’)

= Q(X,Z,A, NULL, NULL) :- Person(X,Y), Address(Y,Z,A)

Since heads of LHS and RHS have to be the same we can use

simpler notation without the head of the view expression:

Person(X,Z,A, NULL, NULL) = Person(X,Y), Address(Y,Z,A)

Example:)Types)of)Matching)

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

Office-address

Home-phone

3.2 Schema Mapping

43 CS520 - 3) Matching and Mapping

%

%

%

%

%

%

Consider switching local and global schema

Person(X,NULL) = Person(X,Y,Z,A,B)

Address(NULL,Y,Z) = Person(X,Y,Z,A,B)

Example:)Types)of)Matching)

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

Office-address

Home-phone

3.2 Schema Mapping

•  Global-as-view (GAV)

•  Solutions (mapping M)

– Unique solutions (1 solution!)

–  Intuitively, execute queries over local instance that

produced global instance

44 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Global-as-view (GAV)

•  Answering Queries

– Simply replace references to global tables with the

view definition

•  Mapping R(X,Y) = S(X,Y), T(Y,Z)

•  Q(X) :- R(X,Y)

•  Rewrite into

•  Q(X) :- S(X,Y), T(Y,Z)

45 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Global-as-view (GAV) Discussion

– Hard to add new source

•  -> have to rewrite the view definitions

– Does not deal gracefully with missing values

– Easy query processing

•  -> view unfolding

46 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Local-as-view (LAV)

– Express the local schema as views over the global

schemata

– What query language do we support?

•  CQ, UCQ, SQL, …?

– Closed vs. open world assumption

•  Closed world: Sij = Q(G)

–  Content of local relation Sij is defined as the result of query Q

over the sources

•  Open world: Sij Q(G)

–  Local relation Sij has to contain the result of query Q, but

 may contain additional tuples

47 CS520 - 3) Matching and Mapping

2/18/15

9

3.2 Schema Mapping

48 CS520 - 3) Matching and Mapping

%

%

%

%

Person(X,NULL) = Person(X,Y,Z,A,B)

Address(NULL,Y,Z) = Person(X,Y,Z,A,B)

Example:)Types)of)Matching)

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

Office-address

Home-phone

3.2 Schema Mapping

•  Local-as-view (LAV)

•  Solutions (mapping M)

– May be many solutions

49 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Local-as-view (GAV)

•  Answering Queries

– Need to find equivalent query using only the views

(this is a hard problem, more in next course

section)

•  Mapping S(X,Z) = R(X,Y), T(Y,Z)

•  Q(X) :- R(X,Y)

•  Rewrite into ???

– Need to come up with missing values

– Give up query equivalence?
50 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Local-as-view (LAV) Discussion

– Easy to add new sources

•  -> have to write a new view definition

•  May take some time to get used to expressing sources

like that

– Still does not deal gracefully with all cases of

missing values

•  Loosing correlation

– Hard query processing

•  Equivalent rewriting using views only

•  Later: give up equivalence

51 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Global-Local-as-view (GLAV)

– Express both sides of the constraint as queries

– What query language do we support?

•  CQ, UCQ, SQL, …?

– Closed vs. open world assumption

•  Closed world: Q’(G) = Q(S)

•  Open world: Q’(G) Q(S)

52 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

53 CS520 - 3) Matching and Mapping

Source: Q(X,Y,Z) :- Person(X’,Y’), Address(Y’,Z’,A’)

=

Target: Q(X’,Y’,Z’) :- Person(X’,Y’,Z’,A’,B’)

Example:)Types)of)Matching)

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

Office-address

Home-phone

2/18/15

10

3.2 Schema Mapping

•  Local-as-view (GLAV) Discussion

– Kind of best of both worlds (almost)

– Complexity of query answering is the same as for

LAV

– Can address the lost correlation and missing values

problems we observed using GAV and LAV

54 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Source-to-target tuple-generating

dependencies (st-tgds)

– Local way of expressing GLAV mappings

– Equivalence to a containment constraint:

 Q’(G) Q(S)

55 CS520 - 3) Matching and Mapping

∀~x : �(~x) → ∃~y : (~x, ~y)

3.2 Schema Mapping

56 CS520 - 3) Matching and Mapping

Source: Q(X,Y,Z) :- Person(X’,Y’), Address(Y’,Z’,A’)

=

Target: Q(X’,Y’,Z’) :- Person(X’,Y’,Z’,A’,B’)

Example:)Types)of)Matching)

Local Schema

Person

Name

Address

Address

Id

City

Office-contact

Global Schema

Person

Name

Address

Office-phone

Office-address

Home-phone

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

3.2 Schema Mapping

•  Generating Schema Mappings

– Input: Schemas (Constraints), matches

– Output: Schema mappings

•  Ideas:

– Schema matches tell us which source attributes

should be copied to which target attributes

– Foreign key constraints tell us how to join in the

source and target to not loose information

57 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Clio

– Clio is a data exchange system prototype

developed by IBM and University of Toronto

researchers

– The concepts developed for Clio have been

implemented in IBM InfoSphere Data Architect

– Clio does matching, mapping generation, and data

exchange

•  For now let us focus on the mapping generation

58 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Clio Mapping Generation Algorithm

– Inputs: Source and Target schemas, matches

– Output: Mapping from source to target schema

– Note, Clio works for nested schemas such as XML

too not just for relational data.

•  Here we will look at the relational model part only

59 CS520 - 3) Matching and Mapping

2/18/15

11

3.2 Schema Mapping

•  Clio Algorithm Steps

– 1) Use foreign keys to determine all reasonable

ways of joining data within the source and the

target schema

•  Each alternative of joining tables in the source/target is

called a logical association

– 2) For each pair of source-target logical

associations: Correlate this information with the

matches to determine candidate mappings

60 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Clio Algorithm: 1) Find logical associations

– This part relies on the chase procedure that first

introduced to test implication of functional

dependencies (‘77)

– The idea is that we start use a representation of

foreign keys are inclusion dependencies (tgds)

•  There are also chase procedures that consider edgs (e.g.,

PKs)

– Starting point are all single relational atoms

•  E.g., R(X,Y)

61 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Chase step

– Works on tabelau: set of relational atoms

– A chase step takes one tgd t where the LHS is

fulfilled and the RHS is not fulfilled

•  We fulfill the tgd t by adding new atoms to the tableau

and mapping variables from t to the actually occuring

variables from the current tablau

•  Chase

– Applying the chase until no more changes

– Note: if there are cyclic constraints this may not

terminate

62 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Clio Algorithm: 1) Find logical associations

– Compute chase R(X) for each atom R in source

and target

– Each chase result is a logical association

–  Intuitively, each such logical association is a

possible way to join relations in a schema based on

the FK constraints

63 CS520 - 3) Matching and Mapping

3.2 Schema Mapping

•  Clio Algorithm: 2) Generate Candidate

Mappings

– For each pair of logical association AS in the

source and AT in the target produced in step 1

– Find the matches that are covered by AS and AT

•  Matches that lead from an element of AS to an element

from AT

–  If there is at least one such match then create

mapping by equating variables as indicated by the

matches and create st-tgd with AS in LHS and AT

in RHS

64 CS520 - 3) Matching and Mapping

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 65 CS520 - 3) Matching and Mapping

2/16/16

1

CS520

Data Integration, Warehousing, and

Provenance

4. Virtual Data Integration

Boris Glavic

http://www.cs.iit.edu/~glavic/

http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 1 CS520 - 3) Matching and Mapping

4. Virtual Data Integration

•  Virtual Data Integration

2 CS520 - 3) Matching and Mapping

Global	

Schema	

Local	

Schema	

1	

Local	

Schema	

2	

Local	

Schema	

n	

Query	

Mappings	

4. Virtual Data Integration

Problems:

•  How to create mappings?

– Discussed in previous part of the course

•  How to compute query Q

– This is the main focus of this part

3 CS520 - 3) Matching and Mapping

4. Query Answering with Views

•  How to compute query Q over global
schema based on source schemas only?

– What language is used to express mappings?

– What language due we allow for Q?

– What language(s) can we use to query local
sources?

– What language can we use to compute Q from
query results returned by local sources?

– How to deal with incompleteness?

4 CS520 - 5) Data Exchange

4.1 Query Answering with Views

5 CS520 - 5) Data Exchange

	

	

	

	

	

	

Query:										Q(Name) :- Person(Name, A, OP, OA, HP).

Example:	Solu-ons	

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Id	 City	 Office-contact	

1	 Chicago	 (312)	123	4343	

2	 Chicago	 (312)	555	7777	

3	 New	York	 (4l5)	123	1234	

Name	 Address	

Peter	 1	

Alice	 2	

Bob	 3	

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

Local	Schema	 Global	Schema	

2/16/16

2

4.1 Query Answering with Views

6 CS520 - 5) Data Exchange

	

	

	

	

	

	

	

	

	

	

	

Query:										Q(Name) :- Person(Name, A, OP, OA, HP).

RewriKen	query	over	the	source:											

 Q(Name) :- Person(Name, AI),

 Address(AI,A,OP).

Example:	Solu-ons	

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Id	 City	 Office-contact	

1	 Chicago	 (312)	123	4343	

2	 Chicago	 (312)	555	7777	

3	 New	York	 (4l5)	123	1234	

Name	 Address	

Peter	 1	

Alice	 2	

Bob	 3	

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

Local	Schema	 Global	Schema	

Name	

Peter	

Alice	

Bob	

4.1 Query Answering with Views

7 CS520 - 5) Data Exchange

	

	

	

	

	

	

Query:										Q(Home-ph) :- Person(N, A, OP, OA, Home-ph).

Example:	Solu-ons	

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Id	 City	 Office-contact	

1	 Chicago	 (312)	123	4343	

2	 Chicago	 (312)	555	7777	

3	 New	York	 (4l5)	123	1234	

Name	 Address	

Peter	 1	

Alice	 2	

Bob	 3	

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

Local	Schema	 Global	Schema	

Values	of	home-phone		are	not	

available	in	the	source	

4. Query Answering with Views

•  Problems

– How to determine whether query can be answered
at all?

– Given a rewriting of the query using views, how
do we know it is correct?

– What to do if views can only return some of the
query results?

8 CS520 - 5) Data Exchange

Motivating Example (Part 1)

Movie(ID,Ttle,year,genre)	

Director(ID,director)	

Actor(ID,	actor)	

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Director(I,D),Actor(I,D)

V
1
(T,Y,D) :−Movie(I,T,Y,G),Y ≥1940,G ="comedy"

Director(I,D),Actor(I,D)

Q'(T,Y,D) :−V1(T,Y,D),Y ≥1950V
1
⊇ Q ⇒

Containment	is	enough	to	show	that	V1	can	be	used	

to	answer	Q.	

Motivating Example (Part 2)

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Director(I,D),Actor(I,D)

V2(I,T,Y) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Q' '(T,Y,D) :−V
2
(I,T,Y),V

3
(I,D)

V
3
(I,D) :−Director(I,D),Actor(ID,D)

Containment	does	not	hold,	but	intuiTvely,	V2	and	V3	are	

useful	for	answering	Q.		

How	do	we	express	that	intuiTon?	

	

Answering	queries	using	views!	

Problem Definition

Input:	Query	Q	

										View	definiTons:	V1	,…	,Vn	

A	rewriTng:	a	query	Q’	that	refers	only	
to	the	views	and	interpreted	predicates	

(comparisons)	

An	equivalent	rewriTng	of	Q	using	V1	,…	,Vn:	

	a	rewriTng	Q ,	such	that	Q’ ⇔	Q	

2/16/16

3

Naïve approach

•  Given Q and views

– Randomly combine views into a query Q’

– Check equivalence of Q’ and Q

–  If Q’ is equivalent we are done

– Else repeat

•  Why is this not good?

– There are infinitely many ways of combining
views

•  E.g., V, V x V, V x V x V, …

– We are not using any information in the query

Motivating Example (Part 3)

Movie(ID,Ttle,year,genre)	

Director(ID,director)	

Actor(ID,	actor)	

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Director(I,D),Actor(I,D)

V
3
(I,D) :−Director(I,D),Actor(ID,D)

V4 (I,T,Y) :−Movie(I,T,Y,G),Y ≥1960,G ="comedy"

Q' ' '(T,Y,D) :−V
4
(I,T,Y),V

3
(I,D)

maximally-contained	rewri-ng	

Maximally-Contained Rewritings

Input: Query Q

 Rewriting query language L

 View definitions: V1,…,Vn

Q is a maximally-contained rewriting of

Q given V1,…,Vn and L if:

1. Q’ ∈ L,

2. Q’ ⊆ Q, and

3. there is no Q’’ in L such

that

 Q’’ ⊆ Q and Q’⊂ Q’’

Why again?

Global	

Schema	

Local	

Schema	

1	

Local	

Schema	

2	

Local	

Schema	

n	

Query	

Mappings	

LAV/GLAV!	

Other use-cases

•  Query	opTmizaTon	with	materialized	views	

– Need	equivalent	rewriTngs	

–  Implemented	in	many	commercial	DBMS	

– Here	interest	is	cost:	how	to	speed-up	query	

processing	by	using	materialized	views	

Exercise: which of these views

can be used to answer Q?

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

Director(I,D),Actor(I,D)

V2(I,T,Y) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

V
3
(I,D) :−Director(I,D),Actor(I,D)

V6(T,Y) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

V7(I,T,Y) :−Movie(I,T,Y,G),Y ≥1950,

G ="comedy",Award(I,W)

V
8
(I,T) :−Movie(I,T,Y,G),Y ≥1940,G ="comedy"

2/16/16

4

Algorithms for answering queries

using views

•  Step	1:	we ll	bound	the	space	of	possible	

query	rewriTngs	we	need	to	consider	(no	

comparisons)	

•  Step	2:	we ll	find	efficient	methods	for	

searching	the	space	of	rewriTngs	

– Bucket	Algorithm,	MiniCon	Algorithm	

•  Step	2b:	we	consider	 logical	approaches 	to	

the	problem:	

– The	Inverse-Rules	Algorithm	

Bounding the Rewriting Length

Q(X) :−p
1
(X

1
),..., pn (Xn)Query:

Q'(X) :−V
1
(X

1
),...,V

m
(X

m
)Rewriting:

Q' '(X) :−g
1

1
,...gk

1

,...,g

1

m
,...,g j

m

Expansion:

Proof: Only n subgoals in Q can contribute to

the image of the containment mapping ϕ

ϕ

Theorem:	if	there	is	an	equivalent	rewriTng,	

there	is	one	with	at	most	n	subgoals.	

Complexity Result

[LMSS, 1995]

•  Applies	to	queries	with	no	interpreted	

predicates.	

•  Finding	an	equivalent	rewriTng	of	a	query	

using	views	is	NP-complete	

– Need	only	consider	rewriTngs	of	query	length	or	

less.	

•  Maximally-contained	rewriTng:	

– Union	of	all	conjuncTve	rewriTngs	of	length	n	or	

less.	

The Bucket Algorithm

Key	idea:		

– Create	a	bucket	for	each	subgoal	g	in	the	query.	

– The	bucket	contains	views	that	contribute	to	g.	

– Create	rewriTngs	from	the	Cartesian	product	of	

the	buckets	(select	one	view	for	each	goal)	

•  Step	1:	assign	views	with	renamed	vars	to	

buckets	

•  Step	2:	create	rewriTngs,	refine	them,	unTl	

equivalent/all	contained	rewriTng(s)	are	

found	

The Bucket Algorithm

Step	1:		

– We	want	to	construct	buckets	with	views	that	

have	parTally	mapped	variables	

– For	each	goal	g	=	R	in	query	

– For	each	view	V		

– For	each	goal	v	=	R	in	V	

•  If	the	goal	has	head	variables	in	the	same	places	as	g	

then		

–  rename	the	view	head	variables	to	match	the	query	goal	vars	

–  choose	a	new	unique	name	for	each	other	var	

–  add	the	resulTng	view	atom	to	the	bucket	

The Bucket Algorithm

Step	1	Intui-on		

– A	view	can	only	be	used	to	provide	informaTon	

about	a	goal	R(X)	if	it	has	a	goal	R(Y)	

•  Q(X) :- R(X,Y)

•  V(X) :- S(X,Y)

–  If	the	query	goal	contains	variables	that	are	in	the	

head	of	the	query,	then	the	view	is	only	useful	if	it	

gives	access	to	these	values	(they	are	in	the	head)	

•  Q(X) :- R(X,Y)

•  V(X) :- S(X,Y), R(Y,Z)

2/16/16

5

Bucket Algorithm in Action

Q(ID,Dir) :−Movie(ID, title, year,genre),Revenues(ID,amount),

Director(ID,dir),amount ≥ $100M

View atoms that can contribute to Movie:

 V1(ID,year’), V2(ID,A), V4(ID,D ,year’’)

V1(I,Y) :−Movie(I,T,Y,G),Revenues(I,A), I ≥ 5000,A ≥ $200M

V2 (I,A) :−Movie(I,T,Y,G),Revenues(I,A)

V3(I,A) :−Revenues(I,A),A ≤ $50M

V4(I,D,Y) :−Movie(I,T,Y,G),Director(I,D), I ≤ 3000

Buckets and Cartesian product

Movie(ID,-tle,					

year,genre)
Revenues(ID,	

amount)
Director(ID,dir)

V1(ID,year) V1(ID,Y) V4(ID,Dir,Y’)

V2(ID,A) V2(ID,amount)

V4(ID,D ,year)

q
1
'(ID,dir) :−V

1
(ID,year),V

1
(ID,y '),V

4
(ID,dir,y')

Consider	first	candidate	rewriTng:	first	V1	subgoal	

is	redundant,	and	V1	and	V4	are	mutually	

exclusive.	

Next Candidate Rewriting

Movie(ID,-tle,year,genre) Revenues(ID,amount) Director(ID,dir)

V1(ID,year) V1(ID,Y) V4(ID,Dir,Y)

V2(ID,A) V2(ID,amount)

V4(ID,D ,year)

q
2
'(ID,dir) :−V

2
(ID,A'),V

2
(ID,amount),V

4
(ID,dir,y')

q2 '(ID,dir) :−V2(ID,amount),V4 (ID,dir,y '),

amount ≥ $100M

The Bucket Algorithm

Step	2:		

– For	each	combinaTon	of	one	element	of	each	

bucket:	

– Create	query	Q’	with	query	Q’s		head	and	list	all	

these	view	atoms	in	the	body	

–  If	Q’	equivalent	to	Q	(or	contained	in	Q)	

•  Done	(equivalent)	

•  Add	to	union	of	CQs	for	contained	case	

–  If	not	try	to	add	comparisons	

The Bucket Algorithm: Summary

•  Cuts	down	the	number	of	rewriTng	that	need	

to	be	considered,	especially	if	views	apply	

many	interpreted	predicates.		

•  The	search	space	can	sTll	be	large	because	the	

algorithm	does	not	consider	the	interacTons	

between	different	subgoals.	

– See	next	example.	

The MiniCon Algorithm

Q(title,year,dir) :−Movie(ID,title,year,genre),

Director(ID,dir),Actor(ID,dir)

V5(D,A) :−Director(I,D),Actor(I,A)

Intuition: The variable I is not in the head of V5,

hence V5 cannot be used in a rewriting.

MiniCon discards this option early on, while the

Bucket algorithm does not notice the interaction.

2/16/16

6

MinCon Algorithm Steps

•  1)	Create	MiniCon	descrip-ons	(MCDs):	

– Homomorphism	on	view	heads	

– Each	MCD	covers	a	set	of	subgoals	in	the	query	

with	a	set	of	subgoals	in	a	view	

•  2)	Combina-on	step:	

– Any	set	of	MCDs	that	covers	the	query	subgoals	

(without	overlap)	is	a	rewriTng	

– No	need	for	an	addiTonal	containment	check!	

MiniCon Descriptions (MCDs)
An atomic fragment of the ultimate containment mapping

Q(title,act,dir) :−Movie(ID,title,year,genre),

Director(ID,dir),Actor(ID,act)

V (I,D,A) :−Director(I,D),Actor(I,A)

MCD:

 mapping:

 covered subgoals of Q: {2,3}

ID→ I

dir→ D

act→ A

MCDs: Detail 1

Q(title,year,dir) :−Movie(ID,title,year,genre),

Director(ID,dir),Actor(ID,dir)

V (I,D,A) :−Director(I,D),Actor(I,A)

MCD:

 mapping:

 covered subgoals of Q: {2,3}

ID→ I

dir→ D

V '(I,D,D) :−Director(I,D),Actor(I,D)

Need to specialize the view first:

MCDs: Detail 2

Q(title,year,dir) :−Movie(ID,title,year,genre),

Director(ID,dir),Actor(ID,dir)

V (I,D,D) :−Director(I,D),Actor(I,D),

Movie(I,T,Y,G)

MCD:

 mapping:

 covered subgoals of Q still: {2,3}

ID→ I

dir→ D

Note:	the	third	subgoal	of	the	view	is	not	included	

in	the	MCD.	

Inverse-Rules Algorithm

•  A	 logical 	approach	to	AQUV	

•  Produces	maximally-contained	rewriTng	in	

polynomial	Tme	

– To	check	whether	the	rewriTng	is	equivalent	to	

the	query,	you	sTll	need	a	containment	check.	

•  Conceptually	simple	and	elegant	

– Depending	on	your	comfort	with	Skolem	

funcTons…	

Inverse Rules by Example

V
7
(I,T,Y,G) :−Movie(I,T,Y,G),Director(I,D),Actor(I,D)

And	the	following	tuple	in	V7:		

										V7(79,ManhaKan,1979,Comedy)	

	

Then	we	can	infer	the	tuple:	

											Movie(79,ManhaKan,1979,Comedy)	

Hence,	the	following	 rule 	is	sound:	

IN1:	Movie(I,T,Y,G)	:-	V7(I,T,Y,G)	

Given	the	following	view:		

2/16/16

7

Skolem Functions

V
7
(I,T,Y,G) :−Movie(I,T,Y,G),Director(I,D),Actor(I,D)

Now suppose we have the tuple

 V7(79,Manhattan,1979,Comedy)

Then we can infer that there exists some

director. Hence, the following rules hold (note

that they both use the same Skolem function):

IN2: Director(I,f1(I,T,Y,G)):- V7(I,T,Y,G)

IN3: Actor(I,f1(I,T,Y,G)):- V7(I,T,Y,G)

Inverse Rules in General

Rewriting = Inverse Rules + Query

Given	Q2,	the	rewriTng	would	include:	

	IN1,	IN2,	IN3,	Q2.		

Q
2
(title,year,genre) :−Movie(ID,title,year,genre)

Given	input:	V7(79,ManhaKan,1979,Comedy)	

Inverse	rules	produce:	

			Movie(79,ManhaKan,1979,Comedy)	

				Director(79,f1(79,Manha>an,1979,Comedy))	

				Actor(79,f1(79,Manha>an,1979,Comedy))	

				Movie(Manha>an,1979,Comedy)	

(the	last	tuple	is	produced	by	applying	Q2).	

Comparing Algorithms

•  Bucket	algorithm:	

– Good	if	there	are	many	interpreted	predicates	

– Requires	containment	check.	Cartesian	product	

can	be	big	

•  MiniCon:		

– Good	at	detecTng	interacTons	between	subgoals	

Algorithm Comparison

(Continued)

•  Inverse-rules	algorithm:	

– Conceptually	clean	

– Can	be	used	in	other	contexts	(see	later)	

– But	may	produce	inefficient	rewriTngs	because	it	

undoes 	the	joins	in	the	views	(see	next	slide)	

•  Experiments	show	MiniCon	is	most	efficient.	

•  Even	faster:	
Konstantinidis, G. and Ambite, J.L, Scalable query rewriting: a

graph-based approach. SIGMOD ‘11	

Inverse Rules Inefficiency

Example

Query and view :

Q(X,Y) :−e
1
(X,Z),e

2
(Z,Y)

V (A,B) :−e
1
(A,C),e

2
(C,B)

Inverse rules :

e
1
(A, f

1
(A,B)) :−V (A,B)

e
2
(f
1
(A,B),B) :−V (A,B)

Now we need to re-compute the join…

View-Based Query Answering

•  Maximally-contained	rewriTngs	are	

parameterized	by	query	language.	

•  More	general	quesTon:	

– Given	a	set	of	view	definiTons,	view	instances	and	

a	query,	what	are	all	the	answers	we	can	find?	

•  We	introduce	certain	answers	as	a	

mechanism	for	providing	a	formal	answer.	

2/16/16

8

View Instances = Possible DB s

V
8
(dir) :−Movie(ID,dir,actor)

V
9
(actor) :−Movie(ID,dir,actor)

V8: {Allen, Copolla}

V9: {Keaton, Pacino}

Consider	the	two	views:	

And	suppose	the	extensions	of	the	views	

are:		

Possible Databases

There	are	mulTple	databases	that	saTsfy	the	

above	view	definiTons:	(we	ignore	the	first	

argument	of	Movie	below)	

	

DB1.	{(Allen,	Keaton),	(Coppola,	Pacino)}	

DB2.	{(Allen,	Pacino),	(Coppola,	Keaton)}	

	

If	we	ask	whether	Allen	directed	a	movie	in	

which	Keaton	acted,	we	can t	be	sure.	

Certain	answers	are	those	true	in	all	databases	that	are	

consistent	with	the	views	and	their	extensions.	

Certain Answers: Formal Definition
[Open-world Assumption]

•  Given:	
– Views:	V1,…,Vn	

– View	extensions	v1,…vn	

– A	query	Q	

•  A	tuple	t	is	a	certain	answer	to	Q	under	the	
open-world	assumpTon	if	t	∈	Q(D)	for	all	
databases	D	such	that:	

– Vi(D)	⊆	vi		for	all	i.	

Certain Answers
[Closed-world Assumption]

•  Given:	
– Views:	V1,…,Vn	

– View	extensions	v1,…vn	

– A	query	Q	

•  A	tuple	t	is	a	certain	answer	to	Q	under	the	
open-world	assumpTon	if	t	∈	Q(D)	for	all	
databases	D	such	that:	

– Vi(D)	=	vi		for	all	i.	

Certain Answers: Example

V
8
(dir) :−Director(ID,dir)

V
9
(actor) :−Actor(ID,actor)

Q(dir,actor) :−Director(ID,dir),Actor(ID,actor)

V8: {Allen}

V9: {Keaton}

Under	closed-world	assumpTon:	

	single	DB	possible	⇒	(Allen,	Keaton)		

	

Under	open-world	assumpTon:	

	no	certain	answers.	

The Good News

•  The	MiniCon	and	Inverse-rules	algorithms	

produce	all	certain	answers	

– Assuming	no	interpreted	predicates	in	the	query	

(ok	to	have	them	in	the	views)	

– Under	open-world	assumpTon	

– Corollary:	they	produce	a	maximally-contained	

rewriTng	

2/16/16

9

In Other News…

•  Under closed-world assumption finding all

certain answers is co-NP hard!

v
1
(X) :−color(X,Y)

v
2
(Y) :−color(X,Y)

v
3
(X,Y) :−edge(X,Y)

Proof: encode a graph - G = (V,E)

I(V
1
) =V

I(V
2
) = {red,green,blue}

I(V
3
) = E

q() :−edge(X,Y),color(X,Z),color(Y,Z)

q has a certain tuple iff G is not 3-colorable

Interpreted Predicates

•  In	the	views:	no	problem	(all	results	hold)	

•  In	the	query	Q:	

–  If	the	query	contains	interpreted	predicates,	

finding	all	certain	answers	is	co-NP-hard	even	

under	open-world	assumpTon	

– Proof:	reducTon	to	CNF.		

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 50 CS520 - 3) Matching and Mapping

3/9/15

1

CS520

Data Integration, Warehousing, and

Provenance

5. Data Exchange

Boris Glavic

http://www.cs.iit.edu/~glavic/

http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 1 CS520 - 5) Data Exchange

5. Data Exchange

•  Virtual Data Integration

– Never materialize instances for the global schema

– Data of global schema only “visible” through
queries

•  Data Exchange

– Materialize instance of global instance

•  We call it the “target schema”

– Based on information from an instance of the local
schema

•  We call this the “source schema”

2 CS520 - 5) Data Exchange

5. Data Exchange

•  Data Exchange Problem Statement

•  Input:

– Given a source and a target schema

– + instance of the source schema

– + set of schema mappings (here st-tgds)

•  Output:

–  Instance of the target schema that fulfills
constraints

3 CS520 - 5) Data Exchange

Source'Schema'S' Target'Schema'T'

Source'Data' Target'Data'

M''

5. Data Exchange

4 CS520 - 5) Data Exchange

Example:'Types'of'Matching'

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Id' City' Office?contact'

1" Chicago" (312)"123"4343"

2" Chicago" (312)"555"7777"

3" New"York" (465)"123"1234"

Name' Address'

Peter" 1"

Alice" 3"

Bob" 3"

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

5. Data Exchange

5 CS520 - 5) Data Exchange

Example:'Types'of'Matching'

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name' Address' Office?phone' Office?address' Home?phone'

Peter" Chicago" (312)"123"4343"

Alice" Chicago" (312)"555"7777"

Bob" New"York" (465)"123"1234"

Id' City' Office?contact'

1" Chicago" (312)"123"4343"

2" Chicago" (312)"555"7777"

3" New"York" (465)"123"1234"

Name' Address'

Peter" 1"

Alice" 2"

Bob" 3"

3/9/15

2

5.1 Data Exchange Setting

6 CS520 - 5) Data Exchange

Source'Schema'S' Target'Schema'T'

Source'Data'

M''

Data"Exchange"seCng"is"a"tuple"(S,T,I,Σ)"

•  Schema"S'

•  Schema"T'

•  Instance"I"of"S'

•  Mappings"Σ"from"S"to"T'

"

DefiniEon:'Data'Exchange'SeFng'

5.1 Data Exchange Solutions

7 CS520 - 5) Data Exchange

Source'Schema'S' Target'Schema'T'

Source'Data' Target'Data'

M''

Given"data"exchange"seCng"is"a"tuple"(S,T,I,Σ)""

•  Find"instance"J"of"T"so"that"(I,J)"fulfills"mappings"Σ"

•  J"uses"values"from"a"universe"U"and"set"of"labeled'nulls'N'

DefiniEon:'Data'Exchange'SoluEon'

5.1 Data Exchange Solutions

8 CS520 - 5) Data Exchange

"

"

"

"

"

"

"

"

"

"

"

Can"we"come"up"with"a"soluQon?"

Example:'SoluEons'

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Id' City' Office?contact'

1" Chicago" (312)"123"4343"

2" Chicago" (312)"555"7777"

3" New"York" (465)"123"1234"

Name' Address'

Peter" 1"

Alice" 2"

Bob" 3"

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

5.1 Data Exchange Solutions

9 CS520 - 5) Data Exchange

Example:'SoluEons'

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name' Address' Office?phone' Office?address' Home?phone'

Peter" Chicago" (312)"123"4343" NULL" NULL"

Alice" Chicago" (312)"555"7777" NULL" NULL"

Bob" New"York" (465)"123"1234" NULL" NULL"

Id' City' Office?contact'

1" Chicago" (312)"123"4343"

2" Chicago" (312)"555"7777"

3" New"York" (465)"123"1234"

Name' Address'

Peter" 1"

Alice" 2"

Bob" 3"

∀x, y, z, a : Person(x, y) ∧Address(y, z, a) → ∃b, c : Person(x, z, a, b, c)

5.1 Number of Solutions

•  How many solutions exists?

– Depends on how whether we use existentially
quantified variables in the mappings?

•  i.e., do we have attributes for which we have to invent
values?

– What attribute values do we allow?

•  Surely values from the source instance (active domain)

•  NULL?
– Need multiple NULL values as placeholders for missing values

that have to be the same

– Note that this is the open-world assumption

•  there are infinitely many solutions (if domains infinite)

10 CS520 - 5) Data Exchange

5.1 Number of Solutions

•  Target instance domain

– Consider a universe U

•  Source instance can only use values from U

– Consider an infinite set N of labeled nulls

•  Target instance can use these as placeholders for
missing values

11 CS520 - 5) Data Exchange

3/9/15

3

5.1 Data Exchange Solutions

12 CS520 - 5) Data Exchange

Example:'MulEple'SoluEons'

Person

Name

Address

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Name' Address' Office?phone' Office?address' Home?phone'

Peter" Chicago" (312)"123"4343" X" Y"

Alice" Chicago" (312)"555"7777" A" A"

Bob" New"York" (465)"123"1234" C" D"

Name' Address' Office?phone' Office?address' Home?phone'

Peter" Chicago" (312)"123"4343" X" Y"

Alice" Chicago" (312)"555"7777" A" A"

Bob" New"York" (465)"123"1234" C" D"

Heinzbert" Pferdegert" 111X222X3798" E"

Name' Address' Office?phone' Office?address' Home?phone'

Peter" Chicago" (312)"123"4343" Hometown" 111X322X3454"

Alice" Chicago" (312)"555"7777" A" A"

Bob" New"York" (465)"123"1234" Other"town" D"

5.1 Certain answers (… again)

•  Have multiple solutions

– Define certain answers for queries as before

– Every tuple t so that t is in the result of query Q
over any valid solution J

•  What’s new?

– Want to materialize an instance so that computing
certain answers over this instance is easy

•  Not immediately clear that this actually possible

13 CS520 - 5) Data Exchange

5.1 Data Exchange Solutions

14 CS520 - 5) Data Exchange

How"general""is"soluQon"(in"terms"of"certain"answers)?"

"

Consider"query""

Q(n) :- P(n,a,op,oa,hp), oa = Hometown

Example:'SoluEon'generality'

Name' Address' Office?phone' Office?address' Home?phone'

Peter" Chicago" (312)"123"4343" X" Y"

Alice" Chicago" (312)"555"7777" A" A"

Bob" New"York" (465)"123"1234" C" D"

Name' Address' Office?phone' Office?address' Home?phone'

Peter" Chicago" (312)"123"4343" Hometown" 111X322X3454"

Alice" Chicago" (312)"555"7777" A" A"

Bob" New"York" (465)"123"1234" Other"town" D"

5.1 Universal solutions

•  Universal solution

– Want a solution that is as general as possible

– We call such most general solutions universal
solutions

– How do we know whether it is most general

•  We can map the tuples in this solution to any other less
general solution by replacing unspecified values
(labelled nulls) with actual data values

•  Query answering with universal solutions

– For UCQs: run query over universal instance

– Remove tuples with labelled nulls

– Result are the certain answers!
15 CS520 - 5) Data Exchange

5.1 Universal Solutions

16 CS520 - 5) Data Exchange

A"homomorphism"h"from"instance"J"to"instance"J’"maps"the"constants"and"nulls"

of"J"to"the"constants"and"nulls"of"J’"and"fulfills"the"following"condiQons:'

'

•  Constants"are"mapped"onto"themselves:"h(c)'='c'

•  Every"tuple"R(a1,…,an)"in"J"is"mapped"to"a"tuple"in"J’:""

""""""""""""""""""R(a1,…,an)"in"J"X>"R(h(a1),'…,h(an))"in"J’'

'

DefiniEon:'Homomorphism'

"

Given"data"exchange"seCng"(S,T,I,Σ)."An"instance"J"of"T"is"called"an"universal"

soluQon"for"a"source"instance"I"if"it"is"a"soluQon"and"for"every"other"soluQon"J’"

hold"that"

'

•  There"exists"a"homomorphism"from'J'to'J’'

DefiniEon:'Universal'soluEon'

5.1 Data Exchange Solutions

17 CS520 - 5) Data Exchange

How"general""is"soluQon"(in"terms"of"certain"answers)?"

"

Consider"query""

Q(n) :- P(n,a,op,oa,hp), oa = Hometown

Example:'SoluEon'generality'

Name' Address' Office?phone' Office?address' Home?phone'

Peter" Chicago" (312)"123"4343" X" Y"

Alice" Chicago" (312)"555"7777" A" A"

Bob" New"York" (465)"123"1234" C" D"

3/9/15

4

5.1 Data Exchange Solutions

18 CS520 - 5) Data Exchange

Above"is"universal"soluQon"

"

How"to"map"to"below"nonXuniversal"soluQon?""

Replace"generic"labelled"Nulls"with"values:"

X"X>"Hometown,"YX>"111X322X3454,"C"X>"other"town,"

Example:'SoluEon'generality'

Name' Address' Office?phone' Office?address' Home?phone'

Peter" Chicago" (312)"123"4343" X" Y"

Alice" Chicago" (312)"555"7777" A" A"

Bob" New"York" (465)"123"1234" C" D"

Name' Address' Office?phone' Office?address' Home?phone'

Peter" Chicago" (312)"123"4343" Hometown" 111X322X3454"

Alice" Chicago" (312)"555"7777" A" A"

Bob" New"York" (465)"123"1234" Other"town" D"

5.2 Computing Solutions

•  Note

– Schema mappings (st-tgds) are tuple-generating
dependencies

– What other tgd’s do we know

•  Foreign keys

– How did we solve violations to FKs?

•  The chase!

– Chase produces universal solution!

19 CS520 - 5) Data Exchange

Source'Schema'S' Target'Schema'T'

Source'Data' Target'Data'

M''

5.2 Computing Solutions

•  Can we use a database system to compute
solutions?

– Yes, systems such as Clio generate queries that
compute universal solutions!

•  SQL

•  Java

•  XSLT (for XML docs)

20 CS520 - 5) Data Exchange

5.2 Computing Solutions

•  Generating Executable Transformations

– How to preserve semantics of labeled nulls

•  n = n’ is true if we have the same labeled null only

•  n = n’ if one is a constant and the other one is a labeled
null

21 CS520 - 5) Data Exchange

5.2 Skolem Functions

•  Skolem functions for labeled nulls

– For each existential variable in a tgd we create a
new skolem function

– What should be the arguments of the function?

•  Naïve: all universally quantified variables

•  Better: only relevant ones

22 CS520 - 5) Data Exchange

5.2 Skolem Functions

23 CS520 - 5) Data Exchange

Example:'Skolem'FuncEons'

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

3/9/15

5

5.2 Skolem Functions

24 CS520 - 5) Data Exchange

"

"

"

"

"

"

"

"

"

"

Introduce"skolem"funcQon"sk1"and"sk2"for"f"and"g."

'

What"arguments"to"choose"for"sk1"and"sk2?"

"

E.g.,,"f"should"be"fixed"for"a"certain"address"and"should"not"depend"on"the"person."

Example:'Skolem'FuncEons'

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

5.2 Skolem Functions

•  Clio Schema Graph Algorithm

•  Nodes

– Create a graph with one node for every target
attribute and one node for every target relation

– Also add nodes for source attribute if they are
copied to the target according to the mapping

•  Edges

– Edges between a relation and its attributes

– Edges between target attributes that use the same
variable

– Edges between source attributes and target
attributes if they use the same variable

25 CS520 - 5) Data Exchange

5.2 Skolem Functions

•  Clio Schema Graph Algorithm

•  Annotations

– Annotate each target attribute connected to a
source attribute with that source attribute

– Propagate annotations according to the following
rules

•  Propagate annotations from attributes to relations

•  Propagate annotations from relations to attributes

– Only if attribute uses existentially quantified variable

•  Propagate annotations between target attributes
connected by equality edges

26 CS520 - 5) Data Exchange

5.2 Skolem Functions

27 CS520 - 5) Data Exchange

"

"

"

"

"

"

"

"

"

"

Example:'Skolem'FuncEons'

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Person"

Name" Address" Age"

Address"

Id" City" OfficeXc."

Name" Address"

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

OfficeXp."

5.2 Skolem Functions

28 CS520 - 5) Data Exchange

"

"

"

"

"

"

"

"

"

"

Example:'Skolem'FuncEons'

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Person"

Name" Address" Age"

Address"

Id" City" OfficeXc."

Name" Address"

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

OfficeXp."

Name' Address' Office?p.'

1)"IniQalize"with"

source"afribute"

names"

5.2 Skolem Functions

29 CS520 - 5) Data Exchange

"

"

"

"

"

"

"

"

"

"

Example:'Skolem'FuncEons'

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Person"

Name" Address" Age"

Address"

Id" City" OfficeXc."

Name" Address"

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

OfficeXp."

Name' Address' Office?p.'

{Address,'

Office?p.}'

Name'

2)"Propagate"to"

parent"and"back"to"

children"

3/9/15

6

5.2 Skolem Functions

30 CS520 - 5) Data Exchange

"

"

"

"

"

"

"

"

"

"

Example:'Skolem'FuncEons'

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Person"

Name" Address" Age"

Address"

Id" City" OfficeXc."

Name" Address"

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

OfficeXp."

Name' Address' Office?p.'

{Address,'

Office?p.}'

Name'

2)"Propagate"to"

parent"and"back"to"

children"

Name' Name'

{Address,'

Office?p.}'

5.1 Data Exchange Solutions

31 CS520 - 5) Data Exchange

"

"

"

"

"

"

"

"

"

"

Example:'Skolem'FuncEons'

Person

Name

Address

Age

Address

Id

City

Office-contact

Person

Name

Address

Office-phone

Office-address

Home-phone

Person"

Name" Address" Age"

Address"

Id" City" OfficeXc."

Name" Address"

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

OfficeXp."

Name' Address' Office?p.'

3)"Propagate"along"

equality"edges"

(here"address=id)"

…"

Compute"fixpoint"

{Address,'

Office?p.,'

Name}'

{Address,'

Office?p.,'

Name}'

{Address,'

Office?p.,'

Name}'

{Address,'

Office?p.,'

Name}'

{Address,'

Office?p.,'

Name}'

5.2 Skolem Functions

•  Clio Schema Graph Algorithm

•  Skolem functions

– Derive skolem function arguments from the
schema graph annotations of an element

32 CS520 - 5) Data Exchange

"

For"variable"f"(id,"address)"we"assign"sk1(a,b,c)"

For"variable"g(age)"we"assign"sk2(a,b,c)"

Example:'Skolem'FuncEons'

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

5.2 Executable Transformations

•  SQL Code Generation Example

– For each tgd mentioning a target relation R we
generate a query fragment

– All query fragments for R are “unioned” together

– A query fragment is

•  A FROM and WHERE clause that is a direct translation
of the LHS of a tgd into SQL

•  A SELECT clause corresponding the R atom in the RHS
using attributes from the FROM clause can the skolem
functions we have determined in the previous step

33 CS520 - 5) Data Exchange

5.2 Executable Transformations

34 CS520 - 5) Data Exchange

"

For"Person"atom"in"RHS:"

SELECT"name,""

"""""""""""""‘SK1’"||"name"||"address"||"officeXphone"AS"address,"

"""""""""""""‘SK2’"||"name"||"address"||"officeXphone"AS"age"

FROM"Person"

"

"

For"Address"atom"in"RHS:"

SELECT""‘SK1’"||"name"||"address"||"officeXphone"AS"address,"

""""""""""""""address"AS"city,"

""""""""""""""officeXphone"AS"officeXcontact"

FROM"Person"

"

Example:'Skolem'FuncEons'

∀a, b, c, d, e : Person(a, b, c, d, e) → ∃f, gPerson(a, f, g) ∧Address(f, b, c)

5.3 Recap Data Exchange Steps

•  Schema Matching

•  Generate Schema Mappings

– Use constraints

•  Generate Executable Transformations

– SQL, XSLT, XQuery

– Skolems for missing value

•  Run Transformations over source instance to
generate target instance

– Universal solution

35 CS520 - 5) Data Exchange

3/9/15

7

5.3 Comparison with virtual

integration

•  Pay cost upfront instead of at query time

•  Making decisions early vs. at query time

– When generating a solution

– Caution: bad decisions stick!

•  Universal solutions allow efficient
computation of certain types of queries using,
e.g., SQL

36 CS520 - 5) Data Exchange

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 37 CS520 - 5) Data Exchange

5/5/16

1

CS520

Data Integration, Warehousing, and

Provenance

6. Data Warehousing

Boris Glavic

http://www.cs.iit.edu/~glavic/

http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Schema matching and mapping

4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing

7) Big Data Analytics

8) Data Provenance

1 CS520 - 6) Data Warehous ing

6. What is Datawarehousing?

• Problem: Data Analysis, Prediction, Mining

– Example: Walmart

– Transactional databases
• Run many “cheap” updates concurrently

• E.g., each store has a database storing its stock and sales

– Complex Analysis over Transactional Databases?
• Want to analyze across several transactional databases

– E.g., compute total Walmart sales per month

– Distribution and heterogeneity

• Want to run complex analysis over large datasets
– Resource consumption of queries affects normal operations on

transactional databases

2 CS520 - 6) Data Warehous ing

6. What is Datawarehousing?

• Solution:

• Performance

– Store data in a different system (the
datawarehouse) for analysis

– Bulk-load data to avoid wasting performance on
concurrency control during analysis

• Heterogeneity and Distribution

– Preprocess data coming from transactional
databases to clean it and translate it into a unified
format before bulk-loading

3 CS520 - 6) Data Warehous ing

6. Datawarehousing Process

• 1) Design a schema for the warehouse

• 2) Create a process for preprocessing the data

• 3) Repeat

– A) Preprocess data from the transactional databases

– B) Bulk-load it into the warehouse

– C) Run analytics

4 CS520 - 6) Data Warehous ing

Data Warehouse

ETL ETL ETL ETL

RDBMS1 RDBMS2

HTML1 XML1

ETL p ipel ine
outputs

ETL

6. Overview

• The multidimensional datamodel (cube)

– Multidimensional data model

– Relational implementations

• Preprocessing and loading (ETL)

• Query language extensions

– ROLL UP, CUBE, …

• Query processing in datawarehouses

– Bitmap indexes

– Query answering with views

– Self-tuning

5 CS520 - 6) Data Warehous ing

5/5/16

2

6. Multidimensional Datamodel

• Analysis queries are typically aggregating

lower level facts about a business

– The revenue of Walmart in each state (country,

city)

– The amount of toy products in a warehouse of a

company per week

– The call volume per zip code for the Sprint network

– …

6 CS520 - 6) Data Warehous ing

6. Multidimensional Datamodel

• Commonality among these queries:

– At the core are facts: a sale in a Walmart store, a

toy stored in a warehouse, a call made by a certain

phone

– Data is aggregated across one or more dimensions

• These dimensions are typically organized hierarchically:
year – month – day – hour, country – state - zip

• Example

– The revenue (sum of sale amounts) of Walmart in

each state

7 CS520 - 6) Data Warehous ing

6. Example 2D

8 CS520 - 6) Data Warehous ing

2014 2015

1. Quarter 2.	Quarter 3.	Quarter 4.	Quarter 1. Quarter 2.	Qu…

Jan Feb Mar Ap r May Jun Ju l Aug Sep Oct Nov Dec Jan Feb Mar Ap r May

Toy

car 3 7 6 37 7 92 37 7 92 37 7 92 37 7 92 2 ...

puppet 9 4 5 31 1 1 1 1 1 1 1 1 1 2 2 2 …

Fishing	 rod 11 12 22 22 22 22 22 22 7 6 6 6 6 65 4 33 …

Books

Moby	Dick 3 40 39 37 7 92 81 6 51 7 48 51 5 7 3 3 …

Mobile	

devel.

3 2 5 43 7 0 81 6 51 7 48 51 5 7 3 3 …

King	Lear 3 9 6 37 7 92 5 6 51 7 48 51 5 7 3 3 …

6. Generalization to multiple

dimensions

9 CS520 - 6) Data Warehous ing

• Given a fixed number of dimensions

– E.g., product type, location, time

• Given some measure

– E.g., number of sales, items in stock, …

• In the multidimensional datamodel we store

facts: the values of measures for a combination

of values for the dimensions

6. Data cubes

10 CS520 - 6) Data Warehous ing

• Given n dimensions

– E.g., product type, location, time

• Given m measures

– E.g., number of sales, items in stock, …

• A datacube (datahypercube) is an n-

dimensional datastructure that maps values in

the dimensions to values for the m measures

– Schema: D1, …, Dn, M1, …, Mm

– Instance: a function
dom(D1) x … x dom(Dn) -> dom(M1) x ... x dom(Mm)

6. Dimensions

11 CS520 - 6) Data Warehous ing

• Purpose

– Selection of descriptive data

– Grouping with desired level of granularity

• A dimension is define through a containment-
hierarchy

• Hierarchies typically have several levels

• The root level represents the whole dimensions

• We may associate additional descriptive
information with a elements in the hierarchy
(e.g., number of residents in a city)

5/5/16

3

6. Dimension Example

12 CS520 - 6) Data Warehous ing

• Location

– Levels: location, state, city

Locations

Illinois Wisconsin

Chicago Schaumburg Madison Whitewater

location

state

city

Schema Instance

6. Dimension Schema

13 CS520 - 6) Data Warehous ing

• Schema of a Dimension

– A set D of category attributes D1, …, Dn, TopD

• These correspond to the levels

– A partial order → over D which represents parent-

child relationships in the hierarchy

• These correspond to upward edges in the hierarchy

• TopD is larger than anything else

– For every Di: Di → TopD

• There exists Dmin which is smaller than anything else

– For every Di: Dmin → Di

6. Dimension Schema Example

14 CS520 - 6) Data Warehous ing

• Schema of Location Dimension

– Set of categories D = {location, state, city}

– Partial order

{ city → state, city → location, state → location }

– TopD = location

– Dmin = city

Lo cation s

Il l in o is Wiscon sin

Ch icago Schaumbu rg Mad ison Wh itewater

lo cation

state

ci ty

Schema Instance

6. Remarks

15 CS520 - 6) Data Warehous ing

• In principle there does not have to exist an

order among the elements at one level of the

hierarchy

– E.g., cities

• Hierarchies do not have to be linear

Schema

year

quarter

mon th

day

week

6. Cells, Facts, and Measures

16 CS520 - 6) Data Warehous ing

• Each cell in the cube corresponds to a combination of
elements from each dimension

– Facts are non-empty cells

– Cells store measures

• Cube for a combination of levels of the dimension

Fact:

Items	in	stock	in	 Janat	

Chicago that	belong	to	

category	Tool

Time

5 1

4 9
3 4

Product

Location

Book

Too l

Electron ic

Aud io

Garden in g

Jan
Feb
Mar

Ap r
May

Facts

• Targets of analytics

– E.g., revenue, #sales, #stock

• A fact is uniquely defined by the combination

of values from the dimensions

– E.g., for dimensions time and and location

Revenue in Illinois during Jan 2015

• Granularity: Levels in the dimension

hierarchy corresponding to the fact

– E.g., state, month

17 CS520 - 6) Data Warehous ing

year

quar t er

m ont h

day

week

locat ion

st at e

cit y

5/5/16

4

Facts (Event vs. Snapshot)

• Event Facts

– Model real-world events

– E.g., Sale of an item

• Snapshot Facts

– Temporal state

– A single object (e.g., a book) may contribute to

several facts

– E.g., number of items in stock

18 CS520 - 6) Data Warehous ing

Measures

• A measure describes a fact

– May be derived from other measures

• Two components

– Numerical value

– Formula (optional): how to derive it

• E.g., avg(revenue) = sum(revenue) / count(revenue)

• We may associate multiple measures to each

cell

– E.g., number of sales and total revenue

19 CS520 - 6) Data Warehous ing

Measures - Granularity

• Similar to facts, measures also have a granularity

• How to change granularity of a measure?

• Need algorithm to combine measures

– Additive measures

• Can be aggregated along any dimension

– Semi-additive/non-additive

• Cannot be aggregated along some/all dimensions

• E.g., snapshot facts along time dimension

– Number of items in stock at Jan + Feb + … != items in stock

during year

– Median of a measure

20 CS520 - 6) Data Warehous ing

Design Process (after Kimball)

• Comparison to classical relational modeling

– Analysis driven

• No need to model all existing data and relationships relevant

to a domain

• Limit modeling to information that is relevant for predicted

analytics

– Redundancy

• Tolerate redundancy for performance if reasonable

– E.g., in dimension tables to reduce number of joins

21 CS520 - 6) Data Warehous ing

Design Process – Steps

• 1) Select relevant business processes

– E.g., order shipping, sales, support, stock
management

• 2) Select granuarity

– E.g., track stock at level of branches or regions

• 3) Design dimensions

– E.g., time, location, product, …

• 4) Select measures

– E.g., revenue, cost, #sales, items in stock, #support
requests

22 CS520 - 6) Data Warehous ing

Design Process Example

• Coffee shop chain

– Processes

• Sell coffee to customers

• Buy ingredients from suppliers

• Ship supplies to branches

• Pay employees

• HR (hire, advertise positions, …)

– Which process is relevant to be analysed to increase
profits?

23 CS520 - 6) Data Warehous ing

5/5/16

5

Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Single sale?

– Sale per branch/day?

– Sale per city/year?

24 CS520 - 6) Data Warehous ing

Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Sale of type of coffee per branch per day

– Sufficient for analysis
• Save storage

• 3) Determine relevant dimensions

– Location

– Time

– Product, …

25 CS520 - 6) Data Warehous ing

Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions

– Location (country, state, city, zip, shop)

– Time (year, month, day)

– Product (type, brand, product)

26 CS520 - 6) Data Warehous ing

Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions

– Location (country, state, city, zip, shop)

– Time (year, month, day)

– Product (type, brand, product)

• 4) Select measures

27 CS520 - 6) Data Warehous ing

Design Process Example

• 1) Selecting process(es)

– sell coffee to customers

• 2) Select granularity

– Sale of type of coffee per branch per day

• 3) Determine relevant dimensions

– Location (country, state, city, zip, shop)

– Time (year, month, day)

– Product (type, brand, product)

• 4) Select measures

– cost, revenue, profit?

28 CS520 - 6) Data Warehous ing

Relational representation

• How to model a datacube using the relational
datamodel

• We start from

– Dimension schemas

– Set of measures

29 CS520 - 6) Data Warehous ing

5/5/16

6

Star Schema

• A data cube is represented as a set of dimension
tables and a fact table

• Dimension tables
– For each dimension schema D = (D1,…,Dk,TopD) we create a

relation

– D (PK, D1,…,Dk)

– Here PK is a primary key, e.g., Dmin

• Fact table

– F(FK1, …, FKn, M1, ..., Mm)

– Each FKi is a foreign key to Di

– Primary key is the combination of all Fki

30 CS520 - 6) Data Warehous ing

Star Schema - Remarks

• Dimension tables have redundancy

– Values for higher levels are repeated

• Fact table is in 3NF

• TopD does not have to be stored explicitly

• Primary keys for dimension tables are

typically generated (surrogate keys)

– Better query performance by using integers

31 CS520 - 6) Data Warehous ing

Snowflake Schema

• A data cube is represented as a set of dimension
tables and a fact table

• Dimension tables
– For each dimension schema D = (D1,…,Dk,TopD) we create a

relation multiple relations connected through FKs

– Di (PK, A1, …, Al, FKj)

– Al is a descriptive attribute

– FKj is foreign key to the immediate parent(s) of Di

• Fact table

– F(FK1, …, FKn, M1, ..., Mm)

– Each FKi is a foreign key to Di

– Primary key is the combination of all Fki

32 CS520 - 6) Data Warehous ing

Snowflake Schema - Remarks

• Avoids redundancy

• Results in much more joins during query

processing

• Possible to find a compromise between

snowflake and star schema

– E.g., use snowflake for very fine-granular

dimensions with many levels

33 CS520 - 6) Data Warehous ing

Snowflake Schema - Example

– Coffee chain example

34 CS520 - 6) Data Warehous ing

6. Extract-Transform-Load (ETL)

• The preprocessing and loading phase is called

extract-transform-load (ETL) in

datawarehousing

• Many commercial and open-source tools available

• ETL process is modeled as a workflow of

operators

– Tools typically have a broad set of build-in operators:

e.g., key generation, replacing missing values,

relational operators,

– Also support user-defined operators

35 CS520 - 6) Data Warehous ing

5/5/16

7

6. Extract-Transform-Load (ETL)

• Some ETL tools

– Pentaho Data Integration

– Oracle Warehouse Builder (OWB)

– IBM Infosphere Information Server

– Talend Studio for Data Integration

– CloverETL

– Cognos Data Manager

– Pervasive Data Integrator

– …

36 CS520 - 6) Data Warehous ing

6. Extract-Transform-Load (ETL)

• Operators supported by ETL

– Many of the preprocessing and cleaning operators
we already know

• Surrogate key generation (like creating existentials
with skolems)

• Fixing missing values

– With default value, using trained model (machine learning)

• Relational queries

– E.g., union of two tables or joining two tables

• Extraction of structured data from semi-structured
data and/or unstructured data

• Entity resolution, data fusion

37 CS520 - 6) Data Warehous ing

6. ETL Process

• Operators can be composed to form complex

workflows

38 CS520 - 6) Data Warehous ing

Inv o ic e

l ine i tems

Spl i t

Date -

time

Fi l ter

inv a l id
J o in

Fi l ter

inv a l id

I nvalid

dat es /t im es

I nvalid

it em s

Item

rec ords

Fi l ter

non -

matc h

I nvalid

cust om er s

Group by

c us tomer

Cus tomer

balanc e

Cus tomer

rec ords

6. Typical ETL operators

• Elementizing

– Split values into more fine-granular elements

• Standardization

• Verification

• Matching with master data

• Key generation

• Schema matching, Entity

resolution/Deduplication, Fusion

39 CS520 - 6) Data Warehous ing

6. Typical ETL operators

• Control flow operators

– AND/OR

– Fork

– Loops

– Termination

• Successful

• With warning/errors

40 CS520 - 6) Data Warehous ing

6. Typical ETL operators

• Elementizing

– Split non 1NF data into individual elements

• Examples

– name: “Peter Gertsen” -> firstname: “Peter”, lastname:

“Gertsen”

– date: “12.12.2015” -> year: 2002, month: 12, day :12

– Address: “10 W 31st, Chicago, IL 60616” -> street = “10

W 31st”, city = “Chicago”, state = “IL”, zip = “60616”

41 CS520 - 6) Data Warehous ing

5/5/16

8

6. Typical ETL operators

• Standardization

– Expand abbreviation

– Resolve synonyms

– Unified representation of, e.g., dates

• Examples

– “IL” -> “Illinois”

– “m/w”, “M/F” -> “male/female”

– “Jan”, “01”, “January”, “january” -> “January”

– “St” -> “Street”, “Dr” -> “Drive”, …

42 CS520 - 6) Data Warehous ing

6. Typical ETL operators

• Verification

– Same purpose as constraint based data cleaning but

typically does not rely on constraints, but, e.g.,

regular expression matching

• Examples

– Phone matches “[0-9]{3}-[0-9]{3}-[0-9]{4}”

– For all t in Tokens(product description), t exists in

English language dictionary

43 CS520 - 6) Data Warehous ing

6. Typical ETL operators

• Matching master data (lookup)

– Check and potentially repair data based on

available master data

• Examples

– E.g., using a clean lookup table with (city,zip) replace

the city in each tuple if the pair (city,zip) does not occur

in the lookup table

44 CS520 - 6) Data Warehous ing

6. Metadata management

• As part of analysis in DW data is subjected to a
complex pipeline of operations

– Sources

– ETL

– Analysis queries

• -> important, but hard, to keep track of what
operations have been applied to data and from
which sources it has been derived

– Need metadata management
• Including provenance (later in this course)

45 CS520 - 6) Data Warehous ing

6. Querying DW

• Targeted model (cube vs. relational)

– Design specific language for datacubes

– Add suitable extensions to SQL

• Support typical analytical query patterns

– Multiple parallel grouping criteria

• Show total sales, subtotal per state, and subtotal per city

• -> three subqueries with different group-by in SQL

– Windowed aggregates and ranking

• Show 10 most successful stores

• Show cummulative sales for months of 2016

– E.g., the result for Feb would be the sum of the sales for Jan + Feb

46 CS520 - 6) Data Warehous ing

6. Querying DW

• Targeted model (cube vs. relational)

– Design specific language for datacubes

• MDX

– Add suitable extensions to SQL

• GROUPING SETS, CUBE, …

• Windowed aggregation using OVER(), PARTITION BY,

ORDER BY, window specification

• Window functions
– RANK, DENSE_RANK()

47 CS520 - 6) Data Warehous ing

5/5/16

9

6. Cube operations

• Roll-up

– Move from fine-granular to more coarse-granular

in one or more dimensions of a datacube

• E.g., sales per (city,month,product category) to Sales

per (state,year, product category

• Drill-down

– Move from coarse-granular to more fine-granular
in one of more dimensions

• E.g., phonecalls per (city,month) to phonecalls per

(zip,month)

48 CS520 - 6) Data Warehous ing

6. Cube operations

• Drill-out

– Add additional dimensions
• special case of drill-down starting from TopD in

dimension(s)

• E.g., sales per (city, product category) to Sales per
(city,year, product category)

• Drill-in

– Remove dimension
• special case for roll-up move to TopD for dimension(s)

• E.g., phonecalls per (city,month) to phonecalls per

(month)

49 CS520 - 6) Data Warehous ing

6. Cube operations

• Slice

– Select data based on restriction of the values of one

dimension

• E.g., sales per (city,month) -> sales per (city) in Jan

• Dice

– Select data based on restrictions of the values of

multiple dimensions

• E.g., sales per (city,month) -> sales in Jan for Chicago

and Washington DC

50 CS520 - 6) Data Warehous ing

6. SQL Extensions

• Recall that grouping on multiple sets of

attributes is hard to express in SQL

– E.g., give me the total sales, the sales per year, and

the sales per month

• Practice

51 CS520 - 6) Data Warehous ing

6. SQL Extensions

• Syntactic Sugar for multiple grouping

– GROUPING SETS

– CUBE

– ROLLUP

• These constructs are allowed as expressions in

the GROUP BY clause

52 CS520 - 6) Data Warehous ing

6. GROUPING SETS

• GROUP BY GROUPING SETS ((set1), …,
(setn))

• Explicitly list sets of group by attributes

• Semantics:

– Equivalent to UNION over duplicates of the query
each with a group by clause GROUP BY seti

– Schema contains all attributes listed in any set

– For a particular set, the attribute not in this set are

filled with NULL values

53 CS520 - 6) Data Warehous ing

5/5/16

10

6. GROUPING SETS

SELECT quarter,

city,

product_typ,

SUM(profit) AS profit

FROM facttable F, time T, location L, product P

WHERE

F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID

GROUP BY GROUPING SETS

((quarter, city), (quarter, product_typ))

54 CS520 - 6) Data Warehous ing

quarter city product_typ profit

2010Q1 Books 8347

2012Q2 Books 7836

2012	Q2 Gardening 12300

2012	Q2 Chicago 12344

2012Q2 Seattle 124345

6. GROUPING SETS

SELECT quarter, city, NULL AS product_typ,

SUM(profit) AS profit

FROM facttable F, time T, location L, product P

WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID

GROUP BY quarter, city

UNION

SELECT quarter, NULL AS city, product_typ,

SUM(profit) AS profit

FROM facttable F, time T, location L, product P

WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID

GROUP BY quarter, product_type

55 CS520 - 6) Data Warehous ing

6. GROUPING SETS

• Problem:

– How to distinguish between NULLs based on

grouping sets and NULL values in a group by

column?
GROUP BY GROUPING SETS

((quarter, city), (quarter, product_typ), (quarter, product_typ, city)

56 CS520 - 6) Data Warehous ing

quarter city product_typ profit

2010Q1 Books 8347

2012Q2 Books 7836

2012	Q2 Gardening 12300

2012	Q2 Chicago 12344

2012Q2 Seattle 124345

2012	Q2 Seattle Gardening 12343

Did	not	group	on	

product_typor	this	 is	

the	group	for	all	NULL	

values	in	product_typ?

6. GROUPING SETS

• Solution:

– GROUPING predicate

– GOUPING(A) = 1 if grouped on attribute A, 0 else
SELECT … GROUPING(product_typ) AS grp_prd

…

GROUP BY GROUPING SETS

((quarter, city), (quarter, product_typ), (quarter, product_typ, city)

57 CS520 - 6) Data Warehous ing

quarter city product_typ profit grp_prd

2010Q1 Books 8347 1

2012Q2 Books 7836 1

2012	Q2 Gardening 12300 1

2012	Q2 Chicago 12344 0

2012Q2 Seattle 124345 1

2012	Q2 Seattle Gardening 12343 1

Now	it’s	 clear!

6. GROUPING SETS

• Combining GROUPING SETS

GROUP BY A, B

= GROUP BY GROUPING SETS ((A,B))

GROUP BY GROUPING SETS ((A,B), (A,C), (A))

= GROUP BY A, GROUPING SETS ((B), (C), ())

GROUP BY GROUPING SETS ((A,B), (B,C),

GROUPING SETS ((D,E), (D))

= GROUP BY GROUPING SETS (

(A,B,D,E), (A,B,D), (B,C,D,E), (B,C,D)

)

58 CS520 - 6) Data Warehous ing

6. CUBE

• GROUP BY CUBE (set)

• Group by all 2n subsets of set
GROUP BY CUBE (A,B,C)

= GROUP BY GROUPING SETS (

(),

(A), (B), (C),

(A,B), (A,C), (B,C),

(A,B,C)

)

59 CS520 - 6) Data Warehous ing

5/5/16

11

6. CUBE

• GROUP BY ROLLUP(A1, …, An)

• Group by all prefixes

• Typically different granularity levels from single
dimension hierarchy, e.g., year-month-day
– Database can often find better evaluation strategy
GROUP BY ROLLUP (A,B,C)

= GROUP BY GROUPING SETS (

(A,B,C),

(A,B),

(A),

()

)

60 CS520 - 6) Data Warehous ing

6. OVER clause

• Agg OVER (partition-clause, order-
by,window-specification)

• New type of aggregation and grouping where
– Each input tuple is paired with the aggregation result for the group it

belongs too

– More flexible grouping based on order and windowing

– New aggregation functions for ranking queries

• E.g., RANK(), DENSE_RANK()

61 CS520 - 6) Data Warehous ing

6. OVER clause

• Agg OVER (partition-clause, order-
by,window-specification)

• New type of aggregation and grouping where
SELECT shop, sum(profit) OVER()

- aggregation over full table

SELECT shop, sum(profit) OVER(PARTITION BY state)

- like group-by

SELECT shop, sum(profit) OVER(ORDER BY month)

- rolling sum including everything with smaller month

SELECT shop, sum(profit) OVER(ORDER BY month 6
PRECEDING 3 FOLLOWING)

62 CS520 - 6) Data Warehous ing

6. OVER clause

• Agg OVER (partition-clause order-
by,window-specification)

• New type of aggregation and grouping where
<window frame preceding> ::= {

UNBOUNDED PRECEDING

| n PRECEDING

| CURRENT ROW }

<window frame following> ::= {

UNBOUNDED FOLLOWING

| n FOLLOWING

| CURRENT ROW

}

63 CS520 - 6) Data Warehous ing

6. OVER clause

SELECT year, month, city, profit

SUM(profit) OVER () AS ttl

FROM sales

• For each tuple build a set of tuples belonging to the same window

– Compute aggregation function over window

– Return each input tuple paired with the aggregation result for its window

• OVER() = one window containing all tuples

64 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 92

2010 2 Chicago 5 92

2010 3 Chicago 20 92

2011 1 Chicago 45 92

2010 1 New York 12 92

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (PARTITION BY year) AS ttl

FROM sales

• PARITION BY

– only tuples with same partition-by attributes belong to the same window

• Like GROUP BY

65 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 47

2010 2 Chicago 5 47

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 47

5/5/16

12

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl

FROM sales

• ORDER BY

– Order tuples on these expressions

– Only tuples which are <= to the order as the current tuple belong to the same

window

• E.g., can be used to compute an accumulate total

66 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 47

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 47

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl

FROM sales

• ORDER BY

– Order tuples on these expressions

– Only tuples which are <= to the order as the current tuple belong to the same

window

• E.g., can be used to compute an accumulate total

67 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl

FROM sales

• ORDER BY

– Order tuples on these expressions

– Only tuples which are <= to the order as the current tuple belong to the same

window

• E.g., can be used to compute an accumulate total

68 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month) AS ttl

FROM sales

• ORDER BY

– Order tuples on these expressions

– Only tuples which are <= to the order as the current tuple belong to the same

window

• E.g., can be used to compute an accumulate total

69 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 92

2010 1 New York 12 22

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (PARTIION BY year ORDER BY month)
AS ttl

FROM sales

• Combining PARTITION BY and ORDER BY

– First partition, then order tuples within each partition

70 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 27

2010 3 Chicago 20 47

2011 1 Chicago 45 45

2010 1 New York 12 22

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (PARTITION BY year ORDER BY month

RANGE BETWEEN 1 PRECEDING

AND 1 FOLLOWING) AS ttl

FROM sales

• Explicit window specification

– Requires ORDER BY

– Determines which tuples “surrounding” the tuple according to the sort order to

include in the window

71 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 27

2010 2 Chicago 5 47

2010 3 Chicago 20 25

2011 1 Chicago 45 45

2010 1 New York 12 27

5/5/16

13

6. OVER clause

SELECT year, month, city

SUM(profit) OVER (ORDER BY year, month

ROWS BETWEEN 1 PRECEDING

AND 1 FOLLOWING) AS ttl

FROM sales

• Explicit window specification

– Requires ORDER BY

– Determines which tuples “surrounding” the tuple according to the sort order to

include in the window

72 CS520 - 6) Data Warehous ing

year month city profit

2010 1 Chicago 10

2010 2 Chicago 5

2010 3 Chicago 20

2011 1 Chicago 45

2010 1 New York 12

year month city profit ttl

2010 1 Chicago 10 22

2010 2 Chicago 5 37

2010 3 Chicago 20 70

2011 1 Chicago 45 65

2010 1 New York 12 27

6. MDX

• Multidimensional expressions (MDX)

– Introduced by Microsoft

– Query language for the cube data model

– SQL-like syntax

• Keywords have different meaning

– MDX queries return a multi-dimensional report

• 2D = spreadsheet

• 3D or higher, e.g., multiple spreadsheets

73 CS520 - 6) Data Warehous ing

6. MDX Query

• Basic Query Structure

SELECT <axis-spec1>, …

FROM <cube-spec1>, …

WHERE (<select-spec>)

• Note!

– Semantics of SELECT, FROM, WHERE not what
you would expect knowing SQL

74 CS520 - 6) Data Warehous ing

6. MXD

SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE (Measures.numCalls, Carrier.Spring)

• Meaning of
– [] interpret number as name

– {} set notation

– () tuple in where clause

75 CS520 - 6) Data Warehous ing

2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425

6. MXD

SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE (Measures.numCalls, Carrier.Spring)

76 CS520 - 6) Data Warehous ing

2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425

Determine	result	layout

rows	and	columns	of	

spreadsheet

Specify	sets	of	

dimensional	 concepts	

Datacube(s)	to	use

Select	measures	to	aggregate	

over

Slice	(egg.,	here	only	

aggregation	over	Spring	

calls)

6. MXD - SELECT

SELECT { Chicago, Schaumburg } ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE (Measures.numCalls, Carrier.Spring)

• Select specifies dimensions in result and how to visualize

– ON COLUMNS, ON ROWS, ON PAGES, ON SECTIONS, ON
CHAPTERS

• Every dimension in result corresponds to one dimension in the cube

– Set of concepts from this dimensions which may be from different levels of

granularity

– E.g., {2010, 2011 Jan, 2012 Jan, 2012 Feb, 2010 Jan 1st}

77 CS520 - 6) Data Warehous ing

2010 2011 Jan 2011 Feb 2011	Mar … 2011 Dec

Chicago 23423 5425234523 432 43243434 … 12231

Schaumburg 32132 12315 213333 123213 …. 123153425

5/5/16

14

6. MXD - SELECT

• Specify concepts from dimensions

– List all values as set, e.g., { [2010], [2011] }

– Not necessarily from same level of hierarchy (e.g., mix years and months)

• Language constructs for accessing parents and children or members

of a level in the hierarchy

– CHILDREN: all direct children

• E.g., [2010].CHILDREN = {[2010 Jan], …, [2010 Dec]}

– PARENT: the direct parent

• E.g., [2010 Jan].PARENT = [2010]

– MEMBERS: all direct children

• E.g., Time.Years.MEMBERS = {[1990], [1991], …, [2016]}

– LASTCHILD: last child (according to order of children)

• E.g., [2010].LASTCHILD = [2010 Dec]

– NEXTMEMBER: right sibling on same level

• E.g., [2010].NEXTMEMBER = [2011]

– [a]:[b]: all members in interval between a and b

• E.g., [1990]:[1993] = {[1990], [1991], [1992], [1993]}

78 CS520 - 6) Data Warehous ing

6. MXD - SELECT

• Specify concepts from dimensions

– List all values as set, e.g., { [2010], [2011] }

– Not necessarily from same level of hierarchy (e.g., mix years and months)

• Language constructs for accessing parents and children or members

of a level in the hierarchy

– CHILDREN: all direct children

• E.g., [2010].CHILDREN = {[2010 Jan], …, [2010 Dec]}

– PARENT: the direct parent

• E.g., [2010 Jan].PARENT = [2010]

– MEMBERS: all direct children

• E.g., Time.Years.MEMBERS = {[1990], [1991], …, [2016]}

– LASTCHILD: last child (according to order of children)

• E.g., [2010].LASTCHILD = [2010 Dec]

– NEXTMEMBER: right sibling on same level

• E.g., [2010].NEXTMEMBER = [2011]

– [a]:[b]: all members in interval between a and b

• E.g., [1990]:[1993] = {[1990], [1991], [1992], [1993]}

79 CS520 - 6) Data Warehous ing

6. MXD - SELECT

• Nesting of sets: CROSSJOIN
– Project two dimensions into one

– Forming all possible combinations

SELECT CROSSJOIN (

{ Chicago, Schaumburg },

{ [2010], [2011] }

) ON ROWS

{ [2010], [2011].CHILDREN } ON COLUMNS

FROM PhoneCallsCube

WHERE (Measures.numCalls)

80 CS520 - 6) Data Warehous ing

Chicago
2010 123411

2011 3231

Schaumburg
2010 32321132

2011 12355

6. MXD - SELECT

• Conditional selection of members: FILTER
– One use members that fulfill condition

– E.g., condition over aggregation result

• Show results for all month of 2010 where there are more Sprint

calls than ATT calls

SELECT FILTER([2010].CHILDREN,

(Sprint, numCalls) > (ATT, numCalls)

) ON ROWS

{ Chicago } ON COLUMNS

FROM PhoneCallsCube

WHERE (Measures.numCalls)

81 CS520 - 6) Data Warehous ing

6. Query Processing in DW

• Large topic, here we focus on two aspects

– Partitioning

– Query answering with materialized views

82 CS520 - 6) Data Warehous ing

6. Partitioning

• Partitioning splits a table into multiple

fragments that are stored independently

– E.g., split across X disks, across Y servers

• Vertical partitioning

– Split columns across fragments

• E.g., R = {A,B,C,D}, fragment F1 = {A,B}, F2 = {C,D}

• Either add a row id to each fragment or the primary key
to be able to reconstruct

• Horizontal partitioning

– Split rows

– Hash vs. range partitioning
83 CS520 - 6) Data Warehous ing

5/5/16

15

6. Partitioning

• Why partitioning?

– Parallel/distributed query processing

• read/write fragments in parallel

• Distribute storage load across disks/servers

– Avoid reading data that is not needed to answer a

query

• Vertical

– Only read columns that are accessed by query

• Horizontal

– only read tuples that may match queries selection conditions

84 CS520 - 6) Data Warehous ing

6. Partitioning

• Vertical Partitioning

– Fragments F1 to Fn of relation R such that

• Sch(F1) u Sch(F2) u … u Sch(Fn) = Sch(R)

• Store row id or PK of R with every fragment

• Restore relation R through natural joins

85 CS520 - 6) Data Warehous ing

Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Rowid Name Salary

1 Peter 12,000

2 Alice 24,000

3 Bob 20,000

4 Gertrud 50,000

5 Pferdegert 14,000

Rowid Age Gender

1 45 M

2 34 F

3 22 M

4 55 F

5 23 M

6. Partitioning

• Horizontal Partitioning

– Range partitioning on attribute A

• Split domain of A into intervals representing fragments

• E.g., tuples with A = 15 belong to fragment [0,20]

– Fragments F1 to Fn of relation R such that

• Sch(F1) = Sch(F2) = … = Sch(Fn) = Sch(R)

• R = F1 u … u Fn

86 CS520 - 6) Data Warehous ing

Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Name Salary Age Gender

Peter 12,000 45 M

Pferdegert 14,000 23 M

Name Salary Age Gender

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Salary

[0,15000]

Salary

[15001,10000]

6. Partitioning

• Horizontal Partitioning

– Hash partitioning on attribute A

• Split domain of A into x buckets using hash function

• E.g., tuples with h(A) = 3 belong to fragment F3

• Sch(F1) = Sch(F2) = … = Sch(Fn) = Sch(R)

• R = F1 u … u Fn

87 CS520 - 6) Data Warehous ing

Name Salary Age Gender

Peter 12,000 45 M

Alice 24,000 34 F

Bob 20,000 22 M

Gertrud 50,000 55 F

Pferdegert 14,000 23 M

Salary

h(24,000)	=	0

H(14,000)	=	0

Salary

h(12,000)	=	1

H(20,000)	=	1

H(50,000)	=	1

Name Salary Age Gender

Alice 24,000 34 F

Pferdegert 14,000 23 M

Name Salary Age Gender

Peter 12,000 45 M

Bob 20,000 22 M

Gertrud 50,000 55 F

Outline

0) Course Info

1) Introduction

2) Data Preparation and Cleaning

3) Schema matching and mapping

4) Virtual Data Integration

5) Data Exchange

6) Data Warehousing

7) Big Data Analytics

8) Data Provenance

88 CS520 - 6) Data Warehous ing

4/19/16

1

CS520

Data Integration, Warehousing, and

Provenance

7. Big Data Systems and Integration

Boris Glavic

http://www.cs.iit.edu/~glavic/

http://www.cs.iit.edu/~cs520/

http://www.cs.iit.edu/~dbgroup/

IIT DBGroup

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 1 CS520 - 7) Big Data Analytics

3. Big Data Analytics

•  Big Topic, big Buzzwords ;-)

•  Here

– Overview of two types of systems

•  Key-value/document stores

•  Mainly: Bulk processing (MR, graph, …)

– What is new compared to single node systems?

– How do these systems change our approach to

integration/analytics

•  Schema first vs. Schema later

•  Pay-as-you-go

2 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  1) How does data processing at scale (read

using many machines) differ from what we

had before?

– Load-balancing

– Fault tolerance

– Communication

– New abstractions

•  Distributed file systems/storage

3 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  2) Overview of systems and how they

achieve scalability

– Bulk processing

•  MapReduce, Shark, Flink, Hyracks, …

•  Graph: e.g., Giraph, Pregel, …

– Key-value/document stores = NoSQL

•  Cassandra, MongoDB, Memcached, Dynamo, …

4 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  2) Overview of systems and how they

achieve scalability

– Bulk processing

•  MapReduce, Shark, Flink,

– Fault tolerance

•  Replication

•  Handling stragglers

– Load balancing

•  Partitioning

•  Shuffle

5 CS520 - 7) Big Data Analytics

4/19/16

2

3. Big Data Overview

•  3) New approach towards integration

– Large clusters enable directly running queries

over semi-structured data (within feasible time)

•  Take a click-stream log and run a query

– One of the reasons why pay-as-you-go is now

feasible

•  Previously: designing a database schema upfront and

designing a process (e.g., ETL) for cleaning and

transforming data to match this schema, then query

•  Now: start analysis directly, clean and transform data if

needed for the analysis

6 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  3) New approach towards integration

– Advantage of pay-as-you-go

•  More timely data (direct access)

•  More applicable if characteristics of data change

dramatically (e.g., yesterdays ETL process no longer

applicable)

– Disadvantages of pay-as-you-go

•  Potentially repeated efforts (everybody cleans the click-

log before running the analysis)

•  Lack of meta-data may make it hard to

– Determine what data to use for analysis

– Hard to understand semantics of data

7 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  Scalable systems

– Performance of the system scales in the number of

nodes

•  Ideally the per node performance is constant

independent of how many nodes there are in the system

•  This means: having twice the number of nodes would

give us twice the performance

– Why scaling is important?

•  If a system scales well we can “throw” more resources

at it to improve performance and this is cost effective

8 CS520 - 7) Big Data Analytics

3. Big Data Overview

•  What impacts scaling?

– Basically how parallelizable is my algorithm

•  Positive example: problem can be divided into

subproblems that can be solved independently without

requiring communication

–  E.g., array of 1-billion integers [i1, …, i1,000,000,000] add 3 to

each integer. Compute on n nodes, split input into n equally

sized chunks and let each node process one chunk

•  Negative example: problem where subproblems are

strongly intercorrelated

–  E.g., Context Free Grammar Membership: given a string and a

context free grammar, does the string belong to the language

defined by the grammar.

9 CS520 - 7) Big Data Analytics

3. Big Data – Processing at Scale

•  New problems at scale

– DBMS

•  running on 1 or 10’s of machines

•  running on 1000’s of machines

•  Each machine has low probability of failure

–  If you have many machines, failures are the norm

– Need mechanisms for the system to cope with

failures

•  Do not loose data

•  Do not use progress of computation when node fails

– This is called fault-tolerance
10 CS520 - 7) Big Data Analytics

3. Big Data – Processing at Scale

•  New problems at scale

– DBMS

•  running on 1 or 10’s of machines

•  running on 1000’s of machines

•  Each machine has limited storage and

computational capabilities

– Need to evenly distribute data and computation

across nodes

•  Often most overloaded node determine processing speed

– This is called load-balancing

11 CS520 - 7) Big Data Analytics

4/19/16

3

3. Big Data – Processing at Scale

•  Building distributed systems is hard

– Many pitfalls

•  Maintaining distributed state

•  Fault tolerance

•  Load balancing

– Requires a lot of background in

•  OS

•  Networking

•  Algorithm design

•  Parallel programming

12 CS520 - 7) Big Data Analytics

3. Big Data – Processing at Scale

•  Building distributed systems is hard

– Hard to debug

•  Even debugging a parallel program on a single machine

is already hard

– Non-determinism because of scheduling: Race conditions

–  In general hard to reason over behavior of parallel threads of

execution

•  Even harder when across machines

– Just think about how hard it was for you to first

program with threads/processes

13 CS520 - 7) Big Data Analytics

3. Big Data – Why large scale?

•  Datasets are too large

– Storing a 1 Petabyte dataset requires 1 PB

storage

•  Not possible on single machine even with RAID

storage

•  Processing power/bandwidth of single

machine is not sufficient

– Run a query over the facebook social network

graph

•  Only possible within feasible time if distributed

across many nodes

14 CS520 - 7) Big Data Analytics

3. Big Data – User’s Point of

View

•  How to improve the efficiency of distributed

systems experts

– Building a distributed system from scratch for

every store and analysis task is obviously not

feasible!

•  How to support analysis over large datasets

for non distributed systems experts

– How to enable somebody with some programming

but limited/no distributed systems background to

run distributed computations

15 CS520 - 7) Big Data Analytics

3. Big Data – Abstractions

•  Solution

– Provide higher level abstractions

•  Examples

– MPI (message passing interface)

•  Widely applied in HPC

•  Still quite low-level

– Distributed file systems

•  Make distribution of storage transparent

– Key-value storage

•  Distributed store/retrieval of data by identifier (key)

16 CS520 - 7) Big Data Analytics

3. Big Data – Abstractions

•  More Examples

– Distributed table storage

•  Store relations, but no SQL interface

– Distributed programming frameworks

•  Provide a, typically, limited programming model with

automated distribution

– Distributed databases, scripting languages

•  Provide a high-level language, e.g., SQL-like with an

execution engine that is distributed

17 CS520 - 7) Big Data Analytics

4/19/16

4

3. Distributed File Systems

•  Transparent distribution of storage

– Fault tolerance

– Load balancing?

•  Examples

– HPC distributed filesystems

•  Typically assume a limited number of dedicated storage

servers

•  GPFS, Lustre, PVFS

– “Big Data” filesystems

•  Google file system, HDFS

18 CS520 - 7) Big Data Analytics

3. HDFS

•  Hadoop Distributed Filesystem (HDFS)

•  Architecture

– One nodes storing metadata (name node)

– Many nodes storing file content (data nodes)

•  Filestructure

– Files consist of blocks (e.g., 64MB size)

•  Limitations

– Files are append only

19 CS520 - 7) Big Data Analytics

3. HDFS

•  Name node

•  Stores the directory structure

•  Stores which blocks belong to which files

•  Stores which nodes store copies of which

block

•  Detects when data nodes are down

•  Clients communicate with the name node to

gather FS metadata

20 CS520 - 7) Big Data Analytics

3. HDFS

•  Data nodes

•  Store blocks

•  Send/receive file data from clients

•  Send heart-beat messages to name node to

indicate that they are still alive

•  Clients communicate data nodes for reading/

writing files

21 CS520 - 7) Big Data Analytics

3. HDFS

•  Fault tolerance

– n-way replication

– Name node detects failed nodes based on heart-

beats

–  If a node if down, then the name node schedules

additional copies of the blocks stored by this node

to be copied from nodes storing the remaining

copies

22 CS520 - 7) Big Data Analytics

3. Distributed FS Discussion

•  What do we get?

– Can store files that do not fit onto single nodes

– Get fault tolerance

–  Improved read speed (caused on replication)

– Decreased write speed (caused by replication)

•  What is missing?

– Computations

23 CS520 - 7) Big Data Analytics

4/19/16

5

3. Frameworks for Distributed

Computations

•  Problems

– Not all algorithms do parallelize well

– How to simplify distributed programming?

•  Solution

– Fix a reasonable powerful, but simple enough

model of computation for which scalable

algorithms are known

–  Implement distributed execution engine for this

model and make it fault tolerant and load-balanced

24 CS520 - 7) Big Data Analytics

3. MapReduce

•  Data Model

– Sets of key-value pairs {(k1,v1), …, (kn,vn)}

– Key is an identifier for a piece data

– Value is the data associaed with a key

•  Programming Model

– We have two higher-level functions map and

reduce

•  Take as input a user-defined function that is applied to

elements in the input key-value pair set

– Complex computations can be achieved by

chaining map-reduce computations
25 CS520 - 7) Big Data Analytics

3. MapReduce Datamodel

•  Data Model

– Sets of key-value pairs {(k1,v1), …, (kn,vn)}

– Key is an identifier for a piece data

– Value is the data associaed with a key

•  Examples

– Document d with an id

•  (id, d)

– Person with name, salary, and SSN

•  (SSN, “name, salary”)

26 CS520 - 7) Big Data Analytics

3. MapReduce Computional

Model

•  Map

– Takes as input a set of key-value pairs and a user-

defined function f:(k,v) -> {(k,v)}

– Map applies f to every input key-value pair and

returns the union of the outputs produced by f

{(k1,v1),…,(kn,vn)}

->

f((k1,v1)) ∪ … ∪ f((kn,vn))

27 CS520 - 7) Big Data Analytics

3. MapReduce Computional

Model

•  Example

– Input: Set of (city,population) pairs

– Task: multiply population by 1.05

•  Map function

–  f: (city,population) ->

{(city,population*1.05)}

•  Application of f through map

–  Input: {(chicago, 3), (nashville, 1)}

– Output: {(chicago, 3.15)} ∪ {(nashville, 1.05)}
 = {(chicago, 3.15), (nashville, 1.05)}

28 CS520 - 7) Big Data Analytics

3. MapReduce Computional

Model

•  Reduce

– Takes as input a key with a list of associated values

a user-defined function

g: (k,list(v)) -> {(k,v)}

– Reduce groups all values with the same key in the

input key-value set and passes each key and its list

of values to g. and returns the union of the outputs

produced by g
{(k1,v11),…,(k1,v1n1), … (km,vm1),…,(km,vmnm)}

->

g((k1,(v11,…,v1n1)) ∪ … ∪ g((km,(vm1,…,vmnm))

29 CS520 - 7) Big Data Analytics

4/19/16

6

3. MapReduce Computional

Model

•  Example

– Input: Set of (state, population) pairs one for each

city in the state

– Task: compute the total population per state

•  Reduce function

–  f: (state,[p1, …, pn]) ->

{(state,SUM([p1,…,pn)}

•  Application of f through map

–  Input: {(illinois, 3), (illinois, 1), (oregon, 15)}

– Output: {(illinois, 4), (oregon, 15)}

30 CS520 - 7) Big Data Analytics

3. MapReduce Workflows

•  Workflows

– Computations in MapReduce consists of map

phases followed by reduce phases

•  The input to the reduce phase is the output of the map

phase

– Complex computations may require multiple map-

reduce phases to be chained together

31 CS520 - 7) Big Data Analytics

3. MapReduce Implementations

•  MapReduce

– Developed by google

– Written in C

– Runs on top of GFS (Google’s distributed

filesystem)

•  Hadoop

– Open source Apache project

– Written in Java

– Runs on-top of HDFS

32 CS520 - 7) Big Data Analytics

3. Hadoop

•  Anatomy of a Hadoop cluster

– Job tracker

•  Clients submit MR jobs to the job tracker

•  Job tracker monitors progress

– Task tracker aka workers

•  Execute map and reduce jobs

•  Job

– Input: files from HDFS

– Output: written to HDFS

– Map/Reduce UDFs

33 CS520 - 7) Big Data Analytics

3. Hadoop

•  Fault tolerance

– Handling stragglers

•  Job tracker will reschedule jobs to a different worker if

the worker falls behind too much with processing

– Materialization

•  Inputs are read from HDFS

•  Workers write results of map jobs assigned to them to

local disk

•  Workers write results of reduce jobs to HDFS for

persistence

34 CS520 - 7) Big Data Analytics

3. Hadoop – MR Job

35 CS520 - 7) Big Data Analytics

H
D
F
S
	

H
D
F
S
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Clients	sends	job	to	job	

tracker	

-  Job	tracker	decides	

#mappers,	#reducers	

and	which	nodes	to	use	

4/19/16

7

3. Hadoop – MR Job

36 CS520 - 7) Big Data Analytics

H
D
F
S
	

H
D
F
S
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Job	tracker	sends	jobs	

to	task	tracker	on	

worker	nodes	

-  Try	to	schedule	

map	jobs	on	nodes	

that	store	the	

chunk	processed	

by	a	job	

-  Job	tracker	monitors	

progress	

3. Hadoop – MR Job

37 CS520 - 7) Big Data Analytics

H
D
F
S
	

H
D
F
S
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Each	mapper	reads	its	

chunk	from	HDFS,	

translates	the	input	into	

key-value	pairs	and	

applies	the	map	UDF	to	

every	(k,v)		

-  Outputs	are	wriLen	to	

disk	with	one	file	per	

reducer	(hashing	on	

key)	

-  Job	tracker	may	spawn	

addiNonal	mappers	if	

mappers	are	not	

making	progress	

3. Hadoop – MR Job

38 CS520 - 7) Big Data Analytics

H
D
F
S
	

H
D
F
S
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Mappers	send	files	to	

reducers	(scp)		

-	Called	shuffle	

3. Hadoop – MR Job

39 CS520 - 7) Big Data Analytics

H
D
F
S
	

H
D
F
S
	

Map	Phase	 Reduce	Phase	

Node	

Node	

Shuffle	

Node	

Job	tracker	Client	

Node	

-  Reducers	merge	and	

sort	these	input	files	on	

key	values	

-  External	merge	

sort	where	runs	

already	exists	

-  Reducer	applies	reduce	

UDF	to	each	key	and	

associated	list	of	values	

3. Combiners

•  Certain reduce functions lend themselves to

pre-aggregation

– E.g., SUM(revenue) group by state

•  Can compute partial sums over incomplete groups and

then sum up the pre-aggregated results

– This can be done at the mappers to reduce amount

of data send to the reducers

•  Supported in Hadoop through a user provided

combiner function

– The combiner function is applied before writing

the mapper results to local disk
40 CS520 - 7) Big Data Analytics

3. Combiners

•  Certain reduce functions lend themselves to

pre-aggregation

– E.g., SUM(revenue) group by state

•  Can compute partial sums over incomplete groups and

then sum up the pre-aggregated results

– This can be done at the mappers to reduce amount

of data send to the reducers

•  Supported in Hadoop through a user provided

combiner function

– The combiner function is applied before writing

the mapper results to local disk
41 CS520 - 7) Big Data Analytics

4/19/16

8

3. Example code – Word count

•  https://hadoop.apache.org/docs/r1.2.1/

mapred_tutorial.html

42 CS520 - 7) Big Data Analytics

3. Example code – Word count

•  https://hadoop.apache.org/docs/r1.2.1/

mapred_tutorial.html

43 CS520 - 7) Big Data Analytics

3. Example code – Word count

44 CS520 - 7) Big Data Analytics

3. Systems/Languages on top of

MapReduce

•  Pig

– Scripting language, compiled into MR

– Akin to nested relational algebra

•  Hive

– SQL interface for warehousing

– Compiled into MR

•  …

45 CS520 - 7) Big Data Analytics

3. Hive

•  Hive

– HiveQL: SQL dialect with support for directly

applying given Map+Reduce functions as part of a

query

– HiveQL is compiled into MR jobs

– Executed of Hadoop cluster

46 CS520 - 7) Big Data Analytics

FROM	(

	MAP	doctext	USING	'python	wc_mapper.py'	AS	(word,	cnt)	 		

																	FROM	docs	

	CLUSTER	BY	word		

)	a	

REDUCE	word,	cnt	USING	'python	wc_reduce.py';		

3. Hive Architecture

47 CS520 - 7) Big Data Analytics

4/19/16

9

3. Hive Datamodel

•  Tables
–  Attribute-DataType pairs

–  User can instruct Hive to partition the table in a certain way

•  Datatypes
–  Primitive: integer, float, string

–  Complex types

•  Map: Key->Value

•  List

•  Struct

–  Complex types can be nested

•  Example:
CREATE TABLE t1(st string, fl float, li list<map<string, struct<p1:int,
p2:int>>);

•  Implementation:
–  Tables are stored in HDFS

–  Serializer/Deserializer - transform for querying
48 CS520 - 7) Big Data Analytics

3. Hive - Query Processing

•  Compile HiveQL query into DAG of map and
reduce functions.
–  A single map/reduce may implement several

traditional query operators
•  E.g., filtering out tuples that do not match a condition

(selection) and filtering out certain columns (projection)

–  Hive tries to use the partition information to avoid
reading partitions that are not needed to answer the
query
•  For example

–  table instructor(name,department) is partitioned on
department

–  SELECT name FROM instructor WHERE department = ‘CS’

–  This query would only access the partition of the table for
department ‘CS’

49 CS520 - 7) Big Data Analytics

3. Operator implementations

•  Join implementations

– Broadcast join

• Send the smaller table to all nodes

• Process the other table partitioned

– Each node finds all the join partners for a partition
of the larger table and the whole smaller table

– Reduce join (partition join)

• Use a map job to create key-value pairs where
the key is the join attributes

• Reducer output joined rows

50 CS520 - 7) Big Data Analytics

3. Example plan

51 CS520 - 7) Big Data Analytics

Spark

•  MR uses heavy materialization to achieve fault

tolerance

– A lot of I/O

•  Spark

– Works in main memory (where possible)

–  Inputs and final outputs stored in HDFS

– Recomputes partial results instead of materializing

them - resilient distributed datasets (RDD)

•  Lineage: Need to know from which chunk a chunk was

derived from and by which computation

52 CS520 - 7) Big Data Analytics

Summary

•  Big data storage systems

•  Big data computation platforms

•  Big data “databases”

•  How to achieve scalability

– Fault tolerance

– Load balancing

•  Big data integration

– Pay-as-you-go

– Schema later

53 CS520 - 7) Big Data Analytics

4/19/16

10

Outline

0) Course Info

1)  Introduction

2)  Data Preparation and Cleaning

3)  Schema matching and mapping

4)  Virtual Data Integration

5)  Data Exchange

6)  Data Warehousing

7)  Big Data Analytics

8)  Data Provenance

 54 CS520 - 7) Big Data Analytics

