

Who Produces Databases？		
\square	Traditional relational database systems is big business	SQLServer
	$\mathrm{IBM} \Rightarrow \mathrm{DB} 2$	重踷。DB2。
	－Oracle \Rightarrow Oracle －$^{\text {e }}$	oracle
	－Microsoft \Rightarrow SQLServer	TERADATA
	－Open Source \Rightarrow MySQL，Postgres，	
\square	Emerging distributed systems with DB characteristics and Big Data	amazon．com
	Cloud storage and Key－value stores \Rightarrow Amazon S3， Google Big Table，．．．	
	Big Data Analytics \Rightarrow Hadoop，Google Map \＆ Reduce，．．．	
	－SQL over Distributed Platforms \Rightarrow Hive，Tenzing， ．．．	YAHOO！
CS425－Fall 2016 －Boris Glavic		eerschatz，Korth and Sud

Why are Database Interesting（for
Students）？
Connection to many Cs fields
Distributed systems
，Getting more and more important
Compilers
Modeling
Al and machine learning
，Data mining
Operating and file systems
Hardware
，Hardware－software co－design
©

Why are Database Interesting（for

 Students）？－Connection to many CS fields
Distributed systems
－Compilers
－Modeling
Al and machine learning

Operating and file systems
Hardware
－Hardware－software co－design

Why are Database Interesting（for

 Students）？－The pragmatic perspective
－Background in databases make you competitive in the job market ；－）
－Systems and theoretical research
－Database research has a strong systems aspect
，Hacking complex and large systems
，Low－level optimization
cache－conscious algorithms
Exploit modern hardware
－Databases have a strong theoretical foundation
Complexity of query answering
，Expressiveness of query languages
，Concurrency theory
\qquad
, \cdot.
©Sillerschatz，Korth and Sudarshat

Webpage and Faculty

－Course Info
－Course Webpage：http：／／cs．iit．edu／～cs425
－Google Group：https：／／qroups．google．com／d／forum／cs425－2016－ fall－group
，Used for announcements
，Use it to discuss with me，TA，and fellow students
－Syllabus：http：／／cs．iit．edu／～cs425／files／syllabus．pdf
－Faculty
－Boris Glavic（http：／／cs．iit．edu／～qlavic）
－Email：bqlavic＠iit．edu
－Phone：312．567．5205
－Office：Stuart Building，room 226C
－Office Hours：Mondays，12pm－1pm（and by appointment）

Workload and Grading

－Exams
－Midterm（25\％）
－Final（35\％）
－Homework Assignments（preparation for exams！）－20\％
－HW1（Relational algebra）
－HW2（SQL）
－HW3（Database modeling）
－Course Project（ 20% ）
－In groups of 3 students
－Given an example application（e．g．，ticketing system）
，Develop a database model
，Derive a database schema from the model
，Implement the application accessing the database

Course Objectives

- Understand the underlying ideas of database systems
- Understand the relational data model
- Be able to write and understand SQL queries and data definition statements
- Understand relational algebra and its connection to SQL
- Understand how to write programs that access a database server
- Understand the ER model used in database design
- Understand normalization of database schemata
- Be able to create a database design from a requirement analysis for a specific domain
- Know basic index structures and understand their importance
- Have a basic understanding of relational database concepts such as concurrency control, recovery, query processing, and access control

Fraud and Late Assignments

- All work has to be original!
- Cheating $=0$ points for assignment/exam
- Possibly E in course and further administrative sanctions
- Every dishonesty will be reported to office of academic honesty
- Late policy:
- 20% per day
- No exceptions!
- Course projects:
- Every student has to contribute in every phase of the project!
- Don't let others freeload on you hard work!
- Inform me or TA immediately

Outline

- Introduction
- Relational Data Model
- Formal Relational Languages (relational algebra)
- SQL
- Database Design
- Transaction Processing, Recovery, and Concurrency Control
- Storage and File Structures
- Indexing and Hashing
- Query Processing and Optimization

0) Course Info
1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing
7) Big Data Analytics
8) Data Provenance

1.1 System Heterogeneity

- Hardware/Software
- Different hardware capabilities of sources
- Different protocols, binary file formats, ...
- Different access control mechanism
- Interface Heterogeneity
- Different interfaces for accessing data from a source
- HTML forms
- XML-Webservices
- Declarative language

1.1 Heterogeneity +Autonomy

ILINOIS INSTITUTE OFTECNOLOC

- Taxonomy of Heterogeneity

1.1 System Heterogeneity

LunNois inssitute

- Hardware/Software
- Different hardware capabilities of sources
- Mobile phone vs. server: Cannot evaluate crossproduct of two 1 GB relations on a mobile phone
- Different protocols, binary file formats, ...
- Order information stored in text files: line ending differs between Mac/Window/Linux, character encoding
- Different access control mechanism
- FTP-access to files: public, ssh authentication, .

1.1 System Heterogeneity LLINOIS INSTITUTE

- Interface Heterogeneity - Expressiveness
- Keyword-search vs. query language
- Predicates: equality ($=$), inequality (<, !=)
- Logical connectives: conjunctive (AND), disjunctive (OR), negation
- Complex operations: aggregation, quantification
- Limitations: restriction to particular tables, predicates, fixed queries with parameters, ...

1.1 System Heterogeneity

- Interface Heterogeneity - Examples
- SQL

9

1.1 System Heterogeneity

- Example: more expressive global language
- SQL with one table
- books (title, author, year, isbn, genre)
- Web form for books about history shown below
- What problems do may arise translating user queries?

14

1.1 System Heterogeneity unvols Nestruw

- Query cannot be answered select title
FROM books
WHERE genre = 'SciFi';

1.1 Structural Heterogeneity UNOIS insticute

- Data model
- Different semantic/expressiveness
- Different structure
- Schema
- Integrity constraints, keys
- Schema elements:
- use attribute or separate relations)
- Structure:
- e.g., normalized vs. denormalized relational schema

19

1.1 Structural Heterogeneity

- Example: data model
- Relational model
- XML model
- JSON
- OO
- Person and their addresses

1.1 Structural Heterogeneity

ulinols insticut ice

- Attribute-attribute conflicts
- Naming conflicts
- Attributes with different name representing the same data (synonym)
- Attributes with same name representing different information (homonym)
- Default value conflict
- Integrity constraint conflicts
- Datatype
- Constraints restricting values

27

1.1 Semantic Heterogeneity

- Naming Conflicts
- Ontological (concepts)
- Birds vs. Animals
- Synonyms
- Surname vs. last name
- Homonyms
- Units
- Gallon vs. liter
- Values
- Manager vs. Boss

1.1 Semantic Heterogeneity ILINOIS INSTITUTE OV
- Value Conflicts
- Objects representing the same entities have conflicting values for semantically equivalent attributes
- We have to identified that these objects are represent the same entitity first!
- Resolving such conflicts require Data Fusion
- Pick value from conflicting values
- Numerical methods: e.g., average
- Preferred value
-...
43

1.2 Data integration tasks

- Cleaning and prepreparation
- Entity resolution
- Data Fusion
- Schema matching
- Schema mapping
- Query rewrite
- Data translation

45

1.3 Data integration architectures iminols insuruti

- Virtual data integration
- Data Exchange
- Peer-to-peer data integration
- Datawarehousing
- Big Data analytics

1.4 Formal Background

- Query Equivalence
- Complexity for different query classes
- Query Containment
- Complexity for different query classes
- Datalog
- Recursion + Negation
- Integrity Constraints
- Logical encoding of integrity constraints
- Similarity Measures/Metrics

1.4 Integrity constraints

- How to manage all these different types of constraints?
- Has been shown that these constraints can be expressed in a logical formalism.
- Formulas which consist of relational and comparison atoms. Variables represent values
- $\mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
- $\mathrm{x}=\mathrm{y}$

1.4 Integrity constraints

- Types of constraints we will use a lot
- Tuple-generating dependencies (tgds)
- Implication with conjunction of relational atoms
- Foreign keys and schema mappings (later) $\forall \vec{x}: \phi(\vec{x}) \rightarrow \exists \vec{y}: \psi(\vec{x}, \vec{y})$
- Equality-generating dependencies (egds)
- Generalizes keys, FDs

$$
\forall \vec{x}: \phi(\vec{x}) \rightarrow \wedge_{k=1}^{n} x_{i_{k}}=x_{j_{k}}
$$

1.4 Datalog

- What is datalog?
- Prolog for databases (syntax very similar)
- A logic-based query language
- Queries (Program) expressed as set of rules

$$
Q(\vec{x}):-R_{1}\left(\overrightarrow{x_{1}}\right), \ldots, R_{n}\left(\overrightarrow{x_{n}}\right) .
$$

- One Q is specified as the answer relation (the relation returned by the query)

1.4 Datalog - Terminology

- Left-hand side of a rule is called it's head
- Right-hand side of a rule is called it's body
- Relation are called predicates
- $R(\vec{x})$ is called an atom
- An instance I of a database is the data
- The active domain adom(I) of an instance I is the set of all constants that occur in I

$$
Q(\vec{x}):-R_{1}\left(\overrightarrow{x_{1}}\right), \ldots, R_{n}\left(\overrightarrow{x_{n}}\right) .
$$

56
6

1.4 Datalog - Terminology

 ULINOIS INSTITUTE- Intensional vs. extensional
- Extensional database (edb)
- What we usually call database
- Intensional database (idb)
- Relations that occur in the head of rules (are populated by the query)
- Usually we assume that these do not overlap

$$
Q(\vec{x}):-R_{1}\left(\overrightarrow{x_{1}}\right), \ldots, R_{n}\left(\overrightarrow{x_{n}}\right)
$$

1.4 Datalog - Syntax ILLINOIS INSTITUTE
OF TECHNOLOC

- A Datalog program is a set of datalog rules - Optionally a distinguished answer predicate
- A Datalog rule is

$$
Q(\vec{x}):-R_{1}\left(\overrightarrow{x_{1}}\right), \ldots, R_{n}\left(\overrightarrow{x_{n}}\right)
$$

- X's are lists of variables and constants
- Ri's are relation names
- \mathbf{Q} is a relation name

55

1.4 Datalog - Safety unvos pistruris

- A datalog program is safe if all its rules are safe
- A rule is safe if all variables in \vec{x} occur in at least one $\overrightarrow{x_{i}}$

$$
Q(\vec{x}):-R_{1}\left(\overrightarrow{x_{1}}\right), \ldots, R_{n}\left(\overrightarrow{x_{n}}\right) .
$$

```
Example
```

Q (Name) : - Person (Name, Age). (safe) Q (Name, Sal):-Peron (Name, Age) . (unsafe)

1.4 Datalog - Semantics

- The instance of an idb predicate Q in a datalog program for an edb instance I contains all facts that can be derived by applying rules with Q in the head
- A rule derives a fact $\mathrm{Q}(\mathrm{c})$ if we can find a binding of variables of the rule to constants from adom(I) such that x is bound to c and the body is true

$$
Q(\vec{x}):-R_{1}\left(\overrightarrow{x_{1}}\right), \ldots, R_{n}\left(\overrightarrow{x_{n}}\right)
$$

60

1.4 Datalog

- Different flavors of datalog
- Conjunctive query
- Only one rule
- Expressible as Select-project-join (SPJ) query in relational algebra
- Union of conjunctive queries
- Also allow union
- SPJ + set union in relational algebra
- Rules with the same head in Datalog
- Conjunctive queries with inequalities
- Also allow inequivalities, e.g., <

62

1.4 Datalog - Semantics

1.4 Datalog

- Different flavors of datalog
- Recursion
- Rules may have recursion:
- E.g., head predicate in the body
- Fix point semantics based on immediate consequence operator
- Negation (first-order queries)
- Negated relational atoms allowed
- Require that every variable used in a negated atom also occurs in at least on positive atom (safety)
- Combined Negation + recursion

63

- Stronger requirements (stratification)

1.4 Containment and

Equivalence

Definition: Query Equivalence

Query Q is equivalent to Q^{\prime} iff for every database instance I both queries return the same result

$$
Q \equiv Q^{\prime} \Leftrightarrow \forall I: Q(I)=Q^{\prime}(I)
$$

Definition: Query Containment
Query Q is contained in query Q^{\prime} iff for every database instance I the result of Q is contained in the result of Q^{\prime}

$$
Q \sqsubseteq Q^{\prime} \Leftrightarrow \forall I: Q(I) \subseteq Q^{\prime}(I)
$$

67

1.4 Containment Mappings
 unvos Nastrictive

- NP-completeness for set semantics CQ and UCQ for the containment, evaluation, and equivalence problems is based on reducing these problems to the same problem

> - [Chandra \& Merlin, 1977]

- Notational Conventions:
$-\operatorname{head}(\mathrm{Q})=$ variables in head of query Q
$-\operatorname{body}(Q)=$ atoms in body of Q
$-\operatorname{vars}(\mathbf{Q})=$ all variable in Q

1.4 Boolean Conjunctive Queries iunol insilitive

- A conjunctive query is boolean if the head does not have any variables
- Q0 :- hop(x,y), hop(y,z)
- We will use Q :- \ldots as a convention for Q()$:-\ldots$
- What is the result of a boolean query
- Empty result \{, e.g., no hop(x,y), hop (y,z)
- If there are tuples matching the body, then a tuple with zero attributes is returned $\{0\}$
- -> We interpret $\}$ as false and $\{0\}$ as true
- Boolean query is essentially an existential check

74

1.4 Boolean Conjunctive Queries

UNOIS Nsstirut

1.4 Boolean Conjunctive Queries

Lunols instirut ivion

- BCQ in SQL

Example

Hop relation: $\operatorname{Hop}(A, B)$
$Q:-\operatorname{hop}(x, y)$

SELECT EXISTS (SELECT * FROM hop)

Note: in Oracle and DB2 we need a
from clause

75

1.4 Boolean Conjunctive Queries unsols instiruty

- BCQ in SQL

1.4 Containment Background ILLINOIS INSTITUTE

- It was shown that query evaluation, containment, equivalence as all reducible to homomorphism checking for CQ
- Canonical conjunctive query Q^{I} for instance I
- Interpret attribute values as variables
- The query is a conjunction of all atoms for the tuples
- $\mathrm{I}=\{\operatorname{hop}(\mathrm{a}, \mathrm{b}), \operatorname{hop}(\mathrm{b}, \mathrm{c})\}->\mathrm{Q}^{\mathrm{I}}$:- $\operatorname{hop}(\mathrm{a}, \mathrm{b}), \operatorname{hop}(\mathrm{b}, \mathrm{c})$
- Canonical instance I^{Q} for query Q
- Interpret each conjunct as a tuple
- Interpret variables as constants
- $\mathrm{Q}:-\operatorname{hop}(\mathrm{a}, \mathrm{a})->\mathrm{I}^{\mathrm{Q}}=\{\operatorname{hop}(\mathbf{a}, \mathrm{a})\}$

84

IUINOIS NAstirute

1.4 Containment Mappings

1.4 Containment Background

ILINOIS INSTITUTE

- Containment Mapping <-> Containment
- Proof idea (boolean queries)
- (if direction)
- Assume we have a containment mapping Q_{1} to Q_{2}
- Consider database D
- $\mathrm{Q}_{2}(\mathrm{D})$ is true then we can find a mapping from $\operatorname{vars}\left(\mathrm{Q}_{2}\right)$ to D
- Compose this with the containment mapping and prove that this is a result for Q_{1}

1.4 Containment Background

UnNols instivute

- Containment Mapping <-> Containment
- Proof idea (boolean queries)
- (only-if direction)
- Assume Q_{2} contained in Q_{1}
- Consider canonical (frozen) database $\mathrm{I}^{\mathrm{Q} 2}$
- Evaluating Q_{1} over I^{Q} and taking a variable mapping that is produced as a side-effect gives us a containment mapping

1.4 Containment Background

- If you are not scared and want to know more:
- Look up Chandra and Merlins paper(s)
- The text book provides a more detailed overview of the proof approach
- Look at the slides from Phokion Kolaitis excellent lecture on database theory
- https://classes.soe.ucsc.edu/cmps277/Winter10/

1.4 Containment Background

ILLINOIS INSTITUTE
OF TECHNOLOG

- A more intuitive explanation why containment mappings work
- Variable naming is irrelevant for query results
- If there is a containment mapping Q to Q '
- Then every condition enforced in Q is also enforced by Q'
- Q' may enforce additional conditions

1.4 Containment Background

- From boolean to general conjunctive queries
- Instead of returning true or false, return bindings of variables
- Recall that containment mappings enforce that the head is mapped to the head
- -> same tuples returned, but again Q's condition is more restrictive

92

1.4 Similarity Measures

- Problem faced by multiple integration tasks
- Given two objects, how similar are they
- E.g., given two attribute names in schema matching, given two values in data fusion/entity resolution, ...

1.4 Containment Mappings
 ILLINOIS INSTITUTE OF TECHNOLO

Example

$Q_{1}(): R(a, b), R(c, b)$.
$Q_{2}(): R(x, y)$.
$Q_{2} \rightarrow Q_{1}: \Psi(x)=a, \Psi(y)=b$

If there exists tuples
$R(a, b)$ and $R(c, b)$
in R that make Q_{1} true, then we
take
$R(a, b)$

91

1.4 Similarity Measures

ILLINOIS INSTITUTE OF TECHNOLOGY

- Object models
- Multidimensional (feature vector model)
- Object is described as a vector of values - one for each dimension out of a given set of dimensions
- E.g., Dimensions are gender (male/female), age (0-120), and salary $(0-1,000,000)$. An example object is [male, 80,70,000]
- Strings
- E.g., how similar is "Poeter" to "Peter"
- Graphs and Trees
- E.g., how similar are two XML models

1.4 Similarity Measures

ILINOIS NASTITUTE

| Definition: Metric |
| :--- | :--- |
| Function $d(p, q)$ where p and q are objects, that returns a real score with |
| - Non-negative $d(p, q)>=0$
 - Symmetry $d(p, q)=d(q, p)$
 - Identity of indiscernibles $d(p, q)=0$ iff $p=q$
 - Triangle inequality $d(p, q)+d(q, r)>=d(p, r)$ |

- Metric is a stricter definition
- Which of the previous similarity measure is a metric?

1.4 Similarity Measures

- Why do we care whether d is a metric?
- Some data mining algorithms only work for metrics
- E.g., some clustering algorithms such as k-means
- E.g., clustering has been used in entity resolution
- Metric spaces allow optimizations of some methods
- E.g., Nearest Neighboorhood-search: find the most similar object to an object p. This problem can be efficiently solved using index structures that only apply to metric spaces

1.4 Similarity Measures uncos pisiturivior

1.4 Similarity Measures

ILINOIS INSTITUTE
Definition: Metric
Function $\mathrm{d}(\mathrm{p}, \mathrm{q})$ where p and q are objects, that returns a real score with

- Non-negative $d(p, q)>=0$
$\begin{array}{ll}\text { Symmetry } & d(p, q)=d(q, p) \\ \text { Identity of indiscernibles } & d(p, q)=0 \text { iff } p, q)\end{array}$
- Identity of indiscernibles $\quad d(p, q)=0$ iff $p=q$
- Triangle inequality $d(p, q)+d(q, r)>=d(p, r)$
- Metric is a stricter definition
- Which of the previous similarity measure is a metric?
- All of them!

Summary

- Heterogeneity
- Types of heterogeneity
- Why do they arise?
- Hint at how to address them
- Autonomy
- Data Integration Tasks
- Data Integration Architectures
- Background
- Datalog + Query equivalence/containment + Similarity + Integrity constraints
101

0) Course Info
1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing
7) Big Data Analytics
8) Data Provenance

2. Overview

- Topics covered in this part
- Causes of Dirty Data
- Constraint-based Cleaning
- Outlier-based and Statistical Methods
- Entity Resolution
- Data Fusion

2. Causes of "Dirty" Data

- Manual data entry or result of erroneous integration
- Typos:
- "Peter" vs. "Pteer"
- Switching fields
- "FirstName: New York, City: Peter"
- Incorrect information
- "City:New York, Zip: 60616"
- Missing information
- "City: New York, Zip: "

3

2. Cleaning Methods

- Enforce Standards
- Applied in real world
- How to develop a standard not a fit for this lecture
- Still relies on no human errors
- Constraint-based cleaning
- Define constraints for data
- "Make" data fit the constraints
- Statistical techniques
- Find outliers and smoothen or remove
- E.g., use a clustering algorithm

2.1 Cleaning Methods ILLINOIS INSTITUTE OF TECHNOL

- Constraint-based cleaning
- Choice of constraint language
- Detecting violations to constraints
- Fixing violations (automatically?)

7

2.1 Constraint Languages

- First work focused on functional dependencies (FDs)
- Extensions of FDs have been proposed to allow rules that cannot be expressed with FDs
- E.g., conditional FDs only enforce the FD is a condition is met
- -> finer grained control, e.g., zip -> city only if country is US
- Constraints that consider master data
- Master data is highly reliable data such as a government issued zip, city lookup table

2.1 Constraint Languages (cont.)

แuNols institute

- Denial constraints
- Generalize most other proposed constraints
- State what should not be true
- Negated conjunction of relational and comparison atoms

$$
\forall \vec{x}: \neg(\phi(\vec{x}))
$$

- Here we will look at FDs mainly and a bit at denial constraints
- Sometimes use logic based notation introduced previously

2.1 Constraint based Cleaning
 Overview

ILLINOIS INSTITUTE OF TECHNOLOG

- Principle of minimality
- Choose repair that minimally modifies database
- Motivation: consider the solution that deletes every tuple
- Most update approaches equate RHS because there is usually no good way to choose LHS values unless we have master data
- E.g., update zip to 56423 or 52456 or 22322 ...

22
22

2.1 Constraint based Cleaning Overview

ILLINOIS INSTITUTE OF TECHNOLO

- How to repair?
- Deletion:
- remove some conflicting tuples
- quite destructive
- Update:
- modify values to resolve the conflict
- equate RHS values (city here)
- disequate LHS value (zip)
- Insertion?
- Not for FDs, but e.g., FKs

2.1 Constraint Repair Problem

IUNOI INSTITUTE

Definition: Constraint Repair Problem (restated)

Given set of constraints $\boldsymbol{\Sigma}$ and an database instance \mathbf{I} which violates the constraints find a clean instance I^{\prime} (does not violate the constraints) with $\operatorname{cost}\left(1, I^{\prime}\right)$ being minimal

- Cost metrics that have been used
- Deletion + Insertion

$$
\Delta\left(I, I^{\prime}\right)=\left(I-I^{\prime}\right) \cup\left(I^{\prime}-I\right)
$$

- S-repair: minimize measure above under set inclusion
- C-repair: minimize cardinality
- Update
- Assume distance metric d for attribute values

26

- Update
- Assume single relation R with uniquely identified tuples
- Assume distance metric \mathbf{d} for attribute values
- $\operatorname{Schema}(\mathbf{R})=$ attributes in schema of relation \mathbf{R}
- \mathbf{t} ' is updated version of tuple \mathbf{t}
- Minimize: $\sum_{t \in R} \sum_{A \in \operatorname{Schema}(R)} d\left(t . A, t^{\prime} . A\right)$
- We focus on this one
- This is NP-hard
- Heuristic algorithm

2.1 Fixing Violations
 ILINOIS INSTITUTE

- Principle of minimality
- Choose solution that minimally modifies the database
- Updates:
- Need a cost model
- Deletes:
- Minimal number of deletes

2.1 Cost Metrics

ULINOIS INsTITUTE

- Deletion + Insertion

$$
\Delta\left(I, I^{\prime}\right)=\left(I-I^{\prime}\right) \cup\left(I^{\prime}-I\right)
$$

- S-repair: minimize measure above under set inclusion
- C-repair: minimize cardinality
- Update
- Assume single relation R with uniquely identified tuples
- Assume distance metric \mathbf{d} for attribute values
- $\operatorname{Schema}(\mathbf{R})=$ attributes in schema of relation \mathbf{R}
- \mathbf{t} ' is updated version of tuple \mathbf{t}
- Minimize:

$$
\sum_{t \in R} \sum_{A \in \operatorname{Schema}(R)} d\left(t . A, t^{\prime} . A\right)
$$

27

2.1 Naïve FD Repair Algorithm

- FD Repair Algorithm: 1. Attempt
- For each FD X -> Y in $\boldsymbol{\Sigma}$ run query to find pairs of tuples that violate the constraint
- For each pair of tuples \mathbf{t} and \mathbf{t}^{\prime} that violate the constraint
- update t.Y to \mathbf{t}^{\prime}.Y
- choice does not matter because cost is symmetric, right?

2.1 Problems with the Algorithm unols nusirut

- FD Repair Algorithm: 1. Attempt
- For each FD X $->\mathbf{Y}$ in $\boldsymbol{\Sigma}$ run query to find pairs of tuples that violate the constraint
- For each pair of tuples \mathbf{t} and \mathbf{t}^{\prime} that violate the constraint: $\mathrm{t} . \mathrm{X}=\mathrm{t}^{\prime} . \mathrm{X}$ and $\mathrm{t} . \mathrm{Y}!=\mathrm{t}^{\prime} . \mathrm{Y}$
- update t.Y to $\mathbf{t}^{\prime} . \mathbf{Y}$
- choice does not matter because cost is symmetric, right?
- Our updates may cause new violations!

2.1 Problems with the Algorithm

ulinols institute
of Tichiolior

- FD Repair Algorithm: 2. Attempt
$-I^{\prime}=I$
- 1) For each FD $\mathbf{X}->\mathbf{Y}$ in $\boldsymbol{\Sigma}$ run query to find pairs of tuples that violate the constraint
-2) For each pair of tuples \mathbf{t} and \mathbf{t}^{\prime} that violate the constraint: $\mathrm{t} . \mathrm{X}=\mathrm{t}^{\prime} . \mathrm{X}$ and $\mathrm{t} . \mathrm{Y}!=\mathrm{t}^{\prime} . \mathrm{Y}$
- update t. \mathbf{Y} to $\mathbf{t}^{\prime} \cdot \mathbf{Y}$
- ehrice dees not matter beeatse cest is symmetrie, right?
-3) If we changed I' goto 1)

33

2.1 Problems with the Algorithm
 ILINOIS INsTITUTE

- FD Repair Algorithm: 2. Attempt
- I' = I
- 1) For each FD $\mathbf{X}->\mathbf{Y}$ in $\boldsymbol{\Sigma}$ run query to find pairs of tuples that violate the constraint
-2) For each pair of tuples \mathbf{t} and \mathbf{t}^{\prime} that violate the constraint: $\mathrm{t} . \mathrm{X}=\mathrm{t}^{\prime} . \mathrm{X}$ and $\mathrm{t} . \mathrm{Y}$! $=\mathrm{t}^{\prime} . \mathrm{Y}$
- update $\mathbf{t . Y}$ to $\mathbf{t}^{\prime} . \mathbf{Y}$
- ehoice does not matter because cost is symmetric, right?
-3) If we changed I' goto 1)
- May never terminate

2.1 Problems with the Algorithm

- FD Repair Algorithm: 2. Attempt
- Even if we succeed the repair may not be minimal. There may be many tuples with the same X values
- They all have to have the same Y value
- Choice which to update matters!

36

2.1 Problems with the Algorithm

LINOIS INSTITUTE

- FD Repair Algorithm: 3. Attempt
- Equivalence Classes
- Keep track of sets of cells (tuple,attribute) that have to have the same values in the end (e.g., all Y attribute values for tuples with same X attribute value)
- These classes are updated when we make a choice
- Choose Y value for equivalence class using minimality, e.g., most common value
- Observation
- Equivalence Classes may merge, but never split if we only update RHS of all tuples with same X at once
--> we can find an algorithm that terminates
38
8

2.1 Constraint Repair uncos pisiturive

Example: Constraint Repair

37

2.1 Problems with the Algorithm

LINOIS INSTITUTE

- FD Repair Algorithm: 3. Attempt
- Initialize:
- Each cell in its own equivalence class
- Put all cells in collection unresolved
- While unresolved is not empty
- Remove tuple t from unresolved
- Pick FD X->Y (e.g., random)
- Compute set of tuples S that have same value in X
- Merge all equivalence classes for all tuples in S and attributes in Y
- Pick values for Y (update all tuples in S to Y)

39

2.1 Consistent Query Answering
 unoas nsyture :

- As an alternative to fixing the database which requires making a choice we could also leave it dirty and try to resolve conflicts at query time
- Have to reason over answers to the query without knowing which of the possible repairs will be chosen
- Intuition: return tuples that would be in the query result for every possible repair

2. Overview LINoIs insiriut

- Topics covered in this part
- Causes of Dirty Data
- Constraint-based Cleaning
- Outlier-based and Statistical Methods
- Entity Resolution
- Data Fusion

2.2 Statistical and Outlier

- Assumption
- Errors can be identified as outliers
- How do we find outliers?
- Similarity-based:

- Object is dissimilar to all (many) other objects
- E.g., clustering, objects not in cluster are outliers
- Some type of statistical test:
- Given a distribution (e.g., fitted to the data)
- How probable is it that the point has this value?
- If low probability -> outlier

44

2. Overview

- Topics covered in this part
- Causes of Dirty Data
- Constraint-based Cleaning
- Outlier-based and Statistical Methods
- Entity Resolution
- Data Fusion

45

2.3 Entity Resolution

2.3 Entity Resolution

- Intuitively, E should be based on how similar t and t ' are
- Similarity measure?
- E should be an equivalence relation
- If \mathbf{t} is the same as \mathbf{t}^{\prime} and \mathbf{t}^{\prime} is the same as $\mathbf{t}^{\prime \prime}$ then t should be the same as t "

2.3 Entity Resolution

- Similarity based on similarity of attribute values
- Which distance measure is appropriate?
- How do we combine attribute-level distances?
- Do we consider additional information?
- E.g., foreign key connections
- How similar should duplicates be?
- E.g., fixed similarity threshold
- How to guarantee transitivity of E
- E.g., do this afterwards

49

2.3 Entity Resolution - Distance

Measures

UINOIS NNSTITUTE

- Edit-distance
- measures similarity of two strings
$-\mathrm{d}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)=$ minimal number of insert, replace, delete operations (single character) that transform s into s'
- Is symmetric (actually a metric) - Why?

2.3 Entity Resolution

- Principal of optimality
- Best solution of a subproblem is part of the best solution for the whole problem
- Dynamic programming algorithm
$-D(i, j)$ is the edit distance between prefix of len i of s and prefix of len j of s,
$-\mathrm{D}\left(\operatorname{len}(\mathrm{s})\right.$, len($\left.\left.\mathrm{s}^{\prime}\right)\right)$ is the solution
- Represented as matrix
- Populate based on rules shown on the next slide

2.3 Entity Resolution

LLINOIS INSTITUTE

- Recursive definition
$-\mathrm{D}(\mathrm{i}, 0)=\mathrm{i}$
- Cheapest way of transforming prefix s[i] into empty string is by deleting all i characters in $\mathrm{s}[\mathrm{i}]$
$-D(0, j)=j$
- Same holds for $\mathrm{s}^{\prime}[j]$
$-\mathrm{D}(\mathrm{i}, \mathrm{j})=\min \{$
- $\mathrm{D}(\mathrm{i}-1, \mathrm{j})+1$
- $\mathrm{D}(\mathrm{i}, \mathrm{j}-1)+1$
- $\mathrm{D}(\mathrm{i}-1, \mathrm{j}-1)+\mathrm{d}(\mathrm{i}, \mathrm{j})$ with $\mathrm{d}(\mathrm{i}, \mathrm{j})=1$ if $\mathrm{s}[\mathrm{i}]!=\mathrm{s}[\mathrm{j}]$ and 0 else
\}
55

2.3 Entity Resolution

Example:

NEED -> STREET

	S	T	R	E	E	T	
	0	1	2	3	4	5	6
N	1	1					
E	2						
E	3						
D	4						

57

	S	T	R	E	E	T	
	0	1	2	3	4	5	6
N	1	1	2	3	4	5	6
E	2	2	2	3	3	4	
E	3	3	3	3	3		
D	4	4	4	4			

2.3 Entity Resolution

Example:

NEED -> STREET

2.3 Entity Resolution - Distance

Measures
ILLINOIS INSTITUTE
OF TECHNOLOG

- Other sequence-based measures for string similarity

- Needleman-Wunsch

- Missing character sequences can be penalized differently from character changes
- Affine Gap Measure
- Limit influence of longer gaps
- E.g., Peter Friedrich Mueller vs. Peter Mueller

- Smith-Waterman Measure

- More resistant to reordering of elements in the string
- E.g., Prof. Franz Mueller vs. F. Mueller, Prof.

2.3 Entity Resolution - Distance

 Measures```
ILLINOIS INSTITUTE
```

- Other sequence-based measures for string similarity


## - Jaro-Winkler

- Consider shared prefixes
- Consider distance of same characters in strings
- E.g., johann vs. ojhann vs. ohannj
- See textbook for details!



### 2.3 Entity Resolution

## LLINOIS INSTITUTE

## Example: Tokenization

Input string:
S = "the tokenization of strings is commonly used in
information retrieval"
Set of tokens:
Tok(S) = fommonly, in, information, is, of,
retrieval, strings, the, tokenization, used\}
Bag of tokens:
$\operatorname{Tok}(S)=$ commonly:1, in:1, information:1, is:1, of:1, retrieval:1,strings:1, the:1, tokenization:1, used:1)

67

### 2.3 Entity Resolution

ILINOIS INSTITUTE

Example: Tokenization
Input string:
$S=$ "nanotubes are used in these experiments to..."
$S^{\prime}=$ "we consider nanotubes in our experiments..."
$S^{\prime \prime}=$ "we prove that $\mathrm{P}=\mathrm{NP}$, thus solving ..."
Tok $(S)=\{$ are, experiments, in, nanotubes, these, to, used $\}$ Tok $\left(S^{\prime}\right)=\{$ consider, experiments, in, nanotubes,our, we $\}$ Tok $\left(S^{\prime \prime}\right)=\{P=N P$, prove, solving, that, thus, we $\}$
$d_{\text {jace }}\left(S, S^{\prime}\right)=$
$d_{\text {jace }}\left(S, S^{\prime \prime}\right)=$
$d_{\text {jace }}\left(S^{\prime}, S^{\prime \prime}\right)=$

69

### 2.3 Entity Resolution

## UNOIS INSTICUTE

- Other set-based measures
- TF/IDF: term frequency, inverse document
frequency
- Take into account that certain tokens are more common than others
- If two strings (called documents for TF/IDF) overlap on uncommon terms they are more likely to be similar than if they overlap on common terms
- E.g., the vs. carbon nanotube structure



### 2.3 Entity Resolution

## ILINOIS INSTITUTE

- Entity resolution
- Concatenate attribute values of tuples and use string similarity measure
- Loose information encoded by tuple structure
- E.g., [Gender:male,Salary:9000]
-> "Gender:male,Salary:9000"
or -> "male, 9000 "
- Combine distance measures for single attributes
- Weighted sum or more complex combinations
- E.g., $d\left(t, t^{\prime}\right)=w_{1} \times d_{A}\left(t . A, t^{\prime} . A\right)+w_{2} \times d_{B}\left(t . B, t^{\prime} . B\right)$
- Use quadratic distance measure
- E.g., earth-movers distance

73


### 2.3 Entity Resolution

- Entity resolution
- Rule-based approach
- Set of if this than that rules
- Learning-based approaches
- Clustering-based approaches
- Probabilistic approaches to matching
- Collective matching


### 2.3 Entity Resolution

- Weighted linear combination
- Say tuples have $\mathbf{n}$ attributes
$-\mathbf{w}_{\mathbf{i}}$ : predetermined weight of an attribute
$-\mathbf{d}_{\mathbf{i}}\left(\mathbf{t}, \mathbf{t}^{\mathbf{\prime}}\right)$ : similarity measure for the $\mathbf{i}^{\text {th }}$ attribute

$$
d\left(t, t^{\prime}\right)=\sum_{i=0}^{n} w_{i} \times d_{i}\left(t, t^{\prime}\right)
$$

- Tuples match if $\mathbf{d}\left(\mathbf{t}, \mathbf{t}^{\prime}\right)>\boldsymbol{\beta}$ for a threshold $\boldsymbol{\beta}$

74
75


### 2.3 Entity Resolution

## ulinois institute

- Weighted linear combination
- How to determine weights?
- E.g., have labeled training data and use ML to learn weights
- Use non-linear function?



### 2.3 Entity Resolution ULINOIS Nstitute

- Entity resolution
- Rule-based approach
- Learning-based approaches
- Clustering-based approaches
- Probabilistic approaches to matching
- Collective matching
- Entity resolution
- Rule-based approach
- Learning-based approaches
- Clustering-based approaches
- Probabilistic approaches to matching
- Collective matching



### 2.3 Entity Resolution

- Entity resolution
- Rule-based approach
- Learning-based approaches
- Clustering-based approaches
- Probabilistic approaches to matching
- Collective matching


### 2.3 Entity Resolution

## UnNoIs insticute

- Rule-based approach
- Collection (list) of rules
- if $\mathrm{d}_{\text {name }}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)<0.6$ then unmatched
- if $\mathrm{d}_{\text {zip }}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)=1$ and t.country $=$ USA then matched
- if t .country ! $=\mathrm{t}^{\prime}$.country then unmatched
- Advantages
- Easy to start, can be incrementally improved
- Disadvantages
- Lot of manual work, large rule-bases hard to understand


### 2.3 Entity Resolution

- Learning-based approach
- Build all pairs ( $\mathrm{t}, \mathrm{t}^{\prime}$ ) for training dataset
- Represent each pair as feature vector from, e.g., similarities
- Train classifier to return \{match, no match\}
- Advantages
- automated
- Disadvantages
- Requires training data



### 2.3 Entity Resolution

## UINOIS institute

- Clustering-based approach
- Apply clustering method to group inputs
- Typically hierarchical clustering method
- Clusters now represent entities
- Decide how to merge based on similarity between clusters
- Advantages
- Automated, no training data required
- Disadvantages
- Choice of cluster similarity critical

83

2. Overview UINOI INsTITUTE

- Topics covered in this part
- Causes of Dirty Data
- Constraint-based Cleaning
- Outlier-based and Statistical Methods
- Entity Resolution
- Data Fusion


## Outline

0) Course Info
1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing
7) Big Data Analytics
8) Data Provenance

9) Course Info
10) Introduction
11) Data Preparation and Cleaning
12) Schema matching and mapping
13) Virtual Data Integration
14) Data Exchange
15) Data Warehousing
16) Big Data Analytics
17) Data Provenance

## 3. Why matching and mapping?

- Problem: Schema Heterogeneity
- Sources with different schemas store overlapping information
- Want to be able to translate data from one schema into a different schema
- Datawarehousing
- Data exchange
- Want to be able to translate queries against one schema into queries against another schema
- Virtual dataintegration


## 3. Why matching and mapping?

- Problem: Schema Heterogeneity
- We need to know how elements of different schemas are related!
- Schema matching
- Simple relationships such as attribute name of relation person in the one schema corresponds to attribute lastname of relation employee in the other schema
- Schema mapping
- Also model correlations and missing information such as links caused by foreign key constraints

3
3. Why matching and mapping? ILINoI $\operatorname{sinsitituty~}$
3. Overview

- Why both mapping and matching
- Split complex problem into simpler subproblems
- Determine matches and then correlate with constraint information into mappings
- Some tasks only require matches
- E.g., matches can be used to determine attributes storing the same information in data fusion
- Mappings are naturally an generalization of matchings
- Topics covered in this part
- Schema Matching
- Schema Mappings and Mapping Languages

- Why is this hard?
- Insufficient information: schema does not capture full semantics of a domain
- Schemas can be misleading:
- E,g., attributes are not necessarily descriptive
- E.g., finding the right way to translate attributes not obvious


### 3.1 Schema Matching

### 3.1 Schema Mapping

ILINOIS INSTITUTE
OF TECHNOLOG

- What information to consider?
- Attribute names
- or more generally element names
- Structure
- e.g., belonging to the same relation
- Data
- Not always available
- Need to consider multiple types to get reasonable matching quality
- Single types of information not predictable enough

8


### 3.1 Schema Matching ILINOIS instirute

- Typical Matching System Architecture


Determine actual matches
Use constraints to modify similarity matrix

Combine individual similarity matrices

Each matcher uses one type of information to compute similarity matrix


### 3.1 Schema Matching <br> ILINOIS INSTITUTE

- Overlap of attribute domains
- Each attribute value is a token
- Use set-based similarity measure such as Jaccard
- Classifier
- Train classifier to identify values of one attribute A from the source
- Training set are values from $\mathbf{A}$ as positive examples and values of other attributes as negative examples
- Apply classifier to all values of attributes from target schema
- Aggregate into similarity score

- Combiner
- Merge similarity matrices produced by the matchers into single matrix
- Typical strategies
- Average, Minimum, Max
- Weighted combinations
- Some script



### 3.1 Schema Matching

## ILINOIS INSTITUTE

- Constraint Enforcer
- Determine most probably match by assigning each attribute from source to one target attribute
- Multiple similarity scores to get likelihood of match combination to be true
- Encode domain knowledge into constraints
- Hard constraints: Only consider match combinations that fulfill constraints
- Soft constraints: violating constraints results in penalty of scores
- Assign cost for each constrain
- Return combination that has the maximal score



### 3.1 Schema Matching

- How to search match combinations
- Full search
- Exponentially many combinations potentially
- Informed search approaches
- A* search
- Local propagation
- Only local optimizations
3.1 Schema Matching minos sifitcumion
- A* search
- Given a search problem
- Set of states: start state, goal states
- Transitions about states
- Costs associated with transitions
- Find cheapest path from start to goal states
- Need admissible heuristics $\mathbf{h}$
- For a path $\mathbf{p}, \mathbf{h}$ computes lower bound for any path from start to goal with prefix $\mathbf{p}$
- Backtracking best-first search
- Choose next state with lowest estimated cost

24

- Expand it in all possible ways


### 3.1 Schema Matching



- Algorithm
- Data structures
- Keep a priority queue $\mathbf{q}$ of states sorted on $f(n)$ - Initialize with start state
- Keep set $\mathbf{v}$ of already visited nodes - Initially empty
- While $\mathbf{q}$ is not empty
- pop state $\mathbf{s}$ from head of $\mathbf{q}$
- If $\mathbf{s}$ is goal state return
- Foreach $\mathbf{s}$ ' that is direct neighbor of $\mathbf{s}$

$$
\text { - If } s^{\prime} \text { not in } \mathbf{v}
$$

- Compute $\mathbf{f}\left(\mathbf{s}^{\prime}\right)$ and insert $\mathbf{s}^{\prime}$ into $\mathbf{q}$

26


### 3.1 Schema Matching

- Match Selector
- Input: Similarity matrix
- Output of the individual matchers
- Output: Matches


28
3.1 Schema Matching LLINOIS INSTITUTE

- A* search
- Estimated cost of a state $\mathbf{f}(\mathbf{n})=\mathbf{g}(\mathbf{n})+\mathbf{h}(\mathbf{n})$
- $\mathbf{g}(\mathbf{n})=$ cost of path from start state to $\mathbf{n}$
- $\mathbf{h ( n )}=$ lower bound for path from $\mathbf{n}$ to goal state
- No path reaching the goal state from $\mathbf{n}$ can have a total cost lower than $\mathbf{f}(\mathbf{n})$


### 3.1 Schema Matching



- Application to constraint enforcing
- Source attributes: $A_{1}$ to $A_{n}$
- Target attributes: $\mathrm{B}_{1}$ to $\mathrm{B}_{\mathrm{m}}$
- States
- Vector of length $n$ with values $B_{i}$ or * indicating that no choice has not been taken
- $\left[\mathrm{B}_{1},{ }^{*},{ }^{*}, \mathrm{~B}_{3}\right]$
- Initial state
- [*, *, *, *]
- Goal states
- All states without *



### 3.1 Schema Matching

- Match Selection
- Merge similarity matrices produced by the matchers into single matrix
- Typical strategies
- Average, Minimum, Max
- Weighted combinations
- Some script

- Topics covered in this part
- Schema Matching
- Schema Mappings and Mapping Languages



### 3.2 Schema Mapping

- Matches do not determine completely how to create the target instance data! (Data Exchange)
- How do we choose values for attributes that do not have a match?
- How do we combine data from different source tables?
- Matches do not determine completely what the answers to queries over a mediated schema should be! (Virtual Data Integration)
33



### 3.2 Schema Mapping

## UINOIS INsTITUTE

- Schema mappings
- Generalize matches
- Describe relationship between instances of schemas
- Mapping languages
- LAV, GAV, GLAV
- Mapping as Dependencies: tuple-generating dependencies
- Mapping generation
- Input: Matches, Schema constraints
- Output: Schema mappings

3.2 Schema Mapping unols pistrux
- Certain answers
- Given mapping $\mathbf{M}$ and $\mathbf{Q}$
- Instances $\mathbf{I}_{1}$ to $\mathbf{I}_{\mathbf{n}}$ for $\mathbf{S}_{\mathbf{1}}$ to $\mathbf{S}_{\mathbf{n}}$
- Tuple $\mathbf{t}$ is a certain answer for $\mathbf{Q}$ over $\mathbf{I}_{\mathbf{1}}$ to $\mathbf{I}_{\mathbf{n}}$
- If for every instance $\mathbf{I}_{G}$ so that $\left(\mathbf{I}_{G} \times \mathbf{I}_{\mathbf{1}} \times \ldots \times \mathbf{I}_{n}\right)$ in $\mathbf{M}$ then $\mathbf{t}$ in $\mathbf{Q}\left(\mathbf{I}_{\mathbf{G}}\right)$


### 3.2 Schema Mapping



- Languages for Specifying Mappings
- Describing mappings as inclusion relationships between views:
- Global as View (GAV)
- Local as View (LAV)
- Global and Local as View (GLAV)
- Describing mappings as dependencies
- Source-to-target tuple-generating dependencies (st-tgds)


### 3.2 Schema Mapping

- Describing mappings as inclusion relationships between views:
- Global as View (GAV)
- Local as View (LAV)
- Global and Local as View (GLAV)
- Terminology stems from virtual integration
- Given a global (or mediated, or virtual) schema
- A set of data sources (local schemas)
- Compute answers to queries written against the global schema using the local data sources
38



### 3.2 Schema Mapping

- Global-as-view (GAV)
- Express the global schema as views over the local schemata
- What query language do we support?
- CQ, UCQ, SQL, ...?
- Closed vs. open world assumption
- Closed world: $\mathrm{R}=\mathrm{Q}\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}\right)$
- Content of global relation $R$ is defined as the result of query $Q$ over the sources
- Open world: $\mathrm{R} \supseteq \mathrm{Q}\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}\right)$
- Relation $R$ has to contain the result of query Q , but may contain additional tuples
41




### 3.2 Schema Mapping



- Global-as-view (GAV)
- Answering Queries
- Simply replace references to global tables with the view definition
- Mapping $\mathbf{R}(\mathbf{X}, \mathbf{Y})=\mathbf{S}(\mathbf{X}, \mathbf{Y}), \mathbf{T}(\mathbf{Y}, \mathbf{Z})$
- $\mathbf{Q}(\mathbf{X}):-\mathbf{R}(\mathbf{X}, \mathbf{Y})$
- Rewrite into
- Q(X) :- S(X,Y), T(Y,Z)

45

### 3.2 Schema Mapping

- Local-as-view (LAV)
- Express the local schema as views over the global schemata
- What query language do we support?
- CQ, UCQ, SQL, ...?
- Closed vs. open world assumption
- Closed world: $\mathrm{S}_{\mathrm{ij}}=\mathrm{Q}(\mathrm{G})$
- Content of local relation $S_{i j}$ is defined as the result of query Q over the sources
- Open world: $\mathrm{S}_{\mathrm{ij}} \supseteq \mathrm{Q}(\mathrm{G})$
- Local relation $\mathrm{S}_{\mathrm{ij}}$ has to contain the result of query Q , but may contain additional tuples



### 3.2 Schema Mapping

ILINOIS NSSTITUTE

- Local-as-view (GAV)
- Answering Queries
- Need to find equivalent query using only the views (this is a hard problem, more in next course section)
- Mapping $\mathbf{S}(\mathbf{X}, \mathbf{Z})=\mathbf{R}(\mathbf{X}, \mathbf{Y}), \mathbf{T}(\mathbf{Y}, \mathbf{Z})$
- $\mathbf{Q ( X )}$ :- R(X,Y)
- Rewrite into ???
- Need to come up with missing values



### 3.2 Schema Mapping

- Local-as-view (LAV) Discussion
- Easy to add new sources
- -> have to write a new view definition
- May take some time to get used to expressing sources like that
- Still does not deal gracefully with all cases of missing values
- Loosing correlation
- Hard query processing
- Equivalent rewriting using views only
- Later: give up equivalence

50

- Give up query equivalence?

51

### 3.2 Schema Mapping

### 3.2 Schema Mapping

- Global-Local-as-view (GLAV)
- Express both sides of the constraint as queries
- What query language do we support?
- CQ, UCQ, SQL, ...?
- Closed vs. open world assumption
- Closed world: $\mathrm{Q}^{\prime}(\mathrm{G})=\mathrm{Q}(\mathrm{S})$
- Open world: Q'(G) $\supseteq \mathrm{Q}(\mathrm{S})$


- Clio
- Clio is a data exchange system prototype developed by IBM and University of Toronto researchers
- The concepts developed for Clio have been implemented in IBM InfoSphere Data Architect
- Clio does matching, mapping generation, and data exchange
- For now let us focus on the mapping generation



### 3.2 Schema Mapping

- Generating Schema Mappings
- Input: Schemas (Constraints), matches
- Output: Schema mappings
- Ideas:
- Schema matches tell us which source attributes should be copied to which target attributes
- Foreign key constraints tell us how to join in the source and target to not loose information
- Source-to-target tuple-generating dependencies (st-tgds)
- Local way of expressing GLAV mappings

$$
\forall \vec{x}: \phi(\vec{x}) \rightarrow \exists \vec{y}: \psi(\vec{x}, \vec{y})
$$

- Equivalence to a containment constraint:

$$
Q^{\prime}(G) \supseteq Q(S)
$$

## LINOIS NNsTITUTE <br> 3.2 Schema Mapping



### 3.2 Schema Mapping

- Clio Mapping Generation Algorithm
- Inputs: Source and Target schemas, matches
- Output: Mapping from source to target schema
- Note, Clio works for nested schemas such as XML too not just for relational data.
- Here we will look at the relational model part only
3.2 Schema Mapping ILINOIS INSTITUTE OF
- Clio Algorithm Steps
- 1) Use foreign keys to determine all reasonable ways of joining data within the source and the target schema
- Each alternative of joining tables in the source/target is called a logical association
-2) For each pair of source-target logical associations: Correlate this information with the matches to determine candidate mappings

60


### 3.2 Schema Mapping

## ILINOIS INSTITUTE

- Chase step
- Works on tabelau: set of relational atoms
- A chase step takes one tgd $t$ where the LHS is fulfilled and the RHS is not fulfilled
- We fulfill the tgd t by adding new atoms to the tableau and mapping variables from $t$ to the actually occuring variables from the current tablau
- Chase
- Applying the chase until no more changes
- Note: if there are cyclic constraints this may not terminate
62



### 3.2 Schema Mapping

## Outline

ILINOIS INSTITUTE

- Clio Algorithm: 2) Generate Candidate Mappings
- For each pair of logical association $\mathbf{A}_{\mathbf{S}}$ in the source and $\mathbf{A}_{\mathbf{T}}$ in the target produced in step 1
- Find the matches that are covered by $\mathbf{A}_{\mathbf{S}}$ and $\mathbf{A}_{\mathbf{T}}$
- Matches that lead from an element of $\mathbf{A}_{\mathbf{S}}$ to an element from $\mathbf{A}_{\mathbf{T}}$
- If there is at least one such match then create mapping by equating variables as indicated by the matches and create st-tgd with $\mathbf{A}_{\mathbf{S}}$ in LHS and $\mathbf{A}_{\mathbf{T}}$ in RHS



0) Course Info
1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing
7) Big Data Analytics
8) Data Provenance

1


## 4. Virtual Data Integration

Problems:

- How to create mappings?
- Discussed in previous part of the course
- How to compute query Q
- This is the main focus of this part

3

## 




## 4. Query Answering with Views

IUINOIS INSTITUTE

- Problems
- How to determine whether query can be answered at all?
- Given a rewriting of the query using views, how do we know it is correct?
- What to do if views can only return some of the query results?


## Motivating Example (Part 2) <br> UINOIS INSTITUTE

$$
\begin{aligned}
& Q(T, Y, D):-\operatorname{Movie}(I, T, Y, G), Y \geq 1950, G=" \text { comedy" } \\
& \\
& \text { Director }(I, D), \operatorname{Actor}(I, D) \\
& V_{2}(I, T, Y):-\operatorname{Movie}(I, T, Y, G), Y \geq 1950, G=" \text { comedy" } \\
& V_{3}(I, D):-\operatorname{Director}(I, D), \operatorname{Actor}(I D, D)
\end{aligned}
$$

Containment does not hold, but intuitively, $V_{2}$ and $V_{3}$ are useful for answering $Q$.

$$
Q^{\prime \prime}(T, Y, D):-V_{2}(I, T, Y), V_{3}(I, D)
$$

How do we express that intuition?

## Problem Definition

Input: Query $Q$

$$
\text { View definitions: } V_{1}, \ldots, V_{n}
$$

A rewriting: a query $Q^{\prime}$ that refers only to the views and interpreted predicates (comparisons)

An equivalent rewriting of $Q$ using $V_{1}, \ldots, V_{n}$ : a rewriting $Q^{\prime}$, such that $Q^{\prime} \Leftrightarrow Q$

## Motivating Example (Part 1)

## UnNols instivut

Movie(ID,title,year,genre)
Director(ID,director)
Actor(ID, actor)

$$
\begin{aligned}
& Q(T, Y, D):- \text { Movie }(I, T, Y, G), Y \geq 1950, G=" \text { comedy" } \\
& \text { } \operatorname{Director}(I, D), \operatorname{Actor}(I, D) \\
& V_{1}(T, Y, D):- \operatorname{Movie}(I, T, Y, G), Y \geq 1940, G=" \text { comedy" } \\
& \text { Director }(I, D), \text { Actor }(I, D) \\
& V_{1} \supseteq Q \quad \Rightarrow \quad Q^{\prime}(T, Y, D):-V_{1}(T, Y, D), Y \geq 1950
\end{aligned}
$$

Containment is enough to show that $V_{1}$ can be used to answer Q.

[^0]
## Motivating Example (Part 3) LuNoIs instirute

- Given Q and views
- Randomly combine views into a query $Q^{\prime}$
- Check equivalence of $Q$ ' and $Q$
- If $Q^{\prime}$ is equivalent we are done
- Else repeat
- Why is this not good?
- There are infinitely many ways of combining views
- E.g., V, V x V, V x V x V, ...
- We are not using any information in the query

```
Movie(ID,title,year,genre)
Director(ID,director)
```

Actor(ID, actor)

$$
\begin{gathered}
Q(T, Y, D):-\operatorname{Movie}(I, T, Y, G), Y \geq 1950, G=" \text { comedy } " \\
\text { Director }(I, D), \operatorname{Actor}(I, D)
\end{gathered}
$$

$V_{4}(I, T, Y):-\operatorname{Movie}(I, T, Y, G), Y \geq 1960, G="$ comedy"
$V_{3}(I, D):-\operatorname{Director}(I, D), \operatorname{Actor}(I D, D)$
$Q^{\prime \prime \prime}(T, Y, D):-\underline{V_{4}(I, T, Y)}, V_{3}(I, D)$
maximally-contained rewriting

Maximally-Contained Rewritings unnos sintruxivioc
Why again?
LunNols instirute
Input: Query Q
Rewriting query language $L$
View definitions: $V_{1}, \ldots, V_{n}$
$Q$ ' is a maximally-contained rewriting of $Q$ given $V_{1}, \ldots, V_{n}$ and $L$ if:

1. $Q^{\prime} \in L$,
2. $Q^{\prime} \subseteq Q$, and
3. there is no Q'' in $L$ such that $Q^{\prime} \subseteq Q$ and $Q^{\prime} \subset Q^{\prime \prime}$


| Other use-cases |
| :--- |
| - Query optimization with materialized views |
| - Need equivalent rewritings |
| - Implemented in many commercial DBMS |
| - Here interest is cost: how to speed-up query <br> processing by using materialized views |

$$
\begin{aligned}
& \text { Exercise: which of these views } \\
& \text { can be used to answer } O \text { ? } \\
& Q(T, Y, D):-\operatorname{Movie}(I, T, Y, G), Y \geq 1950, G={ }^{\prime \prime} \text { comedy" } \\
& \text { Director }(I, D), \operatorname{Actor}(I, D) \\
& V_{2}(I, T, Y):-\operatorname{Movie}(I, T, Y, G), Y \geq 1950, G=" \text { comedy" } \\
& V_{3}(I, D):-\operatorname{Director}(I, D), \operatorname{Actor}(I, D) \\
& V_{6}(T, Y):-\operatorname{Movie}(I, T, Y, G), Y \geq 1950, G=" \text { comedy" } \\
& V_{7}(I, T, Y):-\operatorname{Movie}(I, T, Y, G), Y \geq 1950, \\
& G=" \text { comedy", Award }(I, W) \\
& V_{8}(I, T):-\operatorname{Movie}(I, T, Y, G), Y \geq 1940, G=" \text { comedy" }
\end{aligned}
$$

Algorithms for answering queries using views

- Step 1: we' ll bound the space of possible query rewritings we need to consider (no comparisons)
- Step 2: we' Il find efficient methods for searching the space of rewritings
- Bucket Algorithm, MiniCon Algorithm
- Step 2b: we consider "logical approaches" to the problem:
- The Inverse-Rules Algorithm



## 

Theorem: if there is an equivalent rewriting, there is one with at most $n$ subgoals.
Query: $\quad Q(\bar{X}):-p_{1}\left(\overline{X_{1}}\right), \ldots, p_{n}\left(\overline{X_{n}}\right)$
Rewriting: $Q^{\prime}(\bar{X}):-V_{1}\left(\overline{X_{1}}\right), \ldots, V_{m}\left(\overline{X_{m}}\right)$
Expansion:


Proof: Only $n$ subgoals in $Q$ can contribute to : $:$ the image of the containment mapping $\varphi$

## Complexity Result

[LMSS, 1995$]$
IUNOIS INSTITUTEV OFTEHNOLOO

- Applies to queries with no interpreted predicates.
- Finding an equivalent rewriting of a query using views is NP-complete
- Need only consider rewritings of query length or less.
- Maximally-contained rewriting:
- Union of all conjunctive rewritings of length $n$ or less.



## The Bucket Algorithm

## IUNOIS INSTITUTE

Step 1:

- We want to construct buckets with views that have partially mapped variables
- For each goal $\mathbf{g}=\mathrm{R}$ in query
- For each view $\mathbf{V}$
- For each goal $\mathbf{v}=\mathbf{R}$ in $\mathbf{V}$
- If the goal has head variables in the same places as $g$ then
- rename the view head variables to match the query goal vars
- choose a new unique name for each other var
- add the resulting view atom to the bucket


## The Bucket Algorithm

## LunNois ins ititik

## Key idea:

- Create a bucket for each subgoal $g$ in the query.
- The bucket contains views that contribute to $g$.
- Create rewritings from the Cartesian product of the buckets (select one view for each goal)
- Step 1: assign views with renamed vars to buckets
- Step 2: create rewritings, refine them, until equivalent/all contained rewriting(s) are found


## The Bucket Algorithm

## ILLINOIS INSTITUTE

Step 1 Intuition

- A view can only be used to provide information about a goal $R(X)$ if it has a goal $R(Y)$
- $Q(X):-R(X, Y)$
- $\mathrm{V}(\mathrm{X})$ :- $\mathrm{S}(\mathrm{X}, \mathrm{Y})$
- If the query goal contains variables that are in the head of the query, then the view is only useful if it gives access to these values (they are in the head)
- $Q(X):-R(X, Y)$
- $V(X)$ :- $S(X, Y), R(Y, Z)$


| Buckets and Cartesian product |  | LLINOIS INS |
| :---: | :---: | :---: |
| Movie(ID,title, year,genre) | Revenues(ID, amount) | Director(ID,dir) |
| $\mathrm{V}_{1}$ (ID,year) | $\mathrm{V}_{1}\left(\mathrm{ID}, \mathrm{Y}^{\prime}\right)$ | $\mathrm{V}_{4}\left(\mathrm{ID}, \mathrm{Dir}, \mathrm{Y}^{\prime}\right)$ |
| $\mathrm{V}_{2}$ (ID, $\mathrm{A}^{\prime}$ ) | $\mathrm{V}_{2}(\mathrm{ID}, \mathrm{am}$ |  |
| $\mathrm{V}_{4}$ (ID, $\mathrm{D}^{\prime}$, year) |  |  |
| Consider first candidate rewriting: first V1 subgoal is redundant, and V1 and V4 are mutually exclusive.$q_{1}^{\prime}(I D, d i r):-V_{1}\left(I D, y>(), V_{1}\left(I D, y^{\prime}\right), V_{4}\left(I D, d i r, y^{\prime}\right)\right.$ |  |  |



## The Bucket Algorithm: Summary minos. nsurcury

- Cuts down the number of rewriting that need to be considered, especially if views apply many interpreted predicates.
- The search space can still be large because the algorithm does not consider the interactions between different subgoals.
- See next example.


## The Bucket Algorithm

## Lunols instivure

## Step 2:

- For each combination of one element of each bucket:
- Create query Q' with query Q's head and list all these view atoms in the body
- If $Q^{\prime}$ equivalent to $Q$ (or contained in $Q$ )
- Done (equivalent)
- Add to union of CQs for contained case
- If not try to add comparisons

The MiniCon Algorithm
$Q($ title, year,dir $):-$ Movie(ID,title,year,genre $),$
Director $(I D$, dir $)$, Actor $(I D$, dir $)$
$\downarrow$
Intuition: The variable $l$ is not in the head of $V_{5}$, hence $V_{5}$ cannot be used in a rewriting.
MiniCon discards this option early on, while the Bucket algorithm does not notice the interaction.

MinCon Algorithm Steps unvos nsirving

- 1) Create MiniCon descriptions (MCDs):
- Homomorphism on view heads
- Each MCD covers a set of subgoals in the query with a set of subgoals in a view
- 2) Combination step:
- Any set of MCDs that covers the query subgoals (without overlap) is a rewriting
- No need for an additional containment check!

MiniCon Descriptions (MCDs)
An atomic fragment of the ultimate containment mapping

$$
\begin{aligned}
& \text { ILINOIS INSTITUTE } \\
& \text { OF TECHNOLOG }
\end{aligned}
$$

$$
\begin{aligned}
& Q(\text { title,act,dir }):- \text { Movie }(I D, \text {,title,year,genre }), \\
& \text { Director }(I D, \text { dir }), \text { Actor }(I D, a c t)
\end{aligned}
$$

$V(I, D, A):-\operatorname{Director}(I, D), \operatorname{Actor}(I, A)$

$$
\begin{array}{ll}
\text { MCD: } & I D \rightarrow I \\
\text { mapping: } & \text { dir } \rightarrow D \\
& \text { act } \rightarrow A
\end{array}
$$

covered subgoals of $Q:\{2,3\}$

## MCDs: Detail 2

$Q($ title, year,dir $):-$ Movie(ID,title, year,genre $),$

Director $(I D$, dir $)$, Actor $(I D$, dir $)$
$V(I, D, D):-\operatorname{Director}(I, D)$, Actor $(I, D)$

$\operatorname{Movie}(I, T, Y, G)$

Note: the third subgoal of the view is not included in the MCD.

$$
\begin{array}{ll}
\text { MCD: } & I D \rightarrow I \\
\text { mapping: } & \operatorname{dir} \rightarrow D
\end{array}
$$

covered subgoals of $Q$ still: $\{2,3\}$

## Inverse Rules by Example

Given the following view:
$V_{7}(I, T, Y, G):-\operatorname{Movie}(I, T, Y, G), \operatorname{Director}(I, D), \operatorname{Actor}(I, D)$
And the following tuple in $V_{7}$ :
$\mathrm{V}_{7}$ (79,Manhattan,1979,Comedy)
Then we can infer the tuple:
Movie(79,Manhattan,1979,Comedy)
Hence, the following 'rule' is sound:
$I_{1}$ : Movie( $(I, T, Y, G):-V_{7}(I, T, Y, G)$


## Comparing Algorithms

- Bucket algorithm:
- Good if there are many interpreted predicates
- Requires containment check. Cartesian product can be big
- MiniCon:
- Good at detecting interactions between subgoals


## Inverse Rules Inefficiency

Example
Query and view:
$Q(X, Y):-e_{1}(X, Z), e_{2}(Z, Y)$
$V(A, B):-e_{1}(A, C), e_{2}(C, B)$

Inverse rules:
$e_{1}\left(A, f_{1}(A, B)\right):-V(A, B)$
$e_{2}\left(f_{1}(A, B), B\right):-V(A, B)$
Now we need to re-compute the join...

Inverse Rules in General
Rewriting = Inverse Rules + Query
$Q_{2}($ title, year, genre) : -Movie(ID, title, year, genre)
Given Q2, the rewriting would include:

$$
\mathrm{IN}_{1}, \mathrm{IN}_{2}, \mathrm{IN}_{3}, \mathrm{Q}_{2}
$$

Given input: $\mathrm{V}_{7}$ (79,Manhattan,1979,Comedy) Inverse rules produce:

Movie(79,Manhattan,1979,Comedy)
Director(79, $f_{1}(79$, Manhattan,1979,Comedy))
Actor(79, $f_{1}(79$, Manhattan,1979, Comedy))
Movie(Manhattan,1979,Comedy)
(the last tuple is produced by applying $\mathrm{Q}_{2}$ ).

Algorithm Comparison
(Continued)

## LLINOIS INSTITUTE

- Inverse-rules algorithm:
- Conceptually clean
- Can be used in other contexts (see later)
- But may produce inefficient rewritings because it "undoes" the joins in the views (see next slide)
- Experiments show MiniCon is most efficient.
- Even faster:

Konstantinidis, G. and Ambite, J.L, Scalable query rewriting: a graph-based approach. SIGMOD '11

## View-Based Query Answering

- Maximally-contained rewritings are parameterized by query language.
- More general question:
- Given a set of view definitions, view instances and a query, what are all the answers we can find?
- We introduce certain answers as a mechanism for providing a formal answer.


## View Instances = Possible DB's unos , nsytury

Consider the two views:
$V_{8}($ dir $):-$ Movie(ID, dir, actor)
$V_{9}($ actor $):-M o v i e(I D$, dir, actor $)$

And suppose the extensions of the views are:
$\mathrm{V}_{8}$ : \{Allen, Copolla\}
$V_{9}$ : \{Keaton, Pacino $\}$

## Certain Answers: Formal Definition

[Open-world Assumption]

- Given:
- Views: $V_{1}, \ldots, V_{n}$
- View extensions $v_{1}, \ldots v_{n}$
- A query $Q$
- A tuple $t$ is a certain answer to $Q$ under the open-world assumption if $t \in Q(D)$ for all databases $D$ such that:
$-v_{i}(D) \subseteq v_{i}$ for all $i$.

Possible Databases ILLINOIS INSTITUTE

There are multiple databases that satisfy the above view definitions: (we ignore the first argument of Movie below)

DB1. \{(Allen, Keaton), (Coppola, Pacino)\}
DB2. \{(Allen, Pacino), (Coppola, Keaton)\}
If we ask whether Allen directed a movie in which Keaton acted, we can' t be sure.
Certain answers are those true in all databases that are consistent with the views and their extensions.

## Certain Answers

[Closed-world Assumption]

- Given:
- Views: $V_{1}, \ldots, V_{n}$
- View extensions $v_{1}, \ldots v_{n}$
- A query $Q$
- A tuple $t$ is a certain answer to $Q$ under the open-world assumption if $t \in Q(D)$ for all databases $D$ such that:
$-V_{i}(D)=v_{i}$ for all $i$.

Certain Answers: Example ILINols
$V_{8}($ dir $):-$ Director(ID,dir $) \quad$ V8: \{Allen $\}$
$V_{9}($ actor $):-A c t o r(I D, a c t o r)$ V9: \{Keaton\}

Q(dir,actor) :-Director(ID,dir),Actor(ID,actor)
Under closed-world assumption:
single DB possible $\Rightarrow$ (Allen, Keaton)

Under open-world assumption:
no certain answers.

## The Good News

## Lunols institute

- The MiniCon and Inverse-rules algorithms produce all certain answers
- Assuming no interpreted predicates in the query (ok to have them in the views)
- Under open-world assumption
- Corollary: they produce a maximally-contained rewriting

```
In Other News..
munos, nsmymumb
```

Interpreted Predicates unvos onsityinsion

- In the views: no problem (all results hold)
- In the query Q :
- If the query contains interpreted predicates, finding all certain answers is co-NP-hard even under open-world assumption
- Proof: reduction to CNF.


## Outline


0) Course Info

1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing
7) Big Data Analytics
8) Data Provenance

9) Course Info
10) Introduction
11) Data Preparation and Cleaning
12) Schema matching and mapping
13) Virtual Data Integration
14) Data Exchange
15) Data Warehousing
16) Big Data Analytics
17) Data Provenance

1

## 5. Data Exchange

- Virtual Data Integration
- Never materialize instances for the global schema
- Data of global schema only "visible" through queries
- Data Exchange
- Materialize instance of global instance
- We call it the "target schema"
- Based on information from an instance of the local schema
- We call this the "source schema"




### 5.1 Data Exchange Solutions




### 5.1 Number of Solutions

 Lunols instirute- Target instance domain
- Consider a universe $\mathbf{U}$
- Source instance can only use values from U
- Consider an infinite set $\mathbf{N}$ of labeled nulls
- Target instance can use these as placeholders for missing values



### 5.1 Certain answers (... again)

## unvos nsitury

- Have multiple solutions
- Define certain answers for queries as before
- Every tuple $t$ so that $t$ is in the result of query $Q$ over any valid solution J
- What's new?
- Want to materialize an instance so that computing certain answers over this instance is easy
- Not immediately clear that this actually possible



### 5.1 Universal solutions

- Universal solution
- Want a solution that is as general as possible
- We call such most general solutions universal solutions
- How do we know whether it is most general
- We can map the tuples in this solution to any other less general solution by replacing unspecified values (labelled nulls) with actual data values
- Query answering with universal solutions
- For UCQs: run query over universal instance
- Remove tuples with labelled nulls
- Result are the certain answers!




### 5.2 Computing Solutions



- Can we use a database system to compute solutions?
- Yes, systems such as Clio generate queries that compute universal solutions!
- SQL
- Java
- XSLT (for XML docs)


- Clio Schema Graph Algorithm
- Nodes
- Create a graph with one node for every target attribute and one node for every target relation
- Also add nodes for source attribute if they are copied to the target according to the mapping
- Edges
- Edges between a relation and its attributes
- Edges between target attributes that use the same variable
- Edges between source attributes and target attributes if they use the same variable


### 5.2 Skolem Functions

ULNOIS INssirute

- Clio Schema Graph Algorithm
- Annotations
- Annotate each target attribute connected to a source attribute with that source attribute
- Propagate annotations according to the following rules
- Propagate annotations from attributes to relations
- Propagate annotations from relations to attributes
- Only if attribute uses existentially quantified variable
- Propagate annotations between target attributes connected by equality edges

26



### 5.2 Skolem Functions

ILINOIS

- Clio Schema Graph Algorithm
- Skolem functions
- Derive skolem function arguments from the schema graph annotations of an element




### 5.2 Executable Transformations

## ILINOIS INSTITUTE

- SQL Code Generation Example
- For each $\operatorname{tg}$ mentioning a target relation R we generate a query fragment
- All query fragments for R are "unioned" together
- A query fragment is
- A FROM and WHERE clause that is a direct translation of the LHS of a tgd into SQL
- A SELECT clause corresponding the R atom in the RHS using attributes from the FROM clause can the skolem functions we have determined in the previous step

33


### 5.3 Recap Data Exchange Steps

- Schema Matching
- Generate Schema Mappings
- Use constraints
- Generate Executable Transformations
- SQL, XSLT, XQuery
- Skolems for missing value
- Run Transformations over source instance to generate target instance
- Universal solution
- Pay cost upfront instead of at query time
- Making decisions early vs. at query time
- When generating a solution
- Caution: bad decisions stick!
- Universal solutions allow efficient computation of certain types of queries using, e.g., SQL

0) Course Info
1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing
7) Big Data Analytics
8) Data Provenance


## 6. What is Datawarehousing? ILLINOIS INSTITUTE OF TECHNOLOG

- Problem: Data Analysis, Prediction, Mining
- Example: Walmart
- Transactional databases
- Run many "cheap" updates concurrently
- E.g., each store has a database storing its stock and sales
- Complex Analysis over Transactional Databases?
- Want to analyze across several transactional databases
- E.g., compute total Walmart sales per month
- Distribution and heterogeneity
- Want to run complex analysis over large datasets
- Resource consumption of queries affects normal operations on transactional databases

2

## 6. Datawarehousing Process

ILINOIS INSTITUTE

- 1) Design a schema for the warehouse
- 2) Create a process for preprocessing the data
- 3) Repeat
-A) Preprocess data from the transactional databases
-B) Bulk-load it into the warehouse
-C) Run analytics



## Outline ILINOI INstitutililion

0) Course Info
1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing
7) Big Data Analytics
8) Data Provenance

## 6. What is Datawarehousing?

- Solution:
- Performance
- Store data in a different system (the datawarehouse) for analysis
- Bulk-load data to avoid wasting performance on concurrency control during analysis
- Heterogeneity and Distribution
- Preprocess data coming from transactional databases to clean it and translate it into a unified format before bulk-loading
- The multidimensional datamodel (cube)
- Multidimensional data model
- Relational implementations
- Preprocessing and loading (ETL)
- Query language extensions
- ROLL UP, CUBE, ...
- Query processing in datawarehouses
- Bitmap indexes
- Query answering with views
- Self-tuning

5

## 6. Multidimensional Datamodel iunois instirutE

- Analysis queries are typically aggregating lower level facts about a business
- The revenue of Walmart in each state (country, city)
- The amount of toy products in a warehouse of a company per week
- The call volume per zip code for the Sprint network -...



## 6. Data cubes

ILINOIS INstitute

- Given $\mathbf{n}$ dimensions
- E.g., product type, location, time
- Given m measures
- E.g., number of sales, items in stock, ...
- A datacube (datahypercube) is an $\mathbf{n}$ dimensional datastructure that maps values in the dimensions to values for the $m$ measures
-Schema: $D_{1}, \ldots, D_{n}, M_{1}, \ldots, M_{m}$
- Instance: a function
$\operatorname{dom}\left(D_{1}\right) \quad x \quad \ldots \quad x \quad \operatorname{dom}\left(D_{n}\right) \quad \rightarrow \quad \operatorname{dom}\left(M_{1}\right) \quad x \quad \ldots \quad x \operatorname{dom}\left(M_{m}\right)=$

6. Multidimensional Datamodel

ILINOIS INSTITUTE
OF TECHNOLOCY

- Commonality among these queries:
- At the core are facts: a sale in a Walmart store, a toy stored in a warehouse, a call made by a certain phone
- Data is aggregated across one or more dimensions
- These dimensions are typically organized hierarchically. year - month - day - hour, country - state - zip
- Example
- The revenue (sum of sale amounts) of Walmart in each state

7
6. Generalization to multiple dimensions

- Given a fixed number of dimensions
- E.g., product type, location, time
- Given some measure
- E.g., number of sales, items in stock, ...
- In the multidimensional datamodel we store facts: the values of measures for a combination of values for the dimensions



## 6. Dimensions

- Purpose
- Selection of descriptive data
- Grouping with desired level of granularity
- A dimension is define through a containmenthierarchy
- Hierarchies typically have several levels
- The root level represents the whole dimensions
- We may associate additional descriptive information with a elements in the hierarchy (e.g., number of residents in a city)

- Location
- Levels: location, state, city



## 

- Schema of Location Dimension
- Set of categories $\mathrm{D}=\{$ location, state, city $\}$
- Partial order
$\{$ city $\rightarrow$ state, city $\rightarrow$ location, state $\rightarrow$ location $\}$
- Top $_{D}=$ location
$-\mathrm{D}_{\text {min }}=$ city



## 6. Cells, Facts, and Measures

- Each cell in the cube corresponds to a combination of elements from each dimension
- Facts are non-empty cells
- Cells store measures
- Cube for a combination of levels of the dimension


6. Dimension Schema ILINOIS Nstiruts

- Schema of a Dimension
- A set $\mathbf{D}$ of category attributes $\mathbf{D}_{1}, \ldots, \mathbf{D}_{\mathbf{n}}, \mathbf{T o p}_{\mathbf{D}}$
- These correspond to the levels
- A partial order $\rightarrow$ over $\mathbf{D}$ which represents parentchild relationships in the hierarchy
- These correspond to upward edges in the hierarchy
- Top $\mathbf{D}_{\mathbf{D}}$ is larger than anything else - For every $D_{i}: D_{i} \rightarrow$ Top $_{D}$
- There exists $\mathbf{D}_{\text {min }}$ which is smaller than anything else - For every $D_{i}: D_{\min } \rightarrow D_{i}$


## 6. Remarks

- In principle there does not have to exist an order among the elements at one level of the hierarchy
- E.g., cities
- Hierarchies do not have to be linear


Facts

- Targets of analytics
- E.g., revenue, \#sales, \#stock
- A fact is uniquely defined by the combination of values from the dimensions
- E.g., for dimensions time and and location Revenue in Illinois during Jan 2015
- Granularity: Levels in the dimension hierarchy corresponding to the fact


Facts (Event vs. Snapshot) unNo.s nsyiruti

- Event Facts
- Model real-world events
- E.g., Sale of an item
- Snapshot Facts
- Temporal state
- A single object (e.g., a book) may contribute to several facts
- E.g., number of items in stock



## Measures - Granularity ILLINOIS INSTITUTE OF TECHNOLOGY

- Similar to facts, measures also have a granularity
- How to change granularity of a measure?
- Need algorithm to combine measures
- Additive measures
- Can be aggregated along any dimension
- Semi-additive/non-additive
- Cannot be aggregated along some/all dimensions
- E.g., snapshot facts along time dimension
- Number of items in stock at Jan $+\mathrm{Feb}+\ldots$ != items in stock
during year
- Median of a measure

- Median of a measure

Measures ILLINOIS INSTITUTE
OF TECHNOLOGY

- A measure describes a fact
- May be derived from other measures
- Two components
- Numerical value
- Formula (optional): how to derive it
- E.g., avg(re venue) $=$ sum(revenue) / count(revenue)
- We may associate multiple measures to each cell
- E.g., number of sales and total revenue

19

## Design Process (after Kimball) unols Nsirvis

- Comparison to classical relational modeling
- Analysis driven
- No need to model all existing data and relationships relevant to a domain
- Limit modeling to information that is relevant for predicted analytics
- Redundancy
- Tolerate redundancy for performance if reasonable - E.g., in dimersion tablesto reduce number of joins


## Design Process - Steps

ILINOIS INstitute

- 1) Select relevant business processes
- E.g., order shipping, sales, support, stock management
- 2) Select granuarity
- E.g., track stock at level of branches or regions
- 3) Design dimensions
- E.g., time, location, product, ...
- 4) Select measures
- E.g., revenue, cost, \#sales, items in stock, \#support requests



## Design Process Example

- Coffee shop chain
- Processes
- Sell coffee to customers
- Buy ingredients from suppliers
- Ship supplies to branches
- Pay employees
- HR (hire, advertise positions, ...)
- Which process is relevant to be analysed to increase profits?


## Design Process Example unvols nistur

- 1) Selecting process(es)
- sell coffee to customers
- 2) Select granularity
- Single sale?
- Sale per branch/day?
- Sale per city/year?


## Design Process Example

## ILLINOIS INSTITUTE

- 1) Selecting process(es)
- sell coffee to customers
- 2) Select granularity
- Sale of type of coffee per branch per day
- 3) Determine relevant dimensions
- Location (country, state, city, zip, shop)
- Time (year, month, day)
- Product (type, brand, product)

26

## Design Process Example

- 1) Selecting process(es)
- sell coffee to customers
- 2) Select granularity
- Sale of type of coffee per branch per day
- 3) Determine relevant dimensions
- Location (country, state, city, zip, shop)
- Time (year, month, day)
- Product (type, brand, product)
- 4) Select measures

27

## Design Process Example

ILINOIS institute

- 1) Selecting process(es)
- sell coffee to customers
- 2) Select granularity
- Sale of type of coffee per branch per day
- 3) Determine relevant dimensions
- Location (country, state, city, zip, shop)
- Time (y ear, month, day)
- Product (type, brand, product)
- 4) Select measures
- cost, revenue, profit?


Design Process Example unnols nestrume

- 1) Selecting process(es)
- sell coffee to customers
- 2) Select granularity
- Sale of type of coffee per branch per day
- Sufficient for analysis
- Save storage
- 3) Determine relevant dimensions
- Location
- Time
- Product, ...

25


- How to model a datacube using the relational datamodel
- We start from
- Dimension schemas
- Set of measures


## Star Schema <br> ILINOIS INSTITUTE I E

- A data cube is represented as a set of dimension tables and a fact table
- Dimension tables
- For each dimension schema $\mathrm{D}=\left(\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{k}}, \mathrm{Top}_{\mathrm{D}}\right)$ we create a relation
- D (PK, $\left.D_{1}, \ldots, D_{k}\right)$
- Here PK is a primary key, e.g., $\mathrm{D}_{\text {min }}$
- Fact table
$-\mathrm{F}\left(\mathrm{FK}_{1}, \ldots, \mathrm{FK}_{\mathrm{n}}, \mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{n}}\right)$
- Each $\mathbf{F K}_{\mathbf{i}}$ is a foreign key to $\mathbf{D}_{\mathbf{i}}$
- Primary key is the combination of all $\mathrm{Fk}_{\mathrm{i}}$



## Snowflake Schema

- A data cube is represented as a set of dimension tables and a fact table
- Dimension tables
- For each dimension schema $\mathrm{D}=\left(\mathrm{D}_{\mathrm{l}}, \ldots, \mathrm{D}_{\mathrm{k}}\right.$, Top $\left._{\mathrm{D}}\right)$ we create a relation multiple relations connected through FKs
- $\mathrm{D}_{\mathrm{i}}\left(\underline{\underline{P K}}, \mathrm{~A}_{1}, \ldots, \mathrm{~A}_{1}, \mathrm{FK}_{\mathrm{j}}\right)$
$-A_{1}$ is a descriptive attribute
$-F K_{j}$ is foreign key to the immediate parent(s) of $D_{i}$
- Fact table
$-\mathrm{F}\left(\underline{\mathrm{FK}_{1}}, \quad \ldots, \quad \mathrm{FK}_{\mathrm{n}}, \mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{m}}\right)$
- Each $\mathbf{F K}_{\mathbf{i}}$ is a foreign key to $\mathbf{D}_{\mathbf{i}}$
- Primary key is the combination of all $\mathrm{Fk}_{\mathrm{i}}$


Star Schema - Remarks ILINOIS INSTITUTE

- Dimension tables have redundancy
- Values for higher levels are repeated
- Fact table is in 3NF
- $\mathrm{Top}_{\mathrm{D}}$ does not have to be stored explicitly
- Primary keys for dimension tables are typically generated (surrogate keys)
- Better query performance by using integers

31

## Snowflake Schema - Remarks

- Avoids redundancy
- Results in much more joins during query processing
- Possible to find a compromise between snowflake and star schema
- E.g., use snowflake for very fine-granular dimensions with many levels


## Snowflake Schema - Example

- Coffee chain example

6. Extract-Transform-Load (ETL)

ILINOIS INSTIIUTE
OF TECHNOLOGY

- The preprocessing and loading phase is called extract-transform-load (ETL) in datawarehousing
- Many commercial and open-source tools available
- ETL process is modeled as a workflow of operators
- Tools typically have a broad set of build-in operators: e.g., key generation, replacing missing values, relational operators,
- Also support user-defined operators

6. Extract-Transform-Load (ETL) ILNOIS NSTITUTTV

- Some ETL tools
- Pentaho Data Integration
- Oracle Warehouse Builder (OWB)
- IBM Infosphere Information Server
- Talend Studio for Data Integration
- CloverETL
- Cognos Data Manager
- Pervasive Data Integrator
- ...


## 6. ETL Process

- Operators can be composed to form complex workflows



## 6. Typical ETL operators

ILINOIS NSTITUTE

- Control flow operators
- AND/OR
- Fork
- Loops
- Termination
- Successful
- With warning/errors

6. Extract-Transform-Load (ETL)

ILINOIS INsTirute

- Operators supported by ETL
- Many of the preprocessing and cleaning operators we already know
- Surrogate key generation (like creating existentials with skolems)
- Fixing missing values
- With default value, using trained model (machine learning)
- Relational queries
- E.g., union of two tables or joining two tables
- Extraction of structured data from semi-structured data and/or unstructured data
- Entity resolution, data fusion

37

## 6. Typical ETL operators

- Elementizing
- Split values into more fine-granular elements
- Standardization
- Verification
- Matching with master data
- Key generation
- Schema matching, Entity
resolution/Deduplication, Fusion

39
6. Typical ETL operators

- Elementizing
- Split non 1NF data into individual elements
- Examples
- name: "Peter Gertsen" -> firstname: "Peter", lastname: "Gertsen"
- date: "12.12.2015" $>$ year: 2002, month: 12 , day : $\mathbf{1 2}$
- Address: " 10 W 31 ${ }^{\text {st }}$, Chicago, IL 60616" -> street $=$ " 10

W 31 ${ }^{\text {st" }}$, city $=$ "Chic ago", state $=$ "IL", zip $=$ " $60616 "$

41


## 6. Typical ETL operators

## ILINOIS INSTITUTE

- Matching master data (lookup)
- Check and potentially repair data based on available master data


## - Examples

- E.g., using a clean lookup table with (city,zip) replace the city in each tuple if the pair (city,zip) does not occur in the lookup table


## 6. Typical ETL operators

 ILINOIS INSTITUTE OF TECHNOLOC
## - Verification

- Same purpose as constraint based data cleaning but typically does not rely on constraints, but, e.g., regular expression matching
- Examples
- Phone matches " $[0-9]\{3\}-[0-9]\{3\}-[0-9]\{4\}$ "
- For all $t$ in Tokens(product description), $t$ exists in English language dictionary

43

## 6. Metadata management

- As part of analysis in DW data is subjected to a complex pipeline of operations
- Sources
- ETL
- Analysis queries
- -> important, but hard, to keep track of what operations have been applied to data and from which sources it has been derived
- Need metadata management
- Including provenance (later in this course)

45

## 6. Querying DW <br> ILINOIS INSTTTUTE OF TECHNOLOGY

- Targeted model (cube vs. relational)
- Design specific language for datacubes
- MDX
- Add suitable extensions to SQL
- GROUPING SETS, CUBE, ...
- Windowed aggregation using OVER(), PARTITION BY, ORDER BY, window specification
- Window functions
- RANK, DENSE_RANK()
- Show cummulative sales for months of 2016
- E.g., the result for Feb would be the sum of the sales for Jan + Feb


## 6. Cube operations unNois nemprruti

## - Roll-up

- Move from fine-granular to more coarse-granular in one or more dimensions of a datacube
- E.g., sales per (city,month,product category) to Sales per (state,year, product category


## - Drill-down

- Move from coarse-granular to more fine-granular in one of more dimensions
- E.g., phonecalls per (city,month) to phonecalls per (zip,month)

48


## 6. Cube operations

## ILLINOIS INSTITUTE OF TECHNOLOGY

- Slice
- Select data based on restriction of the values of one dimension
- E.g., sales per (city,month) -> sales per (city) in Jan


## - Dice

- Select data based on restrictions of the values of multiple dimensions
- E.g., sales per (city,month) -> sales in Jan for Chicago and Washington DC



## 6. SQL Extensions

| ILINOIS INSTITUTE |
| :--- |
| OF TECHNO |

- Syntactic Sugar for multiple grouping
- GROUPING SETS
- CUBE
- ROLLUP
- These constructs are allowed as expressions in the GROUP BY clause


## 6. Cube operations ILLINOIS INSTITUTE OF TECHNOLOG

## - Drill-out

- Add additional dimensions
- special case of drill-down starting from Top $_{\mathrm{D}}$ in dimension(s)
- E.g., sales per (city, product category) to Sales per (city,year, product category)


## - Drill-in

-Remove dimension

- special case for roll-up move to TopD for dimension(s)
- E.g., phonecalls per (city,month) to phonecalls per (month)


## 6. SQL Extensions

- Recall that grouping on multiple sets of attributes is hard to express in SQL
- E.g., give me the total sales, the sales per year, and the sales per month
- Practice


## 6. GROUPING SETS <br> ILINOIS INSTITUTE OF TECHNOLOGY

- GROUP BY GROUPING SETS (( set $\left._{1}\right)$, ..., ( $\operatorname{set}_{\mathrm{n}}$ ))
- Explicitly list sets of group by attributes
- Semantics:
- Equivalent to UNION over duplicates of the query each with a group by clause GROUP BY set ${ }_{i}$
- Schema contains all attributes listed in any set
- For a particular set, the attribute not in this set are filled with NULL values

53


## 6. GROUPING SETS

## ILINOIS INSTITUTE OF TECHNOLOG

- Problem:
- How to distinguish between NULLs based on grouping sets and NULL values in a group by column?
grour by grouping sets
(quarter, city), (quarter, product_typ), (quarter, product_typ, city)

| quarter | city | product_typ | profit |
| :--- | :--- | :--- | :--- | :--- |
| 2010 Q1 |  | Did not group on <br> product_typ or this is <br> the group for all NULL | 8347 |
| 2012 Q2 |  | 7836 |  |
| 2012 Q2 |  | values in product_typ? | 2300 |
| 2012 Q2 | Chicago |  | 12344 |
| 2012 Q2 | Seattle |  | 124345 |
| 2012 Q2 | Seattle | Gardening | 12343 |

56
6. GROUPING SETS

LINOIS INSTTUUTE

- Combining GROUPING SETS

GROUP BY A, B
$=$ GROUP BY GROUPING SETS ( (A, B))
GROUP BY GROUPING SETS ((A, B), (A,C), (A))
$=$ GROUP BY A, GROUPING SETS ( (B), (C), ())
GROUP BY GROUPING SETS ( $(A, B),(B, C)$,
GROUPING SETS (( $D, E)$, (D))
= GROUP BY GROUPING SETS (
$(A, B, D, E),(A, B, D),(B, C, D, E),(B, C, D)$
)

6. GROUPING SETS

SELECT quarter, city, NULL AS product_typ, SUM(profit) AS profit
FROM facttable F, time $T$, location $L$, product $P$
WHERE F.TID = T.TID AND F.LID = L.LID AND F.PID = P.PID
GROUP BY quarter, city
UNION
SELECT quarter, NULL AS city, product_typ,
SUM(profit) AS profit
FROM facttable F, time $T$, location $L$, product $P$
WHERE F.TID = T.TID AND F.LID = L. LID AND F.PID = P. PID
GROUP BY quarter, product_type

55

## 6. GROUPING SETS

- Solution:
- GROUPING predicate
- GOUPING(A) = 1 if grouped on attribute A, 0 else
ssumer ... erournic (product typ) as grp prd
Gquar by crevernime sens
( (quarter, city), (quarter, product_typ), (quarter, product_typ, city)

57



## 6. OVER clause

 ILINOIS INSTITUTEOF TECHNOLOG

- Agg OVER (partition-clause, order-by,window-specification)
- New type of aggregation and grouping where SELECT shop, sum(profit) OVER()
- aggregation over full table

SELECT shop, sum(profit) OVER(PARTITION BY state)

- like group-by

SELECT shop, sum(profit) OVER(ORDER BY month)

- rolling sum including everything with smaller month

SELECT shop, sum(profit) OVER(ORDER BY month 6 PRECEDING 3 FOLLOWING)

62


## 6. OVER clause

ILINOIS INSTITUTE
SELECT year, month, city, profit
SUM(profit) OVER () AS ttl
FROM sales

- For each tuple build a set of tuples belonging to the same window
- Compute aggregation function over window
- Return each input tuple paired with the aggregation result for its window
- OVER ()$=$ one window containing all tuples


64

6. OVER clause ILINOIS INSTITUTE OF TECHNOLOG

- Agg OVER (partition-clause, order-by,window-specification)
- New type of aggregation and grouping where
- Each input tuple is paired with the aggregation result for the group it belongs too
- More flexible grouping based on order and windowing
- New aggregation functions for ranking queries
- E.g, RANK(), Dense_rank()

61

## 6. OVER clause

- Agg OVER (partition-clause order-by,window-specification)
- New type of aggregation and grouping where
<window frame preceding> ::= \{
unbounded preceding
| n Preceding
| CURRENT ROW \}
<window frame following> ::= \{
UNBOUNDED FOLLOWING
| n FOLlowing
| CURRENT ROW
\}

63

## 6. OVER clause

## ILINOIS INSTITUTE

SELECT year, month, city
SUM(profit) OVER (PARTITION BY year) AS ttl
FROM sales

## - PARITION BY

- only tuples with same partition-by attributes belong to the same window
- Like GROUP BY


| year | monht | cily | proft | (17 |
| :---: | :---: | :---: | :---: | :---: |
| 2010 | 1 | Chicago | 10 | 47 |
| 2010 | 2 | Chicago | 5 | 47 |
| 2010 | 3 | Chicago | 20 | 47 |
| 2011 | 1 | Chicago | 45 | 45 |
| 2010 | 1 | New Yokk | 12 | 47 |

65

## 6. OVER clause unols pisitrity

SELECT year, month, city
SUM(profit) OVER (ORDER BY year, month) AS ttl
FROM sales

- ORDER BY
- Order tuples on these expressions
- Only tuples which are $<=$ to the order as the current tuple belong to the same window



## 6. OVER clause

## ILLINOIS INSTITUTE OF TECHNOLOGY

SELECT year, month, city
SUM (profit) OVER (ORDER BY year, month) AS ttl
FROM sales

- ORDER BY
- Order tuples on these expressions
- Only tuples which are $<=$ to the order as the current tuple belong to the same window
- E.g., can be used to compute an accumulate total


68


## 6. OVER clause ILINOIS INSTITUTE

SELECT year, month, city
SUM(profit) OVER (ORDER BY year, month) AS ttl
FROM sales

## - ORDER BY

- Order tuples on these expressions
- Only tuples which are $<=$ to the order as the current tuple belong to the same window
- E.g., can be used to compute an accumulate total



## 6. OVER clause

## IUINoIS institute

SELECT year, month, city
SUM (profit) OVER (ORDER BY year, month) AS ttl
FROM sales

- ORDER BY
- Order tuples on these expressions
- Only tuples which are $<=$ to the order as the current tuple belong to the same window
- E.g., can be used to compute an accumulate total




## 6. MDX Query

 ILINOIS INSTITUTEOF TECHNOLOGY

- Basic Query Structure

SELECT <axis-spec ${ }_{1}>$, ...
FROM <cube-spec ${ }_{1}>$, ...
WHERE ( <select-spec> )

- Note!
- Semantics of SELECT, FROM, WHERE not what you would expect knowing SQL


6. MDX

## ILINOIS instirute

- Multidimensional expressions (MDX)
- Introduced by Microsoft
- Query language for the cube data model
- SQL-like syntax
- Keywords have different meaning
- MDX queries return a multi-dimensional report
- 2D = spreadsheet
- 3D or higher, e.g., multiple spreadsheets


## 6. MXD

```
SELECT { Chicago, Schaumburg } ON ROWS
```

\{ [ 2010 ], [ 2011 ].CHILDREN \} ON COLUMNS
FROM PhoneCallsCube
WHERE ( Measures.numCalls, Carrier.Spring )

- Meaning of
- 0 intepret number as name
- 0 set notation
- 0 tuple in where clause


75

## 6. MXD - SELECT

ILINOIS INSTITITE
SELECT \{ Chicago, Schaumburg \} ON Rows \{ [2010], [2011].CHILDREN \} ON COLUMNS
FROM PhoneCallscube
WHERE ( Measures.numCalls, Carrier.Spring )

- Select specifies dimensions in result and how to visualize
- ON COLUMNS, ON ROWS, ON PAGES, ON SECTIONS, ON CHAPTERS
- Every dimension in result corresponds to one dimension in the cube
- Set of concepts from this dimensions which may be from different levels of granularity
- E.g., $\{2010,2011$ Jan, 2012 Jan, 2012 Feb, 2010 Jan 1\}


77

## 6. MXD - SELECT

 ILINOIS INSTITUTEOF TECHNOLOGY

- Specify concepts from dimensions
- List all values as set, e.g., \{ [2010], [2011] \}
- Not necessarily from same level of hierarchy (e.g., mix years and montls)
- Language constructs for accessing parents and children or members
of a level in the hierarchy
- Children: all direct children
- EA.g., [2010].Childoren $=\left\{\begin{array}{llll}{[2010} & \mathrm{Jan}\end{array}\right], \ldots,\left[\begin{array}{lll}{[2010} & \text { Dec }]\end{array}\right\}$
- PARENT: the dilect parent
- E.g, [2010 Jan].PRRE AT $=[2010]$
- members: all direct chidren
- E.g., Tine. Years. MeMbers $=\{[1990], \quad[1991], \quad . \quad$ [2016] $\}$
- LASTCHILD: last child (according to order of children)
- E.g, [2010].Lastchild $=[2010$ Dec]
- nextmember right sibing on same level
- E.g., [2010].Nextyember $=[2011]$
- [a]:[b]: all members in interval between $a$ and $b$

78

$$
\text { E.g., [1990] : } 1993 \text { 3] }=\{[1990], \quad[1991], \quad[1992], \quad[1993]\}
$$

## 6. MXD - SELECT

- Nesting of sets: CROSSJOIN
- Project two dimensionsinto one
- Forming all possible combinations

```
SELECT CROSSJOIN (
```

            \{ Chicago, Schaumburg \},
            \{ [ 2010 ], [2011] \}
        ) ON ROWS
        \{ [2010], [2011].CHILDREN \} ON COLUMNS
    FROM PhoneCallsCube
WHERE ( Measures.numCalls )

| Chicago | 2010 | 123411 |
| :---: | :---: | :---: |
|  | 2011 | 3231 |
| Schaumburg | 2010 | 32321132 |
|  | 2011 | 12355 |

80


## 6. Query Processing in DW

ILINOIS INSTITUTE
OF TECHNOLOGY

- Large topic, here we focus on two aspects
- Partitioning
- Query answering with material ized views


## 6. MXD - SELECT

 ILLINOIS INSTITUTEOF TECHNOLOGY

- Specify concepts from dimensions
- List all values as set, e.g., $\{$ [2010], [2011] \}
- Not necessarily from same level of hierarchy (e.g., mix years and months)
- Language constructs for accessing parents and children or members
of a level in the hierarchy
- CHildren: all direct children
- E.g., [2010].CHILDREN $=\left\{\left[\begin{array}{ll}2010 & J a n\end{array}\right], \ldots,\left[\begin{array}{lll}2010 & \text { Dec }]\}\end{array}\right.\right.$
- PARENT: the dilect parent
E.g., $[2010$ Jan $]$.PRRENT $=[2010]$
- MEMBERS: all direct children

$$
\begin{aligned}
& \text { EMBERS: } \\
& \text { E.g., Time.Yea rs } . \text { UEMBERS }=\left\{[1990], \quad[1991], \ldots,{ }^{[2016]\}}\right. \\
& \text { ASTCHILD: last child (according to order of children) }
\end{aligned}
$$

- LASTCHILD: last child (according to order of children) E.g., [2010].LASTCHILD $=[2010$ Dec]
- NEXTMEMBER right sibing on same level E.g., [2010].NEXTYEMBER $=[2011]$
- [a]:[b]: all members in interval between $a$ and $b$ E.g., [1990]: [ 199 3] = \{[1990], [1991], [1992], [1993]\}


## 6. MXD - SELECT

- Conditional selection of members: FILTER
- One use members that fulfill condition
- E.g., condition over aggregation result
- Show results for all month of $\mathbf{2 0 1 0}$ where there are more Sprint calls than ATT calls

SELECT FILTER ([ 2010].CHILDREN,
(Sprint, numCalls) > (ATT, numCalls) ) ON ROWS
\{ Chicago \} ON COLUMNS
FROM PhoneCallscube
WHERE ( Measures.numCalls )

81

## 6. Partitioning

ILINOIS INSTITUTE
OFTECHNOLOC

- Partitioning splits a table into multiple fragments that are stored independently
- E.g., split across X disks, across Y servers
- Vertical partitioning
- Split columns across fragments
- E.g., $R=\{A, B, C, D\}$, fragment $F 1=\{A, B\}, F 2=\{C, D\}$
- Either add a row id to each fragment or the primary key to be able to reconstruct
- Horizontal partitioning
- Split rows

83 - Hash vs. range partitioning

## 6. Partitioning unNols nssiruti

- Why partitioning?
- Parallel/distributed query processing
- read/write fragments in parallel
- Distribute storage load across disks/servers
- Avoid reading data that is not needed to answer a query
- Vertical
- Only read columns that are accessed by query
- Horizontal
- only read tuples that may match queries selection conditions


## 6. Partitioning <br> ILLINOIS INSTIIUTEE OF TECHNOLOGY

- Horizontal Partitioning
- Range partitioning on attribute A
- Split domain of A into intervals representing fragments
- E.g., tuples with $\mathrm{A}=15$ belong to fragment $[0,20]$
- Fragments $F_{1}$ to $F n$ of relation $R$ such that
- $\operatorname{Sch}\left(\mathrm{F}_{1}\right)=\operatorname{Sch}\left(\mathrm{F}_{2}\right)=\ldots=\operatorname{Sch}\left(\mathrm{F}_{\mathrm{n}}\right)=\operatorname{Sch}(\mathrm{R})$
- $\mathrm{R}=\mathrm{F}_{1} \mathrm{u} \ldots \mathrm{u}_{\mathrm{n}}$



## 6. Partitioning ILINOIS INSTITUTE

- Vertical Partitioning
- Fragments $F_{1}$ to $F n$ of relation $R$ such that
- $\operatorname{Sch}\left(\mathrm{F}_{1}\right)$ u $\operatorname{Sch}\left(\mathrm{F}_{2}\right) \mathrm{u} \ldots \mathrm{u} \operatorname{Sch}\left(\mathrm{F}_{\mathrm{n}}\right)=\operatorname{Sch}(\mathrm{R})$
- Store row id or PK of R with every fragment
- Restore relation R through natural joins

| Name | Salan | Age | Gender |
| :---: | :---: | :---: | :---: |
| Peter | 12,000 | 45 | M |
| Alice | 24,000 | 34 | F |
| Bob | 20,000 | 22 | M |
| Gertud | 50,000 | 55 | F |
| Perrdegert | 14,000 | 23 | M |


| Rowid | Name | Salan |
| :---: | :---: | :---: |
| 1 | Peter | 12,000 |
| 2 | Alice | 24,000 |
| 3 | Bob | 20,000 |
| 4 | Gertrud | 50,000 |
| 5 | Pferdegert | 14,000 |



85

- Horizontal Partitioning
- Hash partitioning on attribute A
- Split domain of A into x buckets using hash function
- E.g., tuples with $h(A)=3$ belong to fragment $F_{3}$
- $\operatorname{Sch}\left(\mathrm{F}_{1}\right)=\operatorname{Sch}\left(\mathrm{F}_{2}\right)=\ldots=\operatorname{Sch}\left(\mathrm{F}_{\mathrm{n}}\right)=\operatorname{Sch}(\mathrm{R})$
- $\mathrm{R}=\mathrm{F}_{1} \mathrm{u} \ldots \mathrm{uF}_{\mathrm{n}}$

| Name | Salay | Age | Gender |
| :---: | :---: | :---: | :---: |
| Peter | 12,000 | 45 | M |
| Alice | 24,000 | 34 | F |
| Bob | 20,000 | 22 | M |
| Gertud | 50,000 | 55 | F |
| Pferdegert | 14,000 | 23 | M |


Salary $h(24,000)=0$ $H(14,000)=0$

| Name | Salary | Age | Gender |
| :---: | :---: | :---: | :---: |
| Peter | 12,000 | 45 | M |
| Bob | 20,000 | 22 | M |
| Gertuud | 50,000 | 55 | F |

Salary $h(12,000)=1$ $H(20,000)=1$ $H(50,000)=1$
87

## Outline

ILLINOIS INSTITUTE
0) Course Info

1) Introduction
2) Data Preparation and Cleaning
3) Schema matching and mapping
4) Virtual Data Integration
5) Data Exchange
6) Data Warehousing
7) Big Data Analytics
8) Data Provenance


3. Big Data Analytics

- Big Topic, big Buzzwords ;-)
- Here
- Overview of two types of systems
- Key-value/document stores
- Mainly: Bulk processing (MR, graph, ...)
- What is new compared to single node systems?
- How do these systems change our approach to integration/analytics
- Schema first vs. Schema later
- Pay-as-you-go


3. Big Data Overview


- 2) Overview of systems and how they achieve scalability
- Bulk processing
- MapReduce, Shark, Flink, Hyracks, ...
- Graph: e.g., Giraph, Pregel, ...
- Key-value/document stores $=$ NoSQL
- Cassandra, MongoDB, Memcached, Dynamo, ...



## 3. Big Data Overview

- 1) How does data processing at scale (read using many machines) differ from what we had before?
- Load-balancing
- Fault tolerance
- Communication
- New abstractions
- Distributed file systems/storage



## 3. Big Data Overview

- 2) Overview of systems and how they achieve scalability
- Bulk processing
- MapReduce, Shark, Flink,
- Fault tolerance
- Replication
- Handling stragglers
- Load balancing
- Partitioning
- Shuffle

3. Big Data Overview ILINOIS INSTITUTE OF

- 3) New approach towards integration
- Large clusters enable directly running queries over semi-structured data (within feasible time)
- Take a click-stream log and run a query
- One of the reasons why pay-as-you-go is now feasible
- Previously: designing a database schema upfront and designing a process (e.g., ETL) for cleaning and transforming data to match this schema, then query
- Now: start analysis directly, clean and transform data if needed for the analysis

6
3. Big Data Overview

## ILINOIS INSTITUTE OF

- Scalable systems
- Performance of the system scales in the number of nodes
- Ideally the per node performance is constant independent of how many nodes there are in the system
- This means: having twice the number of nodes would give us twice the performance
- Why scaling is important?
- If a system scales well we can "throw" more resources at it to improve performance and this is cost effective

8


## 3. Big Data - Processing at Scale

- New problems at scale
- DBMS
- running on 1 or 10 's of machines
- running on 1000 's of machines
- Each machine has low probability of failure
- If you have many machines, failures are the norm
- Need mechanisms for the system to cope with failures
- Do not loose data
- Do not use progress of computation when node fails
- This is called fault-tolerance

3. Big Data Overview ILINOIS INSTITUTE

- 3) New approach towards integration
- Advantage of pay-as-you-go
- More timely data (direct access)
- More applicable if characteristics of data change dramatically (e.g., yesterdays ETL process no longer applicable)
- Disadvantages of pay-as-you-go
- Potentially repeated efforts (everybody cleans the clicklog before running the analysis)
- Lack of meta-data may make it hard to
- Determine what data to use for analysis
- Hard to understand semantics of data

7

## 3. Big Data Overview

## ILINOIS INSTITUTE

- What impacts scaling?
- Basically how parallelizable is my algorithm
- Positive example: problem can be divided into subproblems that can be solved independently without requiring communication
- E.g., array of 1 -billion integers $\left[i_{1}, \ldots, i_{1,000,000,000}\right]$ add 3 to each integer. Compute on $n$ nodes, split input into $n$ equally sized chunks and let each node process one chunk
- Negative example: problem where subproblems are strongly intercorrelated
- E.g., Context Free Grammar Membership: given a string and a context free grammar, does the string belong to the language defined by the grammar.


## 3. Big Data - Processing at Scale unvos nssiruris

- New problems at scale
- DBMS
- running on 1 or 10 's of machines
- running on 1000 's of machines
- Each machine has limited storage and computational capabilities
- Need to evenly distribute data and computation across nodes
- Often most overloaded node determine processing speed - This is called load-balancing

3. Big Data - Processing at Scale unnos nsircurio

- Building distributed systems is hard
- Many pitfalls
- Maintaining distributed state
- Fault tolerance
- Load balancing
- Requires a lot of background in
- OS
- Networking
- Algorithm design
- Parallel programming

12


## 3. Big Data - Why large scale?

- Datasets are too large
- Storing a 1 Petabyte dataset requires 1 PB storage
- Not possible on single machine even with RAID storage
- Processing power/bandwidth of single machine is not sufficient
- Run a query over the facebook social network graph
- Only possible within feasible time if distributed across many nodes
14


3. Big Data - Abstractions ILINOIS INSTITUTE

- Solution
- Provide higher level abstractions
- Examples
- MPI (message passing interface)
- Widely applied in HPC
- Still quite low-level
- Distributed file systems
- Make distribution of storage transparent
- Key-value storage
- Distributed store/retrieval of data by identifier (key)


3. Big Data - Processing at Scale unnos Nșiruri

- Building distributed systems is hard
- Hard to debug
- Even debugging a parallel program on a single machine is already hard
- Non-determinism because of scheduling: Race conditions
- In general hard to reason over behavior of parallel threads of execution
- Even harder when across machines
- Just think about how hard it was for you to first program with threads/processes


## 3. Big Data - User's Point of

## View

- How to improve the efficiency of distributed systems experts
- Building a distributed system from scratch for every store and analysis task is obviously not feasible!
- How to support analysis over large datasets for non distributed systems experts
- How to enable somebody with some programming but limited/no distributed systems background to run distributed computations

15

## 3. Big Data - Abstractions

 LuNols instirution- More Examples
- Distributed table storage
- Store relations, but no SQL interface
- Distributed programming frameworks
- Provide a, typically, limited programming model with automated distribution
- Distributed databases, scripting languages
- Provide a high-level language, e.g., SQL-like with an execution engine that is distributed

3. Distributed File Systems unos nisiryw

- Transparent distribution of storage
- Fault tolerance
- Load balancing?
- Examples
- HPC distributed filesystems
- Typically assume a limited number of dedicated storage servers
- GPFS, Lustre, PVFS
- "Big Data" filesystems
- Google file system, HDFS

18


## 3. HDFS

- Name node
- Stores the directory structure
- Stores which blocks belong to which files
- Stores which nodes store copies of which block
- Detects when data nodes are down
- Clients communicate with the name node to gather FS metadata
20



## 3. HDFS

## ILINOIS INSTITUTE

- Fault tolerance
- n-way replication
- Name node detects failed nodes based on heartbeats
- If a node if down, then the name node schedules additional copies of the blocks stored by this node to be copied from nodes storing the remaining copies

3. HDFS LLINOIS institute

- Hadoop Distributed Filesystem (HDFS)
- Architecture
- One nodes storing metadata (name node)
- Many nodes storing file content (data nodes)
- Filestructure
- Files consist of blocks (e.g., 64MB size)
- Limitations
- Files are append only



## 3. HDFS



- Data nodes
- Store blocks
- Send/receive file data from clients
- Send heart-beat messages to name node to indicate that they are still alive
- Clients communicate data nodes for reading/ writing files



## 3. Distributed FS Discussion

## ILLINOIS INSTITUTE

- What do we get?
- Can store files that do not fit onto single nodes
- Get fault tolerance
- Improved read speed (caused on replication)
- Decreased write speed (caused by replication)
- What is missing?
- Computations

3. Frameworks for Distributed

Computations

## ILLINOIS INSTITUTE

## - Problems

- Not all algorithms do parallelize well
- How to simplify distributed programming?
- Solution
- Fix a reasonable powerful, but simple enough model of computation for which scalable algorithms are known
- Implement distributed execution engine for this model and make it fault tolerant and load-balanced



## 3. MapReduce Datamodel

- Data Model
- Sets of key-value pairs $\left\{\left(\mathrm{k}_{1}, \mathrm{v}_{1}\right), \ldots,\left(\mathrm{k}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}}\right)\right\}$
- Key is an identifier for a piece data
- Value is the data associaed with a key
- Examples
- Document d with an id
- (id, d)
- Person with name, salary, and SSN
- (SSN, "name, salary")

26

3. MapReduce

## Ulinols insticute

## - Data Model

- Sets of key-value pairs $\left\{\left(\mathrm{k}_{1}, \mathrm{v}_{1}\right), \ldots,\left(\mathrm{k}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}}\right)\right\}$
- Key is an identifier for a piece data
- Value is the data associaed with a key
- Programming Model
- We have two higher-level functions map and reduce
- Take as input a user-defined function that is applied to elements in the input key-value pair set
- Complex computations can be achieved by chaining map-reduce computations


## 3. MapReduce Computional

Model

- Map
- Takes as input a set of key-value pairs and a userdefined function $f:(k, v)->\{(k, v)\}$
- Map applies $f$ to every input key-value pair and returns the union of the outputs produced by f

$$
\begin{aligned}
& \left\{\left(\mathrm{k}_{1}, \mathrm{v}_{1}\right), \ldots,\left(\mathrm{k}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}}\right)\right\} \\
& -> \\
& \mathrm{f}\left(\left(\mathrm{k}_{1}, \mathrm{v}_{1}\right)\right) \cup \ldots \cup \mathrm{f}\left(\left(\mathrm{k}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}}\right)\right)
\end{aligned}
$$

## 3. MapReduce Computional

Model

```
ILLINOIS INSTITUTE
```

- Reduce
- Takes as input a key with a list of associated values a user-defined function
$\mathrm{g}: ~(\mathrm{k}, \mathrm{list}(\mathrm{v}))$-> $\{(\mathrm{k}, \mathrm{v})\}$
- Reduce groups all values with the same key in the input key-value set and passes each key and its list of values to $\mathbf{g}$. and returns the union of the outputs produced by $\mathbf{g}$
$\left\{\left(k_{1}, v_{11}\right), \ldots,\left(k_{1}, v_{1 n 1}\right), \ldots\left(k_{m}, v_{m 1}\right), \ldots,\left(k_{m}, v_{m m}\right)\right\}$
->
$g\left(\left(k_{1},\left(v_{11}, \ldots, v_{1 n 1}\right)\right) \cup \ldots \cup g\left(\left(k_{m},\left(v_{m 1}, \ldots, v_{m n m}\right)\right)\right.\right.$

3. MapReduce Computional

Model
ILINOIS INSTTTUTE

- Example
- Input: Set of (state, population) pairs one for each city in the state
- Task: compute the total population per state
- Reduce function
- f: (state, $\left.\left[p_{1}, \ldots, p_{n}\right]\right)$-> \{(state, SUM $\left(\left[p_{1}, \ldots, p_{n}\right)\right\}$
- Application of $f$ through map
- Input: \{(illinois, 3), (illinois, 1), (oregon, 15)\}
- Output: \{(illinois, 4), (oregon, 15)\}

30


## 3. MapReduce Implementations

IUNOIS INSTITUTE

- MapReduce
- Developed by google
- Written in C
- Runs on top of GFS (Google's distributed filesystem)
- Hadoop
- Open source Apache project
- Written in Java
- Runs on-top of HDFS

32


## 3. Hadoop

ILINOIS INSTITUTE
OF TECHNOLOC

- Fault tolerance
- Handling stragglers
- Job tracker will reschedule jobs to a different worker if the worker falls behind too much with processing
- Materialization
- Inputs are read from HDFS
- Workers write results of map jobs assigned to them to local disk
- Workers write results of reduce jobs to HDFS for persistence




## 3. Combiners

 unnos. Nistruris- Certain reduce functions lend themselves to pre-aggregation
- E.g., SUM(revenue) group by state
- Can compute partial sums over incomplete groups and then sum up the pre-aggregated results
- This can be done at the mappers to reduce amount of data send to the reducers
- Supported in Hadoop through a user provided combiner function
- The combiner function is applied before writing the mapper results to local disk
40

3. Example code - Word count minos

- https://hadoop.apache.org/docs/r1.2.1/ mapred tutorial.html

private final etatic Intwrit itable one - new Intwri itable (1)
privato text word $=$ new rext(1)
reporter) throve tozxepetion
String 1ine - value.tostring()
Stringrokenizor tokenizer $=$ new stringrokenizer(line
while (tokenizer. hasmorerocokena() ) i
word. set (tokeni zer. nextrokene( ())
output.colisect(word, one);
C r

42

3. Example code - Word count

- https://hadoop.apache.org/docs/r1.2.1/ mapred tutorial.html
 public void reduce(Text key, Iterator<Intwritable> values, OutputCollector<Text, Intwritable> outp
t , Reporter reporter) throws forxception 1
int sum - 0;
while (values.haswext()) if
sum += valuos.noxt().got(1);
output.collect(key, new Intwritable(surf));
43

3. Systems/Languages on top of

ManReduce

- Pig
- Scripting language, compiled into MR
- Akin to nested relational algebra
- Hive
- SQL interface for warehousing
- Compiled into MR
- ..

45

## 3. Hive Architecture ulinols instiute


3. Hive Datamodel UnNos Misitrix

- Tables
- Attribute-DataType pairs
- User can instruct Hive to partition the table in a certain way
- Datatypes
- Primitive: integer, float, string
- Complex types
- Map: Key->Value
- List
- Struct
- Complex types can be nested
- Example:

CREATE TABLE t1(st string, fl float, li list<map<string, struct<pl:int, p2:int>>);

- Implementation:
- Tables are stored in HDFS

48
3. Hive - Query Processing unvos Nssirurio

- Compile HiveQL query into DAG of map and reduce functions.
- A single map/reduce may implement several traditional query operators
- E.g., filtering out tuples that do not match a condition
(selection) and filtering out certain columns (projection)
- Hive tries to use the partition information to avoid reading partitions that are not needed to answer the query
- For example
- table instructor(name,department) is partitioned on department
- SELECT name FROM instructor WHERE department = 'CS'
- This query would only access the partition of the table for department 'CS'

49

## 3. Example plan



## Spark

- MR uses heavy materialization to achieve fault tolerance
- A lot of I/O
- Spark
- Works in main memory (where possible)
- Inputs and final outputs stored in HDFS
- Recomputes partial results instead of materializing them - resilient distributed datasets $(R D D)$
- Lineage: Need to know from which chunk a chunk was derived from and by which computation


## Summary

- Big data storage systems
- Big data computation platforms
- Big data "databases"
- How to achieve scalability
- Fault tolerance
- Load balancing
- Big data integration
- Pay-as-you-go
- Schema later

| Outline |
| :--- |
| 0) Course Info |
| 1) Introduction |
| 2) Data Preparation and Cleaning |
| 3) Schema matching and mapping |
| 4) Virtual Data Integration |
| 5) Data Exchange |
| 6) Data Warehousing |
| 7) Big Data Analytics |
| 8) Data Provenance |
| $\mathbf{5 4}$ |


[^0]:    Answering queries using views!

