
Name CWID

Homework Assignment
2

April 2015

CS520

Please leave this empty!

Sum

Instructions
• Try to answer all the questions using what you have learned in class

• The assignment is not graded

• There is a theoretical and practical part

• When writing a query, write the query in a way that it would work over all possible database
instances and not just for the given example instance!

CS520 - Spring 2015: Page 2 (of 10)

Lab Part
• This part of the assignment helps you to practice the techniques we have introduced in class

• In this assignment we will work with some existing tools to get experience in using the matching and
mapping techniques we have discussed in class.

• We first give an overview of how to get these tools working on your machine and then discuss what tasks
you should perform with these tools.

Coma 3.0

• Coma 3.0 is a tool for schema matching that is freely available at http://dbs.uni-leipzig.de/Research/
coma.html. It is implemented in Java

• The system requires a running MySQL server on your machine and will not start unless it is able to
connect to this MySQL server

• Configuration settings are in coma.properties

– You can set the JDBC connection URL as well as user and password for your MySQL server instance
there

• The program comes with a coma.bat to start it on windows. On unix or Mac OS you need to write a
shell script or call java directly to run it. See below for an example script.

export CLASSPATH=" l i b /coma−gui . j a r : l i b /coma−eng ine . j a r \
: l i b / add i t i o na l /∗ : l i b /maven /∗ : l i b / add i t i ona l /∗ "
java −cp ${CLASSPATH} −Xmx500M de . wdilab . coma . gui . Main

++Spicy

• ++Spicy is a data exchange tool implemented in Java.

• You can download it for free from http://www.db.unibas.it/projects/spicy/

• It can use a backend Postgres or DB2 database or also works without a database

• The website also has several examples, e.g., http://www.db.unibas.it/projects/spicy/software/
examples.zip

CS520 - Spring 2015: Page 3 (of 10)

http://dbs.uni-leipzig.de/Research/coma.html
http://dbs.uni-leipzig.de/Research/coma.html
http://www.db.unibas.it/projects/spicy/
http://www.db.unibas.it/projects/spicy/software/examples.zip
http://www.db.unibas.it/projects/spicy/software/examples.zip

Part 2.1 Coma 3.0: (Total: 0 Points)

• Coma supports several file formats, e.g., XML schema. For instance, you can use some of the XML
schemas from the ++spicy examples

• Load such files as source and target and run the matchers

CS520 - Spring 2015: Page 4 (of 10)

Part 2.2 ++spicy: Use Examples to Understand the Tool (Total: 0 Points)

• Install ++spicy

• Download the examples mentioned above

• Startup the ++spicy GUI

• You can load existing scenarios from the examples files

• ++spicy supports all tasks needed for data exchange

– schema matching
– mapping generation
– creating transformations
– executing transformations

• test mapping generation

– load the personCarCity example
– run generate transformations from the map menu item. This creates mappings
– inspect some of the mappings that were generated, observe how they use schema matches

• test creating transformations

– run generate SQL from the map menu item.
– inspect the code

CS520 - Spring 2015: Page 5 (of 10)

Theory Part
• This part of the assignment helps you to practice the techniques we have introduced in class.

CS520 - Spring 2015: Page 6 (of 10)

Part 2.3 Schema Matching (Total: 0 Points)

Source

Company
CompName
StockPrice
NumExpl

Model
ModelNumber
Color

Target

Brand
BrandName
Headquarter
StockValue

Car
Color
ModelSerial

Question 2.3.1 Element Name Matching (0 Points)

Consider the two schemas above and compute similarity of schema elements using a matcher that uses edit
distance between element names (attributes) as similarity measure. Recall that a similarity-based matcher has
to compute all pairwise similarities and uses a threshold to determine matches. Compute all pairwise similarities
and consider all pairs with edit distance less than < 7 as matches

CS520 - Spring 2015: Page 7 (of 10)

Part 2.4 Schema Mappings (Total: 0 Points)

Source
Cust

Name
Addr

Emp
Name
Company

Executive
Name
Position

Target
Customer

Name
Addr
Loyalty

Person
Id
Name

WorksAt
EmpRec
Firm
Id

Question 2.4.1 (0 Points)

Consider the source and target schemas shown above. Arrows form source attributes to target attributes rep-
resent schema matches. The dotted arrows represent foreign key constraints. Use the Clio algorithm presented
in the data exchange part of class to 1) determine all source and target associations and 2) construct schema
mappings using these associations and the schema matches (attribute correspondences). Recall that 1) is solved
by chasing the inclusion constraints (foreign keys) and then removing associations that are subsumed by other
associations. Write down the associations first and then the mappings as source-to-target tuple-generating
dependencies (st-tgds). For the second step, recall that mappings are generated by combining a source with
a target association and all correspondences that are covered by these two associations. Note that Clio would
remove subsumed mappings. For sake of this homework do not remove such mappings, but mark them in the
result. A pair of associations is subsumed by another pair of associations if both cover the same correspondences
and the relations used by the subsumed pair are a superset of the relations covered by the other pair.

CS520 - Spring 2015: Page 8 (of 10)

Part 2.5 Virtual Data Integration (Total: 0 Points)

Question 2.5.1 (0 Points)

Use the mappings from the previous part (recall the st-tgds are equivalent to GLAV mappings under the open
world assumption). As a first step write down the GLAV expressions equivalent to these st-tgs.
Find maximally contained rewritings for the queries shown below. Remember that queries are rewritten using
GLAV mappings by first finding a rewriting using the views over the global (target) schema using any of the
algorithms for maximally contained rewritings introduced in class, then replace the global schema views with
the source schema views and unfold them.
Use the bucket algorithm for the first step. Recall that the bucket algorithm groups views based on which query
predicates they cover, builds all combinations of picking one view per bucket, and does a query containment
check to determine whether the generated rewriting is contained in the query. All contained rewritings are then
combined using union to create the maximally contained rewriting for the query.

Q1(X) : −Person(Y, X)
Q2(X, Y) : −Person(Z, X), WorksAt(A, Y, Z)

CS520 - Spring 2015: Page 9 (of 10)

Part 2.6 Data Exchange (Total: 0 Points)

Consider the following transportation database schema and example instance:

Cust
Name Addr
Peter Chicago
Bob South Park
Alice Chicago

Emp
Name Company
Gert IBM
Pferd Oracle

Executive
Name Position

Pferdegert Senior VP
Heinzgert CPO

Question 2.6.1 (0 Points)

Consider the source instance for the schema from the previous questions shown above. Use the data exchange
query generation technique discussed in class to generate SQL queries implementing the mappings designed in
the previous questions. Show the result of running these queries over the example source instance.

CS520 - Spring 2015: Page 10 (of 10)

	Coma 3.0: (Total: 0 Points)
	++spicy: Use Examples to Understand the Tool (Total: 0 Points)
	Schema Matching (Total: 0 Points)
	Element Name Matching (0 Points)

	Schema Mappings (Total: 0 Points)
	 (0 Points)

	Virtual Data Integration (Total: 0 Points)
	 (0 Points)

	Data Exchange (Total: 0 Points)
	 (0 Points)

