
Name CWID

Homework Assignment
1

February 2015

CS520
Results

Please leave this empty!

1.1 1.2 1.3 1.4 1.5 1.6

1.7 1.8 1.9 1.10 1.11 1.12 1.13 Sum

Instructions
• Try to answer all the questions using what you have learned in class

• The assignment is not graded

• There is a theoretical and practical part

• When writing a query, write the query in a way that it would work over all possible database
instances and not just for the given example instance!

CS520 - Spring 2015: Page 2 (of 14)

Lab Part
• This part of the assignment helps you to practice the techniques we have introduced in class

Hospital Dataset

• We have uploaded a hospital dataset to the course webpage: http://cs.iit.edu/~cs520/hospital.csv

• The database instance is stored in a CSV file

• The schema of this database contains a single table with attributes

– providernumber
– hospitalname
– address1
– address2
– address3
– city
– state
– zip
– country
– phone
– hospitaltype
– hospitalowner
– emergencyservice
– condition
– measurecode
– measurename
– score
– sample
– stateavg

The following constraints (functional dependencies) have been defined for the dataset:

e0 : zip→ city

e1 : zip→ state

e2 : phone→ zip

e3 : phone→ city

e4 : phone→ state

e7 : providernumber,measurecode→ stateavg

e8 : state,measurecode→ stateavg

CS520 - Spring 2015: Page 3 (of 14)

Part 1.1 Create Schema and Load Dataset (Total: 0 Points)

• Load the database into your favorite database / NoSQL store / distributed file system. Use a system you
are comfortable with and where you would know how to write the queries required for the next questions
(have a look at these questions first).

• As an example here are the steps outlined for Postgres

– Run the DDL to create a (single table) schema for the dataset
– Use the loader utility of your database (e.g., COPY command in Postgres) to load the content of the

CSV file into your table

Part 1.2 Detecting Constraint Violations (Total: 0 Points)

• The dataset is dirty with respect to the functional dependencies defined on the previous page.

• Write queries using the method we have discussed in class to detect pairs of tuples that violate a constraint.

• Execute these queries and store their results

Part 1.3 Fixing Violations (Total: 0 Points)

• Pick one constraint with violations and write a program for fixing these violations

– Your program should use “updates equating the right-hand side” to fix violations
– Start by computing equivalence classes (if you modify the SQL queries used for detection in a par-

ticular fashion this will help you to build these equivalence classes)
– To fix a violation implement one of the following strategies
∗ Frequency per class: pick the value that occurs the most within each right-hand side attribute
of an equivalence class.

∗ Total frequency: pick the value that occurs most within each right-hand side attribute (consider
all tuples in the database).

∗ Cost of the update: use the edit-distance measure (see below) you have implemented to compute
the cost of updating values. The cost of updating attribute A of tuples from a equivalence class
E to a value c defined as

∑
t∈E dedit(t, t′) where t′ is the version of t after updating A to c.

Part 1.4 Edit Distance (Total: 0 Points)

• Implement the edit distance measure in your favorite programming language

• Test it with a few strings (e.g., the examples from the slides)

CS520 - Spring 2015: Page 4 (of 14)

Part 1.5 Entity Resolution (Total: 0 Points)

• Create a table medcond(city, state, zip, condition) by running a query over the hospital table and store it
as a separate table. We will use this table for entity resolution.

• Naturally, this table has a lot of duplicates (same values). Now we randomly update tuples in the database
to create near-duplicates by adding or deleting a few characters. E.g., in SQL you can use queries the one
shown below to add one or more random characters to some values of an attribute.

UPDATE ho sp i t a l
SET c i t y = c i t y

| | CASE WHEN random () > 0 .9 THEN ’A ’ ELSE ’ ’ END
| | CASE WHEN random () > 0 .5 THEN ’B ’ ELSE ’ ’ END
| | CASE WHEN random () > 0 .2 THEN ’C ’ ELSE ’ ’ END

WHERE random () > 0 . 5 ;

• Assign some reasonable weights to the attributes. For example, state should be less predictive than zip
code.

• Use edit distance as a similarity metric for all attributes.

• Fix a threshold β.

• Find duplicates using the weighted combination of the edit distance for the attributes of the table.

Part 1.6 Data Fusion (Total: 0 Points)

• For duplicates that you have identified in the previous step, fuse conflicting values for the state attribute
by choosing the value that is more common in the database.

CS520 - Spring 2015: Page 5 (of 14)

Theory Part
• This part of the assignment helps you to practice the techniques we have introduced in class.

Consider the following transportation database schema and example instance:

road
fromCity toCity length
Chicago Evanston 13
Chicago Evanston 14
Chicago Oak Park 8
Oak Park Naperville 20
Chicago Naperville 18

city
name gasPrice population
Chicago 1.80 5,000,000
Evanston 1.9 300,000
Oak Park 1.5 500,000
Naperville 1.6 22,000

train
fromCity toCity price
Chicago Evanston 20
Chicago Oak Park 34
Oak Park Naperville 12

Hints:

• Attributes with black background form the primary key of a relation

• The attributes fromCity and toCity of relation road are both foreign keys to relation city

• The attributes fromCity and toCity or relation trans are both foreign keys to relation city

CS520 - Spring 2015: Page 6 (of 14)

Part 1.7 Datalog (Total: 0 Points)

Question 1.7.1 Translate detection queries (0 Points)

Translate the SQL queries you have written for detecting violations of constraints (e0 to 8) in the lab part of
the assignment and translate them into datalog.

Solution
Here we present the boolean versions of the detection queries:

e0 : Q0() : −hospital(Zip,City1), hospital(Zip,City2), City1 6= City2.
e1 : Q1() : −hospital(Zip, State1), hospital(Zip, State2), State1 6= State2.
e2 : Q2() : −hospital(Phone, Zip1), hospital(Phone, Zip2), Zip1 6= Zip2.
e3 : Q3() : −hospital(Phone,City1), hospital(Phone,City2), City1 6= City2.
e4 : Q4() : −hospital(Phone, State1), hospital(Phone, State2), State1 6= State2.
e7 : Q7() : −hospital(ProviderNum,MeasureCode, StateAvg1),

hospital(ProviderNum,MeasureCode, StateAvg2),
StateAvg1 6= StateAvg2.

e8 : Q8() : −hospital(State,MeasureCode, StateAvg1), hospital(State,MeasureCode, StateAvg2),
StateAvg1 6= StateAvg2.

Question 1.7.2 Reachability of cities (0 Points)

Write a datalog program that computes which cities are reachable from each other. To reach a city from another
city one has to either take a train connecting these cities or a road. Note that it may require multiple steps to
reach one city from another. Furthermore, roads and trains are running in both directions even if the database
only contains only one direction. For example, in the example instance there is a train from Oak Park to
Chicago.

Solution

CS520 - Spring 2015: Page 7 (of 14)

oneHop(X,Y) : −road(X,Y, Z).
oneHop(X,Y) : −road(Y,X,Z).
oneHop(X,Y) : −train(X,Y, Z).
oneHop(X,Y) : −train(Y,X,Z).
reach(X,Y) : −oneHop(X,Y).
reach(X,Y) : −reach(X,Z), oneHop(Z, Y).

Question 1.7.3 Train lines (0 Points)

Write a datalog program that computes which cities are reachable from each other via train with at most 2
transfers.

Solution

oneHop(X,Y) : −train(X,Y, Z).
oneHop(X,Y) : −train(Y,X,Z).
twoHops(X,Y) : −oneHop(X,Z), oneHop(Z, Y).

threeHops(X,Y) : −twoHop(X,Z), oneHop(Z, Y).
reach(X,Y) : −oneHop(X,Y).
reach(X,Y) : −twoHops(X,Y).
reach(X,Y) : −threeHops(X,Y).

Question 1.7.4 Train lines (0 Points)

Translate the program from the previous question into relational algebra and SQL

Solution

CS520 - Spring 2015: Page 8 (of 14)

WITH
oneHop AS (SELECT fromCity , toCity FROM t r a i n

UNION ALL
SELECT toCity AS fromCity , fromCity AS toCity FROM t r a i n) ,

twoHops AS (SELECT t . fromCity o . toCity
FROM oneHop t JOIN oneHop o
WHERE t . toCity=o . fromCity)

threeHops AS (SELECT t . fromCity o . toCity
FROM twoHop t JOIN oneHop o
WHERE t . toCity=o . fromCity)

SELECT DISTINCT fromCity , toCity
FROM

(SELECT ∗ FROM oneHops
UNION ALL
SELECT ∗ FROM twoHops
UNION ALL
SELECT ∗ FROM threeHops) hops

oneHop← train ∪ ρfromCity←toCity,toCity←fromCity(train)
twoHops← πfromCity,toCity(ρjoinCity←toCity(oneHop)><ρjoinCity←fromCity(oneHop))

threeHops← πfromCity,toCity(ρjoinCity←toCity(twoHop)><ρjoinCity←fromCity(oneHop))
q ← oneHop ∪ twoHops ∪ threeHops

CS520 - Spring 2015: Page 9 (of 14)

Part 1.8 Constraints (Total: 0 Points)

Question 1.8.1 Translation into logical formalism (0 Points)

Translate the functional dependencies e0 to e8 from the lab part into the first-order logical representation that
was introduced in class.

Solution

e0 : ∀zip, city1, city2 : hospital(zip, city1) ∧ hospital(zip, city2)→ city1 = city2
e1 : ∀zip, state1, state2 : hospital(zip, state1) ∧ hospital(zip, state2)→ state1 = state2
e2 : ∀phone, zip1, zip2 : hospital(phone, zip2) ∧ hospital(phone, zip2)→ zip1 = zip2
e3 : ∀phone, city1, city2 : hospital(phone, city2) ∧ hospital(phone, city2)→ city1 = city2
e4 : ∀phone, state1, state2 : hospital(phone, state2) ∧ hospital(phone, state2)→ state1 = state2
e6 : ∀pnum,mcode, avg1, avg2 : hospital(pnum,mcode, avg1) ∧ hospital(pnum,mcode, avg2)→ avg1 = avg2
e7 : ∀state,mcode, avg1, avg2 : hospital(state,mcode, avg1) ∧ hospital(state,mcode, avg2)→ avg1 = avg2

Question 1.8.2 Translation into logical formalism (0 Points)

Translate the primary and foreign key constraints of the transportation schema present before into the first-order
logical representation that was introduced in class.

Solution
Note that the primary key constrain on relation road trivially holds under set semantics (all attributes).

PK(city) : ∀name, gP1, gP2, ppl1, ppl2 : city(name, gP1, ppl1) ∧ city(name, gP2, ppl2)→ gP1 = gP2 ∧ ppl1 = ppl2
PK(train) : ∀fCity, tCity, p1, p2 : train(fCity, tCity, p1) ∧ train(fCity, tCity, p2)→ p1 = p2
FK1(road) : ∀fCity, t, l : road(fCity, t, l)→ ∃gPrice, ppl : city(fCity, gPrice, ppl)
FK2(road) : ∀f, tCity, l : road(f, tCity, l)→ ∃gPrice, ppl : city(tCity, gPrice, ppl)
FK1(train) : ∀fCity, t, l : train(fCity, t, l)→ ∃gPrice, ppl : city(fCity, gPrice, ppl)
FK2(train) : ∀f, tCity, l : train(f, tCity, l)→ ∃gPrice, ppl : city(tCity, gPrice, ppl)

CS520 - Spring 2015: Page 10 (of 14)

Question 1.8.3 Translation into denial constraints (0 Points)

Translate the functional dependencies e0 to e8 from the lab part into denial constraints.

Solution

e0 : ∀¬(hospital(zip, city1) ∧ hospital(zip, city2) ∧ city1 6= city2)
e1 : ∀¬(hospital(zip, state1) ∧ hospital(zip, state2)→ state1 6= state2)
e2 : ∀¬(hospital(phone, zip2) ∧ hospital(phone, zip2)→ zip1 6= zip2)
e3 : ∀¬(hospital(phone, city2) ∧ hospital(phone, city2)→ city1 6= city2)
e4 : ∀¬(hospital(phone, state2) ∧ hospital(phone, state2)→ state1 6= state2)
e6 : ∀¬(hospital(pnum,mcode, avg1) ∧ hospital(pnum,mcode, avg2)→ avg1 6= avg2)
e7 : ∀¬(hospital(state,mcode, avg1) ∧ hospital(state,mcode, avg2)→ avg1 6= avg2)

Question 1.8.4 Creating denial constraints (0 Points)

Create denial constraints over the transportation schema that encode the following restrictions (note: it may
be necessary to use more than one constraint to express some of the restrictions):

1. The gas price of cities with over 200,000 inhabitats (population attribute) is always above or equals to 1.5

2. The difference in length between two roads connecting the same cities is never more than 10 miles

3. The direct train route between two cities is always more expensive than each individual train on a route
with one intermediate stop. E.g., the train (Chicago,Naperville) has to be more expensive than the
trains (Chicago,OakPark) and (OakPark,Naperville)

Solution

CS520 - Spring 2015: Page 11 (of 14)

Restriction 1

∀¬(city(city, inhabitats, gasprice) ∧ inhabitats > 200, 000 ∧ gasprice < 1.5)

Restriction 2

∀¬(road(cityA, cityB, length1) ∧ road(cityA, cityB, length2) ∧ abs(length1− length2) > 10)

Restriction 3

∀¬(train(x, y, z) ∧ train(x′, y′, z′) ∧ train(x′′, y′′, z′′) ∧ x = x′ ∧ y′ = x′′ ∧ y = y′′ ∧ z < z′)
∀¬(train(x, y, z) ∧ train(x′, y′, z′) ∧ train(x′′, y′′, z′′) ∧ x = x′ ∧ y′ = x′′ ∧ y = y′′ ∧ z < z′′)

CS520 - Spring 2015: Page 12 (of 14)

Part 1.9 Query Equivalence and Containment (Total: Points)

Question 1.9.1 (6 Points)

Determine which of the following queries are contained in each other or equivalent to each other under set
semantics. Recall that to determine containment you need to check whether there are containment mappings
between queries. Write down one containment mapping for each pair of queries in each direction (if it exists)
and fill out the table below.

Q1(X,Y) : −R(X,Z), R(A, Y).
Q2(X,Y) : −R(X,Y).
Q3(X,Y) : −R(X,Z), R(A,Z), R(Y,Z), R(B,Z).
Q4(U,U) : −R(U,U).
Q5(X,Y) : −R(X,X), R(Y, Y).
Q6(X,Y) : −R(X,X), R(X,Z), R(Z, Y), R(Y, Y).

Q v Q′ Q1 Q2 Q3 Q4 Q5 Q6
Q1
Q2
Q3
Q4
Q5
Q6

Solution

CS520 - Spring 2015: Page 13 (of 14)

The final result is:

Q v Q′ Q1 Q2 Q3 Q4 Q5 Q6
Q1
Q2
Q3
Q4
Q5
Q6

Below we present possible containment mappings for between queries if they exists.

Q1 → Q2 :X → X,Z → Y,A→ X,Y → Y

Q1 → Q4 :X → U,Z → U,A→ U, Y → U

Q1 → Q5 :X → X,Z → X,A→ Y, Y → Y

Q1 → Q6 :X → X,Z → X,A→ Y, Y → Y

Q2 → Q4 :X → U, Y → U

Q3 → Q4 :X → U,A→ U,Z → U, Y → U

Q5 → Q4 :X → U, Y → U

Q5 → Q6 :X → X,Y → Y

Q6 → Q4 :X → U, Y → U,Z → U

CS520 - Spring 2015: Page 14 (of 14)

