
modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

CS425 – Summer 2016

Jason Arnold

Chapter 6: Advanced SQL

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.2CS425 – Fall 2013 – Boris Glavic

Chapter 6: Advanced SQL

n Accessing SQL From a Programming Language

l Dynamic SQL

 JDBC and ODBC

l Embedded SQL

n Functions and Procedural Constructs

n Triggers

Textbook: Chapter 5

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.3CS425 – Fall 2013 – Boris Glavic

Accessing SQL From a Programming

Language

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.4CS425 – Fall 2013 – Boris Glavic

JDBC and ODBC

n API (application-program interface) for a program to interact

with a database server

n Application makes calls to

l Connect with the database server

l Send SQL commands to the database server

l Fetch tuples of result one-by-one into program variables

n ODBC (Open Database Connectivity) works with C, C++, C#,

and Visual Basic

l Other API’s such as ADO.NET sit on top of ODBC

n JDBC (Java Database Connectivity) works with Java

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.5CS425 – Fall 2013 – Boris Glavic

Native APIs

n Most DBMS also define DBMS specific APIs

n Oracle: OCI

n Postgres: libpg

…

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.6CS425 – Fall 2013 – Boris Glavic

JDBC

n JDBC is a Java API for communicating with database systems

supporting SQL.

n JDBC supports a variety of features for querying and updating

data, and for retrieving query results.

n JDBC also supports metadata retrieval, such as querying about

relations present in the database and the names and types of

relation attributes.

n Model for communicating with the database:

l Open a connection

l Create a “statement” object

l Execute queries using the Statement object to send queries

and fetch results

l Exception mechanism to handle errors

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.7CS425 – Fall 2013 – Boris Glavic

JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)

{

try {

Class.forName ("oracle.jdbc.driver.OracleDriver"); // load driver

Connection conn = DriverManager.getConnection(// connect to server

"jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);

Statement stmt = conn.createStatement(); // create Statement object

… Do Actual Work ….

stmt.close(); // close Statement and release resources

conn.close(); // close Connection and release resources

}

catch (SQLException sqle) {

System.out.println("SQLException : " + sqle); // handle exceptions

}

}

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.8CS425 – Fall 2013 – Boris Glavic

JDBC Code (Cont.)

n Update to database

try {

stmt.executeUpdate(

"insert into instructor values(’77987’, ’Kim’, ’Physics’,

98000)");

} catch (SQLException sqle)

{

System.out.println("Could not insert tuple. " + sqle);

}

n Execute query and fetch and print results

ResultSet rset = stmt.executeQuery(

"select dept_name, avg (salary)

from instructor

group by dept_name");

while (rset.next()) {

System.out.println(rset.getString("dept_name") + " " +

rset.getFloat(2));

}

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.9CS425 – Fall 2013 – Boris Glavic

JDBC Code Details

n Result stores the current row position in the result

l Pointing before the first row after executing the statement

l .next() moves to the next tuple

Returns false if no more tuples

n Getting result fields:

l rs.getString(“dept_name”) and rs.getString(1)

equivalent if dept_name is the first attribute in select

result.

n Dealing with Null values

l int a = rs.getInt(“a”);

if (rs.wasNull()) Systems.out.println(“Got null value”);

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.10CS425 – Fall 2013 – Boris Glavic

Prepared Statement

n PreparedStatement pStmt = conn.prepareStatement(

"insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877"); pStmt.setString(2, "Perry");

pStmt.setString(3, "Finance"); pStmt.setInt(4, 125000);

pStmt.executeUpdate();

pStmt.setString(1, "88878");

pStmt.executeUpdate();

n For queries, use pStmt.executeQuery(), which returns a ResultSet

n WARNING: always use prepared statements when taking an input

from the user and adding it to a query

l NEVER create a query by concatenating strings which you

get as inputs

l "insert into instructor values(’ " + ID + " ’, ’ " + name + " ’, " +

" ’ + dept name + " ’, " ’ balance +

")“

l What if name is “D’Souza”?

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.11CS425 – Fall 2013 – Boris Glavic

SQL Injection

n Suppose query is constructed using

l "select * from instructor where name = ’" + name + "’"

n Suppose the user, instead of entering a name, enters:

l X’ or ’Y’ = ’Y

n then the resulting statement becomes:

l "select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" +
"’"

l which is:

select * from instructor where name = ’X’ or ’Y’ = ’Y’

l User could have even used

X’; update instructor set salary = salary + 10000; --

n Prepared statement internally uses:
"select * from instructor where name = ’X\’ or \’Y\’ = \’Y’

l Always use prepared statements, with user inputs as
parameters

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.12CS425 – Fall 2013 – Boris Glavic

Metadata Features

n ResultSet metadata

n E.g., after executing query to get a ResultSet rs:

l ResultSetMetaData rsmd = rs.getMetaData();

for(int i = 1; i <= rsmd.getColumnCount(); i++) {

System.out.println(rsmd.getColumnName(i));

System.out.println(rsmd.getColumnTypeName(i));

}

n How is this useful?

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.13CS425 – Fall 2013 – Boris Glavic

Transaction Control in JDBC

n By default, each SQL statement is treated as a separate

transaction that is committed automatically

l bad idea for transactions with multiple updates

n Can turn off automatic commit on a connection

l conn.setAutoCommit(false);

n Transactions must then be committed or rolled back explicitly

l conn.commit(); or

l conn.rollback();

n conn.setAutoCommit(true) turns on automatic commit.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.14CS425 – Fall 2013 – Boris Glavic

Other JDBC Features

n Calling functions and procedures

l CallableStatement cStmt1 = conn.prepareCall("{? = call some

function(?)}");

l CallableStatement cStmt2 = conn.prepareCall("{call some

procedure(?,?)}");

n Handling large object types

l getBlob() and getClob() that are similar to the getString()

method, but return objects of type Blob and Clob, respectively

l get data from these objects by getBytes()

l associate an open stream with Java Blob or Clob object to

update large objects

blob.setBlob(int parameterIndex, InputStream inputStream).

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.15CS425 – Fall 2013 – Boris Glavic

SQLJ

n JDBC is overly dynamic, errors cannot be caught by compiler

n SQLJ: embedded SQL in Java

l #sql iterator deptInfoIter (String dept name, int avgSal);

deptInfoIter iter = null;

#sql iter = { select dept_name, avg(salary) from instructor

group by dept name };

while (iter.next()) {

String deptName = iter.dept_name();

int avgSal = iter.avgSal();

System.out.println(deptName + " " + avgSal);

}

iter.close();

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.16CS425 – Fall 2013 – Boris Glavic

ODBC

n Open DataBase Connectivity(ODBC) standard

l standard for application program to communicate with a

database server.

l application program interface (API) to

open a connection with a database,

 send queries and updates,

get back results.

n Applications such as GUI, spreadsheets, etc. can use ODBC

n Was defined originally for Basic and C, versions available for

many languages.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.17CS425 – Fall 2013 – Boris Glavic

ODBC (Cont.)

n Each database system supporting ODBC provides a "driver"

library that must be linked with the client program.

n When client program makes an ODBC API call, the code in the

library communicates with the server to carry out the requested

action, and fetch results.

n ODBC program first allocates an SQL environment, then a

database connection handle.

n Opens database connection using SQLConnect(). Parameters for

SQLConnect:

l connection handle,

l the server to which to connect

l the user identifier,

l password

n Must also specify types of arguments:

l SQL_NTS denotes previous argument is a null-terminated string.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.18CS425 – Fall 2013 – Boris Glavic

ODBC Code

n int ODBCexample()

{

RETCODE error;

HENV env; /* environment */

HDBC conn; /* database connection */

SQLAllocEnv(&env);

SQLAllocConnect(env, &conn);

SQLConnect(conn, “db.yale.edu", SQL_NTS, "avi", SQL_NTS,
"avipasswd", SQL_NTS);

{ …. Do actual work … }

SQLDisconnect(conn);

SQLFreeConnect(conn);

SQLFreeEnv(env);

}

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.19CS425 – Fall 2013 – Boris Glavic

ODBC Code (Cont.)

n Program sends SQL commands to database by using SQLExecDirect

n Result tuples are fetched using SQLFetch()

n SQLBindCol() binds C language variables to attributes of the query
result

l When a tuple is fetched, its attribute values are automatically stored in
corresponding C variables.

l Arguments to SQLBindCol()

 ODBC stmt variable, attribute position in query result

 The type conversion from SQL to C.

 The address of the variable.

 For variable-length types like character arrays,

– The maximum length of the variable

– Location to store actual length when a tuple is fetched.

– Note: A negative value returned for the length field indicates null
value

n Good programming requires checking results of every function call for
errors; we have omitted most checks for brevity.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.20CS425 – Fall 2013 – Boris Glavic

ODBC Code (Cont.)

n Main body of program

char deptname[80];

float salary;

int lenOut1, lenOut2;

HSTMT stmt;

char * sqlquery = "select dept_name, sum (salary)

from instructor

group by dept_name";

SQLAllocStmt(conn, &stmt);

error = SQLExecDirect(stmt, sqlquery, SQL_NTS);

if (error == SQL SUCCESS) {

SQLBindCol(stmt, 1, SQL_C_CHAR, deptname , 80, &lenOut1);

SQLBindCol(stmt, 2, SQL_C_FLOAT, &salary, 0 , &lenOut2);

while (SQLFetch(stmt) == SQL_SUCCESS) {

printf (" %s %g\n", deptname, salary);

}

}

SQLFreeStmt(stmt, SQL_DROP);

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.21CS425 – Fall 2013 – Boris Glavic

ODBC Prepared Statements

n Prepared Statement

l SQL statement prepared: compiled at the database

l Can have placeholders: E.g. insert into account values(?,?,?)

l Repeatedly executed with actual values for the placeholders

n To prepare a statement

SQLPrepare(stmt, <SQL String>);

n To bind parameters

SQLBindParameter(stmt, <parameter#>,

… type information and value omitted for simplicity..)

n To execute the statement

retcode = SQLExecute(stmt);

n To avoid SQL injection security risk, do not create SQL strings

directly using user input; instead use prepared statements to bind

user inputs

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.22CS425 – Fall 2013 – Boris Glavic

More ODBC Features

n Metadata features

l finding all the relations in the database and

l finding the names and types of columns of a query result or a

relation in the database.

n By default, each SQL statement is treated as a separate

transaction that is committed automatically.

l Can turn off automatic commit on a connection

SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)}

l Transactions must then be committed or rolled back explicitly by

SQLTransact(conn, SQL_COMMIT) or

SQLTransact(conn, SQL_ROLLBACK)

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.23CS425 – Fall 2013 – Boris Glavic

Dynamic vs. Embedded SQL

Dynamic SQL Embedded SQL

code

DBMS

Compiler

Library

binary

Code with embeded SQL

DBMS

Preprocessor

Library

code

Compiler

binary

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.24CS425 – Fall 2013 – Boris Glavic

Embedded SQL

n The SQL standard defines embeddings of SQL in a variety of

programming languages such as C, Java, and Cobol.

n A language to which SQL queries are embedded is referred to as

a host language, and the SQL structures permitted in the host
language comprise embedded SQL.

n The basic form of these languages follows that of the System R

embedding of SQL into PL/I.

n EXEC SQL statement is used to identify embedded SQL request

to the preprocessor

EXEC SQL <embedded SQL statement > END_EXEC

Note: this varies by language (for example, the Java embedding

uses # SQL { …. };)

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.25CS425 – Fall 2013 – Boris Glavic

Example Query

n Specify the query in SQL and declare a cursor for it

EXEC SQL

declare c cursor for

select ID, name

from student

where tot_cred > :credit_amount

END_EXEC

n From within a host language, find the ID and name of

students who have completed more than the number of

credits stored in variable credit_amount.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.26CS425 – Fall 2013 – Boris Glavic

Embedded SQL (Cont.)

n The open statement causes the query to be evaluated

EXEC SQL open c END_EXEC

n The fetch statement causes the values of one tuple in the query

result to be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

n A variable called SQLSTATE in the SQL communication area

(SQLCA) gets set to ‘02000’ to indicate no more data is

available

n The close statement causes the database system to delete the

temporary relation that holds the result of the query.

EXEC SQL close c END_EXEC

Note: above details vary with language. For example, the Java

embedding defines Java iterators to step through result tuples.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.27CS425 – Fall 2013 – Boris Glavic

Updates Through Cursors

n Can update tuples fetched by cursor by declaring that the cursor

is for update

declare c cursor for

select *
from instructor

where dept_name = ‘Music’
for update

n To update tuple at the current location of cursor c

update instructor

set salary = salary + 100

where current of c

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.28CS425 – Fall 2013 – Boris Glavic

Procedural Constructs in SQL

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.29CS425 – Fall 2013 – Boris Glavic

Procedural Extensions and Stored Procedures

n SQL provides a module language

l Permits definition of procedures in SQL, with if-then-else

statements, for and while loops, etc.

n Stored Procedures

l Can store procedures in the database

l then execute them using the call statement

l permit external applications to operate on the database

without knowing about internal details

n Object-oriented aspects of these features are covered in Chapter

22 (Object Based Databases) in the textbook

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.30CS425 – Fall 2013 – Boris Glavic

Why have procedural extensions?

n Shipping data between a database server and application

program (e.g., through network connection) is costly

n Converting data from the database internal format into a format

understood by the application programming language is costly

n Example:

l Use Java to retrieve all users and their friend-relationships from a

friends relation representing a world-wide social network with

10,000,000 users

l Compute the transitive closure

 All pairs of users connects through a path of friend relationships.

E.g., (Peter, Magret) if Peter is a friend of Walter who is a friend

of Magret

l Return pairs of users from Chicago – say 4000 pairs

l 1) cannot be expressed (efficiently) as SQL query, 2) result is small

 -> save by executing this on the DB server

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.31CS425 – Fall 2013 – Boris Glavic

Functions and Procedures

n SQL:1999 supports functions and procedures

l Functions/procedures can be written in SQL itself, or in an

external programming language.

l Functions are particularly useful with specialized data types such

as images and geometric objects.

Example: functions to check if polygons overlap, or to

compare images for similarity.

l Some database systems support table-valued functions, which

can return a relation as a result.

n SQL:1999 also supports a rich set of imperative constructs, including

l Loops, if-then-else, assignment

n Many databases have proprietary procedural extensions to SQL that

differ from SQL:1999.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.32CS425 – Fall 2013 – Boris Glavic

SQL Procedures

n The dept_count table-valued procedure

create procedure dept_count_proc (in dept_name varchar(20),
out d_count integer)

begin

select count(*) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name

end

n Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.

declare d_count integer;
call dept_count_proc(‘Physics’, d_count);

Procedures and functions can be invoked also from dynamic SQL

n SQL:1999 allows more than one function/procedure of the same
name (called name overloading), as long as the number of
arguments differ, or at least the types of the arguments differ

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.33CS425 – Fall 2013 – Boris Glavic

Procedural Constructs

n Warning: most database systems implement their own variant of the
standard syntax below

l read your system manual to see what works on your system

n Compound statement: begin … end,

l May contain multiple SQL statements between begin and end.

l Local variables can be declared within a compound statements

n While and repeat statements :

declare n integer default 0;

while n < 10 do

set n = n + 1

end while

repeat

set n = n – 1

until n = 0

end repeat

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.34CS425 – Fall 2013 – Boris Glavic

Procedural Constructs (Cont.)

n For loop

l Permits iteration over all results of a query

l Example:

declare n integer default 0;

for r as

select budget from department

where dept_name = ‘Music’
do

set n = n - r.budget

end for

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.35CS425 – Fall 2013 – Boris Glavic

Procedural Constructs (cont.)

n Conditional statements (if-then-else)

SQL:1999 also supports a case statement similar to C case statement

n Example procedure: registers student after ensuring classroom capacity

is not exceeded

l Returns 0 on success and -1 if capacity is exceeded

l See book for details

n Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_classroom_seats condition

declare exit handler for out_of_classroom_seats

begin

…
.. signal out_of_classroom_seats

end

l The handler here is exit -- causes enclosing begin..end to be exited

l Other actions possible on exception

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.36CS425 – Fall 2013 – Boris Glavic

External Language Functions/Procedures

n SQL:1999 permits the use of functions and procedures written in

other languages such as C or C++

n Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),

out count integer)

language C

external name ’ /usr/avi/bin/dept_count_proc’

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.37CS425 – Fall 2013 – Boris Glavic

External Language Routines (Cont.)

n Benefits of external language functions/procedures:

l more efficient for many operations, and more expressive

power.

n Drawbacks

l Code to implement function may need to be loaded into

database system and executed in the database system’s

address space.

 risk of accidental corruption of database structures

 security risk, allowing users access to unauthorized data

l There are alternatives, which give good security at the cost of

potentially worse performance.

l Direct execution in the database system’s space is used

when efficiency is more important than security.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.38CS425 – Fall 2013 – Boris Glavic

Security with External Language Routines

n To deal with security problems

l Use sandbox techniques

E.g., use a safe language like Java, which cannot be

used to access/damage other parts of the database

code.

l Or, run external language functions/procedures in a

separate process, with no access to the database process’
memory.

Parameters and results communicated via inter-process

communication

n Both have performance overheads

n Many database systems support both above approaches as

well as direct executing in database system address space.

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.39CS425 – Fall 2013 – Boris Glavic

Triggers

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.40CS425 – Fall 2013 – Boris Glavic

Triggers

n A trigger is a statement that is executed automatically by

the system as a side effect of a modification to the

database.

n To design a trigger mechanism, we must:

l Specify the conditions under which the trigger is to be

executed.

l Specify the actions to be taken when the trigger

executes.

n Triggers introduced to SQL standard in SQL:1999, but

supported even earlier using non-standard syntax by

most databases.

l Syntax illustrated here may not work exactly on your

database system; check the system manuals

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.41CS425 – Fall 2013 – Boris Glavic

Trigger Example

n E.g. time_slot_id is not a primary key of timeslot, so we cannot

create a foreign key constraint from section to timeslot.

n Alternative: use triggers on section and timeslot to enforce integrity

constraints

create trigger timeslot_check1 after insert on section

referencing new row as nrow

for each row
when (nrow.time_slot_id not in (

select time_slot_id

from time_slot)) /* time_slot_id not present in time_slot */

begin

rollback

end;

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.42CS425 – Fall 2013 – Boris Glavic

Trigger Example Cont.

create trigger timeslot_check2 after delete on timeslot

referencing old row as orow

for each row
when (orow.time_slot_id not in (

select time_slot_id

from time_slot)

/* last tuple for time slot id deleted from time slot */

and orow.time_slot_id in (

select time_slot_id

from section)) /* and time_slot_id still referenced from section*/

begin

rollback

end;

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.43CS425 – Fall 2013 – Boris Glavic

Triggering Events and Actions in SQL

n Triggering event can be insert, delete or update

n Triggers on update can be restricted to specific attributes

l E.g., after update of takes on grade

n Values of attributes before and after an update can be
referenced

l referencing old row as : for deletes and updates

l referencing new row as : for inserts and updates

n Triggers can be activated before an event, which can serve as
extra constraints. E.g. convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = ‘ ‘)
begin atomic

set nrow.grade = null;
end;

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.44CS425 – Fall 2013 – Boris Glavic

Trigger to Maintain credits_earned value

n create trigger credits_earned after update of takes on

(grade)

referencing new row as nrow

referencing old row as orow

for each row
when nrow.grade <> ’F’ and nrow.grade is not null

and (orow.grade = ’F’ or orow.grade is null)

begin atomic
update student

set tot_cred= tot_cred +

(select credits

from course

where course.course_id= nrow.course_id)

where student.id = nrow.id;

end;

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.45CS425 – Fall 2013 – Boris Glavic

Statement Level Triggers

n Instead of executing a separate action for each affected

row, a single action can be executed for all rows affected by

a transaction

l Use for each statement instead of for each row

l Use referencing old table or referencing new

table to refer to temporary tables (called transition

tables) containing the affected rows

l Can be more efficient when dealing with SQL

statements that update a large number of rows

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.46CS425 – Fall 2013 – Boris Glavic

When Not To Use Triggers

n Triggers were used earlier for tasks such as

l maintaining summary data (e.g., total salary of each department)

l Replicating databases by recording changes to special relations

(called change or delta relations) and having a separate process

that applies the changes over to a replica

n There are better ways of doing these now:

l Databases today provide built in materialized view facilities to

maintain summary data

l Databases provide built-in support for replication

n Encapsulation facilities can be used instead of triggers in many cases

l Define methods to update fields

l Carry out actions as part of the update methods instead of

through a trigger

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.47CS425 – Fall 2013 – Boris Glavic

When Not To Use Triggers

n Risk of unintended execution of triggers, for example, when

l loading data from a backup copy

Some databases ignore triggers on loads

l replicating updates at a remote site

l Trigger execution can be disabled before such actions.

n Other risks with triggers:

l Error leading to failure of critical transactions that set off the

trigger

l Cascading execution causing increased transaction response

time

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

©Silberschatz, Korth and Sudarshan5.48CS425 – Fall 2013 – Boris Glavic

Recap

n Programming Language Interfaces for Databases

l Dynamic SQL (e.g., JDBC, ODBC)

l Embedded SQL

l SQL Injection

n Procedural Extensions of SQL

l Functions and Procedures

n External Functions/Procedures

l Written in programming language (e.g., C)

n Triggers

l Events (insert, …)

l Conditions (WHEN)

l per statement / per row

l Accessing old/new table/row versions

http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

http://www.db-book.com/
http://www.cs.iit.edu/~dbgroup/
http://www.cs.iit.edu/~dbgroup/

