# CS425 - Fall 2016 Boris Glavic Chapter 3: Formal Relational Query Languages 

Modified from:
Database System Concepts, $6^{\text {th }}$ Ed.
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

## Chapter 3: Formal Relational Query Languages

- Relational Algebra
- Tuple Relational Calculus
- Domain Relational Calculus



## Textbook: Chapter 6

## Relational Query Languages

- Procedural vs non-procedural (declarative)
- "Pure" languages:
- Relational algebra
- Tuple relational calculus
- Domain relational calculus
- Expressive power of a query language
- What queries can be expressed in this language?
- Relational algebra:
- Algebra of relations $->$ set of operators that take relations as input and produce relations as output
- -> composable: the output of evaluating an expression in relational algebra can be used as input to another relational algebra expression
- Now: First introduction to operators of the relational algebra


## Relational Algebra

- Procedural language
- Six basic operators
- select: $\sigma$
- project: $\Pi$
- union: $\cup$
- set difference: -
- Cartesian product: x
- rename: $\rho$
- The operators take one or two relations as inputs and produce a new relation as a result.
- composable


## Select Operation - Example

- Relation r

| $A$ | $B$ | $C$ | $D$ |
| :---: | :---: | :---: | :---: |
| $\alpha$ | $\alpha$ | 1 | 7 |
| $\alpha$ | $\beta$ | 5 | 7 |
| $\beta$ | $\beta$ | 12 | 3 |
| $\beta$ | $\beta$ | 23 | 10 |

- $\sigma_{A=B \wedge D>5}(r)$

| $A$ | $B$ | $C$ | $D$ |
| :--- | :--- | :--- | :--- |
| $\alpha$ | $\alpha$ | 1 | 7 |
| $\beta$ | $\beta$ | 23 | 10 |

## Select Operation

- Notation: $\sigma_{p}(r)$
- $p$ is called the selection predicate
- Defined as:

$$
\sigma_{p}(r)=\{t \mid t \in r \wedge p(t)\}
$$

Where $p$ is a formula in propositional calculus consisting of terms connected by : ^(and), $\vee($ or $), \neg($ not $)$
Each term is one of:
<attribute> op <attribute> or <constant>
where op is one of: $=, \neq,>, \geq .<. \leq$

- Example of selection:

$$
\sigma \text { dept_name="Physics"(instructor) }
$$

## Project Operation - Example

- Relation $r$ :

| $A$ | $B$ | $C$ |
| :--- | :--- | :--- |
| $\alpha$ | 10 | 1 |
| $\alpha$ | 20 | 1 |
| $\beta$ | 30 | 1 |
| $\beta$ | 40 | 2 |

$\square \prod_{\mathrm{A}, \mathrm{C}}(r)$

| $A$ | $C$ |
| :--- | :--- |
| $\alpha$ | 1 |
| $\alpha$ | 1 |
| $\beta$ | 1 |
| $\beta$ | 2 |$=$| $A$ | $C$ |
| :--- | :--- |
| $\alpha$ | 1 |
| $\beta$ | 1 |
| $\beta$ | 2 |

## Project Operation

- Notation:

$$
A_{1}, A_{2}, \ldots, A_{k}(r)
$$

where $A_{1}, A_{2}$ are attribute names and $r$ is a relation name.

- The result is defined as the relation of $k$ columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- Let $A$ be a subset of the attributes of relation $r$ then:

$$
\pi_{A}(r)=\{t . A \mid t \in r\}
$$

- Example: To eliminate the dept_name attribute of instructor

$$
\Pi_{I D, \text { name, salary }} \text { (instructor) }
$$



## Union Operation - Example

- Relations $r, s$ :

| $A$ | $B$ |
| :--- | :--- |
| $\alpha$ | 1 |
| $\alpha$ | 2 |
| $\beta$ | 1 |
| $r$ |  |


| $A$ | $B$ |
| :---: | :---: |
| $\alpha$ | 2 |
| $\beta$ | 3 |
| $s$ |  |

- $r \cup s:$

| $A$ | $B$ |
| :--- | :--- |
| $\alpha$ | 1 |
| $\alpha$ | 2 |
| $\beta$ | 1 |
| $\beta$ | 3 |

## Union Operation

- Notation: $r \cup s$
- Defined as:

$$
r \cup s=\{t \mid t \in r \vee t \in s\}
$$

- For $r \cup s$ to be valid.

1. $r, s$ must have the same arity (same number of attributes)
2. The attribute domains must be compatible (example: $2^{\text {nd }}$ column of $r$ deals with the same type of values as does the $2^{\text {nd }}$ column of $s$ )

- Example: to find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in both

$$
\begin{aligned}
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester="Fall"" } \wedge \text { year=2009 }}(\text { section })\right) \cup \\
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester="Spring" } \wedge \text { year=2010 }}(\text { section })\right)
\end{aligned}
$$

## Set difference of two relations

- Relations $r$, $s$ :

| $A$ | $B$ |
| :---: | :---: |
| $\alpha$ | 1 |
| $\alpha$ | 2 |
| $\beta$ | 1 |
|  |  |$\quad$| $A$ | $B$ |
| :---: | :---: |
| $\alpha$ | 2 |
| $\beta$ | 3 |

- $r-s$ :

| $A$ | $B$ |
| :--- | :--- |
| $\alpha$ | 1 |
| $\beta$ | 1 |

## Set Difference Operation

■ Notation $r-s$

- Defined as:

$$
r-s=\{t \mid t \in r \wedge t \notin s\}
$$

- Set differences must be taken between compatible relations.
- $r$ and $s$ must have the same arity
- attribute domains of $r$ and $s$ must be compatible
- Example: to find all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

$$
\begin{aligned}
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester="Fall" }} \wedge \text { year=2009 }(\text { section })\right)- \\
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester="Spring" }} \text { ) year=2010 }(\text { section })\right)
\end{aligned}
$$

## Cartesian-Product Operation - Example

- Relations $r$, $s$ :

| $A$ | $B$ |
| :---: | :---: |
| $\alpha$ | 1 |
| $\beta$ | 2 |
| $r$ |  |


| $C$ | $D$ | $E$ |
| :---: | :---: | :---: |
| $\alpha$ | 10 | a |
| $\beta$ | 10 | a |
| $\beta$ | 20 | b |
| $\gamma$ | 10 | b |

s
$\square \quad r \times s$ :

| $A$ | $B$ | $C$ | $D$ | $E$ |
| :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 1 | $\alpha$ | 10 | a |
| $\alpha$ | 1 | $\beta$ | 10 | a |
| $\alpha$ | 1 | $\beta$ | 20 | b |
| $\alpha$ | 1 | $\gamma$ | 10 | b |
| $\beta$ | 2 | $\alpha$ | 10 | a |
| $\beta$ | 2 | $\beta$ | 10 | a |
| $\beta$ | 2 | $\beta$ | 20 | b |
| $\beta$ | 2 | $\gamma$ | 10 | b |

## Cartesian-Product Operation

- Notation $r \times s$
- Defined as:

$$
r \times s=\left\{t, t^{\prime} \mid t \in r \wedge t^{\prime} \in s\right\}
$$

- Assume that attributes of $r(R)$ and $s(S)$ are disjoint. (That is, $R \cap S=\varnothing$ ).
- If attributes of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.


## Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{\mathrm{A}=\mathrm{C}}(r x s)$
- rXs

| $A$ | $B$ | $C$ | $D$ | $E$ |
| :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 1 | $\alpha$ | 10 | a |
| $\alpha$ | 1 | $\beta$ | 10 | a |
| $\alpha$ | 1 | $\beta$ | 20 | b |
| $\alpha$ | 1 | $\gamma$ | 10 | b |
| $\beta$ | 2 | $\alpha$ | 10 | a |
| $\beta$ | 2 | $\beta$ | 10 | a |
| $\beta$ | 2 | $\beta$ | 20 | b |
| $\beta$ | 2 | $\gamma$ | 10 | b |

- $\sigma_{A=C}(r x s)$

| $A$ | $B$ | $C$ | $D$ | $E$ |
| :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 1 | $\alpha$ | 10 | a |
| $\beta$ | 2 | $\beta$ | 10 | a |
| $\beta$ | 2 | $\beta$ | 20 | b |

## Rename Operation

- Allows us to name, and therefore to refer to, the results of relationalalgebra expressions.
■ Allows us to refer to a relation by more than one name.
- Example:

$$
\rho_{X}(r)
$$

returns the expression $E$ under the name $X$

- If a relational-algebra expression $E$ has arity $n$, then

$$
\rho_{x\left(A_{1}, A_{2}, \ldots, A_{n}\right)}(r)
$$

returns the result of expression $E$ under the name $X$, and with the attributes renamed to $A_{1}, A_{2}, \ldots, A_{n}$.

$$
\begin{aligned}
\rho_{X}(r) & =\{t(X) \mid t \in r\} \\
\rho_{X(A)}(r) & =\{t(X) \cdot A \mid t \in r\}
\end{aligned}
$$

## Example Query

- Find the largest salary in the university
- Step 1: find instructor salaries that are less than some other instructor salary (i.e. not maximum)
- using a copy of instructor under a new name $d$
$\pi_{\text {instructor.salary }}\left(\sigma_{\text {instructor.salary }}<\right.$ d.salary

$$
\left.\left(\text { instructor } \times \rho_{d}(\text { instructor })\right)\right)
$$

- Step 2: Find the largest salary

$$
\begin{aligned}
& \pi_{\text {salary }}(\text { instructor })- \\
& \pi_{\text {instructor.salary }}\left(\sigma_{\text {instructor.salary }<\text { d.salary }}\right. \\
& \left.\quad\left(\text { instructor } \times \rho_{d}(\text { instructor })\right)\right)
\end{aligned}
$$

## Example Queries

■ Find the names of all instructors in the Physics department, along with the course_id of all courses they have taught

- Query 1
$\pi_{\text {instructor.I }}$, course_id $\left(\sigma_{d e p t \_n a m e ~}=^{\prime}\right.$ Physics $^{\prime}($ $\sigma_{\text {instructor.I } D=\text { teaches.ID }}($ instructor $\times$ teaches $\left.\left.)\right)\right)$
- Query 2
$\pi_{\text {instructor. } I D, \text { course_id }}\left(\sigma_{\text {instructor.I }} D=\right.$ teaches.I $D($

$$
\left.\left.\sigma_{d e p t \_n a m e={ }^{\prime} P h y s i c s^{\prime}}(\text { instructor } \times \text { teaches })\right)\right)
$$

## Formal Definition (Syntax)

- A basic expression in the relational algebra consists of either one of the following:
- A relation in the database
- A constant relation: e.g., \{(1),(2)\}
- Let $E_{1}$ and $E_{2}$ be relational-algebra expressions; the following are all relational-algebra expressions:
- $E_{1} \cup E_{2}$
- $E_{1}-E_{2}$
- $E_{1} \times E_{2}$
- $\sigma_{p}\left(E_{1}\right), P$ is a predicate on attributes in $E_{1}$
- $\Pi_{s}\left(E_{1}\right), S$ is a list consisting of some of the attributes in $E_{1}$
- $\rho_{x}\left(E_{1}\right), \mathrm{x}$ is the new name for the result of $E_{1}$


## Formal Definition (Semantics)

- Let E be an relational algebra expression. We use $[\mathrm{E}](\mathrm{I})$ to denote the evaluation of $E$ over a database instance I
- For simplicity we will often drop I and []

■ The result of evaluating a simple relational algebra expression E over a database is defined as

- Simple relation: $[R](I)=R(I)$
- Constant relation: $[\mathrm{C}](\mathrm{I})=\mathrm{C}$


## Formal Definition (Semantics)

■ Let $E_{1}$ and $E_{2}$ be relational-algebra expressions.

$$
\begin{aligned}
{\left[E_{1} \cup E_{2}\right] } & =\left\{t \mid t \in\left[E_{1}\right] \vee t \in\left[E_{2}\right]\right\} \\
{\left[E_{1}-E_{2}\right] } & =\left\{t \mid t \in\left[E_{1}\right] \wedge t \notin\left[E_{2}\right]\right\} \\
{\left[E_{1} \times E_{2}\right] } & =\left\{t, t^{\prime} \mid t \in\left[E_{1}\right] \wedge t^{\prime} \in\left[E_{2}\right]\right\} \\
{\left[\sigma_{p}\left(E_{1}\right)\right] } & =\left\{t \mid t \in\left[E_{1}\right] \wedge p(t)\right\} \\
{\left[\pi_{A}\left(E_{1}\right)\right] } & =\left\{t \cdot A \mid t \in\left[E_{1}\right]\right\} \\
{\left[\rho_{X}\left(E_{1}\right)\right] } & =\left\{t(X) \mid t \in\left[E_{1}\right]\right\}
\end{aligned}
$$

## Null Values

- It is possible for tuples to have a null value, denoted by null, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving null is null.
- Aggregate functions simply ignore null values (as in SQL)
- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same (as in SQL)
- For logical expressions
- True AND null = null, False AND null = False
- True OR null = True, False OR null = null
- Not (null) $=$ null


## Null Values

- Comparisons with null values return the special truth value: unknown
- If false was used instead of unknown, then $\operatorname{not}(A<5)$ would not be equivalent to $\quad A>=5$
- Three-valued logic using the truth value unknown:
- OR: (unknown or true) = true, (unknown or false) = unknown
(unknown or unknown) = unknown
- AND: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) = unknown
- NOT: (not unknown) = unknown
- In SQL " $P$ is unknown" evaluates to true if predicate $P$ evaluates to unknown
- Result of select predicate is treated as false if it evaluates to unknown


## Additional Operations

We define additional operations that do not add any expressive power to the relational algebra, but that simplify common queries.

■ Set intersection

- Natural join
- Assignment
- Outer join


## Set-Intersection Operation

- Notation: $r \cap s$
- Defined as:

$$
r \cap s=\{t \mid t \in r \wedge t \in s\}
$$

- Assume:
- $r, s$ have the same arity
- attributes of $r$ and $s$ are compatible
- Note: $r \cap s=r-(r-s)$
- That is adding intersection to the language does not make it more expressive


## Set-Intersection Operation - Example

- Relation $r$, $s$ :

| A | $B$ | A | $B$ |
| :---: | :---: | :---: | :---: |
| $\alpha$ | 1 | $\alpha$ | 2 |
| $\alpha$ | 2 | $\beta$ | 3 |
| $\beta$ | 1 |  | $s$ |

$\square r \cap s$

| $A$ | $B$ |
| :--- | :--- |
| $\alpha$ | 2 |

## Natural-Join Operation

- Notation: $\mathrm{r} \bowtie s$
- Let $r$ and $s$ be relations on schemas $R$ and $S$ respectively. Then, $\mathrm{r} \bowtie \mathrm{s}$ is a relation on schema $R \cup S$ obtained as follows:
- Consider each pair of tuples $t_{r}$ from $r$ and $t_{S}$ from $s$.
- If $t_{r}$ and $t_{S}$ have the same value on each of the attributes in $R \cap S$, add a tuple $t$ to the result, where
- $t$ has the same value as $t_{r}$ on $r$
- $t$ has the same value as $t_{s}$ on $s$
- Example:

$$
\begin{aligned}
& R=(A, B, C, D) \\
& S=(E, B, D)
\end{aligned}
$$

- Result schema $=(A, B, C, D, E)$
- $r \bowtie s$ is defined as:

$$
\prod_{r . A, r . B, r . C, r . D, s . E}\left(\sigma_{r . B=s . B \wedge r . D=s . D}(r \times s)\right)
$$

## Natural-Join Operation (cont.)

- Let $r$ and $s$ be relations on schemas $R$ and $S$ respectively. Then, $r \bowtie s$ is defined as:

$$
\begin{aligned}
X & =R \cap S \\
S^{\prime} & =S-R \\
r \bowtie s & =\pi_{R, S^{\prime}}\left(\sigma_{r . X=s . X}(r \times s)\right)
\end{aligned}
$$

## Natural Join Example

- Relations r, s:

| $A$ | $B$ | $C$ | $D$ |
| :---: | :---: | :---: | :---: |
| $\alpha$ | 1 | $\alpha$ | a |
| $\beta$ | 2 | $\gamma$ | a |
| $\gamma$ | 4 | $\beta$ | b |
| $\alpha$ | 1 | $\gamma$ | a |
| $\delta$ | 2 | $\beta$ | b |
| $\gamma$ |  |  |  |


| $B$ | $D$ | $E$ |
| :---: | :---: | :---: |
| 1 | a | $\alpha$ |
| 3 | a | $\beta$ |
| 1 | a | $\gamma$ |
| 2 | b | $\delta$ |
| 3 | b | $\varepsilon$ |
| s |  |  |

■ r $\mathrm{n}_{\mathrm{s}}$

| $A$ | $B$ | $C$ | $D$ | $E$ |
| :--- | :--- | :--- | :--- | :--- |
| $\alpha$ | 1 | $\alpha$ | a | $\alpha$ |
| $\alpha$ | 1 | $\alpha$ | a | $\gamma$ |
| $\alpha$ | 1 | $\gamma$ | a | $\alpha$ |
| $\alpha$ | 1 | $\gamma$ | a | $\gamma$ |
| $\delta$ | 2 | $\beta$ | b | $\delta$ |

## Natural Join and Theta Join

- Find the names of all instructors in the Comp. Sci. department together with the course titles of all the courses that the instructors teach
- ${ }_{\text {name, title }}$ ( $\sigma$ dept_name="Comp. Sci." (instructor內 teaches $\bowtie$ course))
- Natural join is associative
- (instructor $\bowtie$ teaches) $\bowtie$ course is equivalent to instructor $\bowtie$ (teaches $\bowtie$ course)
- Natural join is commutative (we ignore attribute order)
- instruct $\bowtie$ teaches is equivalent to teaches $\bowtie$ instructor
- The theta join operation $r \bowtie_{\theta} s$ is defined as

$$
r \bowtie_{\theta} s=\sigma_{\theta}(r \times s)
$$

## Assignment Operation

- The assignment operation $(\leftarrow)$ provides a convenient way to express complex queries.
- Write query as a sequential program consisting of
- a series of assignments
- followed by an expression whose value is displayed as a result of the query.
- Assignment must always be made to a temporary relation variable.

$$
\begin{aligned}
& E_{1} \leftarrow \sigma_{\text {salar } \gg 40000}(\text { instructor }) \\
& E_{2} \leftarrow \sigma_{\text {salary<10000 }}(\text { instructor }) \\
& E_{3} \leftarrow E_{1} \cup E_{2}
\end{aligned}
$$

## Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.

■ Uses null values:

- null signifies that the value is unknown or does not exist
- All comparisons involving null are (roughly speaking) false by definition.
- We shall study precise meaning of comparisons with nulls later


## Outer Join - Example

- Relation instructor1

| ID | name | dept_name |
| :--- | :--- | :---: |
| 10101 | Srinivasan | Comp. Sci. |
| 12121 | Wu | Finance |
| 15151 | Mozart | Music |

- Relation teaches1

| ID | course_id |
| :--- | :--- |
| 10101 | CS-101 |
| 12121 | FIN-201 |
| 76766 | BIO-101 |

## Outer Join - Example

- Join
instructor $\bowtie$ teaches

| $I D$ | name | dept_name | course_id |
| ---: | :--- | :---: | :--- |
| 10101 | Srinivasan | Comp. Sci. | CS-101 |
| 12121 | Wu | Finance | FIN-201 |

■ Left Outer Join instructor $\triangle$ teaches

| $I D$ | name | dept_name | course_id |
| ---: | :--- | :---: | :--- |
| 10101 | Srinivasan | Comp. Sci. | CS-101 |
| 12121 | Wu | Finance | FIN-201 |
| 15151 | Mozart | Music | null |

## Outer Join - Example

■ Right Outer Join
instructor $\bowtie_{-}^{-}$teaches

| ID | name | dept_name | course_id |
| ---: | :--- | :---: | :---: |
| 10101 | Srinivasan | Comp. Sci. | CS-101 |
| 12121 | Wu | Finance | FIN-201 |
| 76766 | null | null | BIO-101 |

■ Full Outer Join
instructor $\_\bowtie \_$teaches

| $I D$ | name | dept_name | course_id |
| ---: | :--- | :---: | :--- |
| 10101 | Srinivasan | Comp. Sci. | CS-101 |
| 12121 | Wu | Finance | FIN-201 |
| 15151 | Mozart | Music | null |
| 76766 | null | null | BIO-101 |

## Outer Join using Joins

■ Outer join can be expressed using basic operations

$$
\begin{aligned}
r \bowtie \bowtie s & =(r \bowtie s) \cup\left(\left(r-\Pi_{R}(r \bowtie s)\right) \times\{(n u l l, \ldots, n u l l)\}\right) \\
r \bowtie \_s & =(r \bowtie s) \cup\left(\{(n u l l, \ldots, n u l l)\} \times\left(s-\Pi_{S}(r \bowtie s)\right)\right) \\
r \unrhd^{-} s & =(r \bowtie s) \cup\left(\left(r-\Pi_{R}(r \bowtie s)\right) \times\{(n u l l, \ldots, n u l l)\}\right) \\
& \cup\left(\{(n u l l, \ldots, n u l l)\} \times\left(s-\Pi_{S}(r \bowtie s)\right)\right)
\end{aligned}
$$

## Division Operator

- Given relations $r(R)$ and $s(S)$, such that $S \subset R, r \div s$ is the largest relation $t(R-S)$ such that

$$
t \times s \subseteq r
$$

- Alternatively, all tuples from r.(R-S) such that all their extensions on $R \cap S$ with tuples from s exist in $R$
- E.g. let $r(I D$, course_id $)=\prod_{I D, ~ c o u r s e \_i d ~}($ takes $)$ and $\mathrm{s}($ course_id $)=\prod_{\text {course_id }}\left(\sigma_{\text {dept_name="Biology" }}\right.$ (course $)$ then $r \div s$ gives us students who have taken all courses in the Biology department
- Can write $r \div s$ as

$$
\left.\begin{array}{rl}
E_{1} & \leftarrow \Pi_{R-S}(r) \\
E_{2} & \leftarrow \Pi_{R-S}\left(\left(E_{1} \times s\right)-\Pi_{R-S, S}(r \bowtie s)\right) \\
r & \div s
\end{array}\right)=E_{1}-E_{2}
$$

## Division Operator Example

- Return the name of all persons that read all newspapers

| reads | newspaper |  |  |
| :--- | :--- | :--- | :---: |
| name | newspaper | newspaper |  |
| Peter | Times |  |  |
| Bob | Wall Street |  |  |
| Alice | Times |  |  |
| Till Street |  |  |  |
| Alice | Wall Street |  |  |

$$
\begin{aligned}
E_{1} & \leftarrow \Pi_{\text {name }}(\text { reads }) \\
E_{2} & \leftarrow\left(\left(E_{1} \times \text { newspaper }\right)-\Pi_{\text {name }, \text { newspaper }}(\text { reads } \bowtie \text { newspaper })\right) \\
\text { reads } \div \text { newspaper } & =E_{1}-E_{2} \\
{[\text { reads } \div \text { newspaper }] } & =\{(\text { Alice })\}
\end{aligned}
$$

## Extended Relational-Algebra-Operations

\author{

- Generalized Projection <br> - Aggregate Functions
}


## Generalized Projection

- Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$
\pi_{F_{1}, \ldots, F_{n}}(E)
$$

- $E$ is any relational-algebra expression

■ Each of $F_{1}, F_{2}, \ldots, F_{n}$ are arithmetic expressions and function calls involving constants and attributes in the schema of $E$.
■ Given relation instructor(ID, name, dept_name, salary) where salary is annual salary, get the same information but with monthly salary

$$
\Pi_{I D, \text { name, dept_name, salary/12 (instructor) }}
$$

- Adding functions increases expressive power!
- In standard relational algebra there is no way to change attribute values


## Aggregate Functions and Operations

- Aggregation function takes a set of values and returns a single value as a result.

avg: average value<br>min: minimum value<br>max: maximum value<br>sum: sum of values<br>count: number of values

- Aggregate operation in relational algebra

$$
G_{1}, G_{2}, \ldots, G_{n} \mathcal{G}_{F_{1}\left(A_{1}\right), F_{2}\left(A_{2}\right), \ldots, F_{n}\left(A_{n}\right)}(E)
$$

$E$ is any relational-algebra expression

- $G_{1}, G_{2} \ldots, G_{n}$ is a list of attributes on which to group (can be empty)
- Each $F_{i}$ is an aggregate function
- Each $A_{i}$ is an attribute name
- Note: Some books/articles use $\gamma$ instead of $\mathcal{G}$ (Calligraphic G)


## Aggregate Operation - Example

- Relation $r$ :

| $A$ | $B$ | $C$ |
| :---: | :---: | :---: |
| $\alpha$ | $\alpha$ | 7 |
| $\alpha$ | $\beta$ | 7 |
| $\beta$ | $\beta$ | 3 |
| $\beta$ | $\beta$ | 10 |

$\square \mathcal{G}_{\operatorname{sum}(c)}(\mathrm{r})$
sum $(c)$

## Aggregate Operation - Example

- Find the average salary in each department
dept_name $\mathcal{G}$ avg(salary) (instructor)

| ID | name | dept_name | salary |
| :---: | :--- | :--- | :--- |
| 76766 | Crick | Biology | 72000 |
| 45565 | Katz | Comp. Sci. | 75000 |
| 10101 | Srinivasan | Comp. Sci. | 65000 |
| 83821 | Brandt | Comp. Sci. | 92000 |
| 98345 | Kim | Elec. Eng. | 80000 |
| 12121 | Wu | Finance | 90000 |
| 76543 | Singh | Finance | 80000 |
| 32343 | El Said | History | 60000 |
| 58583 | Califieri | History | 62000 |
| 15151 | Mozart | Music | 40000 |
| 33456 | Gold | Physics | 87000 |
| 22222 | Einstein | Physics | 95000 |


| dept_name | avg_salary |
| :--- | :--- |
| Biology | 72000 |
| Comp. Sci. | 77333 |
| Elec. Eng. | 80000 |
| Finance | 85000 |
| History | 61000 |
| Music | 40000 |
| Physics | 91000 |

## Aggregate Functions (Cont.)

- What are the names for attributes in aggregation results?
- Need some convention!
, E.g., use the expression as a name avg(salary)
- For convenience, we permit renaming as part of aggregate operation
dept_name Gavg(salary) as avg_sal (instructor)


## Modification of the Database

- The content of the database may be modified using the following operations:
- Deletion
- Insertion
- Updating
- All these operations can be expressed using the assignment operator
- Example: Delete instructors with salary over \$1,000,000

$$
R \leftarrow R-\left(\sigma_{\text {salary }>1000000}(R)\right)
$$

## Restrictions for Modification

- Consider a modification where $\mathrm{R}=(\mathrm{A}, \mathrm{B})$ and $\mathrm{S}=(\mathrm{C})$

$$
R \leftarrow \sigma_{C>5}(S)
$$

■ This would change the schema of R!

- Should not be allowed
- Requirements for modifications
- The name $\mathbf{R}$ on the left-hand side of the assignment operator refers to an existing relation in the database schema
- The expression on the right-hand side of the assignment operator should be union-compatible with $\mathbf{R}$


## Tuple Relational Calculus

## Tuple Relational Calculus

- A nonprocedural query language, where each query is of the form $\{t \mid P(t)\}$
- It is the set of all tuples $t$ such that predicate $P$ is true for $t$
- $t$ is a tuple variable, $t[A$ ] denotes the value of tuple $t$ on attribute $A$
- $t \in r$ denotes that tuple $t$ is in relation $r$
- $P$ is a formula similar to that of the predicate calculus


## Predicate Calculus Formula

1. Set of attributes and constants
2. Set of comparison operators: (e.g., $<, \leq,=, \neq,>, \geq$ )
3. Set of logical connectives: and ( $\wedge$ ), or (v), not ( $\neg$ )
4. Implication $(\Rightarrow): \mathrm{x} \Rightarrow \mathrm{y}$, if x if true, then y is true

$$
x \Rightarrow y \equiv \neg x \vee y
$$

5. Set of quantifiers:

- $\exists t \in r(Q(t)) \equiv$ "there exists" a tuple in $t$ in relation $r$ such that predicate $Q(t)$ is true
- $\forall t \in r(Q(t)) \equiv Q$ is true "for all" tuples $t$ in relation $r$


## Example Queries

- Find the ID, name, dept_name, salary for instructors whose salary is greater than $\$ 80,000$

$$
\{t \mid t \in \text { instructor } \wedge t[\text { salary }]>80000\}
$$

■ As in the previous query, but output only the ID attribute value

$$
\{t \mid \exists s \in \text { instructor }(t[I D]=s[I D] \wedge s[\text { salary }]>80000)\}
$$

Notice that a relation on schema (ID) is implicitly defined by the query, because

1) $t$ is not bound to any relation by the predicate
2) we implicitly state that $t$ has an ID attribute ( $t[I D]=s[I D])$

## Example Queries

- Find the names of all instructors whose department is in the Watson building

$$
\begin{gathered}
\{t \mid \exists s \in \text { instructor }(t[\text { name }]=s[\text { name }] \\
\wedge \exists u \in \text { department }(u[\text { dept_name }]=s[\text { dept_name }] \\
\wedge u[\text { building }]=\text { "Watson" }))\}
\end{gathered}
$$

■ Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

$$
\begin{gathered}
\{t \mid \exists s \in \operatorname{section}(t[\text { course_id }]=s[\text { course_id }] \wedge \\
s[\text { semester }]=\text { "Fall" } \wedge s[\text { year }]=2009) \\
v \exists u \in \operatorname{section}(t \text { [course_id }]=u[\text { course_id }] \wedge \\
u[\text { semester }]=" S p r i n g " \wedge u[\text { year }]=2010)\}
\end{gathered}
$$

## Example Queries

■ Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

$$
\begin{gathered}
\{t \mid \exists s \in \operatorname{section}(t[\text { course_id }]=s[\text { course_id }] \wedge \\
s[\text { semester }]=" \text { Fall" } \wedge s[\text { year }]=2009) \\
\wedge \exists u \in \operatorname{section}(t[\text { course_id }]=u[\text { course_id }] \wedge \\
u[\text { semester }]=" \text { Spring" } \wedge u[\text { year }]=2010)\}
\end{gathered}
$$

■ Find the set of all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

$$
\begin{gathered}
\{t \mid \exists s \in \text { section }(t \text { [course_id }]=s[\text { course_id }] \wedge \\
s[\text { semester }]=\text { "Fall" } \wedge s[\text { year }]=2009) \\
\wedge \neg \exists u \in \text { section }(t \text { [course_id }]=u[\text { course_id }] \wedge \\
u[\text { semester }]=" \text { Spring" } \wedge u[\text { year }]=2010)\}
\end{gathered}
$$

## Safety of Expressions

- It is possible to write tuple calculus expressions that generate infinite relations.
- For example, $\{\mathrm{tI} \neg t \in r\}$ results in an infinite relation if the domain of any attribute of relation $r$ is infinite
■ To guard against the problem, we restrict the set of allowable expressions to safe expressions.
- An expression $\{t \mid P(t)\}$ in the tuple relational calculus is safe if every component of $t$ appears in one of the relations, tuples, or constants that appear in $P$
- NOTE: this is more than just a syntax condition.
- E.g. $\{t \mid t[A]=5 \vee$ true $\}$ is not safe --- it defines an infinite set with attribute values that do not appear in any relation or tuples or constants in $P$.


## Universal Quantification

■ Find all students who have taken all courses offered in the Biology department

$$
\begin{aligned}
& \{t \mid \exists r \in \text { student }(t[I D]=r[I D]) \wedge \\
& (\forall u \in \text { course }(u[\text { dept_name }]=\text { "Biology" } \Rightarrow \\
& \exists s \in \text { takes }(t[I D]=s[I D] \wedge \\
& s[\text { course_id }]=u[\text { course_id }]))\}
\end{aligned}
$$

- Note that without the existential quantification on student, the above query would be unsafe if the Biology department has not offered any courses.


## Domain Relational Calculus

## Domain Relational Calculus

- A nonprocedural query language equivalent in power to the tuple relational calculus
- Each query is an expression of the form:

$$
\left.\left\{<x_{1}, x_{2}, \ldots, x_{n}\right\rangle \mid P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

- $x_{1}, x_{2}, \ldots, x_{n}$ represent domain variables
- Variables that range of attribute values
- Prepresents a formula similar to that of the predicate calculus
- Tuples can be formed using $<>$
- E.g., <'Einstein','Physics'>


## Example Queries

■ Find the ID, name, dept_name, salary for instructors whose salary is greater than \$80,000

- $\{<i, n, d, s>1<i, n, d, s>\in$ instructor $\wedge s>80000\}$

■ As in the previous query, but output only the ID attribute value

- $\{<i>\mid<i, n, d, s>\in$ instructor $\wedge s>80000\}$
- Find the names of all instructors whose department is in the Watson building

$$
\begin{aligned}
& \{<n>1 \quad \exists i, d, s(<i, n, d, s>\in \text { instructor } \\
& \quad \wedge \exists \mathrm{b}, \mathrm{a}(<d, b, a>\in \text { department } \wedge b=\text { "Watson") })\}
\end{aligned}
$$

## Example Queries

Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

$$
\begin{gathered}
\{<c>\mid \exists a, s, y, b, r, t(<c, a, s, y, b, t>\in \text { section } \wedge \\
s=" F a l l " \wedge y=2009) \\
\vee \exists a, s, y, b, r, t(<c, a, s, y, b, t>\in \text { section }] \wedge \\
s=" \text { Spring" } \wedge y=2010)\}
\end{gathered}
$$

This case can also be written as $\{<c>\mid \exists a, s, y, b, r, t(<c, a, s, y, b, t>\in \operatorname{section} \wedge$

$$
((s=\text { "Fall" } \wedge y=2009) \vee(s=" \text { Spring" } \wedge y=2010))\}
$$

$\square$ Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

$$
\begin{gathered}
\{<c>\mid \exists a, s, y, b, r, t(<c, a, s, y, b, t>\in \text { section } \wedge \\
s=" F a l l " \wedge y=2009) \\
\wedge \exists a, s, y, b, r, t(<c, a, s, y, b, t>\in \text { section }] \wedge \\
s=" \text { Spring" } \wedge y=2010)\}
\end{gathered}
$$

## Safety of Expressions

The expression:

$$
\left\{<x_{1}, x_{2}, \ldots, x_{n}>\mid P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from dom ( $P$ ) (that is, the values appear either as constants in $P$ or in a tuple of a relation mentioned in $P$ ).
2. For every "there exists" subformula of the form $\exists x\left(P_{1}(x)\right)$, the subformula is true if and only if there is a value of $x$ in $\operatorname{dom}\left(P_{1}\right)$ such that $P_{1}(x)$ is true.
3. For every "for all" subformula of the form $\forall_{\mathrm{x}}\left(P_{1}(x)\right)$, the subformula is true if and only if $P_{1}(x)$ is true for all values $x$ from $\operatorname{dom}\left(P_{1}\right)$.

## Universal Quantification

- Find all students who have taken all courses offered in the Biology department
- $\{<i>\mid \exists n, d, t c(<i, n, d, t c>\in s t u d e n t \wedge$

$$
\begin{array}{r}
(\forall c i, t i, d n, c r(<c i, t i, d n, c r>\in \text { course } \wedge d n=" B i o l o g y " \\
\Rightarrow \exists s i, s e, y, g(<i, c i, s i, s e, y, g>\in \text { takes }))\}
\end{array}
$$

- Note that without the existential quantification on student, the above query would be unsafe if the Biology department has not offered any courses.
* Above query fixes bug in page 246, last query


## Relationship between Relational Algebra and Tuple (Domain) Calculus

■ Codd's theorem

- Relational algebra and tuple calculus are equivalent in terms of expressiveness
- That means that every query expressible in relational algebra can also be expressed in tuple calculus and vice versa
- Since domain calculus is as expressive as tuple calculus the same holds for the domain calculus
- Note: Here relational algebra refers to the standard version (no aggregation and projection with functions)


## End of Chapter 3

## Modified from:

Database System Concepts, $6^{\text {th }}$ Ed.
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

## Recap

- Query language
- Declarative
- Retrieve, combine, and analyze data from a database instance
- Relational algebra
- Standard relational algebra:
- Selection, projection, renaming, cross product, union, set difference
- Null values
- Semantic sugar operators:
- Intersection, joins, division,
- Extensions:
- Aggregation, extended projection
- Tuple Calculus
- safety
- Domain Calculus


## Outline

- Introduction
- Relational Data Model
- Formal Relational Languages (relational algebra)
- SQL - Introduction
- Database Design
- Transaction Processing, Recovery, and Concurrency Control
- Storage and File Structures
- Indexing and Hashing
- Query Processing and Optimization


## Figure 6.01

| $I D$ | name | dept_name | salary |
| :---: | :--- | :--- | :---: |
| 10101 | Srinivasan | Comp. Sci. | 65000 |
| 12121 | Wu | Finance | 90000 |
| 15151 | Mozart | Music | 40000 |
| 22222 | Einstein | Physics | 95000 |
| 32343 | El Said | History | 60000 |
| 33456 | Gold | Physics | 87000 |
| 45565 | Katz | Comp. Sci. | 75000 |
| 58583 | Califieri | History | 62000 |
| 76543 | Singh | Finance | 80000 |
| 76766 | Crick | Biology | 72000 |
| 83821 | Brandt | Comp. Sci. | 92000 |
| 98345 | Kim | Elec. Eng. | 80000 |

## Figure 6.02

| $I D$ | name | dept_name | salary |
| :---: | :--- | :--- | :---: |
| 22222 | Einstein | Physics | 95000 |
| 33456 | Gold | Physics | 87000 |

## Figure 6.03

| $I D$ | name | salary |
| :---: | :--- | :---: |
| 10101 | Srinivasan | 65000 |
| 12121 | Wu | 90000 |
| 15151 | Mozart | 40000 |
| 22222 | Einstein | 95000 |
| 32343 | El Said | 60000 |
| 33456 | Gold | 87000 |
| 45565 | Katz | 75000 |
| 58583 | Califieri | 62000 |
| 76543 | Singh | 80000 |
| 76766 | Crick | 72000 |
| 83821 | Brandt | 92000 |
| 98345 | Kim | 80000 |

## Figure 6.04

| course_id | sec_id | semester | year | building | room_number | time_slot_id |
| :--- | :---: | :--- | :--- | :--- | :---: | :---: |
| BIO-101 | 1 | Summer | 2009 | Painter | 514 | B |
| BIO-301 | 1 | Summer | 2010 | Painter | 514 | A |
| CS-101 | 1 | Fall | 2009 | Packard | 101 | H |
| CS-101 | 1 | Spring | 2010 | Packard | 101 | F |
| CS-190 | 1 | Spring | 2009 | Taylor | 3128 | E |
| CS-190 | 2 | Spring | 2009 | Taylor | 3128 | A |
| CS-315 | 1 | Spring | 2010 | Watson | 120 | D |
| CS-319 | 1 | Spring | 2010 | Watson | 100 | B |
| CS-319 | 2 | Spring | 2010 | Taylor | 3128 | C |
| CS-347 | 1 | Fall | 2009 | Taylor | 3128 | A |
| EE-181 | 1 | Spring | 2009 | Taylor | 3128 | C |
| FIN-201 | 1 | Spring | 2010 | Packard | 101 | B |
| HIS-351 | 1 | Spring | 2010 | Painter | 514 | C |
| MU-199 | 1 | Spring | 2010 | Packard | 101 | D |
| PHY-101 | 1 | Fall | 2009 | Watson | 100 | A |

## Figure 6.05

| course_id |
| :--- |
| CS-101 |
| CS-315 |
| CS-319 |
| CS-347 |
| FIN-201 |
| HIS-351 |
| MU-199 |
| PHY-101 |

## Figure 6.06

| course_id |
| :--- |
| CS-347 |
| PHY-101 |

## Figure 6.07

| ID | course_id | sec_id | semester | year |
| :---: | :--- | :---: | :--- | :--- |
| 10101 | CS-101 | 1 | Fall | 2009 |
| 10101 | CS-315 | 1 | Spring | 2010 |
| 10101 | CS-347 | 1 | Fall | 2009 |
| 12121 | FIN-201 | 1 | Spring | 2010 |
| 15151 | MU-199 | 1 | Spring | 2010 |
| 22222 | PHY-101 | 1 | Fall | 2009 |
| 32343 | HIS-351 | 1 | Spring | 2010 |
| 45565 | CS-101 | 1 | Spring | 2010 |
| 45565 | CS-319 | 1 | Spring | 2010 |
| 76766 | BIO-101 | 1 | Summer | 2009 |
| 76766 | BIO-301 | 1 | Summer | 2010 |
| 83821 | CS-190 | 1 | Spring | 2009 |
| 83821 | CS-190 | 2 | Spring | 2009 |
| 83821 | CS-319 | 2 | Spring | 2010 |
| 98345 | EE-181 | 1 | Spring | 2009 |

## Figure 6.08

| Inst.ID | name | dept_name | salary | teaches.ID | course_id | sec_id | semester | year |
| :---: | :--- | :--- | :---: | :---: | :--- | :--- | :--- | :---: |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-101 | 1 | Fall | 2009 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-315 | 1 | Spring | 2010 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-347 | 1 | Fall | 2009 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 12121 | FIN-201 | 1 | Spring | 2010 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 15151 | MU-199 | 1 | Spring | 2010 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 22222 | PHY-101 | 1 | Fall | 2009 |
| $\ldots$ |
| $\ldots$ |
| 12121 | Wu | Finance | 90000 | 10101 | CS-101 | 1 | Fall | 2009 |
| 12121 | Wu | Finance | 90000 | 10101 | CS-315 | 1 | Spring | 2010 |
| 12121 | Wu | Pinance | 90000 | 10101 | CS-347 | 1 | Fall | 2009 |
| 12121 | Wu | Pinance | 90000 | 12121 | FIN-201 | 1 | Spring | 2010 |
| 12121 | Wu | Finance | 90000 | 15151 | MU-199 | 1 | Spring | 2010 |
| 12121 | Wu | Pinance | 90000 | 22222 | PHY-101 | 1 | Fall | 2009 |
| $\ldots$ |
| $\ldots$ |
| 15151 | Mozart | $\ldots$ | Music | 40000 | 10101 | CS-101 | 1 | Fall |
| 15151 | Mozart | Music | 40000 | 10101 | CS-315 | 1 | Spring | 2009 |
| 15151 | Mozart | Music | 40000 | 10101 | CS-347 | 1 | Fall | 2009 |
| 15151 | Mozart | Music | 40000 | 12121 | FIN-201 | 1 | Spring | 2010 |
| 15151 | Mozart | Music | 40000 | 15151 | MU-199 | 1 | Spring | 2010 |
| 15151 | Mozart | Music | 40000 | 22222 | PHY-101 | 1 | Fall | 2009 |
| $\ldots$ |
| $\ldots$ |
| 22222 | Einstein | Physics | 95000 | 10101 | CS-101 | 1 | Fall | 2009 |
| 22222 | Einstein | Physics | 95000 | 10101 | CS-315 | 1 | Spring | 2010 |
| 22222 | Einstein | Physics | 95000 | 10101 | CS-347 | 1 | Fall | 2009 |
| 22222 | Einstein | Physics | 95000 | 12121 | FIN-201 | 1 | Spring | 2010 |
| 22222 | Einstein | Physics | 95000 | 15151 | MU-199 | 1 | Spring | 2010 |
| 22222 | Einstein | Physics | 95000 | 22222 | PHY-101 | 1 | Fall | 2009 |
| $\ldots$ |
| $\ldots$ |

## Figure 6.09

| inst.ID | name | dept_name | salary | teaches.ID | course_id | sec_id | semester | year |
| :---: | :--- | :--- | :---: | :---: | :--- | :--- | :--- | :---: |
| 22222 | Einstein | Physics | 95000 | 10101 | CS-437 | 1 | Fall | 2009 |
| 22222 | Einstein | Physics | 95000 | 10101 | CS-315 | 1 | Spring | 2010 |
| 22222 | Einstein | Physics | 95000 | 12121 | FIN-201 | 1 | Spring | 2010 |
| 22222 | Einstein | Physics | 95000 | 15151 | MU-199 | 1 | Spring | 2010 |
| 22222 | Einstein | Physics | 95000 | 22222 | PHY-101 | 1 | Fall | 2009 |
| 22222 | Einstein | Physics | 95000 | 32343 | HIS-351 | 1 | Spring | 2010 |
| $\ldots$ |
| $\ldots$ |
| 33456 | Gold | Physics | 87000 | 10101 | CS-437 | 1 | Fall | 2009 |
| 33456 | Gold | Physics | 87000 | 10101 | CS-315 | 1 | Spring | 2010 |
| 33456 | Gold | Physics | 87000 | 12121 | FIN-201 | 1 | Spring | 2010 |
| 33456 | Gold | Physics | 87000 | 15151 | MU-199 | 1 | Spring | 2010 |
| 33456 | Gold | Physics | 87000 | 22222 | PHY-101 | 1 | Fall | 2009 |
| 33456 | Gold | Physics | 87000 | 32343 | HIS-351 | 1 | Spring | 2010 |
| $\ldots$ |
| $\ldots$ |

## Figure 6.10

| name | course_id |
| :--- | :--- |
| Einstein | PHY-101 |

## Figure 6.11

| salary |
| :---: |
| 65000 |
| 90000 |
| 40000 |
| 60000 |
| 87000 |
| 75000 |
| 62000 |
| 72000 |
| 80000 |
| 92000 |

## Figure 6.12

| salary |
| :---: |
| 95000 |

## Figure 6.13

| course_id |
| :--- |
| CS-101 |

## Figure 6.14

| ID | name | dept_name | salary | course_id | sec_id | semester | year |
| :---: | :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| 10101 | Srinivasan | Comp. Sci. | 65000 | CS-101 | 1 | Fall | 2009 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | CS-315 | 1 | Spring | 2010 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | CS-347 | 1 | Fall | 2009 |
| 12121 | Wu | Finance | 90000 | FIN-201 | 1 | Spring | 2010 |
| 15151 | Mozart | Music | 40000 | MU-199 | 1 | Spring | 2010 |
| 22222 | Einstein | Physics | 95000 | PHY-101 | 1 | Fall | 2009 |
| 32343 | El Said | History | 60000 | HIS-351 | 1 | Spring | 2010 |
| 45565 | Katz | Comp. Sci. | 75000 | CS-101 | 1 | Spring | 2010 |
| 45565 | Katz | Comp. Sci. | 75000 | CS-319 | 1 | Spring | 2010 |
| 76766 | Crick | Biology | 72000 | BIO-101 | 1 | Summer | 2009 |
| 76766 | Crick | Biology | 72000 | BIO-301 | 1 | Summer | 2010 |
| 83821 | Brandt | Comp. Sci. | 92000 | CS-190 | 1 | Spring | 2009 |
| 83821 | Brandt | Comp. Sci. | 92000 | CS-190 | 2 | Spring | 2009 |
| 83821 | Brandt | Comp. Sci. | 92000 | CS-319 | 2 | Spring | 2010 |
| 98345 | Kim | Elec. Eng. | 80000 | EE-181 | 1 | Spring | 2009 |

## Figure 6.15

| name | course_id |
| :--- | :--- |
| Srinivasan | CS-101 |
| Srinivasan | CS-315 |
| Srinivasan | CS-347 |
| Wu | FIN-201 |
| Mozart | MU-199 |
| Einstein | PHY-101 |
| El Said | HIS-351 |
| Katz | CS-101 |
| Katz | CS-319 |
| Crick | BIO-101 |
| Crick | BIO-301 |
| Brandt | CS-190 |
| Brandt | CS-319 |
| Kim | EE-181 |

## Figure 6.16

| name | title |
| :--- | :--- |
| Brandt | Game Design |
| Brandt | Image Processing |
| Katz | Image Processing |
| Katz | Intro. to Computer Science |
| Srinivasan | Intro. to Computer Science |
| Srinivasan | Robotics |
| Srinivasan | Database System Concepts |

## Figure 6.17

| ID | name | dept_name | salary | course_id | sec_id | semester | year |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10101 | Srinivasan | Comp. Sci. | 65000 | CS-101 | 1 | Fall | 2009 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | CS-315 | 1 | Spring | 2010 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | CS-347 | 1 | Fall | 2009 |
| 12121 | Wu | Finance | 90000 | FIN-201 | 1 | Spring | 2010 |
| 15151 | Mozart | Music | 40000 | MU-199 | 1 | Spring | 2010 |
| 22222 | Einstein | Physics | 95000 | PHY-101 | 1 | Fall | 2009 |
| 32343 | El Said | History | 60000 | HIS-351 | 1 | Spring | 2010 |
| 33456 | Gold | Physics | 87000 | null | null | null | null |
| 45565 | Katz | Comp. Sci. | 75000 | CS-101 | 1 | Spring | 2010 |
| 45565 | Katz | Comp. Sci. | 75000 | CS-319 | 1 | Spring | 2010 |
| 58583 | Califieri | History | 62000 | null | null | null | null |
| 76543 | Singh | Finance | 80000 | null | null | null | null |
| 76766 | Crick | Biology | 72000 | BIO-101 | 1 | Summer | 2009 |
| 76766 | Crick | Biology | 72000 | BIO-301 | 1 | Summer | 2010 |
| 83821 | Brandt | Comp. Sci. | 92000 | CS-190 | 1 | Spring | 2009 |
| 83821 | Brandt | Comp. Sci. | 92000 | CS-190 | 2 | Spring | 2009 |
| 83821 | Brandt | Comp. Sci. | 92000 | CS-319 | 2 | Spring | 2010 |
| 98345 | Kim | Elec. Eng. | 80000 | EE-181 | 1 | Spring | 2009 |

## Figure 6.18

| ID | course_id | sec_id | semester | year | name | dept_name | salary |
| :---: | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| 10101 | CS-101 | 1 | Fall | 2009 | Srinivasan | Comp. Sci. | 65000 |
| 10101 | CS-315 | 1 | Spring | 2010 | Srinivasan | Comp. Sci. | 65000 |
| 10101 | CS-347 | 1 | Fall | 2009 | Srinivasan | Comp. Sci. | 65000 |
| 12121 | FIN-201 | 1 | Spring | 2010 | Wu | Finance | 90000 |
| 15151 | MU-199 | 1 | Spring | 2010 | Mozart | Music | 40000 |
| 22222 | PHY-101 | 1 | Fall | 2009 | Einstein | Physics | 95000 |
| 32343 | HIS-351 | 1 | Spring | 2010 | El Said | History | 60000 |
| 33456 | null | null | null | null | Gold | Physics | 87000 |
| 45565 | CS-101 | 1 | Spring | 2010 | Katz | Comp. Sci. | 75000 |
| 45565 | CS-319 | 1 | Spring | 2010 | Katz | Comp.Sci. | 75000 |
| 58583 | null | null | null | null | Califieri | History | 62000 |
| 76543 | null | null | null | null | Singh | Finance | 80000 |
| 76766 | BIO-101 | 1 | Summer | 2009 | Crick | Biology | 72000 |
| 76766 | BIO-301 | 1 | Summer | 2010 | Crick | Biology | 72000 |
| 83821 | CS-190 | 1 | Spring | 2009 | Brandt | Comp. Sci. | 92000 |
| 83821 | CS-190 | 2 | Spring | 2009 | Brandt | Comp. Sci. | 92000 |
| 83821 | CS-319 | 2 | Spring | 2010 | Brandt | Comp. Sci. | 92000 |
| 98345 | EE-181 | 1 | Spring | 2009 | Kim | Elec. Eng. | 80000 |

## Figure 6.19

| ID | name | dept_name | salary |
| :---: | :--- | :--- | :---: |
| 76766 | Crick | Biology | 72000 |
| 45565 | Katz | Comp. Sci. | 75000 |
| 10101 | Srinivasan | Comp. Sci. | 65000 |
| 83821 | Brandt | Comp. Sci. | 92000 |
| 98345 | Kim | Elec. Eng. | 80000 |
| 12121 | Wu | Finance | 90000 |
| 76543 | Singh | Finance | 80000 |
| 32343 | El Said | History | 60000 |
| 58583 | Califieri | History | 62000 |
| 15151 | Mozart | Music | 40000 |
| 33456 | Gold | Physics | 87000 |
| 22222 | Einstein | Physics | 95000 |

## Figure 6.20

| dept_name | salary |
| :--- | :--- |
| Biology | 72000 |
| Comp. Sci. | 77333 |
| Elec. Eng. | 80000 |
| Finance | 85000 |
| History | 61000 |
| Music | 40000 |
| Physics | 91000 |

## Figure 6.21

| name |
| :--- |
| Einstein |
| Crick |
| Gold |

## Deletion

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples; cannot delete values on only particular attributes
- A deletion is expressed in relational algebra by:

$$
r \leftarrow r-E
$$

where $r$ is a relation and $E$ is a relational algebra query.

## Deletion Examples

- Delete all account records in the Perryridge branch.

$$
\text { account } \leftarrow \text { account }-\sigma \text { branch_name }=\text { "Perryridge" (account })
$$

- Delete all loan records with amount in the range of 0 to 50

$$
\text { loan } \leftarrow \text { loan }-\sigma \text { amount } \geq 0 \text { and amount } \leq 50 \text { (Ioan) }
$$

■ Delete all accounts at branches located in Needham.

$$
\begin{aligned}
& r_{1} \leftarrow \sigma_{\text {branch_city }=\text { "Needham" }}(\text { account } \bowtie \text { branch }) \\
& \mathrm{r}_{2} \leftarrow \Pi_{\text {account_number, branch_name, balance }}\left(r_{1}\right) \\
& r_{3} \leftarrow \prod_{\text {customer_name, account_number }}\left(r_{2} \bowtie \text { depositor }\right) \\
& \text { account } \leftarrow \text { account }-r_{2} \\
& \text { depositor } \leftarrow \text { depositor }-r_{3}
\end{aligned}
$$

## Insertion

- To insert data into a relation, we either:
- specify a tuple to be inserted
- write a query whose result is a set of tuples to be inserted
- in relational algebra, an insertion is expressed by:

$$
r \leftarrow r \cup E
$$

where $r$ is a relation and $E$ is a relational algebra expression.

- The insertion of a single tuple is expressed by letting $E$ be a constant relation containing one tuple.


## Insertion Examples

■ Insert information in the database specifying that Smith has $\$ 1200$ in account A-973 at the Perryridge branch.

```
account \leftarrow account \cup {("A-973","Perryridge", 1200)}
depositor }\leftarrow\mathrm{ depositor }\cup{("Smith","A-973")
```

■ Provide as a gift for all loan customers in the Perryridge branch, a $\$ 200$ savings account. Let the loan number serve as the account number for the new savings account.

$$
\begin{aligned}
& r_{1} \leftarrow\left(\sigma_{\text {branch_name }}=\text { "Perryridge" }(\text { borroweれ loan })\right) \\
& \text { account } \leftarrow \text { account } \cup \prod_{\text {loan_number, branch_name, } 200}\left(r_{1}\right) \\
& \text { depositor } \leftarrow \text { depositor } \cup \prod_{\text {customer_name, loan_number }}\left(r_{1}\right)
\end{aligned}
$$

## Updating

- A mechanism to change a value in a tuple without charging all values in the tuple
■ Use the generalized projection operator to do this task

$$
r \leftarrow \prod_{F_{1}, F_{2}, \ldots, F_{l},}(r)
$$

- Each $F_{i}$ is either
- the $I^{\text {th }}$ attribute of $r$, if the $I^{\text {th }}$ attribute is not updated, or,
- if the attribute is to be updated $F_{i}$ is an expression, involving only constants and the attributes of $r$, which gives the new value for the attribute


## Update Examples

■ Make interest payments by increasing all balances by 5 percent.

```
account \leftarrow }\leftarrow\mp@subsup{\Pi}{\mathrm{ account_number, branch_name, balance * 1.05 (account)}}{\mathrm{ ( }
```

- Pay all accounts with balances over \$10,000 6 percent interest and pay all others 5 percent

$\cup \prod_{\text {account_number, branch_name, balance }{ }^{*} 1.05 \text { ( } \sigma_{B A L} \leq 10000}$
(account))


## Example Queries

- Find the names of all customers who have a loan and an account at bank.
$\Pi_{\text {customer_name }}$ (borrower) $\cap \prod_{\text {customer_name }}$ (depositor)
- Find the name of all customers who have a loan at the bank and the loan amount
$\Pi_{\text {Customer_name, loan_number, amount }}$ (borrower $\bowtie$ loan)


## Example Queries

- Find all customers who have an account from at least the "Downtown" and the Uptown" branches.
- Query 1

$$
\begin{gathered}
\Pi_{\text {customer_name }}\left(\sigma_{\text {branch_name }}=\text { "Downtown" }(\text { depositor } \bowtie \text { account })\right) \cap \\
\Pi_{\text {customer_name }}\left(\sigma_{\text {branch_name }}=\text { "Uptown" }(\text { depositor } \bowtie \text { account })\right)
\end{gathered}
$$

- Query 2
$\Pi_{\text {customer_name, branch_name }}($ depositor $\bowtie$ account)
$\div \rho_{\text {temp }}$ (branch_name) $(\{($ "Downtown"), ( "Uptown")\})
Note that Query 2 uses a constant relation.


## Bank Example Queries

- Find all customers who have an account at all branches located in Brooklyn city.

$$
\begin{aligned}
& \prod_{\text {customer_name, branch_name }}(\text { depositor } \bowtie \text { account }) \\
& \div \prod_{\text {branch_name }}\left(\sigma_{\text {branch_city }} \text { " Brooklyn" }(\text { branch })\right)
\end{aligned}
$$

