\square
CWID

Homework Assignment
 1

September 12th, 2016

CS425 - Database Organization Results

Instructions

- Try to answer all the questions using what you have learned in class
- When writing a query, write the query in a way that it would work over all possible database instances and not just for the given example instance!
- Some questions are marked as bonus. You do not have to answer these questions to get full points for the assignment. However, you can get bonus points for these questions!

Consider the following database schema and example instance:

buyer		
name age gender Alice 20 Female Bob 21 Male Carol 18 Female		

product

pname	type	price	weight
Pen	Office	3	5
Pencil	Office	2	3
Notebook	Office	10	400
Camera	Electronic	300	600
Bike	Transport	100	15000
Skateboard	Transport	50	1500
Pan	Kichen	25	700

card

cardNum	owner	limit
1111	Alice	50
1234	Bob	10
4321	Bob	30
9999	Carol	1000

order

buyer		product
count		
Alice	Pen	4
Alice	Notebook	2
Bob	Bike	1
Alice	Pan	1
Carol	Camera	1
Carol	Skateboard	1

Hints:

- Underlined attribute form the primary key of a relation
- The attribute buyer of relation order is a foreign key to relation buyer. The attribute product of relation order is a foreign key to relation product.
- The attribute owner of relation card is a foreign key to relation buyer.

Part 1.1 Relational Algebra (Total: 100 Points)

Question 1.1.1 (6 Points)

Write a relational algebra expression that returns all products brought by "Alice". For each such product return the product name paired with the number of items (Attribute count) brought by the buyer.

Solution

$$
\pi_{\text {product }, \text { count }}\left(\sigma_{\text {buyer }=^{\prime}} \text { Alice }{ }^{\prime}(\text { order })\right)
$$

Question 1.1.2 (6 Points)

Write a relational algebra expression that returns products that are of type "Office" and their price.

Solution

$$
\pi_{\text {pname,price }}\left(\sigma_{\text {type }=^{\prime} \text { Office }}(\text { product })\right)
$$

Question 1.1.3 (6 Points)

Write a relational algebra expression that returns products (their names) that are of type "Electronic" or of type "Transport" and have at most 100 dollars unit price (attribute price).

Solution

$\pi_{\text {pname }}\left(\sigma_{\left(\text {type }=^{\prime} \text { Electronic }{ }^{\prime} \vee t y p e=^{\prime} \text { Transport }{ }^{\prime}\right) \wedge \text { price } \leq 100}(\right.$ product $\left.)\right)$

Question 1.1.4 (9 Points)

Write a relational algebra expression that returns the product name and price for all products of type "Transport" brought by "Bob" or "Carol".

Solution

$$
\pi_{\text {pname }, \text { price }}\left(\sigma_{\left(\text {buyer }=^{\prime} B o b^{\prime} \vee b u y e r=^{\prime} C a r o l^{\prime}\right) \wedge t y p e=^{\prime} T r a n s p o r t^{\prime}}\left(\text { product } \bowtie \rho_{\text {pname } \leftarrow \text { product }}(\text { order })\right)\right)
$$

Question 1.1.5 (9 Points)

Write a relational algebra expression that returns the ages of all buyers that brought products of type "Kitchen".

Solution

$$
\pi_{a g e}\left(\sigma_{t y p e=^{\prime} \text { Kitchen' }}\left(\text { order } \bowtie_{\text {product }=\text { pname }} \text { product } \bowtie_{\text {buyer }=n a m e} \text { buyer }\right)\right)
$$

Question 1.1.6 (10 Points)

Write a relational algebra expression that returns the names of all buyer that brought products of both "Office" and "Kitchen" type.

Solution

```
\(\pi_{\text {buyer }}\left(\sigma_{\text {type }=^{\prime} \text { Office }}\left(\right.\right.\) product \(\bowtie_{\text {pname }=\text { product }}\) order \(\left.)\right) \cap \pi_{\text {buyer }}\left(\sigma_{\text {type }=^{\prime} \text { Kitchen }^{\prime}}\left(\right.\right.\) product \(\bowtie_{\text {pname }}=\) product order \(\left.)\right)\)
```


Question 1.1.7 (10 Points)

Write a relational algebra expression that returns the names of products that are type of "Transport" but were not brought by "Carol".

Solution

$$
\pi_{\text {pname }}\left(\sigma_{\text {type }=^{\prime} \text { Transpoet }}(\text { product })\right)-\pi_{\text {pname }}\left(\sigma_{\text {buyer }=^{\prime} \text { Alice }}\left(\rho_{\text {pname } \leftarrow \text { product }}(\text { order })\right)\right)
$$

Question 1.1.8 (7 Points)

Write a relational algebra expression that returns the total number of products brought by each buyer.

Solution

$$
{ }_{\text {buyer }} \mathcal{G}_{\text {sum (count) })}(\text { order })
$$

Question 1.1.9 (10 Points)

Write a relational algebra expression that returns the number of credit cards owned for each gender.

Solution

$$
\begin{aligned}
\text { buyercard } & \leftarrow \text { buyer } \bowtie_{\text {name }=\text { owner }} \text { card } \\
q & \leftarrow \text { gender } \mathcal{G}_{\text {count }(*)}(\text { buyercard })
\end{aligned}
$$

Question 1.1.10 (14 Points)

Write a relational algebra expression that returns the number of product types for which the average weight for all products of this type is lower than 500 .

Solution

$$
\begin{aligned}
\operatorname{avg} W & \leftarrow_{\text {type }} \mathcal{G}_{\text {avg }(\text { weight })}(\text { product }) \\
q & \leftarrow \mathcal{G}_{\text {count }(*)}\left(\sigma_{\text {avg }(\text { weight })<500}(\text { avg } W)\right)
\end{aligned}
$$

Question 1.1.11 (13 Points)

Write a relational algebra expression that returns the total credit limit (attribute limit) for each buyer with the amount of remaining limit after purchasing all the orders of this buyer. Do not return buyers whos limit is not enough to purchase all orders under his/her name.

Solution

$$
\begin{aligned}
& \text { oPrice } \leftarrow \pi_{\text {buyer }, \text { price } * \text { count AS orderPrice }}\left(\text { product } \bowtie_{\text {pname }}=\text { product } \text { order }\right) \\
& t \text { Price } \leftarrow_{\text {buyer }} \mathcal{G}_{\text {sum(order Price) AS ttlPrice }}(\text { oPrice) } \\
& \text { tLimit } \leftarrow_{\text {owner }} \mathcal{G}_{\text {sum(limit) AS ttlLimit }}(\text { card }) \\
& q \leftarrow \sigma_{\text {resLimit } \geq 0}\left(\pi_{\text {buyer }, \text { ttlLimit-ttlPrice AS resLimit }}\left(t \text { Limit } \bowtie_{\text {owner }=\text { buyer }} \text { tPrice }\right)\right)
\end{aligned}
$$

Question 1.1.12 (BONUS QUESTION) (5 Points)

Write a relational algebra expression that returns the name of the buyer that paid the highest total price for all her/his orders.

Solution

$$
\begin{aligned}
& \text { oPrice } \leftarrow \pi_{\text {buyer,price*count AS orderPrice }}\left(\text { product } \bowtie_{\text {pname }} \text { product }\right. \text { order) } \\
& t \text { Price } \leftarrow_{\text {buyer }} \mathcal{G}_{\text {sum(orderPrice) AS ttlPrice }}(o \text { Price) } \\
& q \leftarrow \pi_{\text {buyer }}\left(\mathcal{G}_{\max (t t l P r i c c e)} \text { AS ttlPrice }(t \text { Price }) \bowtie t \text { Price }\right)
\end{aligned}
$$

Question 1.1.13 (BONUS QUESTION) (5 Points)

Write a relational algebra expression that returns all buyers who brought all products from at least one single type. For example, if a buyer did buy all "Office" products, then he/she should be in the result.

Solution

$$
\begin{aligned}
& \text { buyer } C t \leftarrow_{\text {buyer }, \text { type }} \mathcal{G}_{\text {count }(*) \text { AS }}{ }_{n}\left(\text { order } \bowtie_{\text {product=pname }} \text { product }\right) \\
& \text { prodCt } \leftarrow_{\text {type }} \mathcal{G}_{\text {count (*) AS } n}(\text { product }) \\
& q \leftarrow \pi_{\text {buyer }}(\text { buyer } C t \bowtie \text { prod } C t)
\end{aligned}
$$

