$\square$
CWID

## Final Exam

## December 5th, 2016 <br> 2:00-4:00

## CS425 - Database Organization Results



## Instructions

- Try to answer all the questions using what you have learned in class. Keep hard questions until the end.
- When writing a query, write the query in a way that it would work over all possible database instances and not just for the given example instance!
- The exam is closed book and closed notes!

Consider the following laptop database schema and example instance:
laptop

| manufacturer | model | modelNr | price | releaseYear |
| :---: | :---: | :---: | :---: | :---: |
| Apple | Macbook Pro | Retina, 15-inch, Mid 2014 | 2500 | 2014 |
| Apple | Macbook Air | 11-inch, Mid 2015 | 1300 | 2015 |
| Dell | Inspire | $17-5000$ | 700 | 2011 |

manufacturer

| name | yearsGuarantee | country |
| :---: | :---: | :---: |
| Apple | 1 | USA |
| Dell | 2 | USA |
| Lenovo | 3 | China |
| Intel | 0 | USA |
| AMD | 0 | USA |

## part

| partId | manufacturer | type | description |
| :---: | :---: | :---: | :---: |
| Intel Core m3-7Y30 | Intel | processor | 2.6 GHz |
| Sempron Huron | AMD | processor | 1.5 Ghz |
| Apple Retina Display 15 inch | Apple | display |  |

## partOf

| manufacturer | model | modelNr | partId | quantity |
| :---: | :---: | :---: | :---: | :---: |
| Apple | Macbook Pro | Retina, 15-inch, Mid 2014 | Apple Retina Display 15 inch | 1 |
| Apple | Macbook Pro | Retina, 15-inch, Mid 2014 | Intel Core m3-7Y30 | 2 |
| Dell | Inspire | $17-5000$ | Sempron Huron | 1 |

## Hints:

- Attributes with black background form the primary key of a relation (e.g., name for relation manufacturer)
- The attribute manufacturer of relation laptop is a foreign key to relation manufacturer
- The attribute manufacturer of relation part is a foreign key to relation manufacturer
- The attribute partId of relation partOf is a foreign key to relation part.
- The attribute manufacturer, model, modelNr of relation partOf form a foreign key to relation laptop
- All foreign keys have been created with the CASCADE option.


## Part 1.1 Relational Algebra (Total: 20 Points)

The queries in this part should be written using the set semantics version of relational algebra.

## Question 1.1.1 (4 Points)

Write a relational algebra expression that returns pairs of laptops and parts (return manufacturer, model, modelNr, price, and partId) such that the part is built into the laptop (this information is stored in partOf) and the type of the part is either display or processor.

## Solution



## Question 1.1.2 (4 Points)

Write a relational algebra expression that returns the name of manufacturers that give at least 2 years of guarantee and produce at least one laptop with an intel processor (a part used in this laptop is of type processor and is produced by Intel).

## Solution

$$
\begin{aligned}
& \pi_{n a m e}\left(\rho_{\text {man } \leftarrow \text { manufacturer }}\left(\sigma_{\text {guarantee } \geq 2}(\text { manufacturer }) \bowtie_{\text {name }=\text { manu facturer }} \text { laptop } \bowtie \text { part } O f\right)\right. \\
& \left.\bowtie \sigma_{\text {manufacturer }=\text { Intel } \wedge \text { type }=\text { processor }}(\text { part })\right)
\end{aligned}
$$

## Question 1.1.3 (5 Points)

Write a relational algebra expression that returns the average years of guarantee for laptops (the guarantee for a laptop is determined by the manufacturer that produces the laptop).

## Solution

$$
\mathcal{G}_{\text {avg (yearsGuarantee) }}\left(\text { laptop } \bowtie_{\text {manufacturer }=\text { name }} \text { manu facturer }\right)
$$

## Question 1.1.4 (7 Points)

Write a relational algebra expression that returns laptops (their model and modelNr) that only contain parts produced by the manufacturer that produces the laptop.

## Solution

laptopPart $\leftarrow$ laptop $\bowtie_{\text {manufacturer }=\text { name }}$ manufacturer $\bowtie$ partOf $\bowtie \rho_{\text {pman } \leftarrow \text { manufacturer }}$ (part)
laptopWithOther $\leftarrow \pi_{\text {manufacturer,model, } \text { modelNr }}\left(\sigma_{\text {manufacturer } \neq \text { pman }}\right.$ (laptopPart) $q \leftarrow \pi_{\text {model,modelNr}}\left(\pi_{\text {manufacturer }, \text { model }, \text { modelNr }}(\right.$ laptop $)$ - laptopWithOther $)$

## Part 1.2 SQL - DDL (Total: 7 Points)

## Question 1.2.1 (7 Points)

Write an SQL statement that creates a new relation desktop that records information about desktop computers. Desktop computers are identified by a combination of manufacturer, model, and modelNr. Furthermore, we store a price and format. Attribute format can only take one of the following values: nettop, mini, or tower. Furthermore, create a relation desktopParts that stores which part is built into which desktop. Parts can be built into multiple desktops and multiple desktops can contain the same part.

## Solution

```
CREATE TABLE desktop (
    manufacturer VARCHAR(100),
    model VARCHAR(200),
    modelNr VARCHAR(200),
    price NUMERIC,
    format VARCHAR(6),
    PRIMARY KEY (manufacturer, model, modelNr),
    FOREIGN KEY (manufacturer) REFERENCES manufacturer,
    CHECK(format = 'nettop' OR format = 'mini' OR format = 'tower')
);
CREATE TABLE desktopPart (
    manufacturer VARCHAR(100),
    model VARCHAR(200),
    modelNr VARCHAR(200),
    partId VARCHAR(200),
    PRIMARY KEY (manufacturer, model, modelNr, partId),
    FOREIGN KEY (manufacturer, model, modelNr) REFERENCES desktop,
    FOREIGN KEY (partId) REFERENCES part
);
```


## Part 1.3 SQL - Queries (Total: 20 Points)

## Question 1.3.1 (3 Points)

Write an SQL query that returns the number of laptop models per manufacturer.

## Solution

SELECT count (*) AS numLap, manufacturer FROM laptop
GROUP BY manufacturer;

## Question 1.3.2 (4 Points)

Write an SQL query that returns the price of laptops if their model attribute contains the string "Macbook". Make sure each price is only returned once.

## Solution

SELECT DISTINCT price
FROM laptop
WHERE model LIKE '\%Macbook\%'

## Question 1.3.3 (6 Points)

Write an SQL query that returns the name(s) of the manufacturer(s) with the longest guarantee (yearsGuarantee).

## Solution

## SELECT name

FROM manufacturer
WHERE yearsGuarantee $=($ SELECT $\max ($ yearsGuarantee $)$ FROM manufacturer $)$

## Question 1.3.4 (7 Points)

Write an SQL query that returns the partId of parts that are not built into any laptop.

## Solution

```
SELECT partId
FROM part
WHERE partId NOT IN (SELECT partId
    FROM partOf o)
```


## Part 1.4 Translation of ER into Relational Model (Total: 22 Points)

## Question 1.4.1 (22 Points)

Take the following ER-model and translate it into a relational schema using the rules presented in class. Present the relational schema using the notation from the slides. For example, a relation $R$ with attributes $a_{1}$ and $a_{2}$ where $a_{2}$ is the primary key is written as $R\left(a_{1}, \underline{a_{2}}\right)$. You do not need to specify foreign key constraints. You do not have to show intermediate results.


## Solution

1st Step: strong entities

$$
\begin{aligned}
& A\left(\underline{a_{1}}, \underline{a_{21}}, \underline{a_{22}}\right) \\
& B\left(\underline{b_{1}}, b_{2}\right)
\end{aligned}
$$

2nd Step: weak entities

$$
\begin{aligned}
& A\left(\underline{a_{1}}, \underline{a_{21}}, \underline{a_{22}}\right) \\
& B\left(\underline{b_{1}}, \underline{b_{2}}\right) \\
& C\left(\underline{a_{1}}, \underline{a_{21}}, \underline{a_{22}}, \underline{c_{1}}, \underline{c_{2}}, c_{31}, c_{32}\right) \\
& D\left(\underline{a_{1}}, \underline{a_{21}}, \underline{a_{22}}, \underline{c_{1}}, \underline{c_{2}}, \underline{d_{1}}\right)
\end{aligned}
$$

## 3rd Step: relationships

$$
\begin{aligned}
& A\left(\underline{a_{1}}, \underline{a_{21}}, \underline{a_{22}}, b_{1}\right) \\
& B\left(\underline{b_{1}}, b_{2}\right) \\
& C\left(\underline{a_{1}}, \underline{a_{21}}, \underline{a_{22}}, \underline{c_{1}}, \underline{c_{2}}, c_{31}, c_{32}\right) \\
& D\left(\underline{a_{1}}, \underline{a_{21}}, \underline{a_{22}}, \underline{c_{1}}, \underline{c_{2}}, \underline{d_{1}}\right) \\
& Y\left(\underline{b_{1}}, \underline{a_{1}}, \underline{a_{21}}, \underline{a_{22}}, \underline{c_{1}}, \underline{c_{2}}, \underline{d_{1}}, y_{1}, y_{2}\right)
\end{aligned}
$$

4th Step: multi-valued attribues

$$
\begin{aligned}
& A\left(\underline{a_{1}}, \underline{a_{21}}, \underline{a_{22}}, b_{1}\right) \\
& A 3\left(\underline{a_{1}}, \underline{a_{21}}, \underline{a_{22}}, \underline{a_{3}}\right. \\
& B\left(\underline{b_{1}}, b_{2}\right) \\
& C\left(\underline{a_{1}}, \underline{a_{21}}, \underline{a_{22}}, \underline{c_{1}}, \underline{c_{2}}, c_{31}, c_{32}\right) \\
& D\left(\underline{a_{1}}, \underline{a_{21}}, \underline{a_{22}}, \underline{c_{1}}, \underline{c_{2}}, \underline{d_{1}}\right) \\
& D 2\left(\underline{a_{1}}, \underline{a_{21}}, \underline{a_{22}}, \underline{c_{1}}, \underline{c_{2}}, \underline{d_{1}}, \underline{d_{2}}\right) \\
& Y\left(\underline{b_{1}}, \underline{a_{1}}, \underline{a_{21}}, \underline{a}, \underline{a_{22}}, \underline{c_{1}}, \underline{c_{2}}, \underline{d_{1}}, y_{1}, y_{2}\right)
\end{aligned}
$$

## Part 1.5 Normalization and Functional Dependencies (Total: 22 Points)

Consider the following relation $R(A, B, C, D, E, F, G)$ and functional dependencies $\mathcal{F}$ that hold over this relation.

$$
\begin{aligned}
\mathcal{F}= & A \rightarrow C, F \\
& B \rightarrow E, C, D \\
D & \rightarrow E, C, B \\
F & \rightarrow G, A
\end{aligned}
$$

## Question 1.5.1 (4 Points)

Determine all candidate keys of $R$.

## Solution

$\{A, B\}$
$\{A, D\}$
$\{F, B\}$
$\{F, D\}$

## Question 1.5.2 (8 Points)

Compute the canonical cover of $F$. Show each step of the generation according to the algorithm shown in class.

## Solution

1th iteration: 1) Apply union rule to combine right-hand sides:
no changes
1th iteration: 2) Find extraneous attribute:
$E$ is extraneous in $B \rightarrow E, C, D$

$$
\begin{aligned}
\mathcal{F}_{1}=A & \rightarrow C, F \\
B & \rightarrow C, D \\
D & \rightarrow E, C, B \\
F & \rightarrow G, A
\end{aligned}
$$

2nd iteration: 1) Apply union rule to combine right-hand sides: no changes
2nd iteration: 2) Find extraneous attribute:
$C$ is extraneous in $B \rightarrow C, D$

$$
\begin{aligned}
\mathcal{F}_{2}=A & \rightarrow C, F \\
B & \rightarrow D \\
D & \rightarrow E, C, B \\
F & \rightarrow G, A
\end{aligned}
$$

3nd iteration: 1) Apply union rule to combine right-hand sides: no changes
3nd iteration: 2) Find extraneous attribute: no changes

## Question 1.5.3 (6 Points)

Apply the 3NF decomposition algorithm to relation $R$.

## Solution

$$
\begin{aligned}
& R_{1}(A, C, F) \\
& R_{2}(B, D) \\
& R_{3}(D, E, C, B) \\
& R_{4}(F, G, A)
\end{aligned}
$$

## 2st step: Remove redundant relations

$R_{2}$ is redundant, remove it

$$
\begin{aligned}
& R_{1}(A, C, F) \\
& R_{3}(D, E, C, B) \\
& R_{4}(F, G, A)
\end{aligned}
$$

3st step: If no relation contains all attributes of a candidate key, then create a relation with all attributes of a candidate key
None contain a candidate key, so, e.g., create $R_{5}$ contains $(A, B)$

## Question 1.5.4 (6 Points)

In what normal forms is relation $R$ ?

## Solution

1 NF , not in 2 NF because $E$ depends only on part of the key.

## Part 1.6 Concurrency Control (Total: 9 Points)

## Question 1.6.1 (9 Points)

For each of the following schedules determine which properties this schedule has. E.g., a schedule may be recoverable and cascade-less. Consider the following notation for operations of transactions:

$$
\begin{array}{cl}
w_{1}(A) & \text { transaction } 1 \text { wrote item } A \\
r_{1}(A) & \text { transaction } 1 \text { read item } A \\
c_{1} & \text { transaction } 1 \text { commits } \\
a_{1} & \text { transaction } 1 \text { aborts } \\
& \\
S_{1}=r_{2}(B), w_{2}(C), w_{1}(C), w_{2}(A), c_{2}, r_{3}(A), c_{1}, c_{3} \\
S_{2} & =r_{2}(A), r_{1}(B), w_{2}(A), r_{2}(B), r_{3}(A), w_{1}(B), c_{1}, w_{3}(A), c_{3}, w_{2}(B), c_{2} \\
S_{3} & =r_{1}(A), r_{1}(B), r_{2}(C), w_{2}(C), w_{1}(B), r_{2}(A), w_{2}(A), c_{1}, w_{2}(B), c_{2}
\end{array}
$$

$S_{1}$ is recoverable

- $S_{1}$ is cascade-less
- $\quad S_{1}$ is conflict-serializable
$\square \quad S_{1}$ is 2 PL
$\square \quad S_{1}$ is S 2 PL
$\square \quad S_{1}$ is SS 2 PL
$\square \quad S_{2}$ is recoverable
$\square \quad S_{2}$ is cascade-less
$\square \quad S_{2}$ is conflict-serializable
$\square \quad S_{2}$ is 2 PL
$\square \quad S_{2}$ is S 2 PL
$\square \quad S_{2}$ is SS2PL
- $\quad S_{3}$ is recoverable
- $\quad S_{3}$ is cascade-less
- $\quad S_{3}$ is conflict-serializable
- $S_{3}$ is 2 PL
$\square S_{3}$ is S 2 PL
$\square \quad S_{3}$ is SS2PL

