CS425 - Fall 2013
Boris Glavic
Chapter 6: Advanced SQL

modified from:

Database System Concepts, 6™ Ed.

©Silberschatz, Korth and Sudarshan
for conditions on re-use

NE Chapter 6: Advanced SQL

B Accessing SQL From a Programming Language
Dynamic SQL
» JDBC and ODBC
Embedded SQL
B Functions and Procedural Constructs
W Triggers

CS425 - Fall 2013 - Boris Glavic 52 @Silberschatz, Korth and Sudarshan

Accessing SQL From a Programming

N JDBC and ODBC

B API (application-program interface) for a program to interact
with a database server

B Application makes calls to
Connect with the database server
Send SQL commands to the database server
Fetch tuples of result one-by-one into program variables

B ODBC (Open Database Connectivity) works with C, C++, C#,
and Visual Basic

Other API’ s such as ADO.NET sit on top of ODBC
B JDBC (Java Database Connectivity) works with Java

©8425 - Fall 2013 - Boris Glavic 54 @Silberschatz, Korth and Sudarshan

Language
N- Native APIs
[N—

B Most DBMS also define DBMS specific APIs

W Oracle: OCI
W Postgres: libpg

©S425 - Fall 2013 - Boris Glavic 55 @Silberschatz, Korth and Sudarshan

A2 JDBC

m JDBC is a Java API for communicating with database systems
supporting SQL.

m JDBC supports a variety of features for querying and updating
data, and for retrieving query results.

W JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation attributes.

B Model for communicating with the database:
Open a connection
Create a “statement” object

Execute queries using the Statement object to send queries
and fetch results

Exception mechanism to handle errors

©S425 - Fall 2013 - Boris Glavic 56 @Silberschatz, Korth and Sudarshan

N2 JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)
{
try{
Class.forName ("oracle.jdbc.driver.OracleDriver"); / load driver

C ion conn = Driver getC / connect to server
jdbc:or i yale. i , userid,

stmt = conn.); // create object
... Do Actual Work
stmt.close(); / close and release
conn.close(); // close Connection and release resources
}
catch (SQLException sqle) {
System.out.printin("SQLException : " + sqgle); / handle exceptions

425 - Fall 2013 - Boris Glavic 57 @Silberschatz, Korth and Sudarshan

N JDBC Code (Cont.)

B Update to database
try {
stmt.executeUpdate(
"insert into instructor values(’ 77987’ , ' Kim’, ’ Physics’,
98000)");
} catch (SQLException sqle)
{

System.out.printin("Could not insert tuple. " + sqle);

B Execute query and fetch and print results

ResultSet rset = stmt.executeQuery(
"select dept_name, avg (salary)
from instructor
group by dept_name");
while (rset.next()) {
System.out.printin(rset.getString("dept_name") +
rset.getFloat(2));

ey

}

CS425 - Fall 2013 - Boris Glavic 58 @Silberschatz, Korth and Sudarshan

N JDBC Code Details

B Result stores the current row position in the result
Pointing before the first row after executing the statement
.next() moves to the next tuple
» Returns false if no more tuples
W Getting result fields:

rs.getString(“dept_name”) and rs.getString(1)
equivalent if dept_name is the first attribute in select
result.

B Dealing with Null values

int a = rs.getint("a”);
if (rs.wasNull()) Systems.out.printin(“Got null value”);

5425 - Fall 2013 - Boris Glavic 59 @Silberschatz, Korth and Sudarshan

N Prepared Statement

B PreparedStatement pStmt = conn.prepareStatement(

"insert into instructor values(?,?,?7,?)");
pStmt.setString(1, "88877"); pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance"); pStmt.setint(4, 125000);
pStmt.executeUpdate();
pStmt.setString(1, "88878");
pStmt.executeUpdate();

W For queries, use pStmt.executeQuery(), which returns a ResultSet
B WARNING: always use prepared statements when taking an input
from the user and adding it to a query
NEVER create a query by concatenating strings which you
get as inputs

“insert into instructor values(’ "+ ID+"’,” "+ name+"’, "+

+deptname +" ', "’ balance +
"y

What if name is “D’ Souza”?

©8425 - Fall 2013 - Boris Glavic 510 @Silberschatz, Korth and Sudarshan

N SQL Injection

W Suppose query is constructed using

"select * from instructor where name =" + name + """
W Suppose the user, instead of entering a name, enters:
X or’'Y =Y
W then the resulting statement becomes:
::§?Iect * from instructor where name =""+"X or 'Y =" Y" +
which is:

» select * from instructor where name =" X" or 'Y’ ="Y’
User could have even used
» X' ; update instructor set salary = salary + 10000; --

B Prepared statement internally uses:
"select * from instructor where name =" X\" or ' Y\' =\'Y’

Always use prepared statements, with user inputs as
parameters

©S425 - Fall 2013 - Boris Glavic 511 @Silberschatz, Korth and Sudarshan

¥ Metadata Features

B ResultSet metadata
B E.g., after executing query to get a ResultSet rs:
ResultSetMetaData rsmd = rs.getMetaData();
for(int i = 1; i <= rsmd.getColumnCount(); i++) {
System.out.printin(rsmd.getColumnName(i));
System.out.printin(rsmd.getColumnTypeName(i));
}
B How is this useful?

©S425 - Fall 2013 - Boris Glavic 512 @Silberschatz, Korth and Sudarshan

N Metadata (Cont)

W Database metadata

B DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");
/I Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,
/I and Column-Pattern
/I Returns: One row for each column; row has a number of attributes
/I such as COLUMN_NAME, TYPE_NAME
while(rs.next()) {

System.out.printin(rs.getString("COLUMN_NAME"),
rs.getString("TYPE_NAME");

}

B And where is this useful?

5425 — Fall 2013 - Boris Glavic 513 @Silberschatz, Korth and Sudarshan

& Transaction Control in JDBC

W By default, each SQL statement is treated as a separate
transaction that is committed automatically

bad idea for transactions with multiple updates

B Can turn off automatic commit on a connection
conn.setAutoCommit(false);

W Transactions must then be committed or rolled back explicitly
conn.commit(); or
conn.rollback();

B conn.setAutoCommit(true) turns on automatic commit.

CS425 - Fall 2013 - Boris Glavic 514 @Silberschatz, Korth and Sudarshan

@ Other JDBC Features

W Calling functions and procedures

CallableStatement cStmt1 = conn.prepareCall('{? = call some
function(?)}");

CallableStatement cStmt2 = conn.prepareCall("{call some
procedure(?,?)}");

B Handling large object types

getBlob() and getClob() that are similar to the getString()
method, but return objects of type Blob and Clob, respectively

get data from these objects by getBytes()

associate an open stream with Java Blob or Clob object to
update large objects

» blob.setBlob(int parameterindex, InputStream inputStream).

©8425 - Fall 2013 - Boris Glavic 515

@Silberschatz, Korth and Sudarshan

i sQLJ

H JDBC is overly dynamic, errors cannot be caught by compiler
B SQLJ: embedded SQL in Java
#sq| iterator deptinfolter (String dept name, int avgSal);
deptinfolter iter = null;
#sql iter = { select dept_name, avg(salary) from instructor
group by dept name };
while (iter.next()) {
String deptName = iter.dept_name();
int avgSal = iter.avgSal();

System.out.printin(deptName + " " + avgSal);
}
iter.close();
5425 - Fal 2013 - Boris Glavic 516 @Silberschatz, Korth and Sudarshan

Lo ODBC

B Open DataBase Connectivity(ODBC) standard

standard for application program to communicate with a
database server.

application program interface (API) to
» open a connection with a database,
» send queries and updates,
» get back results.
B Applications such as GUI, spreadsheets, etc. can use ODBC

B Was defined originally for Basic and C, versions available for
many languages.

©8425 - Fall 2013 - Boris Glavic 517 @Silberschatz, Korth and Sudarshan

N ODBC (Cont.)

B Each database system supporting ODBC provides a "driver"
library that must be linked with the client program.

B When client program makes an ODBC API call, the code in the
library communicates with the server to carry out the requested
action, and fetch results.

B ODBC program first allocates an SQL environment, then a
database connection handle.

B Opens database connection using SQLConnect(). Parameters for
SQLConnect:
connection handle,
the server to which to connect
the user identifier,
password
B Must also specify types of arguments:
SQL_NTS denotes previous argument is a null-terminated string.

©S425 - Fall 2013 - Boris Glavic 518 @Silberschatz, Korth and Sudarshan

N ODBC Code

H int ODBCexample()
{
RETCODE error;
HENV env; /* environment*/
HDBC conn; /* database connection */
SQLAIllocEnv(&env);
SQLAllocConnect(env, &conn);

SQLConnect(conn, “db.yale.edu”, SQL_NTS, "avi", SQL_NTS,
"avipasswd", SQL_NTS);

{ Do actual work ... }

SQLDisconnect(conn);
SQLFreeConnect(conn);
SQLFreeEnv(env);

5425 — Fall 2013 - Boris Glavic 519 @Silberschatz, Korth and Sudarshan

NE ODBC Code (Cont.)

B Program sends SQL commands to database by using SQLExecDirect

B Result tuples are fetched using SQLFetch()

B SQLBIndCol() binds C language variables to attributes of the query
result

When a tuple is fetched, its attribute values are automatically stored in
corresponding C variables.

Arguments to SQLBindCol()

» ODBC stmt variable, attribute position in query result

» The type conversion from SQL to C.

» The address of the variable.

» For variable-length types like character arrays,
The maximum length of the variable
Location to store actual length when a tuple is fetched.
Note: A negative value returned for the length field indicates null
value

B Good programming requires checking results of every function call for
errors; we have omitted most checks for brevity.

CS425 - Fall 2013 - Boris Glavic 5.20 @Silberschatz, Korth and Sudarshan

¥ ODBC Code (Cont.)

B Main body of program

char deptname[80];
float salary;
int lenOut1, lenOut2;
HSTMT stmt;
char * sqlquery = "select dept_name, sum (salary)
from instructor
group by dept_name";
SQLAllocStmt(conn, &stmt);
error = SQLExecDirect(stmt, sqlquery, SQL_NTS);
if (error == SQL SUCCESS) {
SQLBindCol(stmt, 1, SQL_C_CHAR, deptname , 80, &lenOut1);
SQLBindCol(stmt, 2, SQL_C_FLOAT, &salary, 0, &lenOut2);
while (SQLFetch(stmt) == SQL_SUCCESS) {
printf (" %s %g\n", deptname, salary);

N ODBC Prepared Statements

B Prepared Statement
SQL statement prepared: compiled at the database
Can have placeholders: E.g. insert into account values(?,?,?)
Repeatedly executed with actual values for the placeholders

B To prepare a statement
SQLPrepare(stmt, <SQL String>);

B To bind parameters
SQLBindParameter(stmt, <parameter#>,
... type information and value omitted for simplicity..)
B To execute the statement
retcode = SQLExecute(stmt);
W To avoid SQL injection security risk, do not create SQL strings
directly using user input; instead use prepared statements to bind
user inputs

©8425 - Fall 2013 - Boris Glavic 522 @Silberschatz, Korth and Sudarshan

}
}
SQLFreeStmt(stmt, SQL_DROP);
N- More ODBC Features
~——

B Metadata features
finding all the relations in the database and

finding the names and types of columns of a query result or a
relation in the database.

B By default, each SQL statement is treated as a separate
transaction that is committed automatically.

Can turn off automatic commit on a connection
» SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)}
Transactions must then be committed or rolled back explicitly by
» SQLTransact(conn, SQL_COMMIT) or
» SQLTransact(conn, SQL_ROLLBACK)

©S425 - Fall 2013 - Boris Glavic 5.23 @Silberschatz, Korth and Sudarshan

y ODBC Conformance Levels

m Conformance levels specify subsets of the functionality defined
by the standard.

Core

Level 1 requires support for metadata querying

Level 2 requires ability to send and retrieve arrays of
parameter values and more detailed catalog information.

B SQL Call Level Interface (CLI) standard similar to ODBC
interface, but with some minor differences.

©S425 - Fall 2013 - Boris Glavic 524 @Silberschatz, Korth and Sudarshan

N2 ADO.NET

W API designed for Visual Basic .NET and C#, providing database access
facilities similar to JDBC/ODBC

Partial example of ADO.NET code in C#
using System, System.Data, System.Data.SqlClient;
SqlConnection conn = new SqlConnection(
“Data Source=<IPaddr>, Initial Catalog=<Catalog>");
conn.Open();
SglCommand cmd = new SqlCommand(“select * from students”,
conn);
SqglDataReader rdr = cmd.ExecuteReader();
while(rdr.Read()) {
Console.WriteLine(rdr[0], rdr{1]); /* Prints result attributes 1 & 2 */

rdr.Close(); conn.Close();
B Can also access non-relational data sources such as
OLE-DB, XML data, Entity framework

©8425 - Fall 2013 - Boris Glavic 5.25 @Silberschatz, Korth and Sudarshan

NE Dynamic vs. Embedded SQL

Dynamic SQL Embedded SQL

Code with embeded SQL

CS425 - Fall 2013 - Boris Glavic 5.26 @Silberschatz, Korth and Sudarshan

Embedded SQL

B The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, Java, and Cobol.

B Alanguage to which SQL queries are embedded is referred to as
a host language, and the SQL structures permitted in the host
language comprise embedded SQL.

W The basic form of these languages follows that of the System R
embedding of SQL into PL/I.

B EXEC SQL statement is used to identify embedded SQL request
to the preprocessor

EXEC SQL <embedded SQL statement > END_EXEC

Note: this varies by language (for example, the Java embedding
uses #SQL{....};)

©8425 - Fall 2013 - Boris Glavic 527 @Silberschatz, Korth and Sudarshan

N Example Query

B From within a host language, find the ID and name of
students who have completed more than the number of
credits stored in variable credit_amount.

W Specify the query in SQL and declare a cursor for it
EXEC sQL

declare c cursor for

select /D, name

from student

where tot_cred > :credit_amount

END_EXEC

©8425 - Fall 2013 - Boris Glavic 528 @Silberschatz, Korth and Sudarshan

@ Embedded SQL (Cont.)

B The open statement causes the query to be evaluated
EXEC SQL open ¢ END_EXEC
B The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.
EXEC SQL fetch cinto :si, :sn END_EXEC
Repeated calls to fetch get successive tuples in the query result
B A variable called SQLSTATE in the SQL communication area

(SQLCA) gets set to ‘02000’ to indicate no more data is
available

B The close statement causes the database system to delete the
temporary relation that holds the result of the query.
EXEC SQL close c END_EXEC

Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.

©8425 - Fall 2013 - Boris Glavic 5.29 @Silberschatz, Korth and Sudarshan

N Updates Through Cursors

B Can update tuples fetched by cursor by declaring that the cursor
is for update

declare c cursor for

select *

from instructor

where dept_name = ‘Music’
for update

B To update tuple at the current location of cursor ¢

update instructor
set salary = salary + 100
where current of ¢

©8425 - Fall 2013 - Boris Glavic 5.30 @Silberschatz, Korth and Sudarshan

©S425 - Fall 2013 - Boris Glavic 531

Procedural Constructs in SQL

@Silberschatz, Korth and Sudarshan

j; Procedural Extensions and Stored Procedures

B SQL provides a module language

Permits definition of procedures in SQL, with if-then-else
statements, for and while loops, etc.

B Stored Procedures
Can store procedures in the database
then execute them using the call statement

permit external applications to operate on the database
without knowing about internal details

W Object-oriented aspects of these features are covered in Chapter
22 (Object Based Databases) in the textbook

CS425 - Fall 2013 - Boris Glavic 532 @Silberschatz, Korth and Sudarshan

©8425 - Fall 2013 - Boris Glavic 533

Why have procedural extensions?

B Shipping data between a database server and application
program (e.g., through network connection) is costly

B Converting data from the database internal format into a format
understood by the application programming language is costly
W Example:

Use Java to retrieve all users and their friend-relationships from a
friends relation representing a world-wide social network with
10,000,000 users

Compute the transitive closure

» All pairs of users connects through a path of friend relationships.
E.g., (Peter, Magret) if Peter is a friend of Walter who is a friend
of Magret

Return pairs of users from Chicago — say 4000 pairs
1) cannot be expressed (efficiently) as SQL query, 2) result is small
» =>save by executing this on the DB server

@Silberschatz, Korth and Sudarshan

Functions and Procedures

B SQL:1999 supports functions and procedures

Functions/procedures can be written in SQL itself, or in an
external programming language.

Functions are particularly useful with specialized data types such
as images and geometric objects.

» Example: functions to check if polygons overlap, or to
compare images for similarity.

Some database systems support table-valued functions, which
can return a relation as a result.

B SQL:1999 also supports a rich set of imperative constructs, including
Loops, if-then-else, assignment

B Many databases have proprietary procedural extensions to SQL that
differ from SQL:1999.

©8425 - Fall 2013 - Boris Glavic 534 @Silberschatz, Korth and Sudarshan

©$425 - Fall 2013 - Boris Glavic 5.35

SQL Functions

B Define a function that, given the name of a department, returns
the count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))
returns integer
begin
declare d_count integer;
select count (*) into d_count
from instructor
where instructor.dept_name = dept_name;
return d_count;
end

B Find the department name and budget of all departments with
more that 12 instructors.
select dept_name, budget
from department
where dept_count (dept_name) > 1

@Silberschatz, Korth and Sudarshan

§ Table Functions

B SQL:2003 added functions that return a relation as a result
B Example: Return all accounts owned by a given customer
create function instructors_of (dept_name char(20)
returns table (/D varchar(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))
return table
(select ID, name, dept_name, salary
from instructor
where instructor.dept_name = instructors_of.dept_name)
W Usage
select *
from table (instructors_of (‘Music’))

©8425 - Fall 2013 - Boris Glavic 5.36 @Silberschatz, Korth and Sudarshan

N SQL Procedures

B The dept_count function could instead be written as procedure:
create procedure dept_count_proc (in dept_name varchar(20),
out d_count integer)
begin
select count(”) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name
end
B Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.
declare d_count integer;
call dept_count_proc(‘Physics’, d_count);
Procedures and functions can be invoked also from dynamic SQL
B SQL:1999 allows more than one function/procedure of the same

name (called name overloading), as long as the number of
arguments differ, or at least the types of the arguments differ

©8425 - Fall 2013 - Boris Glavic 5.37 @Silberschatz, Korth and Sudarshan

& Procedural Constructs

B Warning: most database systems implement their own variant of the
standard syntax below

read your system manual to see what works on your system
m Compound statement: begin ... end,
May contain multiple SQL statements between begin and end.
Local variables can be declared within a compound statements
B While and repeat statements :

declare n integer default 0;

while n < 10 do
setn=n+1

end while

repeat
setn=n-1

until n=0

end repeat

CS425 - Fall 2013 - Boris Glavic 5.38 @Silberschatz, Korth and Sudarshan

Procedural Constructs (Cont.)

H For loop
Permits iteration over all results of a query
Example:

declare n integer default 0;
forr as
select budget from department
where dept_name = ‘Music’
do
set n= n-r.budget
end for

©8425 - Fall 2013 - Boris Glavic 539

@Silberschatz, Korth and Sudarshan

Procedural Constructs (cont.)

B Conditional statements (if-then-else)
SQL:1999 also supports a case statement similar to C case statement

B Example procedure: registers student after ensuring classroom capacity
is not exceeded

Returns 0 on success and -1 if capacity is exceeded
See book for details
B Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_classroom_seats condition
declare exit handler for out_of classroom_seats
begin

.. signal out_of classroom_seats

end
The handler here is exit -- causes enclosing begin..end to be exited
Other actions possible on exception

©8425 - Fall 2013 - Boris Glavic 5.40 @Silberschatz, Korth and Sudarshan

y External Language Functions/Procedures

B SQL:1999 permits the use of functions and procedures written in
other languages such as C or C++

B Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C

external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))
returns integer

language C

external name ‘/usr/avi/bin/dept_count’

©8425 - Fall 2013 - Boris Glavic 541 @Silberschatz, Korth and Sudarshan

NC External Language Routines (Cont.)

B Benefits of external language functions/procedures:

more efficient for many operations, and more expressive
power.

W Drawbacks

Code to implement function may need to be loaded into
database system and executed in the database system’ s
address space.

» risk of accidental corruption of database structures
» security risk, allowing users access to unauthorized data

There are alternatives, which give good security at the cost of
potentially worse performance.

Direct execution in the database system’ s space is used
when efficiency is more important than security.

©8425 - Fall 2013 - Boris Glavic 5.42 @Silberschatz, Korth and Sudarshan

NC Security with External Language Routines

B To deal with security problems
Use sandbox techniques

» E.g., use a safe language like Java, which cannot be
used to access/damage other parts of the database
code.

Or, run external language functions/procedures in a
separate process, with no access to the database process’
memory.

» Parameters and results communicated via inter-process
communication

B Both have performance overheads

B Many database systems support both above approaches as
well as direct executing in database system address space.

©8425 - Fall 2013 - Boris Glavic 5.43 @Silberschatz, Korth and Sudarshan

N Triggers

B Atrigger is a statement that is executed automatically by
the system as a side effect of a modification to the
database.

B To design a trigger mechanism, we must:

Specify the conditions under which the trigger is to be
executed.

Specify the actions to be taken when the trigger
executes.

B Triggers introduced to SQL standard in SQL:1999, but
supported even earlier using non-standard syntax by
most databases.

Syntax illustrated here may not work exactly on your
database system; check the system manuals

©8425 - Fall 2013 - Boris Glavic 545 @Silberschatz, Korth and Sudarshan

Triggers
N Trigger Example

W E.g. time_slot_id is not a primary key of timeslot, so we cannot
create a foreign key constraint from section to timeslot.

B Alternative: use triggers on section and timeslot to enforce integrity
constraints

create trigger timeslot_check1 after insert on section
referencing new row as nrow
for each row
when (nrow.time_slot_id not in (
select time_slot_id
from time_slot)) /* time_slot _id not present in time_slot */
begin
rollback
end;

©8425 - Fall 2013 - Boris Glavic 5.46 @Silberschatz, Korth and Sudarshan

y Trigger Example Cont.

create trigger timeslot_check2 after delete on timeslot
referencing old row as orow
for each row
when (orow.time_slot_id not in (
select time_slot_id
from time_slot)
/* last tuple for time slot id deleted from time slot */
and orow.time_slot_idin (
select time_slot_id
from section)) /* and time_slot _id still referenced from section®/
begin
rollback
end;

©8425 - Fall 2013 - Boris Glavic 5.47 @Silberschatz, Korth and Sudarshan

NC Triggering Events and Actions in SQL

W Triggering event can be insert, delete or update
W Triggers on update can be restricted to specific attributes
E.g., after update of fakes on grade

W Values of attributes before and after an update can be
referenced

referencing old row as : for deletes and updates
referencing new row as : for inserts and updates

W Triggers can be activated before an event, which can serve as
extra constraints. E.g. convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = * *)
begin atomic
set nrow.grade = null;
end;

©S425 - Fall 2013 - Boris Glavic 5.48

@Silberschatz, Korth and Sudarshan

N_ Trigger to Maintain credits_earned value

B create trigger credits_earned after update of takes on
(grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade < 'F’ and nrow.grade is not null
and (orow.grade = 'F’ or orow.grade is null)
begin atomic
update student
set fot_cred= tot_cred +
(select credits
from course
where course.course_id= nrow.course_id)
where student.id = nrow.id,
end;

©8425 - Fall 2013 - Boris Glavic 5.49 @Silberschatz, Korth and Sudarshan

NE Statement Level Triggers

B Instead of executing a separate action for each affected
row, a single action can be executed for all rows affected by
a transaction
Use for each statement instead of for each
row

Use referencing old table or referencing new
table to refer to temporary tables (called transition
tables) containing the affected rows

Can be more efficient when dealing with SQL
statements that update a large number of rows

CS425 - Fall 2013 - Boris Glavic 550 @Silberschatz, Korth and Sudarshan

When Not To Use Triggers

W Triggers were used earlier for tasks such as
maintaining summary data (e.g., total salary of each department)

Replicating databases by recording changes to special relations
(called change or delta relations) and having a separate process
that applies the changes over to a replica

B There are better ways of doing these now:

Databases today provide built in materialized view facilities to
maintain summary data

Databases provide built-in support for replication
W Encapsulation facilities can be used instead of triggers in many cases
Define methods to update fields

Carry out actions as part of the update methods instead of
through a trigger

©8425 - Fall 2013 - Boris Glavic 551 @Silberschatz, Korth and Sudarshan

When Not To Use Triggers

W Risk of unintended execution of triggers, for example, when
loading data from a backup copy
replicating updates at a remote site
Trigger execution can be disabled before such actions.
W Other risks with triggers:

Error leading to failure of critical transactions that set off the
trigger

Cascading execution

©8425 - Fall 2013 - Boris Glavic 552 @Silberschatz, Korth and Sudarshan

Recursive Queries

©8425 - Fall 2013 - Boris Glavic 5.53 @Silberschatz, Korth and Sudarshan

§ Recursion in SQL

B SQL:1999 permits recursive view definition

W Example: find which courses are a prerequisite, whether
directly or indirectly, for a specific course

with recursive rec_prereq(course_id, prereq_id) as (
select course_id, prereq_id
from prereq
union
select rec_prereq.course_id, prereq.prereq_id,
from rec_rereq, prereq
where rec_prereq.prereq_id = prereq.course_id
)
select *
from rec_prereq;

This example view, rec_prereq, is called the transitive closure
of the prereq relation

©8425 - Fall 2013 - Boris Glavic 554 @Silberschatz, Korth and Sudarshan

The Power of Recursion

82

B Recursive views make it possible to write queries, such as
transitive closure queries, that cannot be written without recursion
or iteration.

Intuition: Without recursion, a non-recursive non-iterative
program can perform only a fixed number of joins of prereq
with itself
» This can give only a fixed number of levels of managers
» Given a fixed non-recursive query, we can construct a
database with a greater number of levels of prerequisites on
which the query will not work
» Alternative: write a procedure to iterate as many times as
required
See procedure findAllPreregs in book

©8425 - Fall 2013 - Boris Glavic 5.55 @Silberschatz, Korth and Sudarshan

The Power of Recursion

A2

B Computing transitive closure using iteration, adding successive
tuples to rec_prereq

The next slide shows a prereq relation

Each step of the iterative process constructs an extended
version of rec_prereq from its recursive definition.

The final result is called the fixed point of the recursive view
definition.

B Recursive views are required to be monotonic. That is,

if we add tuples to prereq the view rec_prereq contains all of
the tuples it contained before, plus possibly more

CS425 - Fall 2013 - Boris Glavic 556 @Silberschatz, Korth and Sudarshan

Example of Fixed-Point Computation

course_id | prereq_id
BIO-101
BIO-101
Cs-101
Cs-101
Cs-101
Cs-101
PHY-101

Iteration Number| Tuples in cl
0
1
2 (€S-301), (CS-201)
3 (CS-301), (CS-201)
4 (CS-301), (CS-201), (CS-101)
5 (C$-301), (C$-201), (CS-101)
Cs425 - Fall 2013 - Boris Glavic ss7 GSilberschatz, Korth and Sudarshan

Another Recursion Example

m Given relation
manager(employee_name, manager_name)

B Find all employee-manager pairs, where the employee reports to the
manager directly or indirectly (that is manager’ s manager, manager’ s
manager’ s manager, etc.)

with recursive empl (employee_name, manager_name) as (
select employee_name, manager_name
from manager
union
select manager.employee_name, empl.manager_name
from manager, empl
where manager.manager_name = empl.employe_name)

select *
from empl
This example view, empl, is the transitive closure of the manager
relation
©S425 - Fall 2013 - Boris Glavic 558 @Silberschatz, Korth and Sudarshan

Recap

W Programming Language Interfaces for Databases
Dynamic SQL (e.g., JDBC, ODBC)
Embedded SQL
SQL Injection

B Procedural Extensions of SQL
Functions and Procedures

B External Functions/Procedures
Written in programming language (e.g., C)

W Triggers
Events (insert, ...)

Conditions (WHEN)

per statement / per row

Accessing old/new table/row versions
B Recursive Queries

©8425 - Fall 2013 - Boris Glavic 5.59 @Silberschatz, Korth and Sudarshan

End of Chapter

modified from:

Database System Concepts, 6" Ed
@Silberschatz, Korth and Sudarshan

ee for conditions on re-use

10

Outline

Introduction

Relational Data Model

Formal Relational Languages (relational algebra)

SQL - Advanced

Database Design — ER model

Transaction Processing, Recovery, and Concurrency Control
Storage and File Structures

Indexing and Hashing

Query Processing and Optimization

©8425 - Fall 2013 - Boris Glavic 561 @Silberschatz, Korth and Sudarshan

11

