
1!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

CS425 – Fall 2013  
Boris Glavic  

Chapter 6: Advanced SQL!

©Silberschatz, Korth and Sudarshan!5.2!CS425 – Fall 2013 – Boris Glavic!

Chapter 6: Advanced SQL!

  Accessing SQL From a Programming Language !

  Dynamic SQL!
 JDBC and ODBC!

  Embedded SQL!
  Functions and Procedural Constructs!
  Triggers!

Textbook: Chapter 5!

©Silberschatz, Korth and Sudarshan!5.3!CS425 – Fall 2013 – Boris Glavic!

Accessing SQL From a Programming
Language !

©Silberschatz, Korth and Sudarshan!5.4!CS425 – Fall 2013 – Boris Glavic!

JDBC and ODBC!

  API (application-program interface) for a program to interact
with a database server!

  Application makes calls to!
  Connect with the database server!
  Send SQL commands to the database server!
  Fetch tuples of result one-by-one into program variables!

  ODBC (Open Database Connectivity) works with C, C++, C#,
and Visual Basic!
  Other API’s such as ADO.NET sit on top of ODBC!

  JDBC (Java Database Connectivity) works with Java!

©Silberschatz, Korth and Sudarshan!5.5!CS425 – Fall 2013 – Boris Glavic!

Native APIs!

  Most DBMS also define DBMS specific APIs!

  Oracle: OCI!
  Postgres: libpg!
!
…!

©Silberschatz, Korth and Sudarshan!5.6!CS425 – Fall 2013 – Boris Glavic!

JDBC!

  JDBC is a Java API for communicating with database systems
supporting SQL.!

  JDBC supports a variety of features for querying and updating
data, and for retrieving query results.!

  JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation attributes.!

  Model for communicating with the database:!
  Open a connection!
  Create a “statement” object!
  Execute queries using the Statement object to send queries

and fetch results!
  Exception mechanism to handle errors!

2!

©Silberschatz, Korth and Sudarshan!5.7!CS425 – Fall 2013 – Boris Glavic!

JDBC Code!

public static void JDBCexample(String dbid, String userid, String passwd) !
 { !

 try { !
 Class.forName ("oracle.jdbc.driver.OracleDriver"); // load driver!
 Connection conn = DriverManager.getConnection(// connect to server  

 "jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd); !
 Statement stmt = conn.createStatement(); // create Statement object!
 … Do Actual Work ….!
 stmt.close(); // close Statement and release resources !!
 conn.close(); // close Connection and release resources !!
 } ! !!
 catch (SQLException sqle) { ! !!
 System.out.println("SQLException : " + sqle); !// handle exceptions !!
 } ! !!

 }!

©Silberschatz, Korth and Sudarshan!5.8!CS425 – Fall 2013 – Boris Glavic!

JDBC Code (Cont.)!

  Update to database  
try {  
 stmt.executeUpdate( 
 "insert into instructor values(’77987’, ’Kim’, ’Physics’,
98000)"); 
} catch (SQLException sqle) 
{  
 System.out.println("Could not insert tuple. " + sqle); 
}!

  Execute query and fetch and print results!
 ResultSet rset = stmt.executeQuery( 

 "select dept_name, avg (salary) 
 from instructor  
 group by dept_name"); 
while (rset.next()) {  
 System.out.println(rset.getString("dept_name") + " " + 
 rset.getFloat(2)); 
}!

©Silberschatz, Korth and Sudarshan!5.9!CS425 – Fall 2013 – Boris Glavic!

JDBC Code Details !

  Result stores the current row position in the result!
  Pointing before the first row after executing the statement!
  .next() moves to the next tuple!

 Returns false if no more tuples!
  Getting result fields:!

  rs.getString(“dept_name”) and rs.getString(1)
equivalent if dept_name is the first attribute in select
result.!

  Dealing with Null values!
  int a = rs.getInt(“a”);!
 if (rs.wasNull()) Systems.out.println(“Got null value”);!

©Silberschatz, Korth and Sudarshan!5.10!CS425 – Fall 2013 – Boris Glavic!

Prepared Statement!

  PreparedStatement pStmt = conn.prepareStatement(
 "insert into instructor values(?,?,?,?)");
pStmt.setString(1, "88877"); pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance"); pStmt.setInt(4, 125000);
pStmt.executeUpdate();
pStmt.setString(1, "88878");
pStmt.executeUpdate();

  For queries, use pStmt.executeQuery(), which returns a ResultSet
  WARNING: always use prepared statements when taking an input

from the user and adding it to a query!
  NEVER create a query by concatenating strings which you

get as inputs!
  "insert into instructor values(’ " + ID + " ’, ’ " + name + " ’, " +

 " ’ + dept name + " ’, " ’ balance +
")“

  What if name is “D’Souza”?

©Silberschatz, Korth and Sudarshan!5.11!CS425 – Fall 2013 – Boris Glavic!

SQL Injection!

  Suppose query is constructed using!
  "select * from instructor where name = ’" + name + "’"!

  Suppose the user, instead of entering a name, enters:!
  X’ or ’Y’ = ’Y!

  then the resulting statement becomes:!
  "select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" +

"’"!
  which is:!

 select * from instructor where name = ’X’ or ’Y’ = ’Y’!
  User could have even used!

 X’; update instructor set salary = salary + 10000; --!
  Prepared statement internally uses: 

"select * from instructor where name = ’X\’ or \’Y\’ = \’Y’!
  Always use prepared statements, with user inputs as

parameters!
©Silberschatz, Korth and Sudarshan!5.12!CS425 – Fall 2013 – Boris Glavic!

Metadata Features!

  ResultSet metadata!
  E.g., after executing query to get a ResultSet rs:!

  ResultSetMetaData rsmd = rs.getMetaData();!
 for(int i = 1; i <= rsmd.getColumnCount(); i++) {!
 System.out.println(rsmd.getColumnName(i));!

 System.out.println(rsmd.getColumnTypeName(i));!
! }!

  How is this useful?!
!

3!

©Silberschatz, Korth and Sudarshan!5.13!CS425 – Fall 2013 – Boris Glavic!

Metadata (Cont)!

  Database metadata!
  DatabaseMetaData dbmd = conn.getMetaData();!
!ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");!
!// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,!
!// and Column-Pattern!
!// Returns: One row for each column; row has a number of attributes!
!// such as COLUMN_NAME, TYPE_NAME!
!while(rs.next()) {!
! System.out.println(rs.getString("COLUMN_NAME"),!

 rs.getString("TYPE_NAME");!
 }!
  And where is this useful?!

©Silberschatz, Korth and Sudarshan!5.14!CS425 – Fall 2013 – Boris Glavic!

Transaction Control in JDBC!

  By default, each SQL statement is treated as a separate
transaction that is committed automatically!
  bad idea for transactions with multiple updates!

  Can turn off automatic commit on a connection!
  conn.setAutoCommit(false);!

  Transactions must then be committed or rolled back explicitly!
  conn.commit(); or!
  conn.rollback();!

  conn.setAutoCommit(true) turns on automatic commit.!

©Silberschatz, Korth and Sudarshan!5.15!CS425 – Fall 2013 – Boris Glavic!

Other JDBC Features!

  Calling functions and procedures!
  CallableStatement cStmt1 = conn.prepareCall("{? = call some

function(?)}");!
  CallableStatement cStmt2 = conn.prepareCall("{call some

procedure(?,?)}");!
  Handling large object types!

  getBlob() and getClob() that are similar to the getString()
method, but return objects of type Blob and Clob, respectively!

  get data from these objects by getBytes()!
  associate an open stream with Java Blob or Clob object to

update large objects!
 blob.setBlob(int parameterIndex, InputStream inputStream).!

©Silberschatz, Korth and Sudarshan!5.16!CS425 – Fall 2013 – Boris Glavic!

SQLJ!

  JDBC is overly dynamic, errors cannot be caught by compiler!
  SQLJ: embedded SQL in Java!

  #sql iterator deptInfoIter (String dept name, int avgSal);!
!deptInfoIter iter = null;!
!#sql iter = { select dept_name, avg(salary) from instructor!
! ! ! group by dept name };!
!while (iter.next()) {!
! ! String deptName = iter.dept_name();!
! int avgSal = iter.avgSal();!
! System.out.println(deptName + " " + avgSal);!
!}!
!iter.close();!

©Silberschatz, Korth and Sudarshan!5.17!CS425 – Fall 2013 – Boris Glavic!

ODBC!

  Open DataBase Connectivity(ODBC) standard !

  standard for application program to communicate with a
database server.!

  application program interface (API) to !
 open a connection with a database, !
 send queries and updates, !
 get back results.!

  Applications such as GUI, spreadsheets, etc. can use ODBC!
  Was defined originally for Basic and C, versions available for

many languages.!
!

©Silberschatz, Korth and Sudarshan!5.18!CS425 – Fall 2013 – Boris Glavic!

ODBC (Cont.)!

  Each database system supporting ODBC provides a "driver"
library that must be linked with the client program.!

  When client program makes an ODBC API call, the code in the
library communicates with the server to carry out the requested
action, and fetch results.!

  ODBC program first allocates an SQL environment, then a
database connection handle.!

  Opens database connection using SQLConnect(). Parameters for
SQLConnect:!
  connection handle,!
  the server to which to connect!
  the user identifier, !
  password !

  Must also specify types of arguments:!
  SQL_NTS denotes previous argument is a null-terminated string.!

4!

©Silberschatz, Korth and Sudarshan!5.19!CS425 – Fall 2013 – Boris Glavic!

ODBC Code!

  int ODBCexample()!
!{!

 RETCODE error;!
 HENV env; /* environment */ !
 HDBC conn; /* database connection */ !
 SQLAllocEnv(&env);!
 SQLAllocConnect(env, &conn);!
 SQLConnect(conn, “db.yale.edu", SQL_NTS, "avi", SQL_NTS,

"avipasswd", SQL_NTS); !
 { …. Do actual work … }!
!
 SQLDisconnect(conn); !
 SQLFreeConnect(conn); !
 SQLFreeEnv(env); !

 }!

©Silberschatz, Korth and Sudarshan!5.20!CS425 – Fall 2013 – Boris Glavic!

ODBC Code (Cont.)!
  Program sends SQL commands to database by using SQLExecDirect!
  Result tuples are fetched using SQLFetch()!
  SQLBindCol() binds C language variables to attributes of the query

result !
  When a tuple is fetched, its attribute values are automatically stored in

corresponding C variables.!
  Arguments to SQLBindCol()!

 ODBC stmt variable, attribute position in query result!
 The type conversion from SQL to C. !
 The address of the variable. !
 For variable-length types like character arrays, !
–  The maximum length of the variable !
–  Location to store actual length when a tuple is fetched.!
–  Note: A negative value returned for the length field indicates null

value!
  Good programming requires checking results of every function call for

errors; we have omitted most checks for brevity.!

©Silberschatz, Korth and Sudarshan!5.21!CS425 – Fall 2013 – Boris Glavic!

ODBC Code (Cont.)!
  Main body of program!

 char deptname[80]; 
float salary; 
int lenOut1, lenOut2;  
HSTMT stmt; 
char * sqlquery = "select dept_name, sum (salary) 
 from instructor 
 group by dept_name"; 
SQLAllocStmt(conn, &stmt); 
error = SQLExecDirect(stmt, sqlquery, SQL_NTS); 
if (error == SQL SUCCESS) { 
 SQLBindCol(stmt, 1, SQL_C_CHAR, deptname , 80, &lenOut1); 
 SQLBindCol(stmt, 2, SQL_C_FLOAT, &salary, 0 , &lenOut2); 
 while (SQLFetch(stmt) == SQL_SUCCESS) { 
 printf (" %s %g\n", deptname, salary); 
 } 
} 
SQLFreeStmt(stmt, SQL_DROP);!

©Silberschatz, Korth and Sudarshan!5.22!CS425 – Fall 2013 – Boris Glavic!

ODBC Prepared Statements!

  Prepared Statement!
  SQL statement prepared: compiled at the database!
  Can have placeholders: E.g. insert into account values(?,?,?)!
  Repeatedly executed with actual values for the placeholders!

  To prepare a statement 
 SQLPrepare(stmt, <SQL String>);!

  To bind parameters  
 SQLBindParameter(stmt, <parameter#>,  
 … type information and value omitted for simplicity..)!

  To execute the statement 
 retcode = SQLExecute(stmt); !

  To avoid SQL injection security risk, do not create SQL strings
directly using user input; instead use prepared statements to bind
user inputs!

©Silberschatz, Korth and Sudarshan!5.23!CS425 – Fall 2013 – Boris Glavic!

More ODBC Features!
  Metadata features!

  finding all the relations in the database and!
  finding the names and types of columns of a query result or a

relation in the database.!
  By default, each SQL statement is treated as a separate

transaction that is committed automatically.!
  Can turn off automatic commit on a connection!

 SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)} !
  Transactions must then be committed or rolled back explicitly by !

 SQLTransact(conn, SQL_COMMIT) or!
 SQLTransact(conn, SQL_ROLLBACK)!

©Silberschatz, Korth and Sudarshan!5.24!CS425 – Fall 2013 – Boris Glavic!

ODBC Conformance Levels!

  Conformance levels specify subsets of the functionality defined
by the standard.!
  Core!
  Level 1 requires support for metadata querying!
  Level 2 requires ability to send and retrieve arrays of

parameter values and more detailed catalog information.!
  SQL Call Level Interface (CLI) standard similar to ODBC

interface, but with some minor differences.!

5!

©Silberschatz, Korth and Sudarshan!5.25!CS425 – Fall 2013 – Boris Glavic!

ADO.NET!

  API designed for Visual Basic .NET and C#, providing database access
facilities similar to JDBC/ODBC!
  Partial example of ADO.NET code in C#  

using System, System.Data, System.Data.SqlClient;  
SqlConnection conn = new SqlConnection( 
 “Data Source=<IPaddr>, Initial Catalog=<Catalog>”); 
conn.Open(); 
SqlCommand cmd = new SqlCommand(“select * from students”,  
 conn); 
SqlDataReader rdr = cmd.ExecuteReader(); 
while(rdr.Read()) { 
 Console.WriteLine(rdr[0], rdr[1]); /* Prints result attributes 1 & 2 */ 
} 
rdr.Close(); conn.Close();!

  Can also access non-relational data sources such as !
  OLE-DB, XML data, Entity framework!

©Silberschatz, Korth and Sudarshan!5.26!CS425 – Fall 2013 – Boris Glavic!

Dynamic vs. Embedded SQL!

Dynamic SQL! Embedded SQL!

code!

DBMS!

Compiler!

Library!

binary!

Code with embeded SQL!

DBMS!

Preprocessor!

Library!

code!

Compiler!

binary!

©Silberschatz, Korth and Sudarshan!5.27!CS425 – Fall 2013 – Boris Glavic!

Embedded SQL!

  The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, Java, and Cobol.!

  A language to which SQL queries are embedded is referred to as
a host language, and the SQL structures permitted in the host
language comprise embedded SQL.!

  The basic form of these languages follows that of the System R
embedding of SQL into PL/I.!

  EXEC SQL statement is used to identify embedded SQL request
to the preprocessor!
! !EXEC SQL <embedded SQL statement > END_EXEC!

!
!Note: this varies by language (for example, the Java embedding
uses # SQL { …. };) !

©Silberschatz, Korth and Sudarshan!5.28!CS425 – Fall 2013 – Boris Glavic!

Example Query!

  Specify the query in SQL and declare a cursor for it!
 EXEC SQL!
! declare c cursor for  
 select ID, name  
 from student 
 where tot_cred > :credit_amount"

 END_EXEC!
!

  From within a host language, find the ID and name of
students who have completed more than the number of
credits stored in variable credit_amount.!

©Silberschatz, Korth and Sudarshan!5.29!CS425 – Fall 2013 – Boris Glavic!

Embedded SQL (Cont.)!

  The open statement causes the query to be evaluated!
! !EXEC SQL open c END_EXEC!

  The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.!
! !EXEC SQL fetch c into :si, :sn END_EXEC  
Repeated calls to fetch get successive tuples in the query result!

  A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000’ to indicate no more data is
available!

  The close statement causes the database system to delete the
temporary relation that holds the result of the query.!
! !EXEC SQL close c END_EXEC!

 Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.!

©Silberschatz, Korth and Sudarshan!5.30!CS425 – Fall 2013 – Boris Glavic!

Updates Through Cursors!

  Can update tuples fetched by cursor by declaring that the cursor
is for update!

 declare c cursor for  
 select *  
 from instructor 
 where dept_name = ‘Music’ 
 for update!

  To update tuple at the current location of cursor c!
 update instructor 

 set salary = salary + 100  
 where current of c"

!

6!

©Silberschatz, Korth and Sudarshan!5.31!CS425 – Fall 2013 – Boris Glavic!

Procedural Constructs in SQL!

©Silberschatz, Korth and Sudarshan!5.32!CS425 – Fall 2013 – Boris Glavic!

Procedural Extensions and Stored Procedures!

  SQL provides a module language !

  Permits definition of procedures in SQL, with if-then-else
statements, for and while loops, etc.!

  Stored Procedures!
  Can store procedures in the database !

  then execute them using the call statement!
  permit external applications to operate on the database

without knowing about internal details!
  Object-oriented aspects of these features are covered in Chapter

22 (Object Based Databases) in the textbook!

©Silberschatz, Korth and Sudarshan!5.33!CS425 – Fall 2013 – Boris Glavic!

Why have procedural extensions?!

  Shipping data between a database server and application
program (e.g., through network connection) is costly!

  Converting data from the database internal format into a format
understood by the application programming language is costly!

  Example:!
  Use Java to retrieve all users and their friend-relationships from a

friends relation representing a world-wide social network with
10,000,000 users!

  Compute the transitive closure!
 All pairs of users connects through a path of friend relationships.

E.g., (Peter, Magret) if Peter is a friend of Walter who is a friend
of Magret!

  Return pairs of users from Chicago – say 4000 pairs!
  1) cannot be expressed (efficiently) as SQL query, 2) result is small!

  -> save by executing this on the DB server!

©Silberschatz, Korth and Sudarshan!5.34!CS425 – Fall 2013 – Boris Glavic!

Functions and Procedures!

  SQL:1999 supports functions and procedures!
  Functions/procedures can be written in SQL itself, or in an

external programming language.!
  Functions are particularly useful with specialized data types such

as images and geometric objects.!
 Example: functions to check if polygons overlap, or to

compare images for similarity.!
  Some database systems support table-valued functions, which

can return a relation as a result.!
  SQL:1999 also supports a rich set of imperative constructs, including!

  Loops, if-then-else, assignment!
  Many databases have proprietary procedural extensions to SQL that

differ from SQL:1999.!

©Silberschatz, Korth and Sudarshan!5.35!CS425 – Fall 2013 – Boris Glavic!

SQL Functions!

  Define a function that, given the name of a department, returns
the count of the number of instructors in that department.!

 create function dept_count (dept_name varchar(20)) 
 returns integer  
 begin 
 declare d_count integer; 
 select count (*) into d_count 
 from instructor 
 where instructor.dept_name = dept_name; 
 return d_count; 
 end!

  Find the department name and budget of all departments with
more that 12 instructors.!
! !select dept_name, budget 

"from department 
"where dept_count (dept_name) > 1"

©Silberschatz, Korth and Sudarshan!5.36!CS425 – Fall 2013 – Boris Glavic!

Table Functions!
  SQL:2003 added functions that return a relation as a result!
  Example: Return all accounts owned by a given customer!
!create function instructors_of (dept_name char(20)!
! !returns table (!ID varchar(5), 

! ! !name varchar(20), 
 dept_name varchar(20), 

! ! !salary numeric(8,2))!
!return table  

!(select ID, name, dept_name, salary 
! from instructor 
! where instructor.dept_name = instructors_of.dept_name)!

  Usage!
! !select *  

!from table (instructors_of (‘Music’))!

7!

©Silberschatz, Korth and Sudarshan!5.37!CS425 – Fall 2013 – Boris Glavic!

SQL Procedures!
  The dept_count function could instead be written as procedure:!
!create procedure dept_count_proc (in dept_name varchar(20),  
 out d_count integer) 
begin!
! select count(*) into d_count 
 from instructor 
 where instructor.dept_name = dept_count_proc.dept_name"

 end!
  Procedures can be invoked either from an SQL procedure or from

embedded SQL, using the call statement.!
! !declare d_count integer; 

!call dept_count_proc(‘Physics’, d_count);!
!Procedures and functions can be invoked also from dynamic SQL!

  SQL:1999 allows more than one function/procedure of the same
name (called name overloading), as long as the number of  
arguments differ, or at least the types of the arguments differ!

©Silberschatz, Korth and Sudarshan!5.38!CS425 – Fall 2013 – Boris Glavic!

Procedural Constructs!

  Warning: most database systems implement their own variant of the
standard syntax below

  read your system manual to see what works on your system

  Compound statement: begin … end,

  May contain multiple SQL statements between begin and end.

  Local variables can be declared within a compound statements

  While and repeat statements :

 declare n integer default 0;
 while n < 10 do

 set n = n + 1
 end while

 repeat
 set n = n – 1

 until n = 0
 end repeat

©Silberschatz, Korth and Sudarshan!5.39!CS425 – Fall 2013 – Boris Glavic!

Procedural Constructs (Cont.)!

  For loop
  Permits iteration over all results of a query
  Example:

 declare n integer default 0;  
 for r as  
 select budget from department 
 where dept_name = ‘Music’ 
 do 
! set n = n - r.budget  

 end for!

©Silberschatz, Korth and Sudarshan!5.40!CS425 – Fall 2013 – Boris Glavic!

Procedural Constructs (cont.)!

  Conditional statements (if-then-else) 
SQL:1999 also supports a case statement similar to C case statement!

  Example procedure: registers student after ensuring classroom capacity
is not exceeded!
  Returns 0 on success and -1 if capacity is exceeded!
  See book for details!

  Signaling of exception conditions, and declaring handlers for exceptions!
! !declare out_of_classroom_seats condition 

!declare exit handler for out_of_classroom_seats 
"begin 
!… 

 .. signal out_of_classroom_seats 
!end!

  The handler here is exit -- causes enclosing begin..end to be exited!
  Other actions possible on exception!

©Silberschatz, Korth and Sudarshan!5.41!CS425 – Fall 2013 – Boris Glavic!

External Language Functions/Procedures!

  SQL:1999 permits the use of functions and procedures written in
other languages such as C or C++ !

  Declaring external language procedures and functions 
!
!create procedure dept_count_proc(in dept_name varchar(20), 
 out count integer) 
language C  
external name ’ /usr/avi/bin/dept_count_proc’ 
 
create function dept_count(dept_name varchar(20)) 
returns integer 
language C  
external name ‘/usr/avi/bin/dept_count’!

!

©Silberschatz, Korth and Sudarshan!5.42!CS425 – Fall 2013 – Boris Glavic!

External Language Routines (Cont.)!

  Benefits of external language functions/procedures: !
  more efficient for many operations, and more expressive

power.!
  Drawbacks!

  Code to implement function may need to be loaded into
database system and executed in the database system’s
address space.!
 risk of accidental corruption of database structures!
 security risk, allowing users access to unauthorized data!

  There are alternatives, which give good security at the cost of
potentially worse performance.!

  Direct execution in the database system’s space is used
when efficiency is more important than security.!

8!

©Silberschatz, Korth and Sudarshan!5.43!CS425 – Fall 2013 – Boris Glavic!

Security with External Language Routines!

  To deal with security problems!
  Use sandbox techniques!

 E.g., use a safe language like Java, which cannot be
used to access/damage other parts of the database
code.!

  Or, run external language functions/procedures in a
separate process, with no access to the database process’
memory.!
 Parameters and results communicated via inter-process

communication!
  Both have performance overheads!
  Many database systems support both above approaches as

well as direct executing in database system address space.!

©Silberschatz, Korth and Sudarshan!5.44!CS425 – Fall 2013 – Boris Glavic!

Triggers!

©Silberschatz, Korth and Sudarshan!5.45!CS425 – Fall 2013 – Boris Glavic!

Triggers!

  A trigger is a statement that is executed automatically by
the system as a side effect of a modification to the
database.!

  To design a trigger mechanism, we must:!
  Specify the conditions under which the trigger is to be

executed.!
  Specify the actions to be taken when the trigger

executes.!
  Triggers introduced to SQL standard in SQL:1999, but

supported even earlier using non-standard syntax by
most databases. ! !!

  Syntax illustrated here may not work exactly on your
database system; check the system manuals!

©Silberschatz, Korth and Sudarshan!5.46!CS425 – Fall 2013 – Boris Glavic!

Trigger Example !

  E.g. time_slot_id is not a primary key of timeslot, so we cannot
create a foreign key constraint from section to timeslot."

  Alternative: use triggers on section and timeslot to enforce integrity
constraints!

 create trigger timeslot_check1 after insert on section  
referencing new row as nrow  
for each row 
when (nrow.time_slot_id not in ( 
 select time_slot_id 
 from time_slot)) /* time_slot_id not present in time_slot */  
begin 
 rollback 
end;!

©Silberschatz, Korth and Sudarshan!5.47!CS425 – Fall 2013 – Boris Glavic!

Trigger Example Cont.!

create trigger timeslot_check2 after delete on timeslot 
referencing old row as orow  
for each row 
when (orow.time_slot_id not in ( 
 select time_slot_id 
 from time_slot)  
 /* last tuple for time slot id deleted from time slot */ 
 and orow.time_slot_id in ( 
 select time_slot_id 
 from section)) /* and time_slot_id still referenced from section*/  
begin 
 rollback 
end;!

©Silberschatz, Korth and Sudarshan!5.48!CS425 – Fall 2013 – Boris Glavic!

Triggering Events and Actions in SQL!

  Triggering event can be insert, delete or update!
  Triggers on update can be restricted to specific attributes!

  E.g., after update of takes on grade"
  Values of attributes before and after an update can be

referenced!
  referencing old row as : for deletes and updates!
  referencing new row as : for inserts and updates!

  Triggers can be activated before an event, which can serve as
extra constraints. E.g. convert blank grades to null.!

 ! !create trigger setnull_trigger before update of takes 
!referencing new row as nrow  
!for each row 
!when (nrow.grade = ‘ ‘) 

 begin atomic  
! set nrow.grade = null; 

 end;!
 !
 !

9!

©Silberschatz, Korth and Sudarshan!5.49!CS425 – Fall 2013 – Boris Glavic!

Trigger to Maintain credits_earned value!

  create trigger credits_earned after update of takes on
(grade) 
referencing new row as nrow  
referencing old row as orow  
for each row 
when nrow.grade <> ’F’ and nrow.grade is not null 
 and (orow.grade = ’F’ or orow.grade is null) 
begin atomic  
 update student 
 set tot_cred= tot_cred +  
 (select credits 
 from course  
 where course.course_id= nrow.course_id) 
 where student.id = nrow.id; 
end;!

©Silberschatz, Korth and Sudarshan!5.50!CS425 – Fall 2013 – Boris Glavic!

Statement Level Triggers!

  Instead of executing a separate action for each affected
row, a single action can be executed for all rows affected by
a transaction!
  Use for each statement instead of for each

row!
  Use referencing old table or referencing new

table to refer to temporary tables (called transition
tables) containing the affected rows!

  Can be more efficient when dealing with SQL
statements that update a large number of rows!

©Silberschatz, Korth and Sudarshan!5.51!CS425 – Fall 2013 – Boris Glavic!

When Not To Use Triggers!

  Triggers were used earlier for tasks such as !
  maintaining summary data (e.g., total salary of each department)!
  Replicating databases by recording changes to special relations

(called change or delta relations) and having a separate process
that applies the changes over to a replica !

  There are better ways of doing these now:!
  Databases today provide built in materialized view facilities to

maintain summary data!
  Databases provide built-in support for replication!

  Encapsulation facilities can be used instead of triggers in many cases!
  Define methods to update fields!
  Carry out actions as part of the update methods instead of  

through a trigger !

©Silberschatz, Korth and Sudarshan!5.52!CS425 – Fall 2013 – Boris Glavic!

When Not To Use Triggers!

  Risk of unintended execution of triggers, for example, when!
  loading data from a backup copy!
  replicating updates at a remote site!
  Trigger execution can be disabled before such actions.!

  Other risks with triggers:!
  Error leading to failure of critical transactions that set off the

trigger!
  Cascading execution!

©Silberschatz, Korth and Sudarshan!5.53!CS425 – Fall 2013 – Boris Glavic!

Recursive Queries!

©Silberschatz, Korth and Sudarshan!5.54!CS425 – Fall 2013 – Boris Glavic!

Recursion in SQL!
  SQL:1999 permits recursive view definition!
  Example: find which courses are a prerequisite, whether

directly or indirectly, for a specific course  
with recursive rec_prereq(course_id, prereq_id) as ( 
 select course_id, prereq_id  
 from prereq  
 union 
 select rec_prereq.course_id, prereq.prereq_id,  
 from rec_rereq, prereq  
 where rec_prereq.prereq_id = prereq.course_id  
) 
select ∗ 
from rec_prereq;!
"This example view, rec_prereq, is called the transitive closure
of the prereq relation!

10!

©Silberschatz, Korth and Sudarshan!5.55!CS425 – Fall 2013 – Boris Glavic!

The Power of Recursion!

  Recursive views make it possible to write queries, such as
transitive closure queries, that cannot be written without recursion
or iteration.!
  Intuition: Without recursion, a non-recursive non-iterative

program can perform only a fixed number of joins of prereq
with itself!
 This can give only a fixed number of levels of managers!
 Given a fixed non-recursive query, we can construct a

database with a greater number of levels of prerequisites on
which the query will not work!

 Alternative: write a procedure to iterate as many times as
required!
–  See procedure findAllPrereqs in book!

©Silberschatz, Korth and Sudarshan!5.56!CS425 – Fall 2013 – Boris Glavic!

The Power of Recursion!

  Computing transitive closure using iteration, adding successive
tuples to rec_prereq"
  The next slide shows a prereq relation!
  Each step of the iterative process constructs an extended

version of rec_prereq from its recursive definition. !
  The final result is called the fixed point of the recursive view

definition.!
  Recursive views are required to be monotonic. That is, !

  if we add tuples to prereq the view rec_prereq contains all of
the tuples it contained before, plus possibly more!

©Silberschatz, Korth and Sudarshan!5.57!CS425 – Fall 2013 – Boris Glavic!

Example of Fixed-Point Computation!

©Silberschatz, Korth and Sudarshan!5.58!CS425 – Fall 2013 – Boris Glavic!

Another Recursion Example!

  Given relation  
 manager(employee_name, manager_name)!

  Find all employee-manager pairs, where the employee reports to the
manager directly or indirectly (that is manager’s manager, manager’s
manager’s manager, etc.) 
 with recursive empl (employee_name, manager_name) as ( 
 select employee_name, manager_name  
 from manager 
 union 
 select manager.employee_name, empl.manager_name 
 from manager, empl  
 where manager.manager_name = empl.employe_name) 
 select *  
 from empl"
"This example view, empl, is the transitive closure of the manager
relation!

©Silberschatz, Korth and Sudarshan!5.59!CS425 – Fall 2013 – Boris Glavic!

Recap!

  Programming Language Interfaces for Databases!
  Dynamic SQL (e.g., JDBC, ODBC)!
  Embedded SQL!
  SQL Injection!

  Procedural Extensions of SQL!
  Functions and Procedures!

  External Functions/Procedures!
  Written in programming language (e.g., C)!

  Triggers!
  Events (insert, …)!
  Conditions (WHEN)!
  per statement / per row!
  Accessing old/new table/row versions!

  Recursive Queries!
modified from:!

Database System Concepts, 6th Ed.!
©Silberschatz, Korth and Sudarshan 

See www.db-book.com for conditions on re-use !

End of Chapter!

11!

©Silberschatz, Korth and Sudarshan!5.61!CS425 – Fall 2013 – Boris Glavic!

Outline!

  Introduction!
  Relational Data Model!
  Formal Relational Languages (relational algebra)!
  SQL - Advanced!
  Database Design – ER model!
  Transaction Processing, Recovery, and Concurrency Control!
  Storage and File Structures!
  Indexing and Hashing!
  Query Processing and Optimization!

