

CS425 – Fall 2014 Boris Glavic Chapter 2: Intro to Relational Model

Modifies from: Database System Concepts, 6th Ed. ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Example of a Relation

	+			attributes (or columns)
ID	name	dept_name	salary	
10101	Srinivasan	Comp. Sci.	65000	
12121	Wu	Finance	90000	tuples
15151	Mozart	Music	40000	(or rows)
22222	Einstein	Physics	95000	r
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	
				-

CS425 - Fall 2014 - Boris Glavic

CS425 - Fall 2014 - Boris Glavic

ST.

Attribute Types

2.2

berschatz, Korth and Sudarshar

- The set of allowed values for each attribute is called the domain or data type of the attribute
- Attribute values are (normally) required to be atomic; that is, indivisible
 - E.g., integer values
 - E.g., not address (street, city, zip code, state, country)
- The special value *null* is a member of every domain
 - Means unknown or not applicable
- The null value causes complications in the definition of many operations

2.4

Will be detailed later

CS425 - Fall 2014 - Boris Glavic

Relation Schema and Instance

2.3

A₁, A₂, ..., A_n are attributes names

Example:

CS425 - Fall 2014 - Boris Glavic

 $\blacksquare R = (A_1, A_2, ..., A_n) \text{ is a relation schema}$

Theory 2

©Silberschatz, Korth and Sudarshan

schatz, Korth and Sudarshan

instructor = (ID, name, dept_name, salary)

- Formally, given sets D₁, D₂, ..., D_n of domains a relation r (or relation instance) is a subset of
- $D_1 \ge D_2 \ge \dots \ge D_n$ Thus, a relation is a **set** of *n*-tuples $(a_1, a_2, ..., a_n)$ where each $a_i \in D_i$
- The current values (relation instance) of a relation are often specified in tabular form

2.5

- Caveat: being a set, the tuples of the relation do not have any order defined as implied by the tabular representation
- An element t of r is a tuple, represented as a row in a table

Alternative Definitions

- A relation schema is often defined as a list of attribute-domain pairs
 That is the data types of each attribute in the relation are considered as part of the relation schema
- Tuples are sometimes defined as functions from attribute names to values (order of attributes does not matter)

2.6

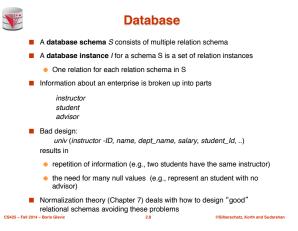
- A relation r can be specified as a function
 - D₁ x D₂ x ... x D_n -> {true, false}
 t = (a₁, a₂, ..., a_n) is mapped to true if t is in r and to false otherwise
- These alternative definition are useful in database theory
 We will stick to the simple definition!

©Silberschatz, Korth and Sudarshar

CS425 - Fall 2014 - Boris Glavic

©Silberschatz, Korth and Suc

Relations are Unordered


A relation is a set -> the elements of a set are not ordered per se

From a pratical perspective:

Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

Example: instructor relation with unordered tuples

	ID	name	dept_name	salary
	22222	Einstein	Physics	95000
	12121	Wu	Finance	90000
	32343	El Said	History	60000
	45565	Katz	Comp. Sci.	75000
	98345	Kim	Elec. Eng.	80000
	76766	Crick	Biology	72000
	10101	Srinivasan	Comp. Sci.	65000
	58583	Califieri	History	62000
	83821	Brandt	Comp. Sci.	92000
	15151	Mozart	Music	40000
	33456	Gold	Physics	87000
	76543	Singh	Finance	80000
CS425 - Fall 2014 - Boris Glavic			2.7	

Bad Design Example Revisited

- **Example:** Changing the budget of the 'Physics' department
 - Updates to many rows!
 - Easy to break integrity
 - If we forget to update a row, then we have multiple budget values for the physics department!
- Example: Deleting all employees from the 'Physics' department
 How to avoid deleting the 'Physics' department?
 - Dummy employee's to store departments?
 - This is bad. E.g., counting the number of employees per
 - Inis is bad. E.g., counting the number of employees per department becomes more involved

ID	22414K	salary	white and	Initing	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	1200X

CS425 - Fall 2014 - Boris Glavic

- Formally, a set of attributes $\mathsf{K}\subseteq\mathsf{R}$ is a superkey if for every instance r of R holds that
- $\forall t, t' \in r: t.K = t'.K \Rightarrow t = t'$
- A superkey K is called a candidate key iff
- ♦ K' ⊆ K: K' is not a superkey
- A foreign key constraint FK is quartuple (R, K, R', K') where R and R' are relation schemata, $K \subseteq R$, K' is the primary key of R', and IKI = IK'I
- A foreign key holds over an instance {r, r'} for {R,R'} iff
 - $\forall t \in R: \exists t' \in R': t.K = t'.K'$

2.11

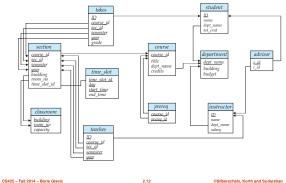
hatz, Korth and Suda

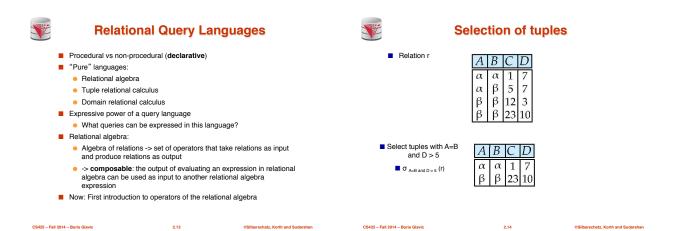
Keys

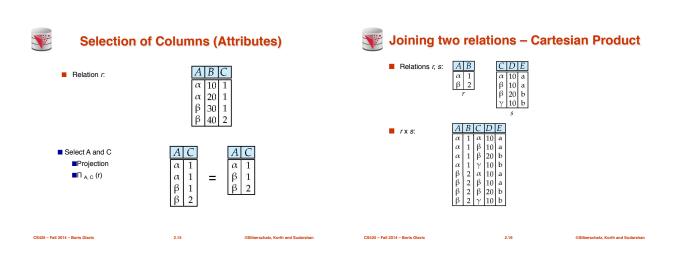
Let K ⊆ R

- K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
 - Example: {ID} and {ID,name} are both superkeys of instructor.
- Superkey K is a candidate key if K is minimal (no subset of K is also a superkey)
- Example: {*ID*} is a candidate key for *Instructor*
- One of the candidate keys is selected to be the primary key.
 which one? -> domain specific design choice
- Foreign key constraint: Value in one relation must appear in another

2.10


- Referencing relation
- Referenced relation


CS425 - Fall 2014 - Boris Glavic


©Silberschatz, Korth and Sudarsha

Schema Diagram for University Database

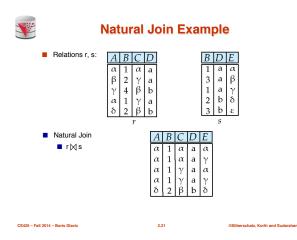
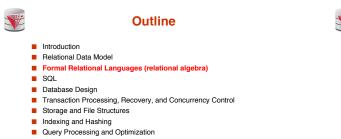


	Figure in-2.1	
Symbol (Name)	Example of Use	
σ (Calculing)	σ salary>=85000 (instructor)	
(Selection)	Return rows of the input relation that satisfy the predicate.	
П	II 1D, salary (instructor)	
(Projection)	Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output.	
	instructor 🖂 department	
(Natural Join)	Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.	
×	instructor × department	
(Cartesian Product)	Output all pairs of rows from the two input relations (regardless of whether or not they have the same values on common attributes)	
U (Union)	$\Pi_{name}(instructor) \cup \Pi_{name}(student)$	
(entori)	Output the union of tuples from the two input relations.	
014 – Boris Glavic	2.22 ©Silberschatz, Kr	

End of (Chapter 2
----------	-----------

Modifies from: Database System Concepts, 6th Ed. ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Recap


- Database Schema (or short schema)
 Set of relation schemata

 List of attribute names
- Database Instance (or short database)
 Set of relations instances
 - Set of tuples
 - List of attribute values
- Integrity Constraints
 - Keys (Super-, Candidate-, Primary-)
 For identifying tuples
 - For identifying
 Foreign keys
 - For referencing tuples in other relations
- Query language

CS425 - Fall 2014 - Boris Glavic

- Declarative
- Retrieve, combine, and analyze data from a database instance

2.24 ©Silberschatz, Korth and Sudarshan

CS425 - Fall 2014 - Boris Glavic

Figure 2.01

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

	Figure 2	2.02		
course_id	title	dept_name	credits	
BIO-101	Intro. to Biology	Biology	4	
BIO-301	Genetics	Biology	4	
BIO-399	Computational Biology	Biology	3	

OSilb

schatz, Korth and Sudarshan

©Silberschatz, Korth and Sudarshan

©Silberschatz, Korth and Sudarshan

BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	4

2.25

CS425 - Fall 2014 - Boris Glavic

Figure 2.03

2.26

©Silberschatz, Korth and Sudarshan

©Silberschatz, Korth and Sudarshan

©Silberschatz, Korth and Sudarshan

course_id	prereq_id
BIO-301	BIO-101
BIO-399	BIO-101
CS-190	CS-101
CS-315	CS-101
CS-319	CS-101
CS-347	CS-101
EE-181	PHY-101

S

CS425 - Fall 2014 - Boris Glavic

CS425 - Fall 2014 - Boris Glavic

Figure 2.04

2.27

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

2.29

CS425 - Fall 2014 - Boris Glavic

CS425 - Fall 2014 - Boris Glavic

Figure 2.05

2.28

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

2.30

	Figure 2.06							
	course_id	sec_id	semester	year	building	room_number]
	BIO-101 BIO-301 CS-101 CS-101 CS-190	1 1 1 1	Summer Summer Fall Spring Spring	2009 2010 2009 2010 2009	Painter Painter Packard Packard Taylor	514 514 101 101 3128	B A H F E	
	CS-190 CS-315 CS-319 CS-319	2 1 1 2	Spring Spring Spring Spring	2009 2010 2010 2010	Taylor Watson Watson Taylor	3128 120 100 3128	A D B C	
	CS-347 EE-181 FIN-201 HIS-351 MU-199	1 1 1 1	Fall Spring Spring Spring Spring	2009 2009 2010 2010 2010	Taylor Taylor Packard Painter Packard	3128 3128 101 514 101	A C B C D	
	PHY-101 1 Fall 2009 Watson 100 A							
CS425 - Fall 2014 - Boris Glavic			2.31			©Silberschat	z, Korth and Sudarshan	
S			Fi	gur	e 2.1	0		

S

CS425 - Fall 2014 - Boris Glavic

Figure 2.07

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

<image><image><image><image><image><image><image><image><image><image><image><image><image><image><image>

©Silberschatz, Korth and Sudarshan

Figure 2.11

2.32

©Silberschatz, Korth and Sudarshan

©Silberschatz, Korth and Sudarshan

©Silberschatz, Korth and Sudarshan

ID	salary
10101	65000
12121	90000
15151	40000
22222	95000
32343	60000
33456	87000
45565	75000
58583	62000
76543	80000
76766	72000
83821	92000
98345	80000

V

CS425 - Fall 2014 - Boris Glavic

Figure 2.12

ID	name	salary	dept_name	building	budget
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
12121	Wu	90000	Finance	Painter	120000
15151	Mozart	40000	Music	Packard	80000
22222	Einstein	95000	Physics	Watson	70000
32343	El Said	60000	History	Painter	50000
33456	Gold	87000	Physics	Watson	70000
45565	Katz	75000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
76543	Singh	80000	Finance	Painter	120000
76766	Crick	72000	Biology	Watson	90000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000

2.35

CS425 - Fall 2014 - Boris Glavic

Figure 2.13

2.34

ID	salary
12121	90000
22222	95000
33456	87000
83821	92000

2.36