
1!

Modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

CS425 – Fall 2014  
Boris Glavic  

Chapter 1: Introduction !

©Silberschatz, Korth and Sudarshan!1.2!CS425 – Fall 2014 – Boris Glavic!

Textbook: Chapter 1!

©Silberschatz, Korth and Sudarshan!1.3!CS425 – Fall 2014 – Boris Glavic!

Database Management System (DBMS)!

■  DBMS contains information about a particular domain!
●  Collection of interrelated data!
●  Set of programs to access the data !
●  An environment that is both convenient and efficient to use!

■  Database Applications:!
●  Banking: transactions!
●  Airlines: reservations, schedules!
●  Universities: registration, grades!
●  Sales: customers, products, purchases!
●  Online retailers: order tracking, customized recommendations!
●  Manufacturing: production, inventory, orders, supply chain!
●  Human resources: employee records, salaries, tax deductions!

■  Databases can be very large.!
■  Databases touch all aspects of our lives!

©Silberschatz, Korth and Sudarshan!1.4!CS425 – Fall 2014 – Boris Glavic!

University Database Example!

■  Application program examples!
●  Add new students, instructors, and courses!
●  Register students for courses, and generate class rosters!
●  Assign grades to students, compute grade point averages (GPA)

and generate transcripts!
■  In the early days, database applications were built directly on top of

file systems!

©Silberschatz, Korth and Sudarshan!1.5!CS425 – Fall 2014 – Boris Glavic!

Drawbacks of using file systems to store data!

!
●  Data redundancy and inconsistency!

! Multiple file formats, duplication of information in different files!
●  Difficulty in accessing data !

! Need to write a new program to carry out each new task!
●  Data isolation — multiple files and formats!
●  Integrity problems!

!  Integrity constraints (e.g., account balance > 0) become
“buried” in program code rather than being stated explicitly!

! Hard to add new constraints or change existing ones!

©Silberschatz, Korth and Sudarshan!1.6!CS425 – Fall 2014 – Boris Glavic!

Drawbacks of using file systems to store data (Cont.)!

!
●  Atomicity of updates!

!  Failures may leave database in an inconsistent state with partial updates
carried out!

!  Example: Transfer of funds from one account to another should either
complete or not happen at all!

●  Concurrent access by multiple users!
!  Concurrent access needed for performance!
!  Uncontrolled concurrent accesses can lead to inconsistencies!

–  Example: Two people reading a balance (say 100) and updating it by
withdrawing money (say 50 each) at the same time!

●  Security problems!
!  Hard to provide user access to some, but not all, data!
!

Database systems offer solutions to all the above problems!!

2!

©Silberschatz, Korth and Sudarshan!1.7!CS425 – Fall 2014 – Boris Glavic!

Levels of Abstraction!

■  Physical level: describes how a record (e.g., customer) is stored.!
■  Logical level: describes data stored in database, and the relationships

among the data.!
!type instructor = record!
! !ID : string;  

!name : string; 
!dept_name : string; 
!salary : integer;!

end;!
■  View level: application programs hide details of data types. Views can

also hide information (such as an employee’s salary) for security
purposes. !

©Silberschatz, Korth and Sudarshan!1.8!CS425 – Fall 2014 – Boris Glavic!

View of Data!

An architecture for a database system !

view 1 view 2

logical
level

physical
level

view n…

view level

©Silberschatz, Korth and Sudarshan!1.9!CS425 – Fall 2014 – Boris Glavic!

Instances and Schemas!
■  Similar to types and variables in programming languages!
■  Schema – the logical structure of the database !

●  Example: The database consists of information about a set of customers and
accounts and the relationship between them!

●  Analogous to type information of a variable in a program!
●  Physical schema: database design at the physical level!
●  Logical schema: database design at the logical level!

■  Instance – the actual content of the database at a particular point in time !
●  Analogous to the value of a variable!

■  Physical Data Independence – the ability to modify the physical schema without
changing the logical schema!
●  Applications depend on the logical schema!
●  In general, the interfaces between the various levels and components should be

well defined so that changes in some parts do not seriously influence others.!
■  Logical Data Independence – the ability to modify the logical schema without

changing the applications!
●  For example, add new information to each employee!

©Silberschatz, Korth and Sudarshan!1.10!CS425 – Fall 2014 – Boris Glavic!

Data Models!

■  A collection of tools for describing !
●  Data !
●  Data relationships!
●  Data semantics!
●  Data constraints!

■  Relational model!
■  Entity-Relationship data model (mainly for database design) !
■  Object-based data models (Object-oriented and Object-relational)!
■  Semistructured data model (XML)!
■  Other older models:!

●  Network model !
●  Hierarchical model!

■  Other newer (or revived) models:!
●  Key-value!

©Silberschatz, Korth and Sudarshan!1.11!CS425 – Fall 2014 – Boris Glavic!

Relational Model!

■  Relational model (Chapter 2)!
■  Example of tabular data in the relational model! Columns (attributes)!

Rows (tuples)!

©Silberschatz, Korth and Sudarshan!1.12!CS425 – Fall 2014 – Boris Glavic!

A Sample Relational Database!

3!

©Silberschatz, Korth and Sudarshan!1.13!CS425 – Fall 2014 – Boris Glavic!

Data Manipulation Language (DML)!

■  Language for accessing and manipulating the data organized by the
appropriate data model!
●  DML also known as query language!

■  Two classes of languages !
●  Procedural – user specifies what data is required and how to get

those data !
●  Declarative (nonprocedural) – user specifies what data is

required without specifying how to get those data!
■  SQL is the most widely used query language!

©Silberschatz, Korth and Sudarshan!1.14!CS425 – Fall 2014 – Boris Glavic!

Data Definition Language (DDL)!

■  Specification notation for defining the database schema!
Example: !create table instructor ( 

 ID char(5), 
 name varchar(20), 
 dept_name varchar(20), 
 salary numeric(8,2))!

■  DDL compiler generates a set of table templates stored in a data dictionary"
■  Data dictionary contains metadata (i.e., data about data)!

●  Database schema !
●  Integrity constraints!

!  Primary key (ID uniquely identifies instructors)!
!  Referential integrity (references constraint in SQL)!

–  e.g. dept_name value in any instructor tuple must appear in
department relation!

●  Authorization!

©Silberschatz, Korth and Sudarshan!1.15!CS425 – Fall 2014 – Boris Glavic!

SQL!

■  SQL: widely used declarative (non-procedural) language!
●  Example: Find the name of the instructor with ID 22222  

!select !name  
!from !instructor 
!where !instructor.ID = ‘22222’!

●  Example: Find the ID and building of instructors in the Physics dept.!
 select instructor.ID, department.building 

from instructor, department 
where instructor.dept_name = department.dept_name and  
 department.dept_name = ‘Physics’ 
 "

■  Application programs generally access databases through one of!
●  Language extensions to allow embedded SQL!
●  Application program interface (e.g., ODBC/JDBC) which allow SQL

queries to be sent to a database!
■  Chapters 3, 4 and 5!

©Silberschatz, Korth and Sudarshan!1.16!CS425 – Fall 2014 – Boris Glavic!

Database Design!

The process of designing the general structure of a database:!
!
■  Logical Design – Deciding on the database schema. Database design

requires that we find a “good” representation of the information from an
application domain (e.g., banking) as a collection of relation schemas.!
●  Business decision – What information should we record in the

database?!
●  Computer Science decision – What relation schemas should we

have and how should the attributes be distributed among the various
relation schemas?!

!
■  Physical Design – Deciding on the physical layout of the database !
!
 !

©Silberschatz, Korth and Sudarshan!1.17!CS425 – Fall 2014 – Boris Glavic!

Database Design?!

■  Is there any problem with this design?!

©Silberschatz, Korth and Sudarshan!1.18!CS425 – Fall 2014 – Boris Glavic!

Database Design?!

■  Example: Changing the budget of the ‘Physics’ department!
●  Updates to many rows!!
●  Easy to break integrity!

!  If we forget to update a row, then we have multiple budget
values for the physics department!!

4!

©Silberschatz, Korth and Sudarshan!1.19!CS425 – Fall 2014 – Boris Glavic!

Design Approaches!

■  Normalization Theory (Chapter 8)!
●  Formalize what designs are bad, and test for them!

■  Entity Relationship Model (Chapter 7)!
●  Models an enterprise as a collection of entities and relationships"

! Entity: a “thing” or “object” in the enterprise that is
distinguishable from other objects!
–  Described by a set of attributes!

! Relationship: an association among several entities!
●  Represented diagrammatically by an entity-relationship diagram:!

©Silberschatz, Korth and Sudarshan!1.20!CS425 – Fall 2014 – Boris Glavic!

The Entity-Relationship Model!

■  Models an enterprise as a collection of entities and relationships"
●  Entity: a “thing” or “object” in the enterprise that is distinguishable

from other objects!
! Described by a set of attributes!

●  Relationship: an association among several entities!
■  Represented diagrammatically by an entity-relationship diagram:!

What happened to dept_name of instructor and student?!

instructor
ID
name
salary

department
dept_name
building
budget

member

©Silberschatz, Korth and Sudarshan!1.21!CS425 – Fall 2014 – Boris Glavic!

Object-Relational Data Models!

■  Relational model: flat, “atomic” values!
●  E.g., integer!

■  Object Relational Data Models!
●  Extend the relational data model by including object orientation

and constructs to deal with added data types.!
●  Allow attributes of tuples to have complex types, including non-

atomic values such as nested relations.!
●  Preserve relational foundations, in particular the declarative

access to data, while extending modeling power.!
●  Provide upward compatibility with existing relational languages.!

©Silberschatz, Korth and Sudarshan!1.22!CS425 – Fall 2014 – Boris Glavic!

XML: Extensible Markup Language!

■  Defined by the WWW Consortium (W3C)!
■  Originally intended as a document markup language not a

database language!
■  The ability to specify new tags, and to create nested tag structures

made XML a great way to exchange data, not just documents!
■  XML has become the basis for all new generation data interchange

formats.!
■  A wide variety of tools is available for parsing, browsing and

querying XML documents/data!

©Silberschatz, Korth and Sudarshan!1.23!CS425 – Fall 2014 – Boris Glavic!

Storage Management!

■  Storage manager is a program module that provides the interface
between the low-level data stored in the database (on disk) and the
application programs and queries submitted to the system.!

■  The storage manager is responsible to the following tasks: !
●  Interaction with the file manager !
●  Efficient storing, retrieving and updating of data!

■  Issues:!
●  Storage access!
●  File organization!
●  Indexing and hashing!
!

©Silberschatz, Korth and Sudarshan!1.24!CS425 – Fall 2014 – Boris Glavic!

Query Processing!

1. !Parsing and translation!
2. !Optimization!
3. !Evaluation!

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

5!

©Silberschatz, Korth and Sudarshan!1.25!CS425 – Fall 2014 – Boris Glavic!

Query Processing (Cont.)!

■  Alternative ways of evaluating a given query!
●  Equivalent expressions!
●  Different algorithms for each operation!

■  Cost difference between a good and a bad way of evaluating a query can
be enormous!

■  Need to estimate the cost of operations!
●  Depends critically on statistical information about relations which the

database must maintain!
●  Need to estimate statistics for intermediate results to compute cost of

complex expressions!
■  Need to search for a good plan (low costs)!

●  Traversing the search space of alternative ways (plans) to compute
the query result!

●  This is called query optimization!

©Silberschatz, Korth and Sudarshan!1.26!CS425 – Fall 2014 – Boris Glavic!

Transaction Management !!

■  What if the system fails?!
■  What if more than one user is concurrently updating the same data?!
■  A transaction is a collection of operations that performs a single

logical function in a database application!
■  Transaction-management component ensures that the database

remains in a consistent (correct) state despite system failures (e.g.,
power failures and operating system crashes) and transaction failures.!

■  Concurrency-control manager controls the interaction among the
concurrent transactions, to ensure the consistency of the database. !

©Silberschatz, Korth and Sudarshan!1.27!CS425 – Fall 2014 – Boris Glavic!

Database Users and Administrators!

Database!

©Silberschatz, Korth and Sudarshan!1.28!CS425 – Fall 2014 – Boris Glavic!

Database System Internals!
naive users

(tellers, agents,
web users)

query processor

storage manager

disk storage
indices

statistical datadata

data dictionary

application
programmers

application
interfaces

application
program

object code

compiler and
linker

buffer manager file manager authorization
and integrity

 manager

transaction
manager

DML compiler
and organizer

query evaluation
engine

DML queries DDL interpreter

application
programs

query
tools

administration
tools

sophisticated
users

(analysts)
database

administrators

use write use use

©Silberschatz, Korth and Sudarshan!1.29!CS425 – Fall 2014 – Boris Glavic!

Database Architecture!

The architecture of a database systems is greatly influenced by!
 the underlying computer system on which the database is running:!
■  Centralized!
■  Client-server!
■  Parallel (multi-processor)!
■  Distributed !

©Silberschatz, Korth and Sudarshan!1.30!CS425 – Fall 2014 – Boris Glavic!

Build a Complete Database System in
your free time?!

■  How much time do you need?!
■  To get a rough idea:!

●  Postgres (about 800,000 lines of code)!
! Hundreds of man-years of work!

●  Oracle (about 8,000,000 lines of code)!
! Probably thousands of man-years of work?!

■  Hmm, … probably not!!
■  Maybe a limited research prototype or new feature ;-)!

6!

©Silberschatz, Korth and Sudarshan!1.31!CS425 – Fall 2014 – Boris Glavic!

History of Database Systems!

■  1950s and early 1960s:!
●  Data processing using magnetic tapes for storage!

! Tapes provided only sequential access!
●  Punched cards for input!

■  Late 1960s and 1970s:!
●  Hard disks allowed direct access to data!
●  Network and hierarchical data models in widespread use!
●  Ted Codd defines the relational data model!

! Would win the ACM Turing Award for this work!
!  IBM Research begins System R prototype!
! UC Berkeley begins Ingres prototype!

●  High-performance (for the era) transaction processing!
!

©Silberschatz, Korth and Sudarshan!1.32!CS425 – Fall 2014 – Boris Glavic!

History (cont.)!

■  1980s:!
●  Research relational prototypes evolve into commercial systems!

! SQL becomes industrial standard!
●  Parallel and distributed database systems!
●  Object-oriented database systems!

■  1990s:!
●  Large decision support and data-mining applications!
●  Large multi-terabyte data warehouses!
●  Emergence of Web commerce!

■  Early 2000s:!
●  XML and XQuery standards!
●  Automated database administration!

■  Later 2000s:!
●  Giant data storage systems!

! Google BigTable, Yahoo PNuts, Amazon, ..!

©Silberschatz, Korth and Sudarshan!1.33!CS425 – Fall 2014 – Boris Glavic!

Recap!

■  Why databases?!
■  What do databases do?!
■  Data independence!

●  Physical and Logical!
■  Database design!
■  Data models!

●  Relational, object, XML, network, hierarchical!
■  Query languages!

●  DML!
●  DDL!

■  Architecture and systems aspects of database systems!
●  Recovery !
●  Concurrency control!
●  Query processing (optimization)!
●  File organization and indexing!

■  History of databases!
©Silberschatz, Korth and Sudarshan!1.34!CS425 – Fall 2014 – Boris Glavic!

End of Chapter 1!

©Silberschatz, Korth and Sudarshan!1.35!CS425 – Fall 2014 – Boris Glavic!

Outline!

■  Introduction!
■  Relational Data Model!
■  Formal Relational Languages (relational algebra)!
■  SQL!
■  Database Design!
■  Transaction Processing, Recovery, and Concurrency Control!
■  Storage and File Structures!
■  Indexing and Hashing!
■  Query Processing and Optimization!

©Silberschatz, Korth and Sudarshan!1.36!CS425 – Fall 2014 – Boris Glavic!

Figure 1.02!

7!

©Silberschatz, Korth and Sudarshan!1.37!CS425 – Fall 2014 – Boris Glavic!

Figure 1.04!

©Silberschatz, Korth and Sudarshan!1.38!CS425 – Fall 2014 – Boris Glavic!

Figure 1.06!

user

application

database system

network

(a) Two-tier architecture

client

server

user

application client

database system

network

application server

(b) Three-tier architecture

