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Database Management System (DBMS)!

■  DBMS contains information about a particular domain!
●  Collection of interrelated data!
●  Set of programs to access the data !
●  An environment that is both convenient and efficient to use!

■  Database Applications:!
●  Banking: transactions!
●  Airlines: reservations, schedules!
●  Universities:  registration, grades!
●  Sales: customers, products, purchases!
●  Online retailers: order tracking, customized recommendations!
●  Manufacturing: production, inventory, orders, supply chain!
●  Human resources:  employee records, salaries, tax deductions!

■  Databases can be very large.!
■  Databases touch all aspects of our lives!
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University Database Example!

■  Application program examples!
●  Add new students, instructors, and courses!
●  Register students for courses, and generate class rosters!
●  Assign grades to students, compute grade point averages (GPA) 

and generate transcripts!
■  In the early days, database applications were built directly on top of 

file systems!
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Drawbacks of using file systems to store data!

!
●  Data redundancy and inconsistency!

! Multiple file formats, duplication of information in different files!
●  Difficulty in accessing data !

! Need to write a new program to carry out each new task!
●  Data isolation — multiple files and formats!
●  Integrity problems!

!  Integrity constraints  (e.g., account balance > 0) become 
“buried” in program code rather than being stated explicitly!

! Hard to add new constraints or change existing ones!
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Drawbacks of using file systems to store data (Cont.)!

!
●  Atomicity of updates!

!  Failures may leave database in an inconsistent state with partial updates 
carried out!

!  Example: Transfer of funds from one account to another should either 
complete or not happen at all!

●  Concurrent access by multiple users!
!  Concurrent access needed for performance!
!  Uncontrolled concurrent accesses can lead to inconsistencies!

–  Example: Two people reading a balance (say 100) and updating it by 
withdrawing money (say 50 each) at the same time!

●  Security problems!
!  Hard to provide user access to some, but not all, data!
!

Database systems offer solutions to all the above problems!!
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Levels of Abstraction!

■  Physical level: describes how a record (e.g., customer) is stored.!
■  Logical level: describes data stored in database, and the relationships 

among the data.!
!type instructor = record!
! !ID : string;  

!name : string; 
!dept_name : string; 
!salary : integer;!

end;!
■  View level: application programs hide details of data types.  Views can 

also hide information (such as an employee’s salary) for security 
purposes. !
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View of Data!

An architecture for a database system !

view 1 view 2

logical
level

physical
level

view n…

view level
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Instances and Schemas!
■  Similar to types and variables in programming languages!
■  Schema – the logical structure of the database !

●  Example: The database consists of information about a set of customers and 
accounts and the relationship between them!

●  Analogous to type information of a variable in a program!
●  Physical schema: database design at the physical level!
●  Logical schema: database design at the logical level!

■  Instance – the actual content of the database at a particular point in time !
●  Analogous to the value of a variable!

■  Physical Data Independence – the ability to modify the physical schema without 
changing the logical schema!
●  Applications depend on the logical schema!
●  In general, the interfaces between the various levels and components should be 

well defined so that changes in some parts do not seriously influence others.!
■  Logical Data Independence – the ability to modify the logical schema without 

changing the applications!
●  For example, add new information to each employee!
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Data Models!

■  A collection of tools for describing !
●  Data !
●  Data relationships!
●  Data semantics!
●  Data constraints!

■  Relational model!
■  Entity-Relationship data model (mainly for database design) !
■  Object-based data models (Object-oriented and Object-relational)!
■  Semistructured data model  (XML)!
■  Other older models:!

●  Network model  !
●  Hierarchical model!

■  Other newer (or revived) models:!
●  Key-value!
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Relational Model!

■  Relational model (Chapter 2)!
■  Example of tabular data in the relational model! Columns (attributes)!

Rows (tuples)!
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A Sample Relational Database!
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Data Manipulation Language (DML)!

■  Language for accessing and manipulating the data organized by the 
appropriate data model!
●  DML also known as query language!

■  Two classes of languages !
●  Procedural – user specifies what data is required and how to get 

those data !
●  Declarative (nonprocedural) – user specifies what data is 

required without specifying how to get those data!
■  SQL is the most widely used query language!
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Data Definition Language (DDL)!

■  Specification notation for defining the database schema!
Example: !create table instructor ( 

                             ID                char(5), 
                             name           varchar(20), 
                             dept_name  varchar(20), 
                             salary           numeric(8,2))!

■  DDL compiler generates a set of table templates stored in a data dictionary"
■  Data dictionary contains metadata (i.e., data about data)!

●  Database schema !
●  Integrity constraints!

!  Primary key (ID uniquely identifies instructors)!
!  Referential integrity (references constraint in SQL)!

–  e.g. dept_name value in any instructor tuple must appear in 
department relation!

●  Authorization!
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SQL!

■  SQL: widely used declarative (non-procedural) language!
●  Example: Find the name of the instructor with ID 22222  

!select !name  
!from !instructor 
!where !instructor.ID = ‘22222’!

●  Example: Find the ID and building of instructors in the Physics dept.!
    select instructor.ID, department.building 

from instructor, department 
where instructor.dept_name = department.dept_name and  
           department.dept_name = ‘Physics’ 
           "

■  Application programs generally access databases through one of!
●  Language extensions to allow embedded SQL!
●  Application program interface (e.g., ODBC/JDBC) which allow SQL 

queries to be sent to a database!
■  Chapters 3, 4 and 5!
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Database Design!

The process of designing the general structure of a database:!
!
■  Logical Design –  Deciding on the database schema. Database design 

requires that we find a “good” representation of the information from an 
application domain (e.g., banking) as a collection of relation schemas.!
●  Business decision – What information should we record in the 

database?!
●  Computer Science decision –  What relation schemas should we 

have and how should the attributes be distributed among the various 
relation schemas?!

!
■  Physical Design – Deciding on the physical layout of the database                !
!
     !
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Database Design?!

■  Is there any problem with this design?!
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Database Design?!

■  Example: Changing the budget of the ‘Physics’ department!
●  Updates to many rows!!
●  Easy to break integrity!

!  If we forget to update a row, then we have multiple budget 
values for the physics department!!
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Design Approaches!

■  Normalization Theory (Chapter 8)!
●  Formalize what designs are bad, and test for them!

■  Entity Relationship Model (Chapter 7)!
●  Models an enterprise as a collection of entities and relationships"

! Entity: a “thing” or “object” in the enterprise that is 
distinguishable from other objects!
–  Described by a set of attributes!

! Relationship: an association among several entities!
●  Represented diagrammatically by an entity-relationship diagram:!
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The Entity-Relationship Model!

■  Models an enterprise as a collection of entities and relationships"
●  Entity: a “thing” or “object” in the enterprise that is distinguishable 

from other objects!
! Described by a set of attributes!

●  Relationship: an association among several entities!
■  Represented diagrammatically by an entity-relationship diagram:!

What happened to dept_name of instructor and student?!

instructor
ID
name
salary

department
dept_name
building
budget

member
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Object-Relational Data Models!

■  Relational model: flat, “atomic” values!
●  E.g., integer!

■  Object Relational Data Models!
●  Extend the relational data model by including object orientation 

and constructs to deal with added data types.!
●  Allow attributes of tuples to have complex types, including non-

atomic values such as nested relations.!
●  Preserve relational foundations, in particular the declarative 

access to data, while extending modeling power.!
●  Provide upward compatibility with existing relational languages.!
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XML:  Extensible Markup Language!

■  Defined by the WWW Consortium (W3C)!
■  Originally intended as a document markup language not a 

database language!
■  The ability to specify new tags, and to create nested tag structures 

made XML a great way to exchange data, not just documents!
■  XML has become the basis for all new generation data interchange 

formats.!
■  A wide variety of tools is available for parsing, browsing and 

querying XML documents/data!
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Storage Management!

■  Storage manager is a program module that provides the interface 
between the low-level data stored in the database (on disk) and the 
application programs and queries submitted to the system.!

■  The storage manager is responsible to the following tasks: !
●  Interaction with the file manager !
●  Efficient storing, retrieving and updating of data!

■  Issues:!
●  Storage access!
●  File organization!
●  Indexing and hashing!
!
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Query Processing!

1. !Parsing and translation!
2. !Optimization!
3. !Evaluation!

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data



5!

©Silberschatz, Korth and Sudarshan!1.25!CS425 – Fall 2014 – Boris Glavic!

Query Processing (Cont.)!

■  Alternative ways of evaluating a given query!
●  Equivalent expressions!
●  Different algorithms for each operation!

■  Cost difference between a good and a bad way of evaluating a query can 
be enormous!

■  Need to estimate the cost of operations!
●  Depends critically on statistical information about relations which the 

database must maintain!
●  Need to estimate statistics for intermediate results to compute cost of 

complex expressions!
■  Need to search for a good plan (low costs)!

●  Traversing the search space of alternative ways (plans) to compute 
the query result!

●  This is called query optimization!
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Transaction Management !!

■  What if the system fails?!
■  What if more than one user is concurrently updating the same data?!
■  A transaction is a collection of operations that performs a single 

logical function in a database application!
■  Transaction-management component ensures that the database 

remains in a consistent (correct) state despite system failures (e.g., 
power failures and operating system crashes) and transaction failures.!

■  Concurrency-control manager controls the interaction among the 
concurrent transactions, to ensure the consistency of the database. !
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Database Users and Administrators!

Database!
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Database System Internals!
naive users
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application
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application
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Database Architecture!

The architecture of a database systems is greatly influenced by!
 the underlying computer system on which the database is running:!
■  Centralized!
■  Client-server!
■  Parallel (multi-processor)!
■  Distributed     !
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Build a Complete Database System in 
your free time?!

■  How much time do you need?!
■  To get a rough idea:!

●  Postgres (about 800,000 lines of code)!
! Hundreds of man-years of work!

●  Oracle (about 8,000,000 lines of code)!
! Probably thousands of man-years of work?!

■  Hmm, … probably not!!
■  Maybe a limited research prototype or new feature ;-)!
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History of Database Systems!

■  1950s and early 1960s:!
●  Data processing using magnetic tapes for storage!

! Tapes provided only sequential access!
●  Punched cards for input!

■  Late 1960s and 1970s:!
●  Hard disks allowed direct access to data!
●  Network and hierarchical data models in widespread use!
●  Ted Codd defines the relational data model!

! Would win the ACM Turing Award for this work!
!  IBM Research begins System R prototype!
! UC Berkeley begins Ingres prototype!

●  High-performance (for the era) transaction processing!
!
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History (cont.)!

■  1980s:!
●  Research relational prototypes evolve into commercial systems!

! SQL becomes industrial standard!
●  Parallel and distributed database systems!
●  Object-oriented database systems!

■  1990s:!
●  Large decision support and data-mining applications!
●  Large multi-terabyte data warehouses!
●  Emergence of Web commerce!

■  Early 2000s:!
●  XML and XQuery standards!
●  Automated database administration!

■  Later 2000s:!
●  Giant data storage systems!

! Google BigTable, Yahoo PNuts, Amazon, ..!
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Recap!

■  Why databases?!
■  What do databases do?!
■  Data independence!

●  Physical and Logical!
■  Database design!
■  Data models!

●  Relational, object, XML, network, hierarchical!
■  Query languages!

●  DML!
●  DDL!

■  Architecture and systems aspects of database systems!
●  Recovery !
●  Concurrency control!
●  Query processing (optimization)!
●  File organization and indexing!

■  History of databases!
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End of Chapter 1!
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Outline!

■  Introduction!
■  Relational Data Model!
■  Formal Relational Languages (relational algebra)!
■  SQL!
■  Database Design!
■  Transaction Processing, Recovery, and Concurrency Control!
■  Storage and File Structures!
■  Indexing and Hashing!
■  Query Processing and Optimization!
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Figure 1.02!
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Figure 1.04!
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Figure 1.06!
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