

CS425 – Fall 2014 Boris Glavic Course Information

Modified from:

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

Why are Databases Important?

What do Databases do?

- 1. Provide persistent storage
- 2. Efficient declarative access to data -> Querying
- 3. Protection from hardware/software failures
- 4. Safe concurrent access to data

Who uses Databases?

Most big software systems involve DBs!

- Business Intelligence \Rightarrow e.g., IBM Cognos
- Web based systems
- ...
- You! (desktop software)
 - Your music player \Rightarrow e.g., Amarok
 - Your Web Content Management System
 - Your email client
 - ...
- Every big company
 - Banks
 - Insurance
 - Government
 - Google, ...

Who Produces Databases?

Traditional relational database systems is big business

- IBM ⇒ DB2
- Oracle ⇒ Oracle ☺
- Microsoft ⇒ SQLServer
- Open Source ⇒ MySQL, Postgres, …
- Emerging distributed systems with DB characteristics and Big Data
 - Cloud storage and Key-value stores ⇒Amazon S3, Google Big Table, . . .
 - Big Data Analytics ⇒Hadoop, Google Map & Reduce, . . .
 - SQL over Distributed Platforms \Rightarrow Hive, Tenzing,

amazon.com

. . .

Why are Database Interesting (for Students)?

The pragmatic perspective

 Background in databases make you competitive in the job market ;-)

Systems and theoretical research

- Database research has a strong systems aspect
 - Hacking complex and large systems
 - Low-level optimization
 - cache-conscious algorithms
 - Exploit modern hardware
- Databases have a strong theoretical foundation
 - Complexity of query answering
 - Expressiveness of query languages
 - Concurrency theory
 - ...

Why are Database Interesting (for Students)?

- Connection to many CS fields
 - Distributed systems
 - Getting more and more important
 - Compilers
 - Modeling
 - Al and machine learning
 - Data mining
 - Operating and file systems
 - Hardware
 - Hardware-software co-design

Webpage and Faculty

Course Info

- Course Webpage: http://cs.iit.edu/~cs425
- Google Group:

https://groups.google.com/d/forum/cs425-2014-fall-group

- Used for announcements
- Use it to discuss with me, TA, and fellow students
- Syllabus: <u>http://cs.iit.edu/~cs425/files/syllabus.pdf</u>
- Faculty
 - Boris Glavic (<u>http://cs.iit.edu/~glavic</u>)
 - Email: <u>bglavic@iit.edu</u>
 - Phone: 312.567.5205
 - **Office**: Stuart Building, room 226C
 - Office Hours: Tuesdays, 12pm-1pm (and by appointment)

TasTBA

Workload and Grading

Exams

- Midterm (25%)
- Final (35%)

Homework Assignments (preparation for exams!)

- HW1 (Relational algebra)
- HW2 (SQL)
- HW3 (Database modeling)

Course Project

- In groups of 3 students
- Given an example application (e.g., ticketing system)
 - Develop a database model
 - Derive a database schema from the model
 - Implement the application accessing the database

Course Objectives

- Understand the underlying ideas of database systems
- Understand the relational data model
- Be able to write and understand SQL queries and data definition statements
- Understand relational algebra and its connection to SQL
- Understand how to write programs that access a database server
- Understand the ER model used in database design
- Understand normalization of database schemata
- Be able to create a database design from a requirement analysis for a specific domain
- Know basic **index structures** and understand their importance
- Have a basic understanding of relational database concepts such as concurrency control, recovery, query processing, and access control

Course Project

Forming groups

- Your responsibility!
- Inform me + TA
- Deadline: Sep 8th
- Oracle Server Accounts
- Git repositories
 - Create an account on Bitbucket.org (<u>https://bitbucket.org/</u>)
 - We will create a repository for each student
 - Use it to exchange code with your fellow group members
 - The project has to be submitted via the group repository
 - Timeline:
 - Brainstorming on application (by Sep 11th)
 - Design database model (by Nov 12th)
 - Derive relational model (by Nov 25th)
 - Implement application (by end of the semester)

CS425 - Fall 2014 - Boris Glavic

©Silberschatz, Korth and Sudarshan

Fraud and Late Assignments

- All work has to be original!
 - Cheating = 0 points for assignment/exam
 - Possibly E in course and further administrative sanctions
 - Every dishonesty will be reported to office of academic honesty
- Late policy:
 - -20% per day
 - No exceptions!
- Course projects:
 - Every student has to contribute in every phase of the project!
 - Don't let others freeload on you hard work!
 - Inform me or TA immediatly

Reading and Prerequisites

Textbook: Silberschatz, Korth and Sudarsham

- Database System Concepts, 6th edition
- McGraw Hill
- publication date:2006,
- ISBN 0-13-0-13-142938-8.
- Prerequisites:
 - CS 331 or CS401 or CS403

Outline

- Introduction
- Relational Data Model
- Formal Relational Languages (relational algebra)
- SQL
- Database Design
- Transaction Processing, Recovery, and Concurrency Control
- Storage and File Structures
- Indexing and Hashing
- Query Processing and Optimization