
modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Partially taken from!
Klaus R. Dittrich!

CS425 – Fall 2013  
Boris Glavic  

Chapter 7: Entity-Relationship Model!

©Silberschatz, Korth and Sudarshan!7.2!CS425 – Fall 2013 – Boris Glavic!

Chapter 7: Entity-Relationship Model!

  Design Process!
  Modeling!
  Constraints!
  E-R Diagram !
  Design Issues !
  Weak Entity Sets !
  Extended E-R Features!
  Design of the Bank Database!
  Reduction to Relation Schemas!
  Database Design!
  UML!

©Silberschatz, Korth and Sudarshan!7.3!CS425 – Fall 2013 – Boris Glavic!

Database Design!

World!

Relational DB schema!

???!

©Silberschatz, Korth and Sudarshan!7.4!CS425 – Fall 2013 – Boris Glavic!

Database Design!

n  First: need to develop a “mind”-model based on a requirement analysis!

World!

Relational DB schema!

???!

“Mind” Model!

Requirement Analysis!

English (e.g.)!

©Silberschatz, Korth and Sudarshan!7.5!CS425 – Fall 2013 – Boris Glavic!

Requirement Analysis Example  
Zoo!

  The zoo stores information about animals, cages, and zoo keepers.!
  Animals are of a certain species and have a name. For each animal

we want to record its weight and age.!
  Each cage is located in a section of the zoo. Cages can house

animals, but there may be cages that are currently empty. Cages have
a size in square meter.!

  Zoo keepers are identified by their social security number. We store a
first name, last name, and for each zoo keeper. Zoo keepers are
assigned to cages they have to take care of (clean, …). Each cage
that is not empty has a zoo keeper assigned to it. A zoo keeper can
take care of several cages. Each zoo keeper takes care of at least one
cage.!

©Silberschatz, Korth and Sudarshan!7.6!CS425 – Fall 2013 – Boris Glavic!

Requirement Analysis Example  
Music Collection!

  Let’s do it!!

©Silberschatz, Korth and Sudarshan!7.7!CS425 – Fall 2013 – Boris Glavic!

Database Design!

n  Second: Formalize this model by developing a conceptual model!

World!

Relational DB schema!

“Mind” Model!

Requirement Analysis!

English (e.g.)!

Conceptual Model! ER model!

???!

Conceptual modeling!

©Silberschatz, Korth and Sudarshan!7.8!CS425 – Fall 2013 – Boris Glavic!

Database Design!

n  Second: Formalize this model by developing a conceptual model!

World!

Relational DB schema!

“Mind” Model!

Requirement Analysis!

English (e.g.)!

Conceptual Model! ER model!

Conceptual modeling!

Logical modeling (possibly automated)!

SQL (e.g.)!

©Silberschatz, Korth and Sudarshan!7.9!CS425 – Fall 2013 – Boris Glavic!

Modeling – ER model!

  A database can be modeled as:!
  a collection of entities,!
  relationship among entities.!

  An entity is an object that exists and is distinguishable from other
objects.!
  Example: specific person, company, event, plant!

  Entities have attributes!
  Example: people have names and addresses !!

  An entity set is a set of entities of the same type that share the same
properties.!
  Example: set of all persons, companies, trees, holidays!

©Silberschatz, Korth and Sudarshan!7.10!CS425 – Fall 2013 – Boris Glavic!

Entity Sets instructor and student!

instructor_ID instructor_name student-ID student_name

instructor

student

22222 Einstein

Katz

Kim

Crick

Srinivasan

Singh

45565

98345

76766

10101

76543

12345
98988

76653
23121

00128
76543

Shankar
Tanaka

Aoi
Chavez
Peltier

Zhang
Brown

44553

©Silberschatz, Korth and Sudarshan!7.11!CS425 – Fall 2013 – Boris Glavic!

Relationship Sets!

  A relationship is an association among several entities!
!Example: 

! 44553 (Peltier) !advisor ! 22222 (Einstein)  
! student entity !relationship set ! instructor entity!

  A relationship set is a mathematical relation among n ≥ 2 entities, each
taken from entity sets!
! !!{(e1, e2, … en) | e1 ∈ E1, e2 ∈ E2, …, en ∈ En} 
 
where (e1, e2, …, en) is a relationship!
  Example: !
!! (44553,22222) ∈ advisor!

©Silberschatz, Korth and Sudarshan!7.12!CS425 – Fall 2013 – Boris Glavic!

Relationship Set advisor!

instructor
student

76766 Crick

Katz
Srinivasan

Kim
Singh
Einstein

45565

10101

98345
76543

22222

98988

12345

00128
76543
76653

23121
44553

Tanaka
Shankar

Zhang

Brown
Aoi
Chavez
Peltier

©Silberschatz, Korth and Sudarshan!7.13!CS425 – Fall 2013 – Boris Glavic!

Relationship Sets (Cont.)!

  An attribute can also be property of a relationship set.!
  For instance, the advisor relationship set between entity sets

instructor and student may have the attribute date which tracks when
the student started being associated with the advisor!

instructor

student

76766 Crick

Katz

Srinivasan

Kim
Singh

Einstein

45565

10101

98345

76543

22222

98988

12345

00128

76543

44553

Tanaka

Shankar

Zhang

Brown

Aoi

Chavez

Peltier

3 May 2008

10 June 2007

12 June 2006

6 June 2009

30 June 2007

31 May 2007

4 May 2006

76653

23121

©Silberschatz, Korth and Sudarshan!7.14!CS425 – Fall 2013 – Boris Glavic!

Degree of a Relationship Set!

  binary relationship!
  involve two entity sets (or degree two). !

  Relationships between more than two entity sets are rare. Most
relationships are binary. (More on this later.)!
 Example: students work on research projects under the

guidance of an instructor. !
 relationship proj_guide is a ternary relationship between

instructor, student, and project!

©Silberschatz, Korth and Sudarshan!7.15!CS425 – Fall 2013 – Boris Glavic!

Attributes!

  An entity is represented by a set of attributes, that are descriptive
properties possessed by all members of an entity set.!
  Example: !
 !instructor = (ID, name, street, city, salary)  

!course= (course_id, title, credits)!
  Domain – the set of permitted values for each attribute !
  Attribute types:!

  Simple and composite attributes.!
  Single-valued and multivalued attributes!

 Example: multivalued attribute: phone_numbers!
  Derived attributes!

 Can be computed from other attributes!
 Example: age, given date_of_birth!

©Silberschatz, Korth and Sudarshan!7.16!CS425 – Fall 2013 – Boris Glavic!

Composite Attributes!

name address

first_name middle_initial last_name street city state postal_code

street_number street_name apartment_number

composite
attributes

component
attributes

©Silberschatz, Korth and Sudarshan!7.17!CS425 – Fall 2013 – Boris Glavic!

Mapping Cardinality Constraints!

  Express the number of entities to which another entity can be
associated via a relationship set.!

  For a binary relationship set the mapping cardinality must be one of
the following types:!
  One to one (1-1)!
  One to many (1-N)!
  Many to one (N-1)!
  Many to many (N-M)!

©Silberschatz, Korth and Sudarshan!7.18!CS425 – Fall 2013 – Boris Glavic!

Mapping Cardinalities!

One to one! One to many!

Note: Some elements in A and B may not be mapped to any !
elements in the other set!

©Silberschatz, Korth and Sudarshan!7.19!CS425 – Fall 2013 – Boris Glavic!

Mapping Cardinalities Example!

One to one! One to many!

Note: Some elements in A and B may not be mapped to any !
elements in the other set!

Person! Birth certificate! Advisor! Student!

©Silberschatz, Korth and Sudarshan!7.20!CS425 – Fall 2013 – Boris Glavic!

Mapping Cardinalities !

Many to one! Many to many!

Note: Some elements in A and B may not be mapped to any !
elements in the other set!

©Silberschatz, Korth and Sudarshan!7.21!CS425 – Fall 2013 – Boris Glavic!

Mapping Cardinalities Example !

Many to one! Many to many!

Note: Some elements in A and B may not be mapped to any !
elements in the other set!

Employee! Department! Student! Course!

©Silberschatz, Korth and Sudarshan!7.22!CS425 – Fall 2013 – Boris Glavic!

Mapping Cardinality Constraints Cont.!

  What if we allow some elements to not be mapped to another
element?!
  E.g., 0:1 – 1 !

  For a binary relationship set the mapping cardinality must be one of
the following types:!

  1-1!
  1-1!
  0:1-1!
  1-0:1!
  0:1-0:1!

  1-N!
  0:1-N!
  0:1-0:N!
  1-N!
  1-0:N!

  N-1!
  N-1!
  N-0:1!
  0:N-1!
  0:N-0:1!

  N-M!
  N-M!
  N-0:M!
  0:N-M!
  0:N-0:M!

©Silberschatz, Korth and Sudarshan!7.23!CS425 – Fall 2013 – Boris Glavic!

Mapping Cardinality Constraints Cont.!

  Typical Notation!
  (0:1) – (1:N) !

©Silberschatz, Korth and Sudarshan!7.24!CS425 – Fall 2013 – Boris Glavic!

Keys!

  A super key of an entity set is a set of one or more attributes
whose values uniquely determine each entity.!

  A candidate key of an entity set is a minimal super key!
  ID is candidate key of instructor!
  course_id is candidate key of course!

  Although several candidate keys may exist, one of the candidate
keys is selected to be the primary key.!

  Note: Basically the same as for relational model!

©Silberschatz, Korth and Sudarshan!7.25!CS425 – Fall 2013 – Boris Glavic!

Keys for Relationship Sets!

  The combination of primary keys of the participating entity sets
forms a super key of a relationship set.!
  (s_id, i_id) is the super key of advisor!
  NOTE: this means a pair of entities can have at most one

relationship in a particular relationship set. !
 Example: if we wish to track multiple meeting dates between

a student and her advisor, we cannot assume a relationship
for each meeting. We can use a multivalued attribute
though or model meeting as a separate entity!

  Must consider the mapping cardinality of the relationship set when
deciding what are the candidate keys!

  Need to consider semantics of relationship set in selecting the
primary key in case of more than one candidate key!

©Silberschatz, Korth and Sudarshan!7.26!CS425 – Fall 2013 – Boris Glavic!

Keys for Relationship Sets Cont.!

  Must consider the mapping cardinality of the relationship set when
deciding what are the candidate keys!
  1-1: both primary keys are candidate keys!

 Example: hasBc: (Person-Birthcertificate)!
  N-1: the N side is the candidate key!

 Example: worksFor: (Instructor-Department)!
  N-M: the combination of both primary keys!

 Example: takes: (Student-Course)!

©Silberschatz, Korth and Sudarshan!7.27!CS425 – Fall 2013 – Boris Glavic!

Redundant Attributes!

  Suppose we have entity sets!
  instructor, with attributes including dept_name!
  department!
and a relationship!
  inst_dept relating instructor and department!

  Attribute dept_name in entity instructor is redundant since there is an
explicit relationship inst_dept which relates instructors to departments!
  The attribute replicates information present in the relationship, and

should be removed from instructor!
  BUT: when converting back to tables, in some cases the attribute

gets reintroduced, as we will see.!

©Silberschatz, Korth and Sudarshan!7.28!CS425 – Fall 2013 – Boris Glavic!

E-R Diagrams!

  Rectangles represent entity sets.!
  Diamonds represent relationship sets.!
  Attributes listed inside entity rectangle!
  Underline indicates primary key attributes!

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

©Silberschatz, Korth and Sudarshan!7.29!CS425 – Fall 2013 – Boris Glavic!

Entity With Composite, Multivalued, and Derived
Attributes!

instructor
ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ()

©Silberschatz, Korth and Sudarshan!7.30!CS425 – Fall 2013 – Boris Glavic!

Entity With Composite, Multivalued, and Derived
Attributes!

instructor
ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ()

composite!

Multi-valued!

derived!

©Silberschatz, Korth and Sudarshan!7.31!CS425 – Fall 2013 – Boris Glavic!

Relationship Sets with Attributes!

ID
name
salary

ID
name
tot_cred

date

instructor student
advisor

©Silberschatz, Korth and Sudarshan!7.32!CS425 – Fall 2013 – Boris Glavic!

Roles!

  Entity sets of a relationship need not be distinct!
  Each occurrence of an entity set plays a “role” in the relationship!

  The labels “course_id” and “prereq_id” are called roles.!

course
course_id
title
credits

course_id

prereq_id prereq

©Silberschatz, Korth and Sudarshan!7.33!CS425 – Fall 2013 – Boris Glavic!

Cardinality Constraints!

  We express cardinality constraints by drawing either a directed line
(→), signifying “one,” or an undirected line (—), signifying “many,”
between the relationship set and the entity set.!

  One-to-one relationship:!
  A student is associated with at most one instructor via the

relationship advisor!
  A student is associated with at most one department via

stud_dept!

©Silberschatz, Korth and Sudarshan!7.34!CS425 – Fall 2013 – Boris Glavic!

One-to-One Relationship!

  one-to-one relationship between an instructor and a student!
  an instructor is associated with at most one student via advisor !
  and a student is associated with at most one instructor via

advisor!

instructor student
ID
name
salary

ID
name
tot_cred

advisor

©Silberschatz, Korth and Sudarshan!7.35!CS425 – Fall 2013 – Boris Glavic!

One-to-Many Relationship!

  one-to-many relationship between an instructor and a student!
  an instructor is associated with several (including 0) students

via advisor !
  a student is associated with at most one instructor via advisor, !

instructor
ID
name
salary

student
ID
name
tot_cred

advisor

©Silberschatz, Korth and Sudarshan!7.36!CS425 – Fall 2013 – Boris Glavic!

Many-to-One Relationships!

  In a many-to-one relationship between an instructor and a student, !
  an instructor is associated with at most one student via

advisor, !
  and a student is associated with several (including 0)

instructors via advisor!

instructor
ID
name
salary

student
ID
name
tot_cred

advisor

©Silberschatz, Korth and Sudarshan!7.37!CS425 – Fall 2013 – Boris Glavic!

Many-to-Many Relationship!

  An instructor is associated with several (possibly 0) students via
advisor!

  A student is associated with several (possibly 0) instructors via
advisor !

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

©Silberschatz, Korth and Sudarshan!7.38!CS425 – Fall 2013 – Boris Glavic!

Participation of an Entity Set in a
Relationship Set!

  Total participation (indicated by double line): every entity in the
entity set participates in at least one relationship in the relationship
set!
  E.g., participation of section in sec_course is total!

  every section must have an associated course!
  Partial participation: some entities may not participate in any

relationship in the relationship set!
  Example: participation of instructor in advisor is partial!

course
course_id
title
credits

section
sec_id
semester
year

sec_course

©Silberschatz, Korth and Sudarshan!7.39!CS425 – Fall 2013 – Boris Glavic!

Alternative Notation for Cardinality Limits!

  Cardinality limits can also express participation constraints!

instructor
ID
name
salary

student
ID
name
tot_cred

advisor 1..10..*

©Silberschatz, Korth and Sudarshan!7.40!CS425 – Fall 2013 – Boris Glavic!

Alternative Notation for Cardinality Limits!

  Alternative Notation!

instructor
ID
name
salary

student
ID
name
tot_cred

advisor 1..10..*
(0,n)! (1,1)!

©Silberschatz, Korth and Sudarshan!7.41!CS425 – Fall 2013 – Boris Glavic!

E-R Diagram with a Ternary Relationship!

instructor

ID
name
salary

student

ID
name
tot_cred

. . .
project

proj_guide

©Silberschatz, Korth and Sudarshan!7.42!CS425 – Fall 2013 – Boris Glavic!

Cardinality Constraints on Ternary
Relationship!

  We allow at most one arrow out of a ternary (or greater degree)
relationship to indicate a cardinality constraint!

  E.g., an arrow from proj_guide to instructor indicates each student has
at most one guide for a project!

  If there is more than one arrow, there are two ways of defining the
meaning. !
  E.g., a ternary relationship R between A, B and C with arrows to B

and C could mean!
 1. each A entity is associated with a unique entity from B and C or !
!2. each pair of entities from (A, B) is associated with a unique C
entity, and each pair (A, C) is associated with a unique B!

  Each alternative has been used in different formalisms!
  To avoid confusion we outlaw more than one arrow!

  Better to use cardinality constraints such as (0,n)!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Partially taken from!
Klaus R. Dittrich!

Let’s design an ER-model 
for  

parts of the university database!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Partially taken from!
Klaus R. Dittrich!

Lets design an ER-model 
for  

parts of the university database!
1)  Identify Entities!
2)  Identify Relationship!
3)  Determine Attributes!
4)  Determine Cardinality

Constraints!
!

©Silberschatz, Korth and Sudarshan!7.45!CS425 – Fall 2013 – Boris Glavic!

Weak Entity Sets!

  An entity set that does not have a primary key is referred to as a
weak entity set.!

  The existence of a weak entity set depends on the existence of a
identifying entity set!
  It must relate to the identifying entity set via a total, one-to-many

relationship set from the identifying to the weak entity set!
  Identifying relationship depicted using a double diamond!

  The discriminator (or partial key) of a weak entity set is the set of
attributes that distinguishes among all the entities of a weak entity
set that are associated with the same entity of the identifying entity
set!

  The primary key of a weak entity set is formed by the primary key of
the strong entity set on which the weak entity set is existence
dependent, plus the weak entity set’s discriminator.!

©Silberschatz, Korth and Sudarshan!7.46!CS425 – Fall 2013 – Boris Glavic!

Weak Entity Sets (Cont.)!

  We underline the discriminator of a weak entity set with a dashed
line.!

  We put the identifying relationship of a weak entity in a double
diamond. !

  Primary key for section – (course_id, sec_id, semester, year) !

course
course_id
title
credits

section
sec_id
semester
year

sec_course

©Silberschatz, Korth and Sudarshan!7.47!CS425 – Fall 2013 – Boris Glavic!

Weak Entity Sets (Cont.)!

  Note: the primary key of the strong entity set is not explicitly stored
with the weak entity set, since it is implicit in the identifying
relationship.!

  If course_id were explicitly stored, section could be made a strong
entity, but then the relationship between section and course would
be duplicated by an implicit relationship defined by the attribute
course_id common to course and section!

©Silberschatz, Korth and Sudarshan!7.48!CS425 – Fall 2013 – Boris Glavic!

E-R Diagram for a University Enterprise!

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

©Silberschatz, Korth and Sudarshan!7.49!CS425 – Fall 2013 – Boris Glavic!

Reduction to Relational Schemas!

©Silberschatz, Korth and Sudarshan!7.50!CS425 – Fall 2013 – Boris Glavic!

Reduction to Relation Schemas!

  Entity sets and relationship sets can be expressed uniformly as
relation schemas that represent the contents of the database.!

  A database which conforms to an E-R diagram can be represented by
a collection of relation schemas.!

  For each entity set and relationship set there is a unique relation
schema that is assigned the name of the corresponding entity set or
relationship set.!

©Silberschatz, Korth and Sudarshan!7.51!CS425 – Fall 2013 – Boris Glavic!

Representing Entity Sets With Simple
Attributes!

  A strong entity set reduces to a schema with the same attributes 
student(ID, name, tot_cred)!

  A weak entity set becomes a table that includes a column for the primary
key of the identifying strong entity set  
section (course_id, sec_id, sem, year)!

course
course_id
title
credits

section
sec_id
semester
year

sec_course

©Silberschatz, Korth and Sudarshan!7.52!CS425 – Fall 2013 – Boris Glavic!

Representing Relationship Sets!

  A many-to-many relationship set is represented as a schema with
attributes for the primary keys of the two participating entity sets, and any
descriptive attributes of the relationship set. !

  Example: schema for relationship set advisor!
!advisor = (s_id, i_id)!

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

©Silberschatz, Korth and Sudarshan!7.53!CS425 – Fall 2013 – Boris Glavic!

Redundancy of Schemas!
  Many-to-one and one-to-many relationship sets that are total on the

many-side can be represented by adding an extra attribute to the
“many” side, containing the primary key of the “one” side!

  Example: Instead of creating a schema for relationship set inst_dept,
add an attribute dept_name to the schema arising from entity set
instructor!

student
ID
name
salary

ID
name
tot_cred

advisor

inst_dept stud_dept

instructor

department
dept_name
building
budget

course_dept

©Silberschatz, Korth and Sudarshan!7.54!CS425 – Fall 2013 – Boris Glavic!

Redundancy of Schemas (Cont.)!

  For one-to-one relationship sets, either side can be chosen to act
as the “many” side!
  That is, extra attribute can be added to either of the tables

corresponding to the two entity sets!
  If the relationship is total in both sides, the relation schemas

from the two sides can be merged into one schema !
  If participation is partial on the “many” side, replacing a schema by

an extra attribute in the schema corresponding to the “many” side
could result in null values!

  The schema corresponding to a relationship set linking a weak
entity set to its identifying strong entity set is redundant.!
  Example: The section schema already contains the attributes

that would appear in the sec_course schema!

©Silberschatz, Korth and Sudarshan!7.55!CS425 – Fall 2013 – Boris Glavic!

Composite and Multivalued Attributes!

  Composite attributes are flattened out by creating a
separate attribute for each component attribute!
  Example: given entity set instructor with

composite attribute name with component
attributes first_name and last_name the schema
corresponding to the entity set has two attributes
name_first_name and name_last_name!
 Prefix omitted if there is no ambiguity!

  Ignoring multivalued attributes, extended instructor
schema is!
  instructor(ID,  

 first_name, middle_initial, last_name, 
 street_number, street_name,  
 apt_number, city, state, zip_code,  
 date_of_birth)!

instructor
ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ()

©Silberschatz, Korth and Sudarshan!7.56!CS425 – Fall 2013 – Boris Glavic!

Composite and Multivalued Attributes!

  A multivalued attribute M of an entity E is represented by a separate
schema EM!
  Schema EM has attributes corresponding to the primary key of E

and an attribute corresponding to multivalued attribute M!
  Example: Multivalued attribute phone_number of instructor is

represented by a schema: 
 inst_phone= (ID, phone_number) !

  Each value of the multivalued attribute maps to a separate tuple of
the relation on schema EM!
 For example, an instructor entity with primary key 22222 and

phone numbers 456-7890 and 123-4567 maps to two tuples:  
 (22222, 456-7890) and (22222, 123-4567) !

©Silberschatz, Korth and Sudarshan!7.57!CS425 – Fall 2013 – Boris Glavic!

Multivalued Attributes (Cont.)!

  Special case:entity time_slot has only one attribute other than the
primary-key attribute, and that attribute is multivalued!
  Optimization: Don’t create the relation corresponding to the entity,

just create the one corresponding to the multivalued attribute!
  time_slot(time_slot_id, day, start_time, end_time)!
  Caveat: time_slot attribute of section (from sec_time_slot) cannot be

a foreign key due to this optimization!

time_slot
time_slot_id
{ day
start_time
end_time

}

sec_time_slot

section
sec_id
semester
year

sec_class

©Silberschatz, Korth and Sudarshan!7.58!CS425 – Fall 2013 – Boris Glavic!

Design Issues!

  Use of entity sets vs. attributes  
 
 
 
 
!

  Designing phone as an entity allow for primary key constraints for phone!
  Designing phone as an entity allow phone numbers to be used in

relationships with other entities (e.g., student)!
  Use of phone as an entity allows extra information about phone numbers!

instructor

ID
name
salary

phone
phone_number
location

instructor

ID
name
salary
phone_number

inst_phone

©Silberschatz, Korth and Sudarshan!7.59!CS425 – Fall 2013 – Boris Glavic!

Design Issues!

  Use of entity sets vs. relationship sets!
  Possible guideline is to designate a relationship set to describe an

action that occurs between entities!
  Possible hint: the relationship only relates entities, but does not have an

existence by itself. E.g., hasAddress: (department-address) 
!

registration
...
...
...

section
sec_id
semester
year

student
ID
name
tot_cred

section_reg student_reg

©Silberschatz, Korth and Sudarshan!7.60!CS425 – Fall 2013 – Boris Glavic!

Design Issues!

  Binary versus n-ary relationship sets!
  Although it is possible to replace any nonbinary (n-ary, for n > 2)

relationship set by a number of distinct binary relationship sets + an
aritifical entity set, a n-ary relationship set shows more clearly that
several entities participate in a single relationship.!

  Placement of relationship attributes!
  e.g., attribute date as attribute of advisor or as attribute of student!
  Does not work for N-M relationships!!

!!

©Silberschatz, Korth and Sudarshan!7.61!CS425 – Fall 2013 – Boris Glavic!

Binary Vs. Non-Binary Relationships!

  Some relationships that appear to be non-binary may be better
represented using binary relationships!
  E.g., A ternary relationship parents, relating a child to his/her

father and mother, is best replaced by two binary relationships,
father and mother!
 Using two binary relationships allows partial information (e.g.,

only mother being know)!
  But there are some relationships that are naturally non-binary!

 Example: proj_guide!

©Silberschatz, Korth and Sudarshan!7.62!CS425 – Fall 2013 – Boris Glavic!

Converting Non-Binary Relationships to Binary Form!

  In general, any non-binary relationship can be represented using
binary relationships by creating an artificial entity set.!
  Replace R between entity sets A, B and C by an entity set E, and

three relationship sets: !
! !1. RA, relating E and A 2. RB, relating E and B  
 3. RC, relating E and C!
  Create a special identifying attribute for E!
  Add any attributes of R to E !
  For each relationship (ai , bi , ci) in R, create !

! 1. a new entity ei in the entity set E 2. add (ei , ai) to RA!

! 3. add (ei , bi) to RB ! 4. add (ei , ci) to RC!

B R C

A

CB E

A

RA

RB RC

(a) (b)

©Silberschatz, Korth and Sudarshan!7.63!CS425 – Fall 2013 – Boris Glavic!

Converting Non-Binary Relationships
(Cont.)!

  Also need to translate constraints!
  Translating all constraints may not be possible!
  There may be instances in the translated schema that 

cannot correspond to any instance of R!
 Exercise: add constraints to the relationships RA, RB and

RC to ensure that a newly created entity corresponds to
exactly one entity in each of entity sets A, B and C!

  We can avoid creating an identifying attribute by making E a
weak entity set (described shortly) identified by the three
relationship sets !

©Silberschatz, Korth and Sudarshan!7.64!CS425 – Fall 2013 – Boris Glavic!

Converting Non-Binary Relationships: 
Is the New Entity Set E Necessary?!

  Yes, because a non-binary relation ship stores more information that
any number of binary relationships!
  Consider again the example (a) below!
  Replace R with three binary relationships:!

! !1. RAB, relating A and B 2. RBC, relating B and C  
 3. RAC, relating A and C!
  For each relationship (ai , bi , ci) in R, create !

 1. add (ai , bi) to RAB!

 2. add (bi , ci) to RBC!

 3. add (ai , ci) to RAC!

  Consider R = order, A = supplier, B = item, C = customer!
(Gunnar, chainsaw, Bob) – Bob ordered a chainsaw from Gunnar!
-> !
(Gunnar, chainsaw), (chainsaw, Bob), (Gunnar, Bob)!
Gunnar supplies chainsaws, Bob ordered a chainsaw, Bob ordered
something from Gunnar. E.g., we do not know what Bob ordered from
Gunnar.!

B R C

A

(a) (b)

©Silberschatz, Korth and Sudarshan!7.65!CS425 – Fall 2013 – Boris Glavic!

ER-model to Relational Summary!

  Rule 1) Strong entity E!
  Create relation with attributes of E !
  Primary key is equal to the PK of E!

  Rule 2) Weak entity W identified by E through relationship R!
  Create relation with attributes of W and R and PK(E). !
  Set PK to discriminator attributes combined with PK(E). PK(E) is a

foreign key to E.!
  Rule 3) Binary relationship R between A and B: one-to-one!

  If no side is total add PK of A to as foreign key in B or the other
way around. Add any attributes of the relationship R to A
respective B.!

  If one side is total add PK of the other-side as foreign key. Add any
attributes of the relationship R to the total side.!

  If both sides are total merge the two relation into a new relation E
and choose either PK(A) as PK(B) as the new PK. Add any
attributes of the relationship R to the new relation E.!

©Silberschatz, Korth and Sudarshan!7.66!CS425 – Fall 2013 – Boris Glavic!

ER-model to Relational Summary (Cont.)!

  Rule 4) Binary relationship R between A and B: one-to-many/many-to-
one!
  Add PK of the “one” side as foreign key to the “many” side. !
  Add any attributes of the relationship R to the “many” side.!

  Rule 5) Binary relationship R between A and B: many-to-many!
  Create a new relation R. !
  Add PK’s of A and B as attributes + plus all attributes of R. !
  The primary key of the relationship is PK(A) + PK(B). The PK

attributes of A/B form a foreign key to A/B!
  Rule 6) N-ary relationship R between E1 … En!

  Create a new relation. !
  Add all the PK’s of E1 … En. Add all attributes of R to the new

relation.!
  The primary key or R is PK(E1) … PK(En). Each PK(Ei) is a foreign

key to the corresponding relation. !

©Silberschatz, Korth and Sudarshan!7.67!CS425 – Fall 2013 – Boris Glavic!

ER-model to Relational Summary (Cont.)!

  Rule 7) Entity E with multi-valued attribute A!
  Create new relation. Add A and PK(E) as attributes.!
  PK is all attributes. PK(E) is a foreign key.!

©Silberschatz, Korth and Sudarshan!7.68!CS425 – Fall 2013 – Boris Glavic!

E-R Diagram for a University Enterprise!

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

©Silberschatz, Korth and Sudarshan!7.69!CS425 – Fall 2013 – Boris Glavic!

Translate the University ER-Model!

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

  Rule 1) Strong Entities!
  department(dept_name, building, budget)!
  instructor(ID, name, salary)!
  student(ID, name, tot_cred)!
  course(course_id, title, credits)!
  time_slot(time_slot_id)!
  classroom(building,room_number, capacity)!

  Rule 2) Weak Entities!
  section(course_id, sec_id, semester, year)!

©Silberschatz, Korth and Sudarshan!7.70!CS425 – Fall 2013 – Boris Glavic!

Translate the University ER-Model!

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

  Rule 3) Relationships one-to-one!
  None exist!

  Rule 4) Relationships one-to-many!
  department(dept_name, building, budget)!
  instructor(ID, name, salary, dept_name)!
  student(ID, name, tot_cred, dept_name, instr_ID)!
  course(course_id, title, credits, dept_name)!
  time_slot(time_slot_id)!
  classroom(building,room_number, capacity)!
  section(course_id, sec_id, semester, year, room_building,

room_number, time_slot_id)!

©Silberschatz, Korth and Sudarshan!7.71!CS425 – Fall 2013 – Boris Glavic!

Translate the University ER-Model!

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

  Rule 5) Relationships many-to-many!
  department(dept_name, building, budget)!
  instructor(ID, name, salary, dept_name)!
  student(ID, name, tot_cred, dept_name, instr_ID)!
  course(course_id, title, credits, dept_name)!
  time_slot(time_slot_id)!
  classroom(building,room_number, capacity)!
  section(course_id, sec_id, semester, year, !

!room_building, room_number, time_slot_id)!
  prereq(course_id, prereq_id)!
  teaches(ID, course_id, sec_id, semester, year)!
  takes(ID, course_id, sec_id, semester, year, grade)!

  Rule 6) N-ary Relationships!
  none exist!

©Silberschatz, Korth and Sudarshan!7.72!CS425 – Fall 2013 – Boris Glavic!

Translate the University ER-Model!

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

  Rule 7) Multivalued attributes!
  department(dept_name, building, budget)!
  instructor(ID, name, salary, dept_name)!
  student(ID, name, tot_cred, dept_name, instr_ID)!
  course(course_id, title, credits, dept_name)!
  time_slot(time_slot_id)!
  time_slot_day(time_slot_id, start_time, end_time)!
  classroom(building,room_number, capacity)!
  section(course_id, sec_id, semester, year, !

!room_building, room_number, time_slot_id)!
  prereq(course_id, prereq_id)!
  teaches(ID, course_id, sec_id, semester, year)!
  takes(ID, course_id, sec_id, semester, year, grade)!

©Silberschatz, Korth and Sudarshan!7.73!CS425 – Fall 2013 – Boris Glavic!

Extended ER Features!

©Silberschatz, Korth and Sudarshan!7.74!CS425 – Fall 2013 – Boris Glavic!

Extended E-R Features: Specialization!

  Top-down design process; we designate subgroupings within an entity set
that are distinctive from other entities in the set.!

  These subgroupings become lower-level entity sets that have attributes or
participate in relationships that do not apply to the higher-level entity set.!

  Depicted by a triangle component labeled ISA (E.g., instructor “is a”

person).!
  Attribute inheritance – a lower-level entity set inherits all the attributes

and relationship participation of the higher-level entity set to which it is
linked.!

©Silberschatz, Korth and Sudarshan!7.75!CS425 – Fall 2013 – Boris Glavic!

Specialization Example!

person
ID
name
address

student

instructor
rank

secretary
hours_per_week

employee
salary tot_credits

©Silberschatz, Korth and Sudarshan!7.76!CS425 – Fall 2013 – Boris Glavic!

Extended ER Features: Generalization!

  A bottom-up design process – combine a number of entity sets
that share the same features into a higher-level entity set.!

  Specialization and generalization are simple inversions of each
other; they are represented in an E-R diagram in the same way.!

  The terms specialization and generalization are used
interchangeably.!

©Silberschatz, Korth and Sudarshan!7.77!CS425 – Fall 2013 – Boris Glavic!

Specialization and Generalization (Cont.)!

  Can have multiple specializations of an entity set based on different
features. !

  E.g., permanent_employee vs. temporary_employee, in addition to
instructor vs. secretary!

  Each particular employee would be !
  a member of one of permanent_employee or temporary_employee, !
  and also a member of one of instructor, secretary!

  The ISA relationship also referred to as superclass - subclass
relationship!

©Silberschatz, Korth and Sudarshan!7.78!CS425 – Fall 2013 – Boris Glavic!

Design Constraints on a Specialization/
Generalization!

  Constraint on which entities can be members of a given lower-level entity
set.!
  condition-defined!

 Example: all customers over 65 years are members of senior-
citizen entity set; senior-citizen ISA person.!

  user-defined!
  Constraint on whether or not entities may belong to more than one lower-

level entity set within a single generalization.!
  Disjoint!

 an entity can belong to only one lower-level entity set!
 Noted in E-R diagram by having multiple lower-level entity sets link

to the same triangle!
  Overlapping!

 an entity can belong to more than one lower-level entity set!

©Silberschatz, Korth and Sudarshan!7.79!CS425 – Fall 2013 – Boris Glavic!

Specialization Example!

person
ID
name
address

student

instructor
rank

secretary
hours_per_week

employee
salary tot_credits

Disjoint, employees
are either instructors or
secretaries !

Overlapping, a
person can be
both an employee
and a student!

©Silberschatz, Korth and Sudarshan!7.80!CS425 – Fall 2013 – Boris Glavic!

Design Constraints on a Specialization/
Generalization (Cont.)!

  Completeness constraint -- specifies whether or not an entity in
the higher-level entity set must belong to at least one of the lower-
level entity sets within a generalization.!
  total: an entity must belong to one of the lower-level entity sets!
  partial: an entity need not belong to one of the lower-level

entity sets!

©Silberschatz, Korth and Sudarshan!7.81!CS425 – Fall 2013 – Boris Glavic!

Aggregation!

  Consider the ternary relationship proj_guide, which we saw earlier!
  Suppose we want to record evaluations of a student by a guide on a
project!

project

evaluation

instructor student

eval_ for

proj_ guide

©Silberschatz, Korth and Sudarshan!7.82!CS425 – Fall 2013 – Boris Glavic!

Aggregation (Cont.)!

  Relationship sets eval_for and proj_guide represent overlapping
information!
  Every eval_for relationship corresponds to a proj_guide

relationship!
  However, some proj_guide relationships may not correspond to

any eval_for relationships !
 So we can’t discard the proj_guide relationship!

  Eliminate this redundancy via aggregation!
  Treat relationship as an abstract entity!
  Allows relationships between relationships !
  Abstraction of relationship into new entity!

©Silberschatz, Korth and Sudarshan!7.83!CS425 – Fall 2013 – Boris Glavic!

Aggregation (Cont.)!

  Without introducing redundancy, the following diagram represents:!
  A student is guided by a particular instructor on a particular project !
  A student, instructor, project combination may have an associated

evaluation!

evaluation

proj_ guide
instructor student

eval_ for

project

©Silberschatz, Korth and Sudarshan!7.84!CS425 – Fall 2013 – Boris Glavic!

Representing Specialization via
Schemas!

  Method 1: !
  Form a relation schema for the higher-level entity !
  Form a relation schema for each lower-level entity set, include

primary key of higher-level entity set and local attributes 
 
 schema ! attributes 
 person ! ID, name, street, city  
 student ! ID, tot_cred  
 employee ! ID, salary!

  Drawback: getting information about, an employee requires
accessing two relations, the one corresponding to the low-level
schema and the one corresponding to the high-level schema!

©Silberschatz, Korth and Sudarshan!7.85!CS425 – Fall 2013 – Boris Glavic!

Representing Specialization as Schemas
(Cont.)!

  Method 2: !
  Form a single relation schema for each entity set with all local and

inherited attributes 
 !schema ! attributes 
 person ! ID, name, street, city ! 
 student ! ID, name, street, city, tot_cred  
 employee ! ID, name, street, city, salary!

  If specialization is total, the schema for the generalized entity set
(person) not required to store information!
 Can be defined as a “view” relation containing union of

specialization relations!
 But explicit schema may still be needed for foreign key constraints!

  Drawback: name, street and city may be stored redundantly for people
who are both students and employees!

©Silberschatz, Korth and Sudarshan!7.86!CS425 – Fall 2013 – Boris Glavic!

Representing Specialization as Schemas
(Cont.)!

  Method 3: !
  Form a single relation schema for each entity set with all local and

inherited attributes!
 For total and disjoint specialization add a single “type” attribute that

stores the type of an entity!

 For partial and/or overlapping specialization add multiple boolean
“type” attributes!

 
!

  Drawback: large number of NULL values, potentially large relation!

!
 !schema ! attributes 
 person ! ID, type, name, street, city, tot_cred, salary!

!

!
 !schema ! attributes 
 person ! ID, isEmployee, isStudent, name, street, city, tot_cred, salary!

!

©Silberschatz, Korth and Sudarshan!7.87!CS425 – Fall 2013 – Boris Glavic!

Schemas Corresponding to Aggregation!

  To represent aggregation, create a schema containing!
  primary key of the aggregated relationship,!
  the primary key of the associated entity set!
  any descriptive attributes!

©Silberschatz, Korth and Sudarshan!7.88!CS425 – Fall 2013 – Boris Glavic!

Schemas Corresponding to
Aggregation (Cont.)!

  For example, to represent aggregation manages between
relationship works_on and entity set manager, create a schema!
! eval_for (s_ID, project_id, i_ID, evaluation_id)!

evaluation

proj_ guide
instructor student

eval_ for

project

©Silberschatz, Korth and Sudarshan!7.89!CS425 – Fall 2013 – Boris Glavic!

ER-model to Relational Summary (Cont.)!

  Rule 8) Specialization of E into S1, … ,Sn (method 1)!
  Create a relation for E with all attributes of E. The PK of E is the

PK.!
  For each Si create a relation with PK(E) as PK and foreign key to

relation for E. Add all attributes of Si that do not exist in E.!
  Rule 9) Specialization of E into S1, … ,Sn (method 2)!

  Create a relation for E with all attributes of E. The PK of E is the
PK.!

  For each Si create a relation with PK(E) as PK and foreign key to
relation for E. Add all attributes of Si.!

  Rule 10) Specialization of E into S1, … ,Sn (method 3)!
  Create a new relation with all attributes from E and S1, … ,Sn. !
  Add single attribute type or a boolean type attribute for each Si!
  The primary key is PK(E)!

©Silberschatz, Korth and Sudarshan!7.90!CS425 – Fall 2013 – Boris Glavic!

ER-model to Relational Summary (Cont.)!

  Rule 11) Aggregation: Relationship R1 relates entity sets E1, …, En.
This is related by relationship A to an entity set B!
  Create a relation for A with attributes PK(E1) … PK(En) + all

attributes from A + PK(B). PK are all attributes except the ones
from A!

©Silberschatz, Korth and Sudarshan!7.91!CS425 – Fall 2013 – Boris Glavic!

ER Design Decisions!

  The use of an attribute or entity set to represent an object.!
  Whether a real-world concept is best expressed by an entity set or

a relationship set.!
  The use of a ternary relationship versus a pair of binary

relationships.!
  The use of a strong or weak entity set.!
  The use of specialization/generalization – contributes to modularity

in the design.!
  The use of aggregation – can treat the aggregate entity set as a

single unit without concern for the details of its internal structure.!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Partially taken from!
Klaus R. Dittrich!

How about doing another ER design
interactively on the board?!

©Silberschatz, Korth and Sudarshan!7.93!CS425 – Fall 2013 – Boris Glavic!

Summary of Symbols Used in E-R Notation!

E

R

R

A1
A2

A2.1
A2.2

{A3}
A4

E
entity set

relationship set

identifying
relationship set
for weak entity set primary key

discriminating
a!ribute of
weak entity set

total participation
of entity set in
relationship

a!ributes:
simple (A1),
composite (A2) and
multivalued (A3)
derived (A4)

A1

E

A1

E
R E

()

©Silberschatz, Korth and Sudarshan!7.94!CS425 – Fall 2013 – Boris Glavic!

Symbols Used in ER Notation (Cont.)!

R

R

R

role-
name

R

E

R
l..h E

E1

E2 E3

E1

E2 E3

E1

E2 E3

many-to-many
relationship

many-to-one
relationship

one-to-one
relationship

cardinality
limits

ISA: generalization
or specialization

disjoint
generalization

total (disjoint)
generalization

role indicator

total

©Silberschatz, Korth and Sudarshan!7.95!CS425 – Fall 2013 – Boris Glavic!

Alternative ER Notations!

  Chen, IDE1FX, …!

entity set E with
simple a!ribute A1,
composite a!ribute A2,
multivalued a!ribute A3,
derived a!ribute A4,
and primary key A1

A1
A2

A3

A2.1 A2.2

A4E

generalization ISA ISAtotal
generalizationweak entity set

©Silberschatz, Korth and Sudarshan!7.96!CS425 – Fall 2013 – Boris Glavic!

Alternative ER Notations!

 Chen IDE1FX (Crows feet notation)!

participation
in R: total (E1)
and partial (E2)

E1 E2 E2E1R
R

Rmany-to-many
relationship

one-to-one
relationship

many-to-one
relationship

R

R

*

*

*

1

1

1

R

E1

E1

E1

E2

E2

E2 E1 E2

RE1 E2

RE1 E2

©Silberschatz, Korth and Sudarshan!7.97!CS425 – Fall 2013 – Boris Glavic!

UML!!

  UML: Unified Modeling Language!
  UML has many components to graphically model different aspects

of an entire software system!
  UML Class Diagrams correspond to E-R Diagram, but several

differences.!

©Silberschatz, Korth and Sudarshan!7.98!CS425 – Fall 2013 – Boris Glavic!

ER vs. UML Class Diagrams!

*Note reversal of position in cardinality constraint depiction!

–A1
+M1

E

binary
relationship

class with simple a!ributes
and methods (a!ribute
prefixes: + = public,
– = private, # = protected)

A1
M1

E entity with
a!ributes (simple,
composite,
multivalued, derived)

R
E2E1 role1 role2

relationship
a!ributes E2E1 role1 role2

A1
R

R cardinality
constraintsE2E1

R
E2E10.. * 0..1 0..1 0.. *

ER Diagram Notation Equivalent in UML

R E2E1 role1 role2

R E2E1 role1 role2

A1

() ()

©Silberschatz, Korth and Sudarshan!7.99!CS425 – Fall 2013 – Boris Glavic!

ER vs. UML Class Diagrams!

ER Diagram Notation Equivalent in UML

*Generalization can use merged or separate arrows independent!
 of disjoint/overlapping!

E2 E3

E1

E2 E3

E1

E2 E3

overlapping
generalization

disjoint
generalization

R
E3

E1
E2

R
E3

E1
E2n-ary

relationships

E1

E2 E3

overlapping

disjoint
E1

©Silberschatz, Korth and Sudarshan!7.100!CS425 – Fall 2013 – Boris Glavic!

UML Class Diagrams (Cont.)!

  Binary relationship sets are represented in UML by just drawing a
line connecting the entity sets. The relationship set name is written
adjacent to the line. !

  The role played by an entity set in a relationship set may also be
specified by writing the role name on the line, adjacent to the entity
set. !

  The relationship set name may alternatively be written in a box,
along with attributes of the relationship set, and the box is
connected, using a dotted line, to the line depicting the relationship
set.!

©Silberschatz, Korth and Sudarshan!7.101!CS425 – Fall 2013 – Boris Glavic!

Recap!

  ER-model!
  Entities!

 Strong!
 Weak!

  Attributes!
 Simple vs. Composite!
 Single-valued vs. Multi-valued!

  Relationships!
 Degree (binary vs. N-ary)!

  Cardinality constraints!
  Specialization/Generalization!

 Total vs. partial!
 Disjoint vs. overlapping!

  Aggregation!
!!

©Silberschatz, Korth and Sudarshan!7.102!CS425 – Fall 2013 – Boris Glavic!

Recap Cont.!

  ER-Diagrams !
  Alternative notations!

  UML-Diagrams!
  Design decisions!

  Multi-valued attribute vs. entity!
  Entity vs. relationship!
  Binary vs. N-ary relationships!
  Placement of relationship attributes!
  Total 1-1 vs. single entity!

  ER to relational model!
  Translation rules!

modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

Partially taken from!
Klaus R. Dittrich!

End of Chapter 7  
!

©Silberschatz, Korth and Sudarshan!7.104!CS425 – Fall 2013 – Boris Glavic!

Outline!

  Introduction!
  Relational Data Model!
  Formal Relational Languages (relational algebra)!
  SQL - Advanced!
  Database Design – Database modelling!
  Transaction Processing, Recovery, and Concurrency Control!
  Storage and File Structures!
  Indexing and Hashing!
  Query Processing and Optimization!

©Silberschatz, Korth and Sudarshan!7.105!CS425 – Fall 2013 – Boris Glavic!

Figure 7.01!

instructor

student

22222 Einstein

Katz

Kim

Crick

Srinivasan

Singh

45565

98345

76766

10101

76543

12345
98988

76653
23121

00128
76543

Shankar
Tanaka

Aoi
Chavez
Peltier

Zhang
Brown

44553

©Silberschatz, Korth and Sudarshan!7.106!CS425 – Fall 2013 – Boris Glavic!

Figure 7.02!

instructor
student

76766 Crick

Katz
Srinivasan

Kim
Singh
Einstein

45565

10101

98345
76543

22222

98988

12345

00128
76543
76653

23121
44553

Tanaka
Shankar

Zhang

Brown
Aoi
Chavez
Peltier

©Silberschatz, Korth and Sudarshan!7.107!CS425 – Fall 2013 – Boris Glavic!

Figure 7.03!

instructor

student

76766 Crick

Katz

Srinivasan

Kim
Singh

Einstein

45565

10101

98345

76543

22222

98988

12345

00128

76543

44553

Tanaka

Shankar

Zhang

Brown

Aoi

Chavez

Peltier

3 May 2008

10 June 2007

12 June 2006

6 June 2009

30 June 2007

31 May 2007

4 May 2006

76653

23121

©Silberschatz, Korth and Sudarshan!7.108!CS425 – Fall 2013 – Boris Glavic!

Figure 7.04!

name address

first_name middle_initial last_name street city state postal_code

street_number street_name apartment_number

composite
attributes

component
attributes

©Silberschatz, Korth and Sudarshan!7.109!CS425 – Fall 2013 – Boris Glavic!

Figure 7.05!

(b)(a)

a1

a2

a3

a4

b1

b2

b3

a2

a1

a3

b1

b2

b3

b4

b5

A B A B

©Silberschatz, Korth and Sudarshan!7.110!CS425 – Fall 2013 – Boris Glavic!

Figure 7.06!

a
a2

a3

a5

a1

a2

a4

a2

a1

a3

a4

b1

b2

b3

A B BA

b1

b2

b3

b4

(a) (b)

©Silberschatz, Korth and Sudarshan!7.111!CS425 – Fall 2013 – Boris Glavic!

Figure 7.07!

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

©Silberschatz, Korth and Sudarshan!7.112!CS425 – Fall 2013 – Boris Glavic!

Figure 7.08!

ID
name
salary

ID
name
tot_cred

date

instructor student
advisor

©Silberschatz, Korth and Sudarshan!7.113!CS425 – Fall 2013 – Boris Glavic!

Figure 7.09!
instructor student
ID
name
salary

instructor
ID
name
salary

instructor
ID
name
salary

ID
name
tot_cred

student
ID
name
tot_cred

student
ID
name
tot_cred

(a)

(b)

(c)

advisor

advisor

advisor

©Silberschatz, Korth and Sudarshan!7.114!CS425 – Fall 2013 – Boris Glavic!

Figure 7.10!

instructor
ID
name
salary

student
ID
name
tot_cred

advisor 1..10..*

©Silberschatz, Korth and Sudarshan!7.115!CS425 – Fall 2013 – Boris Glavic!

Figure 7.11!
instructor

ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ()

©Silberschatz, Korth and Sudarshan!7.116!CS425 – Fall 2013 – Boris Glavic!

Figure 7.12!

course
course_id
title
credits

course_id

prereq_id prereq

©Silberschatz, Korth and Sudarshan!7.117!CS425 – Fall 2013 – Boris Glavic!

Figure 7.13!

course
course_id
title
credits

course_id

prereq_id prereq

©Silberschatz, Korth and Sudarshan!7.118!CS425 – Fall 2013 – Boris Glavic!

Figure 7.14!

course
course_id
title
credits

section
sec_id
semester
year

sec_course

©Silberschatz, Korth and Sudarshan!7.119!CS425 – Fall 2013 – Boris Glavic!

Figure 7.15!

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

©Silberschatz, Korth and Sudarshan!7.120!CS425 – Fall 2013 – Boris Glavic!

Figure 7.17!

instructor

ID
name
salary

phone
phone_number
location

instructor

ID
name
salary
phone_number

(a) (b)

inst_phone

©Silberschatz, Korth and Sudarshan!7.121!CS425 – Fall 2013 – Boris Glavic!

Figure 7.18!

registration
...
...
...

section
sec_id
semester
year

student
ID
name
tot_cred

section_reg student_reg

©Silberschatz, Korth and Sudarshan!7.122!CS425 – Fall 2013 – Boris Glavic!

Figure 7.19!

B R C

A

CB E

A

RA

RB RC

(a) (b)

©Silberschatz, Korth and Sudarshan!7.123!CS425 – Fall 2013 – Boris Glavic!

Figure 7.20!

instructor
student

76766 Crick

Katz

Srinivasan

Kim
Singh

Einstein

45565

10101

98345

76543

22222

98988

12345

00128

76543

76653

23121

44553

Tanaka

Shankar

Zhang

Brown

Aoi

Chavez

Peltier

May 2009

June 2007

June 2006

June 2009

June 2007

May 2007

May 2006

©Silberschatz, Korth and Sudarshan!7.124!CS425 – Fall 2013 – Boris Glavic!

Figure 7.21!
person
ID
name
address

student

instructor
rank

secretary
hours_per_week

employee
salary tot_credits

©Silberschatz, Korth and Sudarshan!7.125!CS425 – Fall 2013 – Boris Glavic!

Figure 7.22!

project

evaluation

instructor student

eval_ for

proj_ guide

©Silberschatz, Korth and Sudarshan!7.126!CS425 – Fall 2013 – Boris Glavic!

Figure 7.23!

evaluation

proj_ guide
instructor student

eval_ for

project

©Silberschatz, Korth and Sudarshan!7.127!CS425 – Fall 2013 – Boris Glavic!

Figure 7.24!
E

R

R

R

R

R

role-
name

R

E

A1
A2

A2.1
A2.2

{A3}
A4

E

R
l..h E

E1

E2 E3

E1

E2 E3

E1

E2 E3

entity set

relationship set

identifying
relationship set
for weak entity set primary key

many-to-many
relationship

many-to-one
relationship

one-to-one
relationship

cardinality
limits

discriminating
a!ribute of
weak entity set

total participation
of entity set in
relationship

a!ributes:
simple (A1),
composite (A2) and
multivalued (A3)
derived (A4)

ISA: generalization
or specialization

disjoint
generalization

total (disjoint)
generalization

role indicator

total

A1

E

A1

E
R E

()

©Silberschatz, Korth and Sudarshan!7.128!CS425 – Fall 2013 – Boris Glavic!

Figure 7.25!

participation
in R: total (E1)
and partial (E2)

E1 E2 E2E1R
R

R

entity set E with
simple a!ribute A1,
composite a!ribute A2,
multivalued a!ribute A3,
derived a!ribute A4,
and primary key A1

many-to-many
relationship

one-to-one
relationship

many-to-one
relationship

R

R

*

*

*

1

1

1

R

E1

E1

E1

E2

E2

E2 E1 E2

generalization ISA ISAtotal
generalizationweak entity set

A1
A2

A3

A2.1 A2.2

A4E

RE1 E2

RE1 E2

©Silberschatz, Korth and Sudarshan!7.129!CS425 – Fall 2013 – Boris Glavic!

Figure 7.26!

–A1
+M1

E

E2 E3

E1

E2 E3

E1

E2 E3

binary
relationship

class with simple a!ributes
and methods (a!ribute
prefixes: + = public,
– = private, # = protected)

overlapping
generalization

disjoint
generalization

A1
M1

E entity with
a!ributes (simple,
composite,
multivalued, derived)

R
E2E1 role1 role2

relationship
a!ributes E2E1 role1 role2

A1
R

R cardinality
constraintsE2E1

R
E2E10.. * 0..1 0..1 0.. *

R
E3

E1
E2

R
E3

E1
E2n-ary

relationships

E1

E2 E3

overlapping

disjoint

ER Diagram Notation Equivalent in UML

R E2E1 role1 role2

R E2E1 role1 role2

A1

() ()

E1

©Silberschatz, Korth and Sudarshan!7.130!CS425 – Fall 2013 – Boris Glavic!

Figure 7.27!

B C

A

CB E

A

RA

RB RC

(a) (b)

(c)

A

B C

R

RBC

RAB RAC

©Silberschatz, Korth and Sudarshan!7.131!CS425 – Fall 2013 – Boris Glavic!

Figure 7.28!

X Y

A B C

©Silberschatz, Korth and Sudarshan!7.132!CS425 – Fall 2013 – Boris Glavic!

Figure 7.29!
author

name
address
URL

written_by
published_by

contains

number

number

stocks

book

shopping_basket
basket_id

warehouse

basket_of
ISBN
title
year
price

code
address
phone

publisher
name
address
phone
URL

customer
email
name
address
phone

