
1

Modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

CS425 – Fall 2013  
Boris Glavic  

Chapter 3: Formal Relational Query
Languages !

©Silberschatz, Korth and Sudarshan!3.2!CS425 – Fall 2013 – Boris Glavic!

Chapter 3: Formal Relational Query Languages!

  Relational Algebra!
  Tuple Relational Calculus!
  Domain Relational Calculus!

Textbook: Chapter 6!

©Silberschatz, Korth and Sudarshan!3.3!CS425 – Fall 2013 – Boris Glavic!

Relational Algebra!

  Procedural language!
  Six basic operators!

  select: σ!
  project: ∏!
  union: ∪!
  set difference: – !
  Cartesian product: x!
  rename: ρ!

  The operators take one or two relations as inputs and produce a new
relation as a result.!
  composable!

©Silberschatz, Korth and Sudarshan!3.4!CS425 – Fall 2013 – Boris Glavic!

Select Operation – Example!

  Relation r!

¡ σA=B ^ D > 5 (r)!

©Silberschatz, Korth and Sudarshan!3.5!CS425 – Fall 2013 – Boris Glavic!

Select Operation!
  Notation: σ p(r)!
  p is called the selection predicate!
  Defined as: 

 
!!

!
Where p is a formula in propositional calculus consisting of terms
connected by : ∧ (and), ∨ (or), ¬ (not) 
Each term is one of:!

! !<attribute> !op !<attribute> or <constant>!
 where op is one of: =, ≠, >, ≥. <. ≤ 

!
  Example of selection: 

 
 !σ dept_name=“Physics”(instructor)!

Theo
ry

Warn
ing

�p(r) = {t | t 2 r ^ p(t)}

©Silberschatz, Korth and Sudarshan!3.6!CS425 – Fall 2013 – Boris Glavic!

Project Operation – Example!

  Relation r:!

  !∏A,C (r)

2

©Silberschatz, Korth and Sudarshan!3.7!CS425 – Fall 2013 – Boris Glavic!

Project Operation!

  Notation:  
!!

!where A1, A2 are attribute names and r is a relation name.!
  The result is defined as the relation of k columns obtained by erasing

the columns that are not listed!
  Duplicate rows removed from result, since relations are sets!
  Let A be a subset of the attributes of relation r then:!

  Example: To eliminate the dept_name attribute of instructor 
 
 ! ∏ID, name, salary (instructor)  
!

)(,,2,1
r

kAAA …∏

Theo
ry

Warn
ing

⇡A(r) = {t.A | t 2 r}

©Silberschatz, Korth and Sudarshan!3.8!CS425 – Fall 2013 – Boris Glavic!

Union Operation – Example !
  Relations r, s:!

  r ∪ s:!

©Silberschatz, Korth and Sudarshan!3.9!CS425 – Fall 2013 – Boris Glavic!

Union Operation!

  Notation: r ∪ s!
  Defined as: !

  For r ∪ s to be valid.!
!1. r, s must have the same arity (same number of attributes)!
!2. The attribute domains must be compatible (example: 2nd column  
 !of r deals with the same type of values as does the 2nd  
 column of s)!

  Example: to find all courses taught in the Fall 2009 semester, or in the
Spring 2010 semester, or in both  

 ∏course_id (σ semester=“Fall” Λ year=2009 (section)) ∪  

 ∏course_id (σ semester=“Spring” Λ year=2010 (section))!

!

r [s = {t | t 2 r _ t 2 s}

©Silberschatz, Korth and Sudarshan!3.10!CS425 – Fall 2013 – Boris Glavic!

Set difference of two relations!

  Relations r, s:!

  r – s:!

©Silberschatz, Korth and Sudarshan!3.11!CS425 – Fall 2013 – Boris Glavic!

Set Difference Operation!
  Notation r – s!
  Defined as:!
 !
!
  Set differences must be taken between compatible relations.!

  r and s must have the same arity!
  attribute domains of r and s must be compatible!

  Example: to find all courses taught in the Fall 2009 semester, but
not in the Spring 2010 semester 

 ∏course_id (σ semester=“Fall” Λ year=2009 (section)) −  

 ∏course_id (σ semester=“Spring” Λ year=2010 (section))!

!
!
!

r � s = {t | t 2 r ^ t 62 s}

©Silberschatz, Korth and Sudarshan!3.12!CS425 – Fall 2013 – Boris Glavic!

Cartesian-Product Operation – Example!

  Relations r, s:!

  r x s:!

3

©Silberschatz, Korth and Sudarshan!3.13!CS425 – Fall 2013 – Boris Glavic!

Cartesian-Product Operation!

  Notation r x s!
  Defined as:!
! !

!
  Assume that attributes of r(R) and s(S) are

disjoint. (That is, R ∩ S = ∅).!
  If attributes of r(R) and s(S) are not disjoint, then

renaming must be used.!

r ⇥ s = {t, t0 | t 2 r ^ t0 2 s}

©Silberschatz, Korth and Sudarshan!3.14!CS425 – Fall 2013 – Boris Glavic!

Composition of Operations!
  Can build expressions using multiple operations!
  Example: σA=C(r x s)!
!
  r x s!

  σA=C(r x s)!

©Silberschatz, Korth and Sudarshan!3.15!CS425 – Fall 2013 – Boris Glavic!

Rename Operation!

  Allows us to name, and therefore to refer to, the results of relational-
algebra expressions.!

  Allows us to refer to a relation by more than one name.!
  Example:!
 ! ! ! !ρ x (r)!
!returns the expression E under the name X!

  If a relational-algebra expression E has arity n, then !
 !
!
!returns the result of expression E under the name X, and with the!
!attributes renamed to A1 , A2 , …., An .!

ρx(A1,A2,...,An)
(r)

⇢X(r) = {t(X) | t 2 r}
⇢X(A)(r) = {t(X).A | t 2 r}

©Silberschatz, Korth and Sudarshan!3.16!CS425 – Fall 2013 – Boris Glavic!

Example Query!

  Find the largest salary in the university!
  Step 1: find instructor salaries that are less than some other

instructor salary (i.e. not maximum)!
–  using a copy of instructor under a new name d!

  Step 2: Find the largest salary!

⇡

instructor.salary

(�
instructor.salary<d.salary

(instructor ⇥ ⇢

d

(instructor)))

⇡

salary

(instructor)�
⇡

instructor.salary

(�
instructor.salary<d.salary

(instructor ⇥ ⇢

d

(instructor)))

©Silberschatz, Korth and Sudarshan!3.17!CS425 – Fall 2013 – Boris Glavic!

Example Queries!

  Find the names of all instructors in the Physics department, along with the
course_id of all courses they have taught!

  Query 1  
!

  Query 2!
!

⇡

instructor.ID,course id

(�
dept name=0

Physics

0(

�

instructor.ID=teaches.ID

(instructor ⇥ teaches)))

⇡

instructor.ID,course id

(�
instructor.ID=teaches.ID

(

�

dept name=0
Physics

0(instructor ⇥ teaches)))

©Silberschatz, Korth and Sudarshan!3.18!CS425 – Fall 2013 – Boris Glavic!

Formal Definition (Syntax)!

  A basic expression in the relational algebra consists of either one of the
following:!
  A relation in the database!
  A constant relation: e.g., {(1),(2)}!

  Let E1 and E2 be relational-algebra expressions; the following are all
relational-algebra expressions:!
  E1 ∪ E2!
  E1 – E2!
  E1 x E2!
  σp (E1), P is a predicate on attributes in E1!
  ∏s(E1), S is a list consisting of some of the attributes in E1!
  ρ x (E1), x is the new name for the result of E1!

Theo
ry

Warn
ing

4

©Silberschatz, Korth and Sudarshan!3.19!CS425 – Fall 2013 – Boris Glavic!

Formal Definition (Semantics)!

  Let E be an relational algebra expression. We use [E](I) to denote the
evaluation of E over a database instance I!
  For simplicity we will often drop I and []!

  The result of evaluating a simple relational algebra expression E over a
database is defined as!
  Simple relation: [R](I) = R(I)!
  Constant relation: [C](I) = C!

Theo
ry

Warn
ing

©Silberschatz, Korth and Sudarshan!3.20!CS425 – Fall 2013 – Boris Glavic!

Formal Definition (Semantics)!

  Let E1 and E2 be relational-algebra expressions.!

Theo
ry

Warn
ing

[E1 [E2] = {t | t 2 [E1] _ t 2 [E2]}
[E1 � E2] = {t | t 2 [E1] ^ t 62 [E2]}
[E1 ⇥ E2] = {t, t0 | t 2 [E1] ^ t0 2 [E2]}
[�p(E1)] = {t | t 2 [E1] ^ p(t)}
[⇡A(E1)] = {t.A | t 2 [E1]}
[⇢X(E1)] = {t(X) | t 2 [E1]}

©Silberschatz, Korth and Sudarshan!3.21!CS425 – Fall 2013 – Boris Glavic!

Null Values!

  It is possible for tuples to have a null value, denoted by null, for some
of their attributes!

  null signifies an unknown value or that a value does not exist.!

  The result of any arithmetic expression involving null is null.!

  Aggregate functions simply ignore null values (as in SQL)!

  For duplicate elimination and grouping, null is treated like any other
value, and two nulls are assumed to be the same (as in SQL)!

©Silberschatz, Korth and Sudarshan!3.22!CS425 – Fall 2013 – Boris Glavic!

Null Values!

  Comparisons with null values return the special truth value: unknown!
  If false was used instead of unknown, then not (A < 5)  

 would not be equivalent to A >= 5!
  Three-valued logic using the truth value unknown:!

  OR: (unknown or true) = true,  
 (unknown or false) = unknown 
 (unknown or unknown) = unknown!

  AND: (true and unknown) = unknown,  
 (false and unknown) = false, 
 (unknown and unknown) = unknown!

  NOT: (not unknown) = unknown!
  In SQL “P is unknown” evaluates to true if predicate P evaluates

to unknown!
  Result of select predicate is treated as false if it evaluates to unknown!

©Silberschatz, Korth and Sudarshan!3.23!CS425 – Fall 2013 – Boris Glavic!

Additional Operations!

We define additional operations that do not add any expressive power to
the relational algebra, but that simplify common queries.!

  Set intersection!
  Natural join!
  Assignment!
  Outer join !

©Silberschatz, Korth and Sudarshan!3.24!CS425 – Fall 2013 – Boris Glavic!

Set-Intersection Operation!

  Notation: r ∩ s!
  Defined as:!

  Assume: !
  r, s have the same arity !
  attributes of r and s are compatible!

  Note: r ∩ s = r – (r – s)!
  That is adding intersection to the language does not make it more

expressive!

r \ s = {t | t 2 r ^ t 2 s}

5

©Silberschatz, Korth and Sudarshan!3.25!CS425 – Fall 2013 – Boris Glavic!

Set-Intersection Operation – Example!

  Relation r, s:!

!
!
  r ∩ s!

©Silberschatz, Korth and Sudarshan!3.26!CS425 – Fall 2013 – Boris Glavic!

  Notation: r s!

Natural-Join Operation!

  Let r and s be relations on schemas R and S respectively.  
Then, r s is a relation on schema R ∪ S obtained as follows:!
  Consider each pair of tuples tr from r and ts from s. !
  If tr and ts have the same value on each of the attributes in R ∩ S, add

a tuple t to the result, where!

  t has the same value as tr on r!

  t has the same value as ts on s!
  Example:!

R = (A, B, C, D)!
S = (E, B, D)!
  Result schema = (A, B, C, D, E)!
  r s is defined as: 

 ∏r.A, r.B, r.C, r.D, s.E (σr.B = s.B ∧ r.D = s.D (r x s))!

©Silberschatz, Korth and Sudarshan!3.27!CS425 – Fall 2013 – Boris Glavic!

Natural-Join Operation (cont.)!

  Let r and s be relations on schemas R and S respectively.  
Then, r s is defined as:!
!

X = R \ S

S0 = S �R

r ./ s = ⇡R,S0(�r.X=s.X(r ⇥ s))

©Silberschatz, Korth and Sudarshan!3.28!CS425 – Fall 2013 – Boris Glavic!

Natural Join Example!

  Relations r, s:!

  r s!

©Silberschatz, Korth and Sudarshan!3.29!CS425 – Fall 2013 – Boris Glavic!

Natural Join and Theta Join!

  Find the names of all instructors in the Comp. Sci. department together with
the course titles of all the courses that the instructors teach!

  ∏ name, title (σ dept_name=“Comp. Sci.” (instructor teaches
course))!

  Natural join is associative!
  (instructor teaches) course is equivalent to  

instructor (teaches course)!
  Natural join is commutative (we ignore attribute order)!

  instruct teaches is equivalent to  
teaches instructor!

  The theta join operation r θ s is defined as!

r ./✓ s = �✓(r ⇥ s)

©Silberschatz, Korth and Sudarshan!3.30!CS425 – Fall 2013 – Boris Glavic!

Assignment Operation!

  The assignment operation (←) provides a convenient way to
express complex queries. !
  Write query as a sequential program consisting of!

 a series of assignments !
  followed by an expression whose value is displayed as a

result of the query.!
  Assignment must always be made to a temporary relation

variable.!

E1 �salary>40000(instructor)

E2 �salary<10000(instructor)

E3 E1 [E2

6

©Silberschatz, Korth and Sudarshan!3.31!CS425 – Fall 2013 – Boris Glavic!

Outer Join!

  An extension of the join operation that avoids loss of information.!
  Computes the join and then adds tuples form one relation that does not

match tuples in the other relation to the result of the join. !
  Uses null values:!

  null signifies that the value is unknown or does not exist !
  All comparisons involving null are (roughly speaking) false by

definition.!
 We shall study precise meaning of comparisons with nulls later!

©Silberschatz, Korth and Sudarshan!3.32!CS425 – Fall 2013 – Boris Glavic!

Outer Join – Example!

  Relation instructor1!

  Relation teaches1!

ID! course_id!
10101!
12121!
76766!

CS-101!
FIN-201!
BIO-101!

Comp. Sci.!
Finance!
Music!

ID! dept_name!
10101!
12121!
15151!

name!
Srinivasan!
Wu!
Mozart!

©Silberschatz, Korth and Sudarshan!3.33!CS425 – Fall 2013 – Boris Glavic!

  Left Outer Join!
 instructor teaches!

Outer Join – Example!
  Join  

 
instructor teaches!

ID! dept_name!
10101!
12121!

Comp. Sci.!
Finance!

course_id!
 CS-101!
 FIN-201!

name!
Srinivasan!
Wu!

ID! dept_name!
10101!
12121!
15151!

Comp. Sci.!
Finance!
Music!

course_id!
 CS-101!
 FIN-201!
 null!

name!
Srinivasan!
Wu!
Mozart!

©Silberschatz, Korth and Sudarshan!3.34!CS425 – Fall 2013 – Boris Glavic!

Outer Join – Example!

  Full Outer Join!
 instructor teaches!

  Right Outer Join!
 instructor teaches!

ID! dept_name!
10101!
12121!
76766!

Comp. Sci.!
Finance!

null!

course_id!
 CS-101!
 FIN-201!
 BIO-101!

name!
Srinivasan!
Wu!
null!

ID! dept_name!
10101!
12121!
15151!
76766!

Comp. Sci.!
Finance!
Music!
null!

course_id!
 CS-101!
 FIN-201!
 null!
 BIO-101!

name!
Srinivasan!
Wu!
Mozart!
null!

©Silberschatz, Korth and Sudarshan!3.35!CS425 – Fall 2013 – Boris Glavic!

Outer Join using Joins!

  Outer join can be expressed using basic operations!

r ><s = (r ./ s) [((r �⇧R(r ./ s))⇥ {(null, . . . , null)})
r>< s = (r ./ s) [({(null, . . . , null)}⇥ (s�⇧S(r ./ s)))

r >< s = (r ./ s) [((r �⇧R(r ./ s))⇥ {(null, . . . , null)})
[({(null, . . . , null)}⇥ (s�⇧S(r ./ s)))

©Silberschatz, Korth and Sudarshan!3.36!CS425 – Fall 2013 – Boris Glavic!

Division Operator!

  Given relations r(R) and s(S), such that S ⊂ R, r ÷ s is the largest
relation t(R-S) such that  
 t x s ⊆ r!
  Alternatively, all tuples from r.(R-S) such that all their extensions on

R ∩ S with tuples from s exist in R!
  E.g. let r(ID, course_id) = ∏ID, course_id (takes) and  

 s(course_id) = ∏course_id (σdept_name=“Biology”(course)  
then r ÷ s gives us students who have taken all courses in the Biology
department!

  Can write r ÷ s as !

!!
E1 ⇧R�S(r)

E2 ⇧R�S((E1 ⇥ s)�⇧R�S,S(r ./ s))

r ÷ s = E1 � E2

7

©Silberschatz, Korth and Sudarshan!3.37!CS425 – Fall 2013 – Boris Glavic!

Division Operator Example!

  Return the name of all persons that read all newspapers!

name! newspaper!
Peter!
Bob!
Alice!
Alice!

Times!
Wall Street!

newspaper!
Times!
Wall Street!
Times!
Wall Street!

reads! newspaper!

E1 ⇧name(reads)

E2 ((E1 ⇥ newspaper)�⇧name,newspaper(reads ./ newspaper))

reads÷ newspaper = E1 � E2

[reads÷ newspaper] = {(Alice)}

©Silberschatz, Korth and Sudarshan!3.38!CS425 – Fall 2013 – Boris Glavic!

Extended Relational-Algebra-Operations!

  Generalized Projection!
  Aggregate Functions!

©Silberschatz, Korth and Sudarshan!3.39!CS425 – Fall 2013 – Boris Glavic!

Generalized Projection!

  Extends the projection operation by allowing arithmetic functions to be
used in the projection list. 
 
 

!!
  E is any relational-algebra expression!

  Each of F1, F2, …, Fn are arithmetic expressions and function calls
involving constants and attributes in the schema of E.!

  Given relation instructor(ID, name, dept_name, salary) where salary is
annual salary, get the same information but with monthly salary !
! !∏ID, name, dept_name, salary/12 (instructor)!

  Adding functions increases expressive power!!
  In standard relational algebra there is no way to change attribute

values!
!

⇡F1,...,Fn(E)

©Silberschatz, Korth and Sudarshan!3.40!CS425 – Fall 2013 – Boris Glavic!

Aggregate Functions and Operations!
  Aggregation function takes a set of values and returns a single value

as a result.!
! !avg: average value  

!min: minimum value  
!max: maximum value  
!sum: sum of values 
!count: number of values!

  Aggregate operation in relational algebra !
! !!
! 
E is any relational-algebra expression!
  G1, G2 …, Gn is a list of attributes on which to group (can be empty)!
  Each Fi is an aggregate function!
  Each Ai is an attribute name!

  Note: Some books/articles use γ instead of (Calligraphic G)!

G1,G2,...,GnGF1(A1),F2(A2),...,Fn(An)(E)

©Silberschatz, Korth and Sudarshan!3.41!CS425 – Fall 2013 – Boris Glavic!

Aggregate Operation – Example!

  Relation r:!

A! B!

α!
α!
β!
β!

α!
β!
β!
β!

C!

7!
7!
3!
10!

  sum(c) (r) sum(c)!

27!

©Silberschatz, Korth and Sudarshan!3.42!CS425 – Fall 2013 – Boris Glavic!

Aggregate Operation – Example!

  Find the average salary in each department!

 dept_name avg(salary) (instructor)!
!

avg_salary!

8

©Silberschatz, Korth and Sudarshan!3.43!CS425 – Fall 2013 – Boris Glavic!

Aggregate Functions (Cont.)!

  What are the names for attributes in aggregation results?!
  Need some convention!!

 E.g., use the expression as a name avg(salary)!
  For convenience, we permit renaming as part of aggregate

operation  
!dept_name avg(salary) as avg_sal (instructor)!

©Silberschatz, Korth and Sudarshan!3.44!CS425 – Fall 2013 – Boris Glavic!

Modification of the Database!

  The content of the database may be modified using the following
operations:!
  Deletion!
  Insertion!
  Updating!

  All these operations can be expressed using the assignment
operator!

  Example: Delete instructors with salary over $1,000,000!

R R� (�salary>1000000(R))

©Silberschatz, Korth and Sudarshan!3.45!CS425 – Fall 2013 – Boris Glavic!

Restrictions for Modification!

  Consider a modification where R=(A,B) and S=(C)!

  This would change the schema of R!!
  Should not be allowed!

  Requirements for modifications!
  The name R on the left-hand side of the assignment operator

refers to an existing relation in the database schema!
  The expression on the right-hand side of the assignment operator

should be union-compatible with R!

R �C>5(S)

©Silberschatz, Korth and Sudarshan!3.46!CS425 – Fall 2013 – Boris Glavic!

Tuple Relational Calculus!

©Silberschatz, Korth and Sudarshan!3.47!CS425 – Fall 2013 – Boris Glavic!

Tuple Relational Calculus!

  A nonprocedural query language, where each query is of the form!
! !{t | P (t) }!

  It is the set of all tuples t such that predicate P is true for t!
  t is a tuple variable, t [A] denotes the value of tuple t on attribute A!
  t ∈ r denotes that tuple t is in relation r!
  P is a formula similar to that of the predicate calculus!

©Silberschatz, Korth and Sudarshan!3.48!CS425 – Fall 2013 – Boris Glavic!

Predicate Calculus Formula!

1. !Set of attributes and constants!
2. !Set of comparison operators: (e.g., <, ≤, =, ≠, >, ≥)!
3. !Set of logical connectives: and (∧), or (v)‚ not (¬)!
4. !Implication (⇒): x ⇒ y, if x if true, then y is true!
! ! ! !x ⇒ y ≡ ¬x v y!

5. !Set of quantifiers:!
�  ∃ t ∈ r (Q (t)) ≡ ”there exists” a tuple in t in relation r  

 such that predicate Q (t) is true!
�  ∀t ∈ r (Q (t)) ≡ Q is true “for all” tuples t in relation r!

9

©Silberschatz, Korth and Sudarshan!3.49!CS425 – Fall 2013 – Boris Glavic!

Example Queries!

  Find the ID, name, dept_name, salary for instructors whose salary is
greater than $80,000!

  As in the previous query, but output only the ID attribute value!
!
 {t | ∃ s ∈ instructor (t [ID] = s [ID] ∧ s [salary] > 80000)}!
!
 Notice that a relation on schema (ID) is implicitly defined by !
 the query, because!

!1) t is not bound to any relation by the predicate!
!2) we implicitly state that t has an ID attribute (t[ID] = s[ID])!

!
!
!

{t | t ∈ instructor ∧ t [salary] > 80000}!

©Silberschatz, Korth and Sudarshan!3.50!CS425 – Fall 2013 – Boris Glavic!

Example Queries!

  Find the names of all instructors whose department is in the Watson
building!

{t | ∃s ∈ section (t [course_id] = s [course_id] ∧  
 s [semester] = “Fall” ∧ s [year] = 2009) 
 v ∃u ∈ section (t [course_id] = u [course_id] ∧  
 u [semester] = “Spring” ∧ u [year] = 2010)}!

  Find the set of all courses taught in the Fall 2009 semester, or in  
 the Spring 2010 semester, or both!

{t | ∃s ∈ instructor (t [name] = s [name]  
 ∧ ∃u ∈ department (u [dept_name] = s[dept_name] “ 
 ∧ u [building] = “Watson”))}!

©Silberschatz, Korth and Sudarshan!3.51!CS425 – Fall 2013 – Boris Glavic!

Example Queries!

{t | ∃s ∈ section (t [course_id] = s [course_id] ∧  
 s [semester] = “Fall” ∧ s [year] = 2009) 
 ∧ ∃u ∈ section (t [course_id] = u [course_id] ∧  
 u [semester] = “Spring” ∧ u [year] = 2010)}!

  Find the set of all courses taught in the Fall 2009 semester, and in  
 the Spring 2010 semester!

{t | ∃s ∈ section (t [course_id] = s [course_id] ∧  
 s [semester] = “Fall” ∧ s [year] = 2009) 
 ∧ ¬ ∃u ∈ section (t [course_id] = u [course_id] ∧  
 u [semester] = “Spring” ∧ u [year] = 2010)}!

  Find the set of all courses taught in the Fall 2009 semester, but not in  
 the Spring 2010 semester!

©Silberschatz, Korth and Sudarshan!3.52!CS425 – Fall 2013 – Boris Glavic!

Safety of Expressions!

  It is possible to write tuple calculus expressions that generate infinite
relations.!

  For example, { t | ¬ t ∈ r } results in an infinite relation if the domain of
any attribute of relation r is infinite!

  To guard against the problem, we restrict the set of allowable
expressions to safe expressions.!

  An expression {t | P (t)} in the tuple relational calculus is safe if every
component of t appears in one of the relations, tuples, or constants that
appear in P!
  NOTE: this is more than just a syntax condition. !

 E.g. { t | t [A] = 5 ∨ true } is not safe --- it defines an infinite set
with attribute values that do not appear in any relation or tuples
or constants in P. !

©Silberschatz, Korth and Sudarshan!3.53!CS425 – Fall 2013 – Boris Glavic!

Universal Quantification!

  Find all students who have taken all courses offered in the
Biology department!
  {t | ∃ r ∈ student (t [ID] = r [ID]) ∧  

 (∀ u ∈ course (u [dept_name]=“Biology” ⇒  
 ∃ s ∈ takes (t [ID] = s [ID] ∧  
 s [course_id] = u [course_id]))}!

  Note that without the existential quantification on student,
the above query would be unsafe if the Biology department
has not offered any courses. !

©Silberschatz, Korth and Sudarshan!3.54!CS425 – Fall 2013 – Boris Glavic!

Domain Relational Calculus!

10

©Silberschatz, Korth and Sudarshan!3.55!CS425 – Fall 2013 – Boris Glavic!

Domain Relational Calculus!

  A nonprocedural query language equivalent in power to the tuple
relational calculus!

  Each query is an expression of the form:!
!
! ! !{ < x1, x2, …, xn > | P (x1, x2, …, xn)} 
!
  x1, x2, …, xn represent domain variables!

 Variables that range of attribute values!
  P represents a formula similar to that of the predicate calculus!
  Tuples can be formed using <>!

 E.g., <‘Einstein’,’Physics’>!
!

©Silberschatz, Korth and Sudarshan!3.56!CS425 – Fall 2013 – Boris Glavic!

Example Queries!

  Find the ID, name, dept_name, salary for instructors whose salary is
greater than $80,000!
  {< i, n, d, s> | < i, n, d, s> ∈ instructor ∧ s > 80000}!

  As in the previous query, but output only the ID attribute value!
  {< i> | < i, n, d, s> ∈ instructor ∧ s > 80000}!

  Find the names of all instructors whose department is in the Watson
building!

 {< n > | ∃ i, d, s (< i, n, d, s > ∈ instructor  
 ∧ ∃ b, a (< d, b, a> ∈ department ∧ b = “Watson”))}!

!
!
!
!

©Silberschatz, Korth and Sudarshan!3.57!CS425 – Fall 2013 – Boris Glavic!

Example Queries!

{<c> | ∃ a, s, y, b, r, t (<c, a, s, y, b, t > ∈ section ∧  
 s = “Fall” ∧ y = 2009) 
 v ∃ a, s, y, b, r, t (<c, a, s, y, b, t > ∈ section] ∧  
 s = “Spring” ∧ y = 2010)}!

  Find the set of all courses taught in the Fall 2009 semester, or in  
 the Spring 2010 semester, or both!

This case can also be written as 
{<c> | ∃ a, s, y, b, r, t (<c, a, s, y, b, t > ∈ section ∧  
 ((s = “Fall” ∧ y = 2009) v (s = “Spring” ∧ y = 2010))}!

  Find the set of all courses taught in the Fall 2009 semester, and in  
 the Spring 2010 semester!

{<c> | ∃ a, s, y, b, r, t (<c, a, s, y, b, t > ∈ section ∧  
 s = “Fall” ∧ y = 2009) 
 ∧ ∃ a, s, y, b, r, t (<c, a, s, y, b, t > ∈ section] ∧  
 s = “Spring” ∧ y = 2010)}!

©Silberschatz, Korth and Sudarshan!3.58!CS425 – Fall 2013 – Boris Glavic!

Safety of Expressions!

The expression:!
! ! !{ < x1, x2, …, xn > | P (x1, x2, …, xn)} 
!

is safe if all of the following hold:!
1.  All values that appear in tuples of the expression are values

!from dom (P) (that is, the values appear either as constants in P or
! in a tuple of a relation mentioned in P).!

2.  For every “there exists” subformula of the form ∃ x (P1(x)), the
!subformula is true if and only if there is a value of x in dom (P1)
!such that P1(x) is true.!

3.  For every “for all” subformula of the form ∀x (P1 (x)), the subformula is
true if and only if P1(x) is true for all values x from dom (P1).!

©Silberschatz, Korth and Sudarshan!3.59!CS425 – Fall 2013 – Boris Glavic!

Universal Quantification!

  Find all students who have taken all courses offered in the Biology
department!
  {< i > | ∃ n, d, tc (< i, n, d, tc > ∈ student ∧  

 (∀ ci, ti, dn, cr (< ci, ti, dn, cr > ∈ course ∧ dn =“Biology”  
 ⇒ ∃ si, se, y, g (<i, ci, si, se, y, g> ∈ takes))}!

  Note that without the existential quantification on student, the
above query would be unsafe if the Biology department has not
offered any courses. !

* Above query fixes bug in page 246, last query!

©Silberschatz, Korth and Sudarshan!3.60!CS425 – Fall 2013 – Boris Glavic!

Relationship between Relational Algebra
and Tuple (Domain) Calculus!

  Codd’s theorem!
  Relational algebra and tuple calculus are equivalent!

  That means that every query expressible in relational algebra can also
be expressed in tuple calculus and vice versa!

  Since domain calculus is as expressive as tuple calculus the same
holds for the domain calculus!

  Note: Here relational algebra refers to the standard version (no
aggregation and projection with functions)!

11

©Silberschatz, Korth and Sudarshan!3.61!CS425 – Fall 2013 – Boris Glavic!

Recap!
  Relational algebra!

  Standard relational algebra: !
 Selection, projection, renaming, cross product, union, set

difference!
  Null values!
  Semantic sugar operators:!

  Intersection, joins, division,!
  Extensions:!

 Aggregation, extended projection !
  Tuple Calculus!

  safety!
  Domain Calculus!

Modified from:!
Database System Concepts, 6th Ed.!

©Silberschatz, Korth and Sudarshan 
See www.db-book.com for conditions on re-use !

End of Chapter 3!

©Silberschatz, Korth and Sudarshan!3.63!CS425 – Fall 2013 – Boris Glavic!

Outline!

  Introduction!
  Relational Data Model!
  Formal Relational Languages (relational algebra)!
  SQL - Introduction!
  Database Design!
  Transaction Processing, Recovery, and Concurrency Control!
  Storage and File Structures!
  Indexing and Hashing!
  Query Processing and Optimization!

©Silberschatz, Korth and Sudarshan!3.64!CS425 – Fall 2013 – Boris Glavic!

Figure 6.01!

©Silberschatz, Korth and Sudarshan!3.65!CS425 – Fall 2013 – Boris Glavic!

Figure 6.02!

©Silberschatz, Korth and Sudarshan!3.66!CS425 – Fall 2013 – Boris Glavic!

Figure 6.03!

12

©Silberschatz, Korth and Sudarshan!3.67!CS425 – Fall 2013 – Boris Glavic!

Figure 6.04!

©Silberschatz, Korth and Sudarshan!3.68!CS425 – Fall 2013 – Boris Glavic!

Figure 6.05!

©Silberschatz, Korth and Sudarshan!3.69!CS425 – Fall 2013 – Boris Glavic!

Figure 6.06!

©Silberschatz, Korth and Sudarshan!3.70!CS425 – Fall 2013 – Boris Glavic!

Figure 6.07!

©Silberschatz, Korth and Sudarshan!3.71!CS425 – Fall 2013 – Boris Glavic!

Figure 6.08!

©Silberschatz, Korth and Sudarshan!3.72!CS425 – Fall 2013 – Boris Glavic!

Figure 6.09!

13

©Silberschatz, Korth and Sudarshan!3.73!CS425 – Fall 2013 – Boris Glavic!

Figure 6.10!

©Silberschatz, Korth and Sudarshan!3.74!CS425 – Fall 2013 – Boris Glavic!

Figure 6.11!

©Silberschatz, Korth and Sudarshan!3.75!CS425 – Fall 2013 – Boris Glavic!

Figure 6.12!

©Silberschatz, Korth and Sudarshan!3.76!CS425 – Fall 2013 – Boris Glavic!

Figure 6.13!

©Silberschatz, Korth and Sudarshan!3.77!CS425 – Fall 2013 – Boris Glavic!

Figure 6.14!

©Silberschatz, Korth and Sudarshan!3.78!CS425 – Fall 2013 – Boris Glavic!

Figure 6.15!

14

©Silberschatz, Korth and Sudarshan!3.79!CS425 – Fall 2013 – Boris Glavic!

Figure 6.16!

©Silberschatz, Korth and Sudarshan!3.80!CS425 – Fall 2013 – Boris Glavic!

Figure 6.17!

©Silberschatz, Korth and Sudarshan!3.81!CS425 – Fall 2013 – Boris Glavic!

Figure 6.18!

©Silberschatz, Korth and Sudarshan!3.82!CS425 – Fall 2013 – Boris Glavic!

Figure 6.19!

©Silberschatz, Korth and Sudarshan!3.83!CS425 – Fall 2013 – Boris Glavic!

Figure 6.20!

©Silberschatz, Korth and Sudarshan!3.84!CS425 – Fall 2013 – Boris Glavic!

Figure 6.21!

15

©Silberschatz, Korth and Sudarshan!3.85!CS425 – Fall 2013 – Boris Glavic!

Deletion!

  A delete request is expressed similarly to a query, except
instead of displaying tuples to the user, the selected tuples are
removed from the database.!

  Can delete only whole tuples; cannot delete values on only
particular attributes!

  A deletion is expressed in relational algebra by:!
! !r ← r – E!
!where r is a relation and E is a relational algebra query.!

©Silberschatz, Korth and Sudarshan!3.86!CS425 – Fall 2013 – Boris Glavic!

Deletion Examples!

  Delete all account records in the Perryridge branch.!

  Delete all accounts at branches located in Needham.!

r1 ← σ branch_city = “Needham” (account branch)!
r2 ← ∏ account_number, branch_name, balance (r1)!
r3 ← ∏ customer_name, account_number (r2 depositor)!
account ← account – r2!
depositor ← depositor – r3!

  Delete all loan records with amount in the range of 0 to 50!

loan ← loan – σ amount ≥ 0 and amount ≤ 50 (loan)!

account ← account – σ branch_name = “Perryridge” (account)!
!

©Silberschatz, Korth and Sudarshan!3.87!CS425 – Fall 2013 – Boris Glavic!

Insertion!

  To insert data into a relation, we either:!
  specify a tuple to be inserted!
  write a query whose result is a set of tuples to be inserted!

  in relational algebra, an insertion is expressed by:!
! !r ← r ∪ E!
!where r is a relation and E is a relational algebra expression.!

  The insertion of a single tuple is expressed by letting E be a constant
relation containing one tuple. !

©Silberschatz, Korth and Sudarshan!3.88!CS425 – Fall 2013 – Boris Glavic!

Insertion Examples!

  Insert information in the database specifying that Smith has $1200 in
account A-973 at the Perryridge branch.!

  Provide as a gift for all loan customers in the Perryridge  
 branch, a $200 savings account. Let the loan number serve  
 as the account number for the new savings account.!

account ← account ∪ {(“A-973”, “Perryridge”, 1200)}!
depositor ← depositor ∪ {(“Smith”, “A-973”)}!

r1 ← (σbranch_name = “Perryridge” (borrower loan))!
account ← account ∪ ∏loan_number, branch_name, 200 (r1)!
depositor ← depositor ∪ ∏customer_name, loan_number (r1)!

©Silberschatz, Korth and Sudarshan!3.89!CS425 – Fall 2013 – Boris Glavic!

Updating!

  A mechanism to change a value in a tuple without charging all values in
the tuple!

  Use the generalized projection operator to do this task!
! 

!!
  Each Fi is either !

  the I th attribute of r, if the I th attribute is not updated, or,!
  if the attribute is to be updated Fi is an expression, involving only

constants and the attributes of r, which gives the new value for the
attribute!

)(,,,, 21
rr

lFFF …∏←

©Silberschatz, Korth and Sudarshan!3.90!CS425 – Fall 2013 – Boris Glavic!

Update Examples!

  Make interest payments by increasing all balances by 5 percent.!

  Pay all accounts with balances over $10,000 6 percent interest  
 and pay all others 5 percent !

 account ← ∏ account_number, branch_name, balance * 1.06 (σ BAL > 10000 (account)) 
 ∪ ∏ account_number, branch_name, balance * 1.05 (σBAL ≤ 10000
(account))!
!

account ← ∏ account_number, branch_name, balance * 1.05 (account)!

16

©Silberschatz, Korth and Sudarshan!3.91!CS425 – Fall 2013 – Boris Glavic!

Example Queries!

  Find the names of all customers who have a loan and an account at
bank.!

∏customer_name (borrower) ∩ ∏customer_name (depositor)!
!

  Find the name of all customers who have a loan at the bank and the
loan amount!

∏customer_name, loan_number, amount (borrower loan)!

©Silberschatz, Korth and Sudarshan!3.92!CS425 – Fall 2013 – Boris Glavic!

  Query 1!

∏customer_name (σbranch_name = “Downtown” (depositor account)) ∩!

 ∏customer_name (σbranch_name = “Uptown” (depositor account))!

  Query 2!

! ∏customer_name, branch_name (depositor account) 
! ÷ ρtemp(branch_name) ({(“Downtown”), (“Uptown”)})!

Note that Query 2 uses a constant relation.!

Example Queries!

  Find all customers who have an account from at least the
“Downtown” and the Uptown” branches.!

©Silberschatz, Korth and Sudarshan!3.93!CS425 – Fall 2013 – Boris Glavic!

  Find all customers who have an account at all branches located in
Brooklyn city.!

Bank Example Queries!

!∏customer_name, branch_name (depositor account) 
!÷ ∏branch_name (σbranch_city = “Brooklyn” (branch))!

