
Answering Historical What-if Queries with
Provenance, Reenactment, and Symbolic Execution

Bahareh Sadat Arab, Boris Glavic
Illinois Institute of Technology

barab@hawk.iit.edu, bglavic@iit.edu

Abstract
What-if queries predict how the results of an analysis would change
based on hypothetical changes to a database. While a what-if query
determines the effect of a hypothetical change on a query’s result, it
is often unclear how such a change could have been achieved limit-
ing the practical applicability of such queries. We propose an alter-
native model for what-if queries where the user proposes a hypo-
thetical change to past update operations. Answering such a query
amounts to determining the effect of a hypothetical change to past
operations on the current database state (or a query’s result). We
argue that such historical what-if queries are often easier to formu-
late for a user and lead to more actionable insights. In this paper,
we take a first stab at answering historical what-if queries. We use
reenactment, a declarative replay technique for transactional his-
tories, to evaluate the effect of a modified history on the current
database state. Furthermore, we statically analyze the provenance
dependencies of a history to limit reenactment to transactions and
data affected by a hypothetical change.

1. Introduction
What-if queries [4, 8] predict how a query’s result would change
based on hypothetical changes to a database. An example for a
What-if query is: “How would a 10% increase in sales affect my
companys revenue this year?” While a what-if query provides in-
sight into how a change to data would affect the result of a query, it
does not answer the important question of how such a change could
have been achieved. For instance, how to increase sales by 10% is
potentially a much harder question to answer than determining the
effect of this increase on revenue. In fact, it may be much easier
for the user to formulate what-if questions as changes to past ac-
tions (the history of the database) instead of changes to the cur-
rent database state. For example: “How would revenue be affected
if we would have charged 5% interest for account overdrafts in-
stead of 10%?” Such a question can be interpreted as hypothetical
changes to update operations or database transactions executed in
the past, e.g., changing all past updates that applied interest to a
user’s account to use an interest rate of %5. Importantly, the an-
swer to such a question is more likely to lead to actionable insights.
If the hypothetical change to overdraft interest would result in a
significant increase in revenue, then it is immediately clear how
to implement this change — by decreasing the overdraft interest.
This example illustrates the fundamental difference between regu-
lar what-if queries that propose a change to the data and historical

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page.

TaPP 2017, June 22-23, 2017, Seattle, Washington.
Copyright remains with the owner/author(s).

Employee
ID Name Calls Sales Bonus
101 David 18 15 50 e1
102 Mark 40 20 100 e2
103 Susan 80 50 200 e3
104 Robert 120 80 300 e4

Figure 1: Running example database instance

,

T U SQL Time
T1 u1 UPDATE Employee SET Bonus=Bonus-50 WHERE Calls<30 20
T1 u1

′
UPDATE Employee SET Bonus=Bonus-50 WHERE Calls<50; 20

T1 c1 COMMIT; 21
T2 u2 UPDATE Employee SET Bonus=Bonus+50 WHERE Calls>100; 22
T2 c2 COMMIT; 23
T3 u3 UPDATE Employee SET Bonus=Bonus+100 WHERE Calls>30 AND Bonus<100 24
T3 c3 COMMIT; 25

Figure 2: Transactional history implementing the new bonus policy
and a hypothetical change the policy (update u1

′ replaces u1)
Employee

ID Name Calls Sales Bonus
101 David 18 15 0 e1

′

102 Mark 40 20 100 e2
103 Susan 80 50 200 e3
104 Robert 120 80 350 e4

′

Figure 3: Database state after ex-
ecuting the original history

Employee
ID Name Calls Sales Bonus
101 David 18 15 0 e1

′

102 Mark 40 20 150 e2
′′

103 Susan 80 50 200 e3
104 Robert 120 80 350 e4

′

Figure 4: Database state based
on the historical what-if query

what-if queries, the new type of predictive queries that we propose
in this work, which postulate a change to past database operations.

Example 1. The employee database shown in Figure 1 stores for
each employee their ID and Name. In addition we store the number
of sales Calls and Sales that each employee has made. The Bonus
column records the amount of bonus an employee should receive.
A new policy is introduced for updating an employee’s bonus: the
bonus for employees with less than 30 calls will be reduced by $50,
employees with more than 100 calls will receive a bonus increase
of $50, and employees with a bonus less than $100 that have
made more than 30 calls will receive an additional $100. Three
transactions T1, T2 and T3 that implement this policy change are
shown in Figure 2. For simplicity assume that these transactions
were executed sequentially resulting in the database state shown
in Figure 3. Manager Alice requests a report on how raising the
minimum number of calls an employee has to make to avoid a
bonus cut (Transaction T1) would impact the total bonus payments
made by the company. The bonus expenditure can be computed
using a query Qtotal: SELECT SUM(Bonus) FROM Employee ($650
in our example). Alice’s request can be modelled as a historical
what-if query that changes the update u1 in Transaction T1 to the
alterative u1

′ highlighted in red in Figure 2. Figure 4 shows the
result of evaluating the what-if query by executing the modified
transactional history over the database from Figure 1. The updated
result of query Qtotal would be $700. Based on the predicted
change Alice can decide whether to change the policy or not.

In this paper, we introduce historical what-if queries and present
an approach for evaluating such queries over a database backend.
Our approach relies on reenactment [2, 3], a technique we have
developed for replaying a transactional history (no matter whether
real or hypothetical) using temporal queries. Such queries can be
executed using any DBMS with support for time travel (e.g., Or-
acle, DB2, SQLsever). The naive solution to implement historical
what-if queries is to reevaluate the modified history to produce an
updated database state. Afterwards, we evaluate the user provided
query over both the current database state and the updated database
state and then determine what has changed. However, this is not
feasible for large histories where replaying the whole history would
be prohibitively expensive. Thus, we investigate optimizations of
this approach. Specifically, we present a method that statically an-
alyzes potential provenance dependencies among statements in a
history using a method which borrows ideas from programming
languages, i.e., symbolic execution [6, 14]. The proposed optimiza-
tions enables us exclude data from the replay (data slicing) and to
avoid replaying parts of the history (program slicing).

2. Historical What-if Queries
We now introduce some basic notation and then define historical
what-if queries. A transaction T = (u1, . . . , un, c) is a sequence
of updates (ui) followed by a commit (c). The execution order of
operations within a transaction is given by the order of these oper-
ations in the sequence. That is, if i < j then ui is executed before
uj . A transactional history is a pair H = ({T1, . . . , Tm},≤H)
where each Ti is a transaction and ≤H is a total order over
the operations of H’s transactions that complies with the order
of operations within each transaction, i.e., for each transaction
Ti = (u1, . . . , un, c) and 1 ≤ i < j ≤ n we have ui <H uj (ig-
noring the special case for commit operations). Given a database
instance D, we use H(D) to denote the result of evaluating the
history H over D. Obviously, the precise result of this operation
depends on the concurrency control protocol that is applied. For
now we focus on serial histories, i.e., the history can be treated
as a sequence of updates. For historical what-if queries we want
to modify such histories, e.g., by replacing transactions. We use
m = T ← T ′, called a modification, to denote replacing trans-
action T with transaction T ′. Note that for non-serial histories we
would have to also provide an update to ≤H that removes all oper-
ations of T and declares how the operations of T ′ are interleaved
with operations of other transactions from H . We use H[m] to
denote the history that is the result of applying modification m to
history H . Similarly, the result of applying a sequence of modifi-
cations M to history H is denoted as H[M]. We use T.u ← u′

to denote replacing update u of transaction T with u′. Typically,
a user will be interested in how the change to the history affects a
query Q’s result. Keeping this in mind, instead of showing to the
user the full query result over the database state produced by the
modified history, we want to only show how Q(H[M](D)) differs
from Q(H(D)). One common method used in incremental query
processing is to represent such a difference between two database
statesD andD′ is as a set of delta tuples, i.e., tuples annotated with
+ or −. An annotated tuple +t denotes that t exists in D′, but not
in D, and −t denotes that t is in D, but not in D′. More formally,
given two instances D and D′ their delta ∆(D,D′) is defined as:

∆(D,D′) = {+t | t 6∈ D ∧ t ∈ D′} ∪ {−t | t ∈ D ∧ t 6∈ D′}

Furthermore, we use ∆(Q,D,D′) as a notational short cut for
∆(Q(D), Q(D′)). Having defined modifications to histories and
query result deltas, we are ready to define historical what-if queries.

Definition 1 (Historical What-if Query). A historical what-if query
H is a tuple (H,D,M, Q) where H is a transactional history run

over a database instance D, M denotes a sequence of modifica-
tions to H as introduced above, and Q is a query over the schema
of D. The answer toH is defined as:

∆(Q,H(D), H[M](D))

Example 2. Let D and H be database shown in Figure 1 and
history shown in Figure 3, respectively. Consider the modifica-
tion m1 = T1.u1 ← u′1 using u1 and u′1 as shown in Figure 2
which implements the policy change of increasing the minimum
number of calls for avoiding a bonus cut from 30 to 50. Alice’s
historical what-if query from this example can be expressed as
H = (H,D,m1, Qtotal) in our framework. Evaluating H[m1]
results in a modified database instance as shown in Figure 4. For
convenience we have highlighted modified tuple values. Employee
Mark Smith receives a $50 higher bonus under this new policy, be-
cause the bonus cut (u1

′) is applied (-$50) which drops his bonus
below $100 and, thus, he becomes eligible to receive the additional
bonus implemented by u3. Evaluating the query Qtotal and com-
puting the delta as the answer for the what-if query we get:

{−(650),+(700)}
Therefore, the total bonus payments would be $50 dollar higher if
the minimum number of calls would have been 50. Alice can now
decide whether to change the bonus policy based on this outcome.

3. Answering Historical What-if Queries
To answer a historical what-if query, we have to computeH[M](D)
and H(D), compute the answer of query Q over these database
versions, and then compute the symmetric difference between
Q(H[M](D)) and Q(H(D)) to determine the delta ∆(Q,H(D),
H[M](D)). Note that to formulate and evaluate historical what-if
queries we have to have access to the transactional history of a
database. For databases that support this feature (e.g., Oracle and
DB2), we can use an audit log that stores a history of SQL com-
mands executed in the past and for each command when it was
executed and as part of which transaction. Otherwise, we can use
triggers to capture SQL commands or exploit other logging mecha-
nisms if available. Since H(D) is the current state of the database,
Q(H(D)) can be computed by evaluating Q. The naive solution
for answering a historical what-if query with modificationM is

1. Use time travel to create a copy of D as of the start time of H .

2. Evaluate the modified history H[M] over the copy. If H[M]
contains concurrent transactions, then we need to ensure that
statements are grouped together as transactions and executed
in the order given in the history. This can be achieved by
opening multiple client connections (one per transaction) and
executing statements in the order given by the history using
the client connection associated with a transaction T to execute
statements of transaction T .

3. Evaluate Q over both H(D) and H[M](D) and compute their
symmetric difference using SQL. Ignoring the + and − anno-
tations, we compute ∆(R,R′) as (R−R′) ∪ (R′ −R).

The naive method that creates a copy of the database is expensive
as it requires additional storage and evaluating the modified history
results in a large amount of write I/O. In the following we introduce
three optimizations to the naive approach:

• Reenactment and Incremental Maintenance - we describe
how to use incremental view maintenance techniques to speed
up the process and how to avoid copying the database and
running updates using reenactment [3].

• Data Slicing - we exclude parts of the database from replay that
are not affected by M. For that we need a provenance model
that tracks dependencies of data on operations.

• Program Slicing - as long as the input to a statement u is the
same inH andH[M] we avoid replaying u since its output will
be the same inH[M] andH . Determining the subset of updates
to replay is akin to a technique from programming language
research called program slicing [17] that determines which part
of a program affects the value of a set of variables at a certain
position of a program (e.g., an output).

4. Reenactment and Incremental Maintenance
The naive approach evaluates the query Q of a historical what-if
queryH over the current database state H(D) and over H[M](D)
and then computes the delta of the results. Alternatively, we can
treat the computation of ∆(Q,H(D), H[M](D)) as an incremen-
tal view maintenance problem: we compute Q(H(D)) and in-
crementally maintain this result based on ∆(H(D), H[M](D))
using any incremental view maintenance technique (e.g., [12]).
To further improve performance, we focus on the computation
of ∆(H(D), H[M](D)). We apply reenactment, a declarative re-
play technique for transactions that we have introduced in previ-
ous work [3], to compute H[M](D). Given a transactional his-
toryH , reenactment generates a reenactment query R(H) which is
equivalent to the history under standard bag and set semantics and
was proven to have the same provenance. Importantly, reenactment
queries can be expressed in standard SQL using time travel and can
be used to replay only a part of a history. Thus, we can run the
query R(H[M]) over D to generate H[M](D). Compared to the
naive approach this has the advantage that there is no need to copy
the database and we avoid the logging overhead caused by running
update operations. More importantly, it enables the data slicing and
program slicing optimizations that we discuss next.

5. Data Slicing
Intuitively, any difference between H(D) and H[M](D) has to be
caused by a difference between H and H[M]. For simplicity of
exposition consider a single modification m = T.u ← u′. For a
tuple t to appear in ∆(H(D), H[m](D)), it has to be affected by
either u or u′ or both (but in different ways). Given an expressive
enough provenance model that allows us to determine based on the
provenance of a tuple t which updates of a history affected it (e.g.,
our MV-semiring model [3]), we can filter the inputs to the delta
computation based on their provenance - only retaining tuples that
have either u or u′ in their provenance. However, this would require
us to compute both H(D) and H[m] with provenance tracking
and the overhead associated with that may easily outweigh the
advantage of reducing the input size of the delta computation. Since
only tuples that match the condition of an update operation (the
update’s WHERE clause) can be affected by the update, a conservative
overestimation of the set of tuples in ∆(H(D), H[M](D)) is the
set of tuples that are derived from tuples affected by u in the
original history or u′ in the modified history. Thus, the original
version of these tuples inD have to either match the condition of u
or of u′. Let θ(u) denote the condition of an update u. To compute
the delta, we can reenact both H(D) and H[M](D) and filter the
input to these reenactment queries using a condition θ(u) ∨ θ(u′).

Example 3. To compute ∆(Q,H(D), H[M](D)) for the Exam-
ple 2, we first construct reenactment queries for updates u1, u2, u3

and u1
′, u2, u3. Based on the conditions of u1 and u1

′, we add
a condition Calls<30 OR Calls<50 to the inputs of these queries
(adding a WHERE clause). In our example, this would exclude tu-
ples e3 and e4 from reenactment since any tuple in H(D) and
H[M](D) derived from these tuples will occur in the result of both
histories and, thus, not be part of the delta.

A similar optimization can be applied for deletes. We leave the
study of how this optimization can be extended to support inserts
with queries (i.e., INSERT INTO ... SELECT) for future work.

6. Program Slicing
In addition to data slicing, we can also exclude updates from reen-
actment if their output is the same in H and H[M]. Here we only
consider deterministic updates, thus, if the input of an update is the
same in both histories then so is its output. Intuitively, the input of
an update u can only differ if it contains one or more tuples af-
fected by an update modified by the historical what-if query. Given
a history H , modification m = T.uorig ← unew, and database
instance D, we say an update u ∈ H depends on m according
to D if there exists a tuple affected by u that is also affected by
either uorig or unew. Dependency can be extended to a set of mod-
ificationsM in the obvious way. The notion “affected by” can be
made more precise using our MV-semiring provenance model that
records which updates did affect a tuple t or one of the tuples in
t’s provenance. However, for reasons of space we do not present
the full formalization here. Intuitively, only updates that depend on
a modification have to be reenacted to compute the delta between
H(D) and H[M](D). We propose to statically analyze the history
to find a set of updates that can be safely excluded from reenact-
ment. The result of this analysis is a conservative overestimation
of the real set of dependent updates. To this end we use symbolic
execution [11] to determine whether an update may depend on a
modification. We start from a symbolic instance that consists of a
single tuple of variables, i.e., we treat the input as a c-table [10].
The effect of an update on a symbolic instance are encoded as con-
straints over the variables of the instance. To determine whether an
update u depends on a modification we test satisfiability of such
constraints using a constraint solver. For reasons of space we only
illustrate this approach using an example.

Example 4. Consider symbolic execution for the running example.
We start with a symbolic table with a single tuple of variables

ID Name Calls Sales Bonus
xi xn xc xs xb

Update u1 reduces an employee’s bonus by $50 if the number of
calls is less than 30. To apply this update we replace the value
of attribute Bonus with a symbolic expression that encodes the
conditional update. Here ⊗ denotes a pairing of a value with a
condition (similar to the tensor construction of [1]).

ID Name Calls Sales Bonus
xi xn xc xs xb + (−50 ⊗ (xc < 30))

To determine whether an update u depends on another update u′

we have to check whether conditions of the two updates are mutu-
ally satisfiable, i.e., there may exist a tuple that is updated by both
updates. For that we replace references to attributes in conditions
with symbolic expressions that model the effect updates between u
and u′. For instance, the symbolic input for update u3 computed
by the process outlined above would be

ID Name Calls Sales Bonus
xi xn xc xs xb + (−50 ⊗ (xc < 30)) + (50 ⊗ (xc > 100))

To check whether u3 may depend on u1 we have to check whether
(Calls < 30) ∧ (Calls > 30 ∧ Bonus < 100) is satisfiable.
Substituting the expressions from the symbolic instances we get:

(xc < 30)∧(xc > 30)∧((xb+(−50⊗(xc < 30))+(50⊗(xc > 100))) < 100)

This formula is not satisfiable (since xc < 30 ∧ xc > 30 is unsat-
isfiable) and, thus, we know that u3 is not dependent on u1.

7. What-if Algorithm
We now give a high-level overview of our algorithm for answer-
ing a historical what-if queryH = (H,D,M, Q) that employs the

Algorithm 1 Answering Historical What-if Query

1: procedure WHATIF(H , D, Q,M)
2: dep← COMPUTEDEPENDENCIES(H,M)
3: R(H)← GENREENACTMENTQUERY(H, dep)
4: R(H)∗ ← APPLYDATASLICING(M,R(H))
5: R(H[M])← GENREENACTMENTQUERY(H[M], dep)
6: R(H[M])∗ ← APPLYDATASLICING(M,R(H[M]))
7: return SYMMETRICDIFF(Q,R(H)∗,R(H[M])∗)
8: end procedure

 0.01

 0.1

 1

 10

 100

 1000

U1 U10 U100

R
u
n
ti
m

e
 (

s
e
c
)

Updates per Transaction

C
RPS+DS

RPS
RA

Figure 5: Updates/Transaction

 0.01

 0.1

 1

 10

 100

-1 0 1 2 3 4

R
u
n
ti
m

e
 (

s
e
c
)

Percentage of Dependent Updates

RPS+DS
RPS

Figure 6: Dependent Updates

optimizations introduced in the previous sections. We first com-
pute dep, an overestimate of the set of dependent updates using
the approach described in Section 6. We then generate reenactment
queries for H and H[M] restricted to dep and add selection con-
ditions to implement the data slicing optimization (Section 5). Fi-
nally, function SymmetricDiff takes a query Q and the two reen-
actment queries as input, computes ∆(H(D), H[M](D)) using
the reenactment queries, and incrementally maintains Q(H(D)) to
compute the answer toH.

8. Related Work
What-if queries determine the effect of a hypothetical change to an
input database on the results of query. What-if queries [4, 8, 18] are
often realized using incremental view maintenance to avoid having
to reevaluate the query over the full input including the hypothetical
changes. The how-to queries of Tiresias [15] determine how to
translate a change to a query result into modifications of the input
data. The QFix system [16] is essentially a variation on this where
the change to the output has to be achieved by a change to a query
(update) workload. The query slicing technique of QFix is similar
to our program slicing optimization. The main difference is that
we apply symbolic execution to a relation with a single symbolic
tuple, i.e., the number of constraints we produce is independent
of the database instance size. The connection of provenance and
program slicing was first observed in [7]. We present a method
that statically analyzes potential provenance dependencies among
statements in the history using a method which borrows ideas
from symbolic execution [6, 11, 14], constraint databases [9, 13],
program slicing [17], and expressive provenance models [1].

9. Experiments
We have conducted preliminary experiments using a proof-of-
concept implementation to evaluate the performance of our ap-
proach, study the effectiveness of the proposed optimizations, and
compare against a naive approach that evaluates the modified his-
tory over a copy of the database.
Datasets and Workload. We use a single relation with five nu-
meric columns with 1M tuples. We consider histories of 10 trans-
actions where parameter U is the number of update statements per
transaction. We consider what-if queries that modify a single up-
date of the first transaction of a history. Each update statement af-
fects 10 tuples which are chosen randomly based on a range condi-

tion over the primary key attribute (e.g., WHERE ID>30 AND ID<41).
All experiments were executed on a machine with 2 x AMD
Opteron 4238 CPUs (12 cores total), 128 GB RAM, and 4 x 1TB
7.2K HDs in a hardware RAID 5 configuration. We used commer-
cial DBMS X (name omitted due to licensing restrictions) execut-
ing transactions using the snapshot isolation concurrency control
protocol [5]. Each experiment was repeated 100 times, we report
average runtimes.
Compared Methods. We compare the following methods for eval-
uating what-if queries. Copy (C): creates a copy of the database as
of the start time of the transaction which is modified by the what-if
query, replays H[M] over this copy to compute H[M](D), and
then computes the delta ∆(Q,H(D), H[M](D)). Reenact All
(RA) creates a reenactment queries for H and H[M]. For both
queries we exclude statements that executed before the statement
modified by the what-if query. We then use time travel to access
the database state as of the time the modified update was executed,
run both reenactment queries over this instance, and then compute
the delta. Reenact Program Slicing (RPS): same as the previous
method except that we only reenact a subset of the histories de-
termined by our program slicing optimization. Reenact Program
Slicing + Data Slicing (RPS+DS): same as the previous method
except that we also apply the data slicing technique.
Updates/Transaction. In this experiment we vary the number of
updates per transaction (U1, U10, and U100). For instance, U10
denotes a history consisting of 10 transactions with 10 updates
each. The runtimes of the different methods for answering a his-
torical what-if query are shown in Figure 5. Our fully optimized
method RPS+DS has the best performance outperforming the sec-
ond best method (C) by a factor of ∼ 3. The cost of C is dom-
inated by creating the copy of the input database and computing
the delta while reexecuting the history has negligible cost (∼ 0.5s
for U100). For RPS+DS the cost is dominated by the cost of time
travel. The large number of update statements in transactions con-
siderably degrades the performance of the RPS method that does
not use data prefiltering and the RA method which has to reenact
all updates. While the cost of reenactment itself is tolerable, com-
puting the delta over two large intermediate results is costly.
Dependent Updates/Transaction. In this experiment, we use 10
transactions with 100 updates (U100) and vary the number of
updates that depend on the modified update from 1% (D1) of the
total number of updates up to 50% (D50). The results are shown
in Figure 6. We compare RPS+DS and RPS, the two methods
that exploit dependencies. Both method’s runtime increases with
increasing number of dependencies. The performance of method
RPS+DS is dominated by the cost of time travel for this workload
and, thus, reducing the number of updates that have to be reenacted
has a less pronounced effect.

10. Conclusions
Traditional what-if queries determine how a hypothetical change
to data affects a query result. However, it is often completely un-
clear how such a change could be achieved in the first place. We
present our vision for historical what-if queries, a novel type of
predictive queries that evaluate the effect of a hypothetical change
to a database’s history. Historical what-if queries overcome the
aforementioned drawback of traditional what-if queries by focus-
ing on “what could I have done differently” instead of “what if
the state of the world would be different”. We present an imple-
mentation of historical what-if queries that exploits our declarative
replay technique called reenactment and uses optimizations based
on static analysis of potential provenance dependencies to improve
performance. Our preliminary experiments demonstrate that this
approach is feasible.

References
[1] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for Aggregate

Queries. In PODS, pages 153–164, 2011.

[2] B. S. Arab, D. Gawlick, V. Radhakrishnan, H. Guo, and B. Glavic.
A generic provenance middleware for database queries, updates, and
transactions. In TaPP, 2014.

[3] B. S. Arab, D. Gawlick, V. Krishnaswamy, V. Radhakrishnan, and
B. Glavic. Reenactment for read-committed snapshot isolation. In
CIKM, pages 841–850, 2016.

[4] A. Balmin, T. Papadimitriou, and Y. Papakonstantinou. Hypothetical
queries in an OLAP environment. In VLDB, pages 220–231, 2000.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A critique of ANSI SQL isolation levels. SIGMOD Record, 24(2):1–
10, 1995.

[6] S. Bucur, J. Kinder, and G. Candea. Prototyping symbolic execution
engines for interpreted languages. SIGARCH Comput Archit News, 42
(1):239–254, 2014.

[7] J. Cheney. Program slicing and data provenance. IEEE Data Eng.
Bull., 30(4):22–28, 2007.

[8] D. Deutch, Z. G. Ives, T. Milo, and V. Tannen. Caravan: Provisioning
for what-if analysis. In CIDR, 2013.

[9] M. T. Gómez-López and R. M. Gasca. Using constraint programming
in selection operators for constraint databases. Expert Syst Appl, 41
(15):6773–6785, 2014.

[10] T. Imieliński and W. Lipski Jr. Incomplete Information in Relational
Databases. JACM, 31(4):761–791, 1984.

[11] J. C. King. Symbolic execution and program testing. CACM, 19(7):
385–394, 1976.

[12] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, A. Nötzli, D. Lupei, and
A. Shaikhha. Dbtoaster: higher-order delta processing for dynamic,
frequently fresh views. The VLDB Journal, 23(2):253–278, 2014.

[13] G. Kuper, L. Libkin, and J. Paredaens. Constraint databases. 2013.

[14] K. Luckow, C. S. Păsăreanu, M. B. Dwyer, A. Filieri, and W. Visser.
Exact and approximate probabilistic symbolic execution for nondeter-
ministic programs. In ASE, pages 575–586, 2014.

[15] A. Meliou and D. Suciu. Tiresias: The database oracle for how-to
queries. In SIGMOD, pages 337–348, 2012.

[16] X. Wang, A. Meliou, and E. Wu. Qfix: Diagnosing errors through
query histories. In SIGMOD, pages 1369–1384, 2017.

[17] M. Weiser. Program slicing. ICSE, pages 439–449, 1981.

[18] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View main-
tenance in a warehousing environment. SIGMOD Record, 24(2):316–
327, 1995.

	Introduction
	Historical What-if Queries
	Answering Historical What-if Queries
	Reenactment and Incremental Maintenance
	Data Slicing
	Program Slicing
	What-if Algorithm
	Related Work
	Experiments
	Conclusions

