
iBench First Cut [Technical Report]∗

Patricia C. Arocena
University of Toronto

prg@cs.toronto.edu

Mariana D’Angelo
University of Toronto

mdangelo@cs.toronto.edu

Boris Glavic
Illinois Institute of Technology

bglavic@iit.edu
Renée J. Miller

University of Toronto

miller@cs.toronto.edu

ABSTRACT
We present iBench, a metadata generator for creating ar-
bitrarily large and complex mappings, schemas and schema
constraints. iBench is rooted in the influential STBench-
mark system, a benchmark designed for evaluating mapping
systems. We extended STBenchmark with several new fea-
tures, including specialized support for generating logical
mappings using the languages of source-to-target (s-t) tu-
ple generating dependencies (tgds) and plain second-order
(SO) tgds. iBench can be used with a data generator to
efficiently generate realistic data integration scenarios with
varying degrees of size and complexity.

1. INTRODUCTION
The study of data integration is as old as the field of data

management. However, given the maturity of this area it
is surprising that rigorous empirical evaluations of research
ideas are so scarce. We argue that a stronger focus on em-
pirical work would benefit the integration community as
a whole and identify one major roadblock for this work -
the lack of comprehensive benchmarks, scenario generators,
and publicly available implementations of quality measures.
This makes it difficult to compare integration solutions, un-
derstand their generality, and understand their performance
for different application scenarios. For a comprehensive sur-
vey on benchmarking schema matching and mapping tasks,
we refer the reader to Bellahsene et al. [6].

In this technical report, we present iBench1, a first at-
tempt towards a metadata generator for creating arbitrar-
ily large and complex mappings, schemas and schema con-
straints. iBench extends the well-known STBenchmark [2]

∗Please referred to this document as follows: “iBench First
Cut. Technical Report, Department of Computer Science,
University of Toronto, 2013.”.
1iBench stands for integration Benchmark.

system, a benchmark designed for evaluating mapping sys-
tems. Our extensions are based on a suite of mapping sce-
narios commonly used across information integration appli-
cations [2] that have been extended to consider various map-
ping languages, including source-to-target (s-t) tuple gener-
ating dependencies (tgds) [8] (also known as Global-and-
Local-As-View or GLAV for short [10]) and plain second-
order (SO) tgds [4]. iBench can be used with a data genera-
tor to efficiently generate realistic data integration scenarios
with varying degrees of size and complexity. Our specific
contributions are the following.

• Support for generating logical mappings, using the lan-
guages of s-t tgds and plain SO tgds, in addition to
transformations.

• Support for generating schema constraints, including
primary keys (PKs) and random multi-attribute func-
tional dependencies (FDs).

• Support for generating mappings with flexible value
invention (also known as Skolemization in the litera-
ture).

• Support for new integration scenarios in the form of
mapping primitives (e.g., different variants of Vertical
Partitioning).

• Sharing of source and target schema elements among
multiple instances of mapping primitives.

We envision using iBench to create benchmarks for differ-
ent integration tasks including (virtual) data integration [10],
data exchange [8], schema evolution, mapping operators like
composition [9] and inversion [3], and schema matching [12,
13]. The rest of the report is organized as follows. In Sec-
tion 2, we discuss the architecture of iBench. In Section 3,
we describe some noteworthy features of iBench, with an
emphasis on the main extensions done to STBenchmark [2].
In Section 4, we briefly report on the first empirical evalua-
tion that has been done using iBench. Last, we conclude in
Section 5.

2. IBENCH GENERATOR
Our vision with iBench is to develop a generator that is

capable of producing diverse, but realistic inputs and ex-
pected outputs (gold standard) for a wide variety of integra-
tion tasks. It should also be possible to use the generator
to produce micro benchmarks. Ideally, the generator should

1



Configuration 
File

Schema + Mapping 
Generator

Primitive
GeneratorPrimitive

GeneratorPrimitive
GeneratorPrimitive

Generator

Orchestration
Engine

Data 
Generator

Data 
Generator

Data 
Generator

Data 
Generator

Name 
Generator

Name 
Generator

Name 
Generator

Name 
Generator

Data 
Generator

Data 
Generator

Data 
Generator

Query
Workload 
Generator

Source + Target 
Schema

Mappings

Attribute 
Correspondences

Transformations

Source + Target
Instance

Queries

Name 
Generator

Name 
Generator

Name 
Generator

Quality 
Measures

Figure 1: iBench Architecture

include a library of quality functions [1, 11] that are used
to compare the output produced by a tool under evaluation
with the expected output (if necessary).

Our approach for achieving this goal is as follows. First,
we build a generator for simple scenarios that consists of
a single source and a single target schema and a mapping
between these two schemas. This generator will be able
to generate all elements for such a mapping: schemas (in-
cluding constraints), attribute correspondences, mappings,
transformations, instance data, and a query workload. This
generator will take a configuration file as an input. Scenario
elements can be turned on/off individually using the config-
uration file to generate all inputs and a gold standard for a
particular integration task. For example, for schema match-
ing we would only generate the source and target schema
(inputs) and attribute correspondences (expected output).

We envision supporting a wide range of integration tasks.
In particular, we know that not every integration task may
use a single source and a single target schema. For exam-
ple, schema evolution requires several mapping steps, and in
virtual integration, we may have several local schemas that
are mapped to the same global schema. We thus propose an
orchestration engine with iBench that can create complex
multi-step and multi-schema integration scenarios by chain-
ing or parallelizing several correlated source-to-target sce-
narios (as generated by simpler scenario generators). Inter-
estingly, we show that a novel feature, that we call schema
reuse, needed for a flexible metadata generator also enables
the orchestration engine to chain and parallelize the results
of simpler scenario generators.

2.1 Metadata Generator

• Concepts of Primitives: Fix a set of typical simple
mappings such as vertical partitioning for which we
fully understand the semantics and can produce map-
pings and scenario elements manually. Generalize by
customization.

• Generator that takes configuration parameters and cre-
ates a complex scenario by combining many primitive
instances

• Sharing schema elements between primitives to create
more realistic example. This is a main enabler for
orchestration too.

• Automatic conversion of real world example into prim-
itives. User provides real-world example fully speci-
fied. System wraps this into a new primitive that can
then be used in scenario generation.

2.2 Orchestration Engine
The orchestration engine calls the metadata generator

several times to create a complex integration scenario. The
“shape” of the final integration scenario will be chosen by
the user in the configuration file. For example, the user can
ask for an integration scenario with three source schemas
that are all mapped to a single target schema (usable for
virtual integration). There is a general way in which the
orchestration engine can achieve parallel mappings (more
than one source of target) and sequential mappings (e.g.,
S1 → S2 → S3).

• N : 1: The orchestration engine generates a single
S1 → T scenario. Afterwards, the metadata generator
is called with 100% target reuse using T to generator
S2 → T , . . . , Sn → T .

• 1 − 1 − . . . − 1: The orchestration engine generate an
initial scenario S1 → S2. Afterwards, the orchestra-
tion engine calls the metadata generator with 100%
source reuse using Si to produce Si+1.

3. PROTOTYPE IMPLEMENTATION
We have implemented a first prototype of iBench2, rooted

on the influential STBenchmark [2] system. STBenchmark
is able to randomly generate a broad range of GLAV map-
pings by combining basic mapping primitives into complex
mappings. The mapping generator takes as input a set of
configuration parameters3 and returns as output a schema
mapping M = (S,T,Σ). Figure 2 provides a comparison
of some noteworthy features in STBenchmark, our iBench
(prototype) and the envisioned full-fledge iBench system.
Next we discuss how we extended the original STBenchmark
in several non-trivial ways.

Our first extension generates, for each mapping scenario,
a set of SO tgds instead of executable XQuery mappings.
In addition, we extended STBenchmark with new mapping
scenarios, including different variants of vertical partitioning
primitives, some of which offer specialized support for gener-
ating mappings with (possibly repeated) Skolem functions,
including functions with both overlapping and disjoint argu-
ments. This permits the modeling of complex correlations,
including Skolem functions that cannot be unskolemized and
rewritten into GLAV. In Figure 3, we outline the mapping
primitives supported by iBench. We use bold face to high-
light new mapping scenarios. For each primitive, we offer
a brief description and an example mapping, in which we
underline those attributes which are part of primary keys,
when these are essential for understanding the semantics
of the transformation. Moreover, we indicate whether each
primitive generates no Skolem terms (−), or some Skolem
terms, using fixed or variable Skolemization strategies (Fixed

2Available at www.dblab.cs.toronto.edu/project/iBench
and as a git repository at https://bitbucket.org/
bglavic/ibench/.
3We refer the reader Alexe et al. [2] for a detailed discussion
of these parameters.

2

www.dblab.cs.toronto.edu/project/iBench
https://bitbucket.org/bglavic/ibench/
https://bitbucket.org/bglavic/ibench/


Element Type STBenchmark iBench (prototype) iBench
Only Schemas No Yes Yes
Name Generation dictionary dictionary dictionary + configuration
Schema Constraints No PK, FK, arbitrary FDs PK, FK, arbitrary FDs
Attribute Correspondences No Yes Yes
Logical Mappings No s-t tgds & plain SO tgds s-t tgds & plain SO tgds
Source Instance XML (using ToXGene) relational (CSV) XML/relational (plugins)
Target Instance by running transformations by running transformations by running transformations/direct
Transformations SQL with XQuery SQL SQL (exchange/virtual) / XQuery
Query Workload No No Yes
Errors No No Yes

Figure 2: Scenario Element Type Support

Name Description Example Skolems
ADD Copy a relation and add new attributes R(a, b) → S(a, b, f(a, b)) Variable
ADL Copy a relation, add and delete attributes in tandem R(a, b) → S(a, f(a)) Variable
CP Copy a relation R(a, b) → S(a, b) -
DL Copy a relation and delete attributes R(a, b) → S(a) -
HP Horizontally partition a relation into multiple relations R(a, b) ∧ a = c1 → S1(b)

R(a, b) ∧ a = c2 → S2(b)
-

ME Inverse of vertical partitioning (merge) R(a, b) ∧ S(b, c) → T (a, b, c) -
MA Inverse of vertical partitioning + adding attributes R(a, b) ∧ S(b, c) → T (a, b, c, f(a, b, c)) Variable
OF Object fusion, e.g., inverse of horizontal partitioning R(a, b) → T (a, b, f(a))

S(a, c) → T (a, g(a), c)
R(a, b) ∧ S(a, c) → T (a, b, c)

Fixed

SJ Copy relation (S) and create a relationship table (T )
through a self-join

R(a, b, c) → S(a, c)
R(a, b, c) ∧R(b, d, e) → T (a, b)

-

SU Copy a relation and create a surrogate key R(a, b) → S(f(a, b), b, g(b)) Fixed /
Variable

VH Vertical partitioning into a HAS-A relationship R(a, b) → S(f(a), a) ∧ T (g(a, b), b, f(a)) Fixed

VI Vertical partitioning into an IS-A relationship R(a, b, c) → S(a, b) ∧ T (a, c) -
VNM Vertical partitioning into an N-to-M relationship R(a, b) → S1(f(a), a) ∧M(f(a), g(b)) ∧ S2(g(b), b) Fixed

VP Vertical partitioning R(a, b) → S1(f(a, b), a) ∧ S2(f(a, b), b) Variable

Figure 3: Mapping Primitives

and Variable, respectively). Note that the original STBench-
mark only uses Skolem functions in surrogate key (SU) and
vertical partitioning (VP) scenarios, and only a single func-
tion in each. Note as well that the example mappings rep-
resent the simplest version of each primitive. The generated
mappings may be much more involved and diverse. For in-
stance, a vertical partitioning may split a relation into more
than two fragments (depending on how the generator con-
figuration parameters are set). For primitives that support
variable Skolemizations, we support three different strate-
gies (i.e., Key, All, and Random). Which strategies are ap-
plied is determined using a configuration parameter called
Skolem Mode.

We also enhanced STBenchmark to support the genera-
tion of primary keys and FDs over the source. New config-
uration parameters, Primary Key FDs and Source FDs, are
used to turn these features on and off as desired. We support
the random generation of source FDs, including the genera-
tion of multi-attribute and partial FDs. We also added sup-
port for reuse of schema elements across primitives. Thus,
when creating a schema mapping scenario, our modified ver-
sion of STBenchmark may decide to reuse previously created
source and target relations. For example, two instances of a
CP primitive may copy from the same source relation. This
is of importance for generating correlations among mappings
and in a sense, more realistic cases of Skolem terms across
clauses used in complex SO tgds.

Composition of schema mappings, like schema evolution,
can lead to complex interactions between Skolem terms (spe-
cifically the arguments of the Skolem functions). In addition

Parameter Min Max
Number of Primitives (per type) 0 10
Number of Attributes Per Relation 2 15
Number of Key Attributes 1 3
Join Path Length 2 4
Join Type Star Chain
Primary Key FDs No Yes
Source FDs 0% 50%
Skolem Noise 0% 50%
Source Reuse 0% 50%

Figure 4: Some Configuration Parameters

to Skolem terms introduced in our primitives, we introduce
additional Skolem terms by randomly choosing source at-
tributes to be replaced (in the target) with Skolem functions.
We use a new configuration parameter, called Skolem Noise,
to indicate the fraction of source attributes that should be
assigned Skolem terms. Whenever a variable v is used in an
atom at the position corresponding to one of the “Skolem-
ized” attributes, we replace all occurrences of this variable in
target atoms with the Skolem function with randomly gen-
erated arguments based on the remaining source variables.
For instance, assume the Skolem term f(a) was assigned to
attribute b of relation S(a, b). We would transform the SO
tgd S(x1, x2)→ T (x1, x2) into S(x1, x2)→ T (x1, f(x1)).

4. APPLICATION
We briefly report on the first empirical evaluation that

has been done using iBench [5]. We used iBench to evaluate

3



when schema mappings with large amounts of incomplete-
ness have a first-order (FO) semantics. This involved eval-
uating a number of rewriting algorithms over a large set of
realistic mapping scenarios, in which the degree and com-
plexity of incompleteness (i.e., the Skolem functions used
for modeling value invention) could be controlled. We used
iBench to generate schemas, schema constraints (including
keys and functional dependencies), and schema mappings
expressed as SO tgds. We also implemented a generator of
random configuration files which was input to iBench to pro-
duce several million integration scenarios of varying size and
complexity. Figure 4 outlines some important configuration
parameters involved in the generation of random configura-
tions. For example, we generated configurations where we
randomly selected the number of instances for each mapping
primitive (from 0 to a maximum of 10, following a uniform
distribution). The size of the source and target schema was
determined not only by the number of requested attributes
per relation (plus/minus deviations), but also by the type
of requested primitives and some other additional parame-
ters, such as the length of join paths. We consider variable
types of joins (i.e., star and chain), key sizes, percentages
of source FDs, Skolemization strategies, Skolem noise, and
source reuse.

5. CONCLUSION
Developing a system like iBench is an ambitious goal. We

presented (and have released) a first prototype implemen-
tation of iBench and discussed how it was an essential tool
in a large scale empirical evaluation we have conducted in
previous work [5]. Much remains to be done, for example,
given the focus on accuracy in integration research and the
work on debugging and repairing integration solutions [7],
we also plan to extend iBench to systematically create meta-
data with different types of errors so that repair solutions
can be evaluated.

Acknowledgments. We thank Bodgan Alexe, Wang-Chiew
Tan and Yannis Velegrakis for making the source code im-
plementation of STBenchmark available to us. Arocena was
supported by the NSERC Business Intelligence Network.
D’Angelo was supported by the NSERC Undergraduate Stu-
dent Research Award (held during the Summer of 2012).

6. REFERENCES
[1] B. Alexe, M. A. Hernández, L. Popa, and W. C. Tan.

MapMerge: Correlating Independent Schema
Mappings. VLDB J., 21(2):191–211, 2012.

[2] B. Alexe, W. C. Tan, and Y. Velegrakis.
STBenchmark: Towards a Benchmark for Mapping
Systems. PVLDB, 1(1):230–244, 2008.

[3] M. Arenas, J. Pérez, J. Reutter, and C. Riveros.
Inverting Schema Mappings: Bridging the Gap
between Theory and Practice. PVLDB,
2(1):1018–1029, 2009.

[4] M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros.
The Language of Plain SO-tgds: Composition,
Inversion and Structural Properties. J. Comput. Syst.
Sci., 79(6):763–784, 2013.

[5] P. C. Arocena, B. Glavic, and R. J. Miller. Value
Invention in Data Exchange. In SIGMOD Conference,
pages 157–168, 2013.

[6] Z. Bellahsene, A. Bonifati, F. Duchateau, and
Y. Velegrakis. On evaluating schema matching and
mapping. In Schema matching and mapping, pages
253–291. Springer, 2011.

[7] L. Chiticariu and W. C. Tan. Debugging Schema
Mappings with Routes. In VLDB, pages 79–90, 2006.

[8] R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering. Theor.
Comput. Sci., 336(1):89–124, 2005.

[9] R. Fagin, P. Kolaitis, L. Popa, and W. C. Tan.
Composing Schema Mappings: Second-Order
Dependencies to the Rescue. TODS, 30(4):994–1055,
2005.

[10] M. Lenzerini. Data Integration: a Theoretical
Perspective. In PODS, pages 233–246, 2002.

[11] G. Mecca, P. Papotti, S. Raunich, and D. Santoro.
What is the IQ of your Data Transformation System?
In CIKM, pages 872–881, 2012.

[12] E. Rahm and P. A. Bernstein. A Survey of
Approaches to Automatic Schema Matching. VLDB
J., 10(4), 2001.

[13] P. Shvaiko and J. Euzenat. A Survey of Schema-Based
Matching Approaches. J. Data Semantics IV, pages
146–171, 2005.

4


	Introduction
	iBench Generator
	Metadata Generator
	Orchestration Engine

	Prototype Implementation
	Application
	Conclusion
	References

