
Gain Control over your Integration Evaluations

Patricia C. Arocena
University of Toronto

prg@cs.toronto.edu

Radu Ciucanu
University of Oxford

radu.ciucanu@cs.ox.ac.uk

Boris Glavic
Illinois Inst. of Technology

bglavic@iit.edu

Renée J. Miller
University of Toronto

miller@cs.toronto.edu

ABSTRACT
Integration systems are typically evaluated using a few real-
world scenarios (e.g., bibliographical or biological datasets)
or using synthetic scenarios (e.g., based on star-schemas or
other patterns for schemas and constraints). Reusing such
evaluations is a cumbersome task because their focus is usu-
ally limited to showcasing a specific feature of an approach.
This makes it difficult to compare integration solutions, un-
derstand their generality, and understand their performance
for different application scenarios. Based on this observa-
tion, we demonstrate some of the requirements for develop-
ing integration benchmarks. We argue that the major ab-
stractions used for integration problems have converged in
the last decade which enables the application of robust em-
pirical methods to integration problems (from schema evo-
lution, to data exchange, to answering queries using views
and many more). Specifically, we demonstrate that schema
mappings are the main abstraction that now drives most in-
tegration solutions and show how a metadata generator can
be used to create more credible evaluations of the perfor-
mance and scalability of data integration systems. We will
use the demonstration to evangelize for more robust, shared
empirical evaluations of data integration systems.

1. INTRODUCTION
Traditional evaluation of integration systems is generally

limited to collections of real-world datasets that are shared
by the community (e.g., the Amalgam Schema and Data
Integration Test Suite1, the Illinois Semantic Integration
Archive2, or the Thalia testbed3), or to synthetic scenarios
based on standard patterns (e.g., star schemas). The scope
of such evaluations is usually restricted to a specific feature
of an approach, and consequently, they are often difficult to
reuse and compare.

1http://dblab.cs.toronto.edu/~miller/amalgam/
2http://pages.cs.wisc.edu/~anhai/wisc-si-archive/
3http://cise.ufl.edu/research/dbintegrate/thalia/

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Complicating matters, the types of input required and
output produced by different integration solutions has his-
torically been quite varied. A matching system may take
schemas as input and output sets of pairs of attributes, a
schema mapping system may take the same input but out-
put a schema mapping or a transformation program, and a
federated data integration system may take the schemas, a
schema mapping and set of (target) queries as input and out-
put a set of rewritten (source) queries. Community shared
integration scenarios typically provide a gold-standard or
correct output for at best a single task limiting their use-
fulness. The same could be said of (the much more exten-
sive) shared repositories of data for machine learning, like
the UCI Machine Learning (ML) Repository4 that provide
inputs for different learning tasks (clustering, classification,
regression, etc.). But unlike ML, the integration community
has not agreed upon a set of quality or performance metrics
to judge our results. How close is a mapping to a gold stan-
dard mapping? How should we compare the performance of
query rewriting systems - by the speed of rewriting or by
the speed of the rewritten queries?

Database benchmarks such as TPC (including TPC-DI5,
a Data Integration Benchmark) and XMark6 rely on fixed
schemas. For most data integration tasks, these fixed-schema
benchmarks are not suitable. Integration systems must be
tested on schemas of different sizes and characteristics to un-
derstand their generality and to quantify their performance
(accuracy and speed).

In this demonstration, we motivate the need for a meta-
data generator. As with the data generators that accom-
pany fixed-schema benchmarks, a metadata generator must
be able to control the size and characteristics of the meta-
data it generates. In addition, the generator must be able
to generate metadata that meets the needs of a variety of
integration tasks. In the next sections, we overview the re-
quirements of common integration tasks and present a set
of metadata generator requirements. We then discuss our
generator implementation and demonstration scenarios.

2. INTEGRATION TASKS
We review some common integration tasks and their eval-

uation requirements. Each of these tasks requires a set of in-
put elements (e.g., schema(s), constraints, or attribute cor-
respondences) and produces a set of output elements (e.g.,

4http://archive.ics.uci.edu/ml/datasets.html
5http://www.tpc.org/tpcdi/
6http://www.xml-benchmark.org/

http://dblab.cs.toronto.edu/~miller/amalgam/
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/
http://cise.ufl.edu/research/dbintegrate/thalia/
http://archive.ics.uci.edu/ml/datasets.html
http://www.tpc.org/tpcdi/
http://www.xml-benchmark.org/


a database instance, correspondences, or mappings). Com-
mon across these tasks, is that to evaluate the performance,
accuracy or completeness of a system implementing a task,
we need a metadata generator that produces the required
metadata inputs and allows a user to control properties
of such inputs. Schema matching is perhaps the simplest
of integration tasks. For matching, the input is a pair of
schemas and the output is a set of attribute pairs (cor-
respondences). To evaluate a schema matching system, a
metadata generator must generate input schemas with dif-
ferent characteristics and naming conventions, and produce
a gold-standard output (the correspondences). The quality
of a schema matching is measured by comparing the gener-
ated correspondences against the ground-truth using statis-
tical measures such as precision, recall, or F-measure [4].

2.1 Schema Mapping Generation
Systems that generate mappings between schemas take a

pair of schemas, constraints, and correspondences as input,
and produce a mapping. The performance of such a task
is measured as the time needed to generate the mappings
automatically or as the effort required by a human to pro-
duce the expected results. Quality measures for mappings
are more diverse and complex than for schema matching as
a mapping can be expressed in several equivalent ways. Us-
ing measures such as precision to compare a mapping to a
ground-truth mapping is meaningless, because there are cur-
rently no normal forms defined for most mapping languages.
Another drawback of measures such as precision and recall
is that they only measure total matches. This type of 0-1
comparison between output and expected output is not very
useful for mappings, because a mapping may only be par-
tially correct. These issues have lead to the development
of new quality measures which are evaluated over instance
data [1].

The state-of-the-art in schema mapping evaluation is ST-
Benchmark [2], a system that uses a set of primitives. Each
primitive is a pair of a source schema, a target schema, along
with a (gold-standard) transformation from the source to
the target. Primitives can be combined to produce pairs of
schemas of variable size that can be used as input to evalu-
ate mapping systems. Each system can then be evaluated on
how close it comes to producing the desired (gold-standard)
mapping. Importantly, STBenchmark only produces trans-
formations and does not permit developers to easily intro-
duce new primitives. STBenchmark also does not permit
direct control over the generation of schema constraints.

Input Schemas, Contraints, Instance Data, Cor-
respondences

Output Mappings, Transformations

2.2 Data Exchange
In data exchange, an instance of a source schema is trans-

lated into an instance of a target schema. The input for
data exchange is a pair of schemas, their constraints, option-
ally a source instance, and a mapping between the schemas.
The output is a data transformation program that given
an instance of the source schema, generates an instance
of the target schema that satisfies the mapping and target
constraints. When evaluating the quality of the generated
transformations we face similar challenges as for mapping
generation. We must be able to compare different transfor-
mation programs. A transformation program is correct

if given a source instance I it produces a target instance
J where pI,J q satisfy the mapping. Of course, mappings
may permit many solutions. Some quality measures for data
exchange are based on comparing the generated target in-
stance against a ground truth.

Input Schemas, Constraints, (Source Instance),
Mappings

Output Executable Transformations, (Target In-
stance)

2.3 Virtual Data Integration
Virtual data integration (or federation) rewrites queries

posed on a global or mediated schema into queries on lo-
cal schemas, using mappings between the global and lo-
cal schemas. The input for a virtual data integration sys-
tem includes the schemas, mappings, instances of the local
schemas, and a set of queries. The expected output are ei-
ther rewritten queries or the results of these queries. Perfor-
mance of a virtual integration system can either be measured
as the time it takes the system to generate the rewritten
queries or the time it takes to execute these queries. The
quality of the result can either be evaluated as the difference
between the generated query result and expected results or
by directly comparing the expected and produced queries.

The state-of-the-art in evaluating virtual data integration
is to use ad hoc mapping generators that create mappings
having a specific structure (e.g., chain joins or star joins).

Input Schemas, Instance Data, Mappings,
Queries

Output Rewritten Queries, Query Results

2.4 Mapping Operators
In addition to systems that generate mappings, there is

a large body of work on manipulating sets of mappings
through operators. Typical mapping operators include com-
position, inversion, normalization, mapping evolution or adap-
tation, and correlation of mappings [1]. The input for these
operators is a set of mappings, and for some operators the
schemas over which the mappings are defined. Mapping op-
erators such as composition require that the input mappings
are correlated in a certain way. An obvious performance
measure for mapping operators is execution time. The qual-
ity of an operator’s output can be measured by comparing
the generated mappings against the ground truth using one
of the methods introduced above for mapping generation.

The state-of-the-art in evaluation of mapping operators
include the use of a suite of schema evolution primitives [5]
(similar, but not identical, to the primitives of STBench-
mark). A different set of primitives were used to evaluate
mapping adaptation [8]. Notably these primitives allow the
creation of synthetic mappings (ST-tgds) of different sizes
and characteristics, but they do not generate schema con-
straints or other types of metadata.

Input Schemas, (Instance Data), Mappings
Output Mappings

Additional tasks such as peer-to-peer (P2P) data integra-
tion and schema evolution can likewise be formalized.



Input

Configuration File:
– Native Primitives
– Sharing of Relations
– Random Constraints
. . .

User-Defined Primitives

Output

Source/Target Schemas

Source/Target Instances

Mappings

Correspondences

Transformations

Figure 1: Metadata Generator Input and Output

3. GENERATOR REQUIREMENTS
We now discuss requirements for a generic metadata gen-

erator that would ease the empirical evaluation of data in-
tegration systems implementing typical integration tasks.
R1: Generation of Different Types of Metadata. We
know integration tasks each take different types of inputs
and produce different outputs. A metadata generator should
be able to produce all these types of inputs, and also produce
a “ground truth” output for evaluating quality measures.
R2: Concise Specification of Scenario Characteris-
tics. Empirical evaluations require a metadata generator
that can produce integration scenarios with controlled char-
acteristics. The user should be able to provide such a speci-
fication. For example, to test how well a system scales in the
instance size, a researcher would use the metadata generator
to generate a set of scenarios with the same schema and map-
ping characteristics, but different instance sizes. Similarly,
to measure how sensitive the quality of transformations pro-
duced by a data exchange system is to correlations among
elements in the source and target schema, a researcher could
use the generator to produce a set of schemas with differ-
ent amounts of correlation. The generator should support
creation of a set of scenarios where some characteristics are
fixed and some characteristics are varied.
R3: Realistic and Diverse Synthetic Scenarios. Syn-
thetic scenarios produced by a metadata generator should
be similar in structure and content to real-world scenarios.
In particular, the mappings and schemas should follow pat-
terns that are common in real-world scenarios. Instance
data values should be drawn from realistic distributions.
R4: Scale Real-world Scenarios and Data Sets. Real-
world integration scenarios and datasets are great tools for
evaluating integration systems. Because these scenarios are
usually small, a metadata generator should be able to scale
them while preserving their characteristics. In addition, we
would like to combine scaled real-world and synthetic sce-
narios to create scenarios with fine-tuned characteristics.
R5: Quality Measure Library. Some measures used to
evaluate integration tasks are quite complex. A metadata
generator should ship with a library of quality measure im-
plementations to lower the bar for wide adoption.

4. SYSTEM OVERVIEW
We use iBench7, a highly-configurable and flexible meta-

data generator that fulfills the requirements presented in
Section 3, to demonstrate how to generate metadata for
evaluating integration tasks. The input of iBench is a con-
figuration file where the user specifies desired scenario char-
acteristics. iBench can generate source and target schemas,
instances, mappings and transformations (see Figure 1), and
build complex scenarios from typical mapping primitives

7http://dblab.cs.toronto.edu/project/iBench/

Source

Custaaaa a

Nameaaa

Addraaaa
Empaaaaaa

Nameaaa
Company

Executive

Nameaaa

Positiona

Targetaaaaa

Customer

Nameaa

Addraaa
Loyaltyi

Personaa

Idaa aaa

Nameaa

WorksAta
EmpRec

Firmaaa

Idaa aaa

Figure 2: Multiple Primitives with Target Sharing

which act as “templates” for defining metadata fragments.
The system currently supports �15 native primitives, which
correspond to typical patterns such as adding or deleting
attributes from a relation, vertically or horizontally parti-
tioning a relation, etc. In contrast to STBenchmark, iBench
supports sharing of relations across primitives, generation
of additional types of metadata, and user-defined primitives.
In the configuration file, the user can specify existing scenar-
ios to be loaded as user-defined primitives (UDPs). Using
UDPs we can scale real-world scenarios and combine them
with the native primitives to produce complex (and realistic)
scenarios.

Example 4.1. The user requests a scenario with three
mapping primitives: copying a relation and adding a new
attribute, vertically partitioning a relation (VP), and copy
a relation while both adding and deleting attributes. The
user also requests sharing of relations among primitives. A
possible output of iBench is shown in Figure 2. The source
relation Cust is copied to a target relation Customer where
we add an attribute Loyalty and the source relation Emp is
vertically partitioned into target relations Person and Work-
sAt. The last primitive (in red) shares its target relation
with the VP primitive. We depict the attribute correspon-
dences by solid lines and the foreign key (FK) constraints
by dotted lines.

By default iBench uses a custom XML format for storing
a generated integration scenario. We can easily extend it
to produce the output in a task-specific format, as we have
already done for the evaluation of MapMerge [1]. iBench
comes bundled with a data generator based on ToXgene8

that is used to create source/target instance data.

5. DEMONSTRATION OVERVIEW
The demo scenario consists of four parts. First, we show

how parameters in the generator’s input configuration file
can be set to fit a specific integration task and control the
characteristics of the generated metadata. Second, we il-
lustrate how UDPs can be used to create and enrich syn-
thetic scenarios. The first two scenarios will make the atten-
dees aware of the kind of flexibility we need to gain control
over our integration evaluations. Third, we show a complete
workflow for evaluating MapMerge [1] using generated syn-
thetic metadata and instance data that scales. Fourth, we
present new empirical insights about MapMerge that were
enabled by our new evaluation harness. The last two sce-
narios will make the attendees aware of the importance of
comparing integration solutions on a level playing field.

8http://www.cs.toronto.edu/tox/toxgene/

http://dblab.cs.toronto.edu/project/iBench/
http://www.cs.toronto.edu/tox/toxgene/


Figure 3: Visualization of Synthetic Schemas and
Correspondences using Clio

Controlling Metadata Generation
In the first part of the demo, the attendees will discover
how we can use a highly-configurable metadata generator to
fit specific integration tasks. First, we will use simple con-
figurations to illustrate that primitive-based generation of
metadata is an effective way of generating realistic and di-
verse synthetic integration scenarios. Starting from a simple
configuration with a single primitive, we will incrementally
activate additional primitives and show the impact on the
generated output. We will showcase how to generate inte-
gration scenarios with different types of metadata, includ-
ing schemas, correspondences, and much more (Requirement
R1). We also will visualize the generated metadata in well-
known research systems, including Clio (e.g., Figure 3) and
++Spicy [6, 7]. Participants will learn how to control the
characteristics of the generated metadata by editing the gen-
erator’s configuration file (Requirements R2 and R3).

Scaling Real-world Scenarios
Next, we will use the generator to scale real-world scenar-
ios while maintaining their characteristics, and show how to
combine real-world with synthetic scenarios (Requirement
R4). The demonstration will use a biological scenario, a
bibliography scenario based on Amalgam, and scenarios sim-
ulating graph databases.9 Participants will learn how to use
UDPs to scale an imported scenario in various dimensions
(e.g., schema size) and combine it with synthetic metadata.

Evaluating Integration Systems
Attendees will be able to run a complete workflow for evalu-
ating the MapMerge operator [1]. This workflow consists of
three steps: (i) generating metadata and data using iBench,
(ii) generating Clio, MapMerge, and ++Spicy mappings,
and (iii) evaluating the performance of Clio, MapMerge,
and ++Spicy via some measures (Requirement R5). An
important measure is the size of the target instance. In-
tuitively, among schema mappings that correctly translate
source data, we would prefer mappings that produce smaller
target instances because this means that they produce less

9These scenarios are available from our iBench webpage:
http://dblab.cs.toronto.edu/project/iBench/

Figure 4: Clio/MapMerge/++Spicy Comparison Plot

invented values [3] and consequently better handle the data
incompleteness. Using iBench, the attendees will produce
diverse scenarios (Requirements R3 and R4) and observe the
impact of correlating independent schema mappings. We
will automatically generate Gnuplot scripts to plot the re-
sults (e.g., as shown in Figure 4, where “C” stands for Clio,
“M” for MapMerge, and “S” for ++Spicy).

Sharing Evaluation Insights
Last we will share some of the insights we have gained
through performing evaluations with iBench. For instance,
we will highlight some cases where MapMerge performs very
well, which were not considered in the initial evaluation of
this approach [1]. This last part of the demonstration sce-
nario will motivate the need for stress testing integration
solutions by going beyond their existing evaluations. Our
ultimate goal is to convince attendees of the value of us-
ing a metadata generator such as iBench in their empirical
evaluations.

6. REFERENCES
[1] B. Alexe, M. A. Hernández, L. Popa, and W. C. Tan.

MapMerge: Correlating Independent Schema
Mappings. VLDB J., 21(2):191–211, 2012.

[2] B. Alexe, W. C. Tan, and Y. Velegrakis. STBenchmark:
Towards a Benchmark for Mapping Systems. PVLDB,
1(1):230–244, 2008.

[3] P. C. Arocena, B. Glavic, and R. J. Miller. Value
Invention in Data Exchange. In SIGMOD, pages
157–168, 2013.

[4] Z. Bellahsene, A. Bonifati, F. Duchateau, and
Y. Velegrakis. On Evaluating Schema Matching and
Mapping. In Schema Matching and Mapping, pages
253–291. Springer, 2011.

[5] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash.
Implementing Mapping Composition. VLDB J.,
17(2):333–353, 2008.

[6] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller,
L. Popa, and Y. Velegrakis. Clio: Schema Mapping
Creation and Data Exchange. In Conceptual Modeling:
Foundations and Applications, pages 198–236, 2009.

[7] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and
D. Santoro. ++Spicy: an OpenSource Tool for
Second-Generation Schema Mapping and Data
Exchange. PVLDB, 4(12):1438–1441, 2011.

[8] C. Yu and L. Popa. Semantic Adaptation of Schema
Mappings when Schemas Evolve. VLDB, pages
1006–1017, 2005.

http://dblab.cs.toronto.edu/project/iBench/

	Introduction
	Integration Tasks
	Schema Mapping Generation
	Data Exchange
	Virtual Data Integration
	Mapping Operators

	Generator Requirements
	System overview
	Demonstration Overview
	References

