ILLINOIS INSTITUTE

OF TECHNOLOGY

LDV: Light-weight Database Virtualization

Quan Pham, Tanu Malik, Boris Glavic, Ian Foster

IIT DB Group Technical Report
IIT/CS-DB-2014-03

2014-10

http://www.cs.iit.edu/~dbgroup/

LIMITED DISTRIBUTION NOTICE: The research presented in this report may be submitted as a whole or in parts for
publication and will probably be copyrighted if accepted for publication. It has been issued as a Technical Report for early
dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IIT-DB
prior to publication should be limited to peer communications and specific requests. After outside publication, requests should
be filled only by reprints or legally obtained copies of the article (e.g. payment of royalties).

LDV: Light-weight Database Virtualization

Quan Pham #!, Tanu Malik #2, Boris Glavic *3, Ian Foster #*

Computation Institute, University of Chicago
Chicago, Illinois, USA

1O_[uamp‘u:@cs.uchicago.edu, 2tanum@ci.1,1c1“1j_ca<_:jo.edu, 4foster@ci.uchicaqo.edu

* Department of Computer Science, Illinois Institute of Technology
Chicago, Illinois, USA

3bglavic@iit.edu

Abstract—We present a light-weight database virtualization
(LDV) system, which allows users to share their applications
involving a relational database. Currently, users share such
applications through companion websites or virtual images.
However, neither of these methods provide the ability to easily re-
execute the shared application. LDV monitors the execution of an
application and its interactions with a database, and merges the
resulting operating-system provenance with fine-grained database
provenance. The system provides two options for packaging the
application binaries, data files, and part of the database that
is relevant to the application. The first packaging option uses
fine-grained database provenance to determine the slice of the
database needed to repeat the application and includes it along
with the database server in the package. The second option
records the queries and their results issued by the application
and replays the queries and results to repeat the experiment. We
present an approach for inferring data dependencies based on
temporal information about the interactions of the application’s
processes with the database. This approach is used to deter-
mine relevant parts of a package when the user is interested
in repeating part of an application. We experimentally study
the trade-off between these two options in terms of package
size, monitoring overhead, and overhead when repeating the
application. Furthermore, we demonstrate that the system can
successfully reproduce applications with database access.

I. INTRODUCTION

Most current science projects involve large amounts of
computation and data. These computations consist of complex
workflows that involve multiple binaries and data files. Rela-
tional database systems are used as a persistence mechanism
for intermediate and final results and to share data among
researchers and across workflows. Furthermore, many publicly
available scientific data repositories are stored in relational
database, e.g., gene databases. In this work we refer to work-
flows involving a database as database applications. Sharing
and repeating database applications is critical for verifying
experimental results (e.g., repeat a computational experiment
as described in a publication) and to allow scientist to reuse
complex workflows that have been created with a lot of manual
effort. The light-weight database virtualization approach we
present in this work is a comprehensive solution for sharing
database applications as self-contained packages including
programs, data, and provenance.

To date the most widely adopted methods for computational
reproducibility are building companion websites and/or provi-
sioning virtual machine images. The former is quick and easy,

providing access to code and data, but provides no execution
mechanism and therefore doesn’t guarantee repeatability '.
The latter is a heavy-weight approach that may or may not
provide access to code and data, but, if provisioned correctly,
guarantees execution and ensures repeatability.

Application virtualization is a light-weight method that has
recently emerged as an alternative for computational repro-
ducibility. In this method system calls are traced during appli-
cation execution and all code, data and software dependencies
are copied into a package. The resulting package consisting
of binaries, data and a software environment can be run on
any compatible machine without installation, configuration,
or root permissions. There are several advantages of applica-
tion virtualization. By capturing only the necessary data and
software environment, application virtualization tools, such as
CDE [14] create packages that are more light-weight than
virtual machine images. By automating package creation, self-
contained packages make sharing scientific results as easy
as building companion websites. Finally, for deterministic
computations, re-running the packages guarantees repeatability
of results.

In spite of the advances made, sharing and repeating
database applications remains a challenging problem for the
following reasons.

« An application may only use a small portion of the data
stored in a database. For example, consider an application
that analyzes local weather in Chicago in 2014 using a
global weather database for the last decade. To create
a repeatability package of reasonable size, one has to
determine which parts of the database are actually used
by the application. Standard database techniques such
caching of disk resident data, data independence, write-
ahead logging, and delayed writing of changed blocks to
disk make it hard to track which data is modified and
used by the application.

o The user executing the application may have limited
access to the database server and its data files (e.g., the
database server is run by a third party). Even if the user
has control over the server, sharing the server binaries
and data files may not be an option, because of licensing
issues and data usage policies.

IFor repeatability, we restrict ourselves to deterministic computations.

o Databases are often shared among multiple users and
across many application. Thus, to re-execute an applica-
tion, the database state, as of the start of the application,
has to be restored.

« Provenance can be used to understand a shared applica-
tion. While database and application provenance are well
understood, combining these two types of provenance
remains challenging.

None of the above mentioned methods - companion web-
sites, VM images, and application virtualization - addresses
these challenges. There is no automatic mechanism for cap-
turing and linking application and DB provenance, these
approaches provide no means for determining which data is
relevant for an application, they do not solve the issue of
resetting a database to a previous state, and do not address
the licensing problem of sharing the binaries of commercial
database servers.

For example, application virtualization is currently limited
to local applications that do not communicate to server pro-
cesses, such as a web server or a database server. In fact,
when an application communicates with a database server,
the technique can atmost record the communication between
the client and database server. This is not sufficient for
determining which data was used by the application (and, thus,
should be included in the package) and to be able to reset
the database to its state before application execution started.
Temporal databases provide a solution for the later problem,
but not for the earlier. Virtualization can ensure reproducibility
if the user has control over the database server, the server
is started as part of the application (thus the virtualization
system can capture a consistent state of the database files on
disk and the server binaries) and shutdown before the capture
mechanism is stopped. However, this will include complete
database into the resulting package.

The goal of this work is to improve computational repro-
ducibility for database applications. The light-weight database
application virtualization (LDV) approach we present in this
work addresses the aforementioned challenges. In particular,
LDV enables users to easily create a light-weight database
application virtualization (LDV) package, consisting of code,
data, software dependencies, a slice of the database with which
is required for re-execution, and provenance. If shared with
a 2" party, the application runs in exactly the same way
as it did for the original user, without requiring installation
or configuration of a database server at the target site. The
provenance included in a package can used to understand
data dependencies across the application and database, and to
determine which parts of a workflow are needed to re-create
a partial result.

II. LIGHT-WEIGHT DATABASE VIRTUALIZATION

We describe our approach by means of an example repro-
ducibility task. Consider a user Alice who has been using a
database in the past to conduct her experiments. She has finally
developed a database application which reads some input data
and outputs some analysis that she believes is interesting to

share with Bob (Figure 1). Alice would preferably like to share
this application in the form of package P with Bob, who may
want to re-execute the application in its entirety or may want to
validate, just the analysis task, or provide his own data inputs
to examine the analysis result.

If Alice wants Bob to re-execute and build upon her
database application, then Bob must have access to an en-
vironment that consists of application binaries and data, any
extension modules that the code depends upon (e.g., dynam-
ically linked libraries), a database server and a database on
which the application can be re-executed. Ideally, it would
be useful if Alice’s environment can be virtualized and thus
automatically set up for Bob.

(=)
Alice’s \@/

experiment

Database

Fig. 1: Alice’s experiment with processes P; and P, uses tuple
t1, inserts tuple t3, creates final output fo. Dumping database
produces redundant tuple to. Capturing Alice’s experiment in
its fullness makes t3 redundant. Only ¢; is needed for the
experiment to execute.

If we assume that Alice’s application consists of set of
modules that read data from files and/or retrieve data from
a database, and write data to files and/or write data to a
database, the database server is accessed through standard
SQL language commands, and Alice executes her application
through a command line script, providing a single entry point
for monitoring the application, then several questions arise
with respect to virtualizing her environment. In particular:

eHow do we include the necessary and sufficient data, i.e.,
data that corresponds to her last experiment in the virtualized
environment? As Figure 1 shows there are data (tuples) in the
database that are not part of the current experiment and if
included in the package, may increase the size considerably,
not leading to a light-weight virtualized environment.

eHow can a self-contained package be created so that Bob
does not have to install or configure a database server?

eHow can Bob re-execute the database application, par-
tially, or wholly, without communicating with Alice’s database
server?

We describe our primary contributions in addressing these
questions, and also describe an overall organization map for
the paper. In summary we monitor database applications and
combine database and application provenance to determine
necessary and sufficient data. We describe how this data can be

packaged easily with proprietary and non-proprietary database
servers, and we describe how Bob can efficiently re-execute
the database application.

Linking Provenance Models (Section 1V) As a first major
contribution we study how to combine database and workflow
provenance graphs. We introduce a generic model (that can
be represented in the standard PROV [20] model) and map
standard database and workflow provenance models into this
framework. Our framework extends the underlying black-
box OS model and fine-grained DB provenance models with
additional links between OS-side activities and DB-side op-
erations (e.g., a process executes an SQL statement). We
can infer data dependencies within and across the OS and
DB part of a provenance graph using data dependencies
available in the individual models and temporal annotations
on interactions between elements of such graphs. This model
enables us to determine which part of the database are required
to re-execute a workflow and, thus, to create a light-weight
package. Furthermore, we use the model to determine parts of
a workflow needed for correct partial execution (if requested
by the user) and to answer simple provenance queries (does
data item d depend on data item d’). We apply this framework
to two concrete provenance models (the models used by the
provenance systems

Monitoring Database Applications (Section VII) To monitor
database applications we need to keep track of operating sys-
tem processes, their interaction with files, and their interaction
with the database (SQL statements). Furthermore, we need to
record provenance for all these interactions. For monitoring
processes and their file interactions we can use existing solu-
tions such as PTU [22], CDE-SP [23], OPUS [5], and others.
Most of these approaches monitor system calls to determine
when processes are spawned and when a process opens or
closes a file. This information is then used to construct a
provenance graph for the application execution. However, we
also need to monitor the interaction between processes and the
underlying database. We capture this interaction at the level of
SQL statements and their results, i.e., we capture the code of
SQL statements (queries and DML statements) executed by a
monitored process, their results, and keep track of which SQL
statement was executed when. While monitoring a database
application we interactively construct an execution trace (a
provenance graph of our combined provenance model) for the
workflow.

Server-included and Server-excluded Virtualization Pack-
ages (Section VII-D) Similar to virtualization approaches
such as CDE, LDV can create repeatability packages for a
workflow that include binaries (and their dependencies such
as dynamically linked libraries) and data files. We provide two
approaches for packaging database related content. The first
option, which we refer to as Server-included, is to include
the server itself into the package and ship the relevant slice
of the database needed to repeat the workflow. This option is
possible when the server binaries can be shared (no legal issues
and user can access the server binaries). In the second option
(Server-excluded), we record the results of queries issued by

the workflow and include these results in the package. This
option does not require access to the server binaries or any
additional privileges apart from the privileges that are require
to execute the SQL statements issued by the workflow. As the
name suggests, a Server-excluded package does not contain
the database server.

Using Packages to Repeat Database Applications (Section
VIII) A LDV package can be shared to repeat the whole
or part of the workflow on a different machine. We do
not have to enforce any additional requirements apart from
the requirements that virtualization system impose. That is
if the target machine can be used to execute a standard
virtualization package, then this machine can be used to
execute an LDV package. To repeat a workflow packed using
the server-included option, we set-up the included database
server create an empty database, start-up the server, and load
all data included in the package. Whenever a process issues
an SQL statement during the execution of the package, we
reroute this request to the database server included in the
package. To repeat a server-excluded package we ignore all
DML operations. Queries are not executed using a database
server, but instead their recorded results that are included in
the package are returned. This guarantees that the workflow
will observe the same results as in the original execution. LDV
also supports partial execution of a package for which we use
our inference mechanism on provenance graphs to determine
which processes and data are required to reproduce a partial
result.

Prototype Implementation (Section IX) We have developed
a prototype implementation of LDV that glues the PTU
OS provenance system [22] and the Perm DB provenance
system [12], [11]. Our current prototype instruments the
client interface of the Perm database’ to monitor interactions
between the OS and DB side. Perm is used to compute fine-
grained provenance for database queries to determine the part
of the database that is relevant to the workflow if the Server-
included packaging option is chosen. We have expanded PTU
to incorporate databases into the resulting packages using the
two packing options mentioned above. In the future we plan
to support additional database systems such as the GProM
generic database middleware.

III. RELATED WORK

While there are several standards prescribed for scientific
reproducibility, there is no clear and concise definition. The
following description is consistent with several works [17],
[22], [10], [8], [15]: “Given a science experiment conducted
entirely using computational artifacts, at the least, scientific
reproducibility is the verification of scientific results by repeat-
ing (or replicating) them on nominally equal configurations.”
In several cases, further validation is required for an experi-
ment to be considered reproducible, such as by generalizing
the scientific results by applying them to new data sets,

2Perm is an extension of the PostgreSQL open source database

verifying how they behave under different parameters, and re-
using and extending the experiment [22].

Virtualization Keahey et al.[17] was the first to propose use-
ing VMs to encapsulate large, complicated stacks of scientific
software so they can be deployed across supercomputing cen-
ters without the need to install each of the software packages
individually in every new environment. This technique has also
been applied in the context of cloud computing by Howe et
al. [15]. However, as described in [1] and [18], VMs are space
inefficient and not descriptive enough to enable validation
(e.g., no provenance). Application virtualization tools such
as CDE [14] are more space efficient. CDE uses the UNIX
ptrace utility to monitor system calls and create a software
package consisting of application binaries, data, and all static
and dynamic software dependencies that can be traced during
program execution. While a CDE package provides the ability
to rerun the application in a different Linux environment, it
provides no provenance and, thus, no means of validation. PTU
packages [22] were proposed to enable validation by construct-
ing OS-level provenance graphs using ptrace auditing. Other
packaging systems that use provenance for validation but use
different Unix debug utilities are ReproZip [8] in the context
of VisTrails workflow system [10] and Research Objects in
the context of MyExperiment [13]. However, none of these
approaches address the problem of packaging a database
or support database provenance. Our LDV system packages
databases and tracks both OS-level and DB-level provenance.
Unified Provenance Models Database and OS provenance
have been modeled differently due to the inherent mismatch
in their computational and data models. Most OS provenance
models track provenance at the granularity of processes and
file [5], [22], [23], [19]. Processes are considered as black-
boxes where all outputs of the process dependent on all
inputs. Notable exceptions are approaches which use dynamic
instrumentation to compute fine-grained provenance for binary
programs [26], [24]. Database provenance [6], [16] is fine-
grained (usually at the granularity of tuples) and provides
strong guarantees about which outputs of a query depend on
which inputs. Some proposals of unifying these different types
of provenance have been introduced in related work. Cheney
et al. define a common graph model for addressing cross-layer
provenance for database applications [2]. They propose a fine-
grained model based on program dynamic instrumentation.
Another recently proposed unified model approach in the
context of e-commerce database applications is to model data-
dependent processes as finite state machines and use linear
temporal logic to model provenance [9]. Amsterdamer et
al. [3] model workflows as collections of programs written
in a subset of Pig corresponding to nested relational algebra
and capture fine-grained provenance using database prove-
nance model. Unified models enable precise description of
provenance for database applications as considered in this
work. However, they often require the adoption of a particular
programming model and/or system. Reimplementing their
database application in a different programming language or
porting it to a different system is unfeasible for scientific users

that have often spend huge amounts of time for creating and
fine-tuning their database application.

Combining Database and OS Provenance A less-intrusive
alternative to unified provenance models are approaches that
combine the two types of provenance, e.g., by linking nodes
from separate OS and DB provenance graphs. This approach
has the advantage that existing provenance systems can be
used to track provenance as long as it is possible to connect
the types of provenance. Cross-layer provenance was first
described in [21] sighting that single-layer systems fail to
account for the different levels of abstraction at which users
need to reason about their data and processes. These systems
cannot integrate data provenance across layers and cannot
answer questions that require an integrated view of the prove-
nance. These issues were explored in the context of workflow
systems and for NFS servers. Combining provenance where
one of the layers is a database is an active area of research.
The combined model has been explored in the context of
VisTrails [7] workflows using a centralized temporal database.
However, this approach does not support fine-grained database
provenance.

A full understanding of the trade-offs between these two
modelling approaches is an outstanding research topic. In this
work we use the linking model since it leverages currently
more established and standardized models of OS and DB
provenance, lends itself for integrating existing provenance
systems, and requires no modification of the user’s database
applications. In contrast to alternative approaches, our model
enables inference of data dependencies across the database and
OS provenance models. Furthermore, we demonstrate how to
apply this model to reduce package sizes by including only
relevant parts of a database and for partial reproducibility.

IV. DB AND OS PROVENANCE MODELS
A. Provenance Model

To be able to record the provenance of database applications
and repeat them, we need to connect provenance recorded on
the OS side with provenance for the database. Furthermore,
we want to infer dependencies between entities from the
application system (e.g., files) and data items managed by the
database system (tuples). Such merged dependencies enable
us to reason about which data is required to reproduce a
application or part of a application and to determine which
parts of the database to include in a repeatability package. We
assume that for both the DB and OS provenance models the
following can be provided:

o A definition of a set of activity and entity types valid in
their domain. For instance, the activities on the database
side may be SQL statements.

o A set of inference rules for determining data dependen-
cies that connect entities. For example, a file written by
a process may depend on a file read by the process.

o The produced provenance can be represented in PROV.?

3We do not require that these systems can actually export provenance in
PROV format, but only that it is possible to encode their provenance in PROV.
Given the generality of PROV this should not be a limitation.

Furthermore, we require that the DB and OS provenance
system’s are capable of monitoring an execution to record
direct provenance dependencies between entities and activities.

We first introduce provenance models and define execution
traces that record direct provenance dependencies with tempo-
ral annotations. For example, a process p has read from a file
f between time T}, and T, or a query g has produced a result
tuple ¢ at time T'. Afterwards, we introducecombined execution
traces that link OS and DB provenance though activities that
represent database queries and updates. We then study how to
infer temporally-constrained data dependencies based on the
direct dependencies of execution traces.

Definition 1 (Provenance Model). Let I be a domain of labels.
A provenance model is a triple P = (A, &, L) where A C L
is a set of activity types, £ C L is a set of entity types, and
L is a set of triples from L x P(AUE) x P(AUE). These
triples represent edge types with constraints on the start and
end node types (sets of allowed types). We require that activity,
entity, and edge labels are pairwise distinct.

A provenance model defines the admissible types of activi-
ties and entities in a specific domain and determines how these
types can be connected through edges of specific types.

B. Execution Traces

A provenance model can be used to model an execution of
activities in the domain of the model. We call a record of such
an execution an execution trace. An execution trace is a graph
consisting of instances of the provenance model’s activity and
entity types (the nodes of the graph). Edges in an execution
trace are labelled with a time interval indicating when the two
nodes in the trace interacted with each other. For instance,
such a label may represent the time interval during which a
process (activity) was reading from a file (entity).

Definition 2 (Execution Trace). Let P = (A,E,L) be a
provenance model. An execution trace for P is a labeled
directed graph G = (V,E,T), where V is a set of nodes
(activities and entities). Each node has to be of one of the
types specified in the provenance model. E CV x V is a set
of edges that fulfill the type constraints specified by L. Finally,
T:FE — TxTis a function mapping edges to intervals from
a discrete time domain T. We use T'(vy,v2) to denote the time
interval associated by T to the edge (v1,vs) and Iy, and I, to
denote the lower respective upper bound of an interval I.

We now we introduce the provenance models that are used
by the provenance systems we integrate in our LDV prototype.

C. The Blackbox Process OS Provenance Model

The blackbox process provenance model is used to model
the provenance of OS processes and their interaction with files.
As the name suggests, we do not assume any knowledge of
about the inner workings of such processes. Processes are
the activities of the provenance model and files are entities
created and consumed by processes. We track three types of
direct relationships: a process was executed by a process, a

process has read from a file (readFrom), and a file was written
by a process (hasWritten). An output of a application can
be traced back to its input through these provenance links.
However, connectivity in the graph does not necessarily imply
dependency as we will discuss in Section VI

Definition 3 (Blackbox Process Model). The blackbox process
model Ppp activities, entities, and edge types:

A ={process}
E ={file}
L ={readFrom(file,process), hasWritten(process, file),

executed(process, process)}

Example 1. The top of Figure 2 shows part of an execution
trace involving two processes Py and Ps. Process Py has read
two files A (during time interval [1,6]) and B (during [7,8]).

D. The Lineage DB Provenance Model

At the database side, activities are SQL statements and enti-
ties are tuples. We consider two types of relationships: an SQL
statement reads a tuple, and an SQL statement produces a tuple
- either a new tuple version produced by an update operation
or a tuple returned by a query. We consider four types of
SQL statements in this work: SELECT, INSERT, UPDATE, and
DELETE statements. Queries (SELECT) are connected to their
result tuples in the execution trace. Similarly, modifications
(INSERT, UPDATE, and DELETE) are connected to the tuple
versions they produce. Queries are connected to all tuples from
their input relations and modifications (insert, updates, and
deletes) are connected to original versions of tuples they have
modified. In Section VI we will discuss dependencies between
tuples based on a standard database provenance model.

Definition 4 (Lineage Model). The lineage model Pr;,, defines
the following activities, entities, and edge types:

A = {query, insert, update, delete}
& = {tuple}
L = {hasReturned(A, tuple), hasRead(tuple, A)}

We consider SQL statements to be executed instantaneously.
That is, both incoming and outgoing edges of a statement
executed at time T are labeled with the interval [T, T7.

Example 2. Consider the execution trace shown on the bottom
of Figure 2. Inserty has inserted two tuples t1 and ty and
Inserts has inserted tuple ts. Tuples t1 and ts where read by
query Query which has returned two result tuples t4 and ts.

V. COMBINED PROVENANCE MODEL

In order to support both application and database prove-
nance, we combine an OS provenance model with a DB
provenance model and augment these models with additional
edges types that connect activities across model boundaries.

Definition 5 (Combined Provenance Model). Let Ppg
(Aos,Eos, Los) be an OS provenance model and Ppp

(ApB,EpB,LpB) be a database provenance model. The
combined model Pppyos for Pos and Ppp is defined as:

A=AosUApr
& =EosUEps
L=LosVULppU{run(Aos, Apg),readFrom(Epp, Aos)}

A. Combined Execution Traces

A combined execution trace models the execution of a
database application including its processes, file operations,
and database accesses based on a OS and a DB provenance
model.

Definition 6 (Combined Execution Trace). Let Ppp and Ppg
be DB and OS provenance models. A combined execution trace
for Ppp and Pog is an execution trace for Pppios.

Example 3. A combined execution trace for the Pr;, and Ppp
models is shown in Figure 2. This trace models the execution
of two processes Py and P,. Process Py has read two files
A and B, and has executed two insert statements (at time 5
and 8 respectively). These insert statements have created three
tuple versions t1,ts, and ts. Process P> has executed a query
which has returned tuples ty and ts. These tuples depend on
tuples t1 and ts. Finally, process P> has written file C.

Combined execution traces are created by monitoring sys-
tem calls (e.g., ptrace) and intercepting calls to the database.
This will be discussed in detail in Section VII.

VI. DATA DEPENDENCIES

When producing a repeatability package, we need to know
which database content and files need to shipped to guarantee
successful re-execution of the trace or part of the trace. A
successful repetition of a trace requires that the dependencies
of all entities produced by the trace are available. Thus, we
need to know on which entities an entity depends on. For
example, we use this information to determine which database
tuples need to be included in a package. We assume that
an entity can be recreated by reexecuting part of the trace it
directly or transitively depends on. Data dependencies, i.e.,
dependencies between entities, are specific to a provenance
model. For example, in a fine-grained database provenance
model we can exactly determine on which input tuples a query
result tuple depends on whereas for black box processes we
have to assume that an output depends on all inputs. Based
on these model specific dependencies we will demonstrate in
Section VI-C how to exclude spurious dependencies and how
to infer indirect dependencies based on temporal constraints.

A. Lineage DB Dependencies

We use the Lineage provenance model for database queries
to determine dependencies between input and output tuples
of database operations in the Pr;, model. Lineage [6], [16]
models the provenance of a query result tuple ¢ as a set of
tuples from the database instance that were used to derive
t. Lineage can be expressed using the semirings annotation
framework [16]. In the semiring framework, tuples are an-
notated with elements from a commutative semiring which

sales

result
{t1} o
{t2} {tg,tg} 25

{t3}

Fig. 5: Annotated Relation sales and Query Result

represent their provenance. The semiring framework provides
strong theoretical guarantees, e.g., it was proven to generalize
several extensions of the relational model. Provenance poly-
nomials are the most general form of provenance expressible
in this framework. Lineage is less informative, but simpler
and sufficient for our use case - determining dependency
edges between tuples. Systems such as Perm [11] compute
provenance polynomials (and thus also Lineage) on-demand
for an input query. In the following we will use Lin(Q,t) to
denote the Lineage of a tuple ¢ in the result of a query Q.

Example 4 (Lineage). Consider the sales table shown in
Figure 5. The Lineage of each tuple t is shown as sets of
tuple identifiers on the left of t. All tuples in the sales table are
annotated with a singleton set containing the identifier of the
tuples itself. If we run a query SELECT sum(value) AS ttl
FROM sales WHERE price > 10, the result would be a
single row with ttl = 11 + 14 = 25. The Lineage contains all
tuples that were used to compute this results. In the example
these are the tuples with ids to and t3.

We will now define how to infer data dependency edges
in the Pr;, provenance model based on Linage. In particular,
we connect each tuple ¢ in the result of a query @) to all
input tuples of the query that are in ¢’s Lineage. Similarly, we
connect a modified tuple ¢ in the result of an update operation
to the corresponding tuple ¢’ in the input of the update.

Definition 7 (Pr;, Data Dependencies). Let G be an Pr;,
trace. Let Lin(s,t) denote the Lineage of tuple t in the result
of database operation s, and t and t' denote entities (tuples).
The dependencies D(G) C D x D of G are defined as:

D(G) ={(t,t") | 3s: (',s) € EN(s,t) € EAt € Lin(s,t)}

Example 5. Consider the execution trace shown in Figure 3
where Q1 is the query from Figure 5. Recall that in the Pr;,
model, operations are assumed to be instantaneous. Tuple t,
is data dependent on ty and ts, because these tuples are in
the Lineage of t4 according to query Q.

B. Blackbox Process OS Dependencies

The binary applications we are tracking can keep arbitrary
state and without static program analysis or dynamic instru-
mentation [26], [24] it is impossible to know which outputs
are dependent on which inputs. Thus, a file f depends on
another file f if there exists a process that reads from file f’
and writes file f. That is all outputs of a process depend on
all inputs of that process. Furthermore, in the Ppp model a

[1, 6] [7, 8] ,
7Rz [4,4] [4,4]
//@
9,9
[]/ —
[5,5] 9 Fig. 3: Pp;, Trace and Data Dependencies.
(5. 8] @ (9, 9]
[9, 9]
P 9, 9]
S
X
9, 9] [9, 9]
Inserty 8, 8] Q/ ts

Fig. 2: An Execution Trace with Processes And Database Operations

process may execute a child process. Thus, file f also depends
on f’if it is connected to f’ through a path of process nodes.

Definition 8 (Ppp Data Dependencies). Let G be an Ppp
execution trace. Let f and [’ denote entity (file) nodes in G
and P; be process nodes. The data dependencies D(G) C
D x D of G with are defined as:

D@G)={(f,f)|3P1,....Py: (f\P) EEN(Py, [) €E
/\VZIE{Q,...,TL}Z(PZ',MH) GE}

The above definition states that there exists a data depen-
dency between files f and f’ if these two files are connected
in the execution trace through a path of processes where the
first process reads file f’ and the last process writes file f’.
Furthermore, each process P; was executed by process P;_j.

Example 6. Consider the trace shown in Figure 4. Process
Py has read files A and B and has written files C and D.
Thus, both C' and D are data dependent on A and B.

C. Inferring Temporally Restricted Data Dependencies

In this section we introduce a generic approach for inferring
dependencies between entities in a combined execution trace
based on the direct data dependencies between entities from
the same model (e.g., a tuple is in the Lineage of another
tuple) and the temporal annotations on edges in the trace.
Inference should be conservative, i.e., it may return a superset
of the real dependencies, but never a miss a dependency.
Conservatism guarantees that sufficient data contained in re-
peatability packages to reproduce results. However, a high
number of false positives would cause unnecessarily large
repeatability packages. Our goal is to define inference rules
that are conservative and reduce the number of false positives.

Our inference approach relies on three intuitive assump-
tions: 1) the execution trace records all direct interactions
between activities and entities and 2) the state of an activity

Fig. 4: Ppp Trace and Data Dependencies.

or entity at a time 7" only depends on past interactions and 3)
the data dependencies defined by the individual provenance
models are conservative (e.g., the dependencies of the Ppp
model may contain spurious dependencies).

To infer such dependencies we need to understand which
direct interactions (edges) in the execution trace influence the
state of a node v at at time 7. Based on the assumption
introduced above, the state S(v,T) of an activity or entity
v at time 7' depends on all incoming interactions (incoming
edges) it had up to time 7. For example, for a process p these
are all the entities read by the process up to that time and any
process that triggered p before T' (if any). For a file f, this
includes all processes that have written f before 7.

Definition 9 (State). Let v be a node in a combined trace G.
The state S(v,T) of node v at a time T is defined as:

S, T)={v"|(v,v) e EANT(V',v), <T}

The state of a node can be used to infer dependencies
between entities based on the temporal annotations on interac-
tions in the execution trace. Intuitively, the state of an entity
e depends on an entity ¢’ at a time T if 1) there is a path
between ¢’ and e in the execution trace, 2) adjacent entities
from the same provenance model on this path are connected
through data dependencies, and 3) the temporal annotations
on the edges of the path do not violate temporal causality.

Example 7. In the execution trace shown in Figure 4, there
exists a path between file B and file C (B — P, — C).
However, we cannot infer that C' depends on B, because file
C was written ([2,3]) by Py before it has read file B.

Definition 10 (Dependency Inference). Let G be an combined
trace for provenance models Pog and Ppp. The data depen-
dencies of an entity e € G at time T include all entities €’
such there exists a path vy, . ..,v, in the execution trace with
v, = €’ and v,, = e that fulfills the conditions stated below. Let

€1,...,en denote all entities on this path (where e; = v, = ¢’
and e, = v, = e).
1) For all i € {2,m}, if e; and e;_1 are from the same
provenance model, then (e;,e;—1) in D(G).
2) There exists a sequence of times T1,...,T, with T; <
Tit1 and T; < T(vi, Vig1),.
3) Forall i € {2,n}, the node v;_1 is in the state of v; at
time T;: v;i_1 € S(’UZ,TZ)

Given assumption 1) an entity e can only depend on entity ¢’
if they are connected in the execution trace. Also all adjacent
entities on such a path should be directly data dependent
on each other if they belong to the same provenance model
(the 3rd assumption enforced by condition 1 of the definition
above). This guarantees that we do not introduce dependencies
that do not hold based on the individual provenance models.
Conditions 2) and 3) make sure that a dependency does not
violate temoral causality, i.e., the information flow from €’ to
e complies with the temporal annotations.

Theorem 1 (Inference is Sound and Complete). The inference
rules according to Definition 10 are sound and complete with
respect to dependencies that fulfill the assumptions stated in
the beginning of this section.

Proof: Recall we were assuming that the following three
assumptions hold for all dependencies in an execution trace:
« Execution traces record all direct interactions
« States of nodes at time ¢ only depend on past interactions
this node had before ¢
o Data dependencies of the individual provenance models
are conservative

Let D, (G) denote the set of all dependencies between
nodes in G that are conformant with the three assumptions
we have stated. Furthermore, let D*(G) denote the set of
dependencies inferred using Definition 10. We have to prove
D, (G) C D*(G), i.e., the rules are complete and D*(G) C
D (G), i.e., the rules are sound.

Do (G) C D*(G) (complete): Let (e,e’) € Duu(G), ie.,
(e,e’) is a dependency that fulfills assumptions 1 to 3. We
have to show that (e,e’) € D*(G). We prove this fact by
contradiction. Assume that e ¢ D*(G). We have to distinguish
two cases:

Case I: There is no path between ¢ and e in the trace.
However, this would violate the assumptions, because we
assume that individual model dependencies are conservative
and the state of entities only depends on past interactions.
Thus, if there is no interaction (edge) between two nodes v
and v’ then there cannot be any dependency.

Case 2: There exists one or more paths between ¢’ and e. Then
for every path between ¢’ and e, one of the three conditions
of Definition 10 has to fail, because else we would have
e € D*(G). The contradiction follows if we can construct
at least one path for which conditions 1-3 of Definition 10
hold. From case 1 we know that there exist paths between e
and €’ in G. Given that (e, ¢) is a dependency that fulfills the
three assumptions we know that there exists an entity node e

(a) No Dependency between C and A

@— [2,3] [6,7] e [1,5] —) [6, 6] —)@

(b) C depends on A at time 4

(N (P s o E e)

(c) No Dependency between C and A

Fig. 6: Example Traces with Different Temporal Annotations

[2,5] —) [1,6]

so that the state of e at a time ¢ contains ¢’ and the state of
e’ at time t contains ¢/. WLOG let there be no other entity
on the path between ¢” and e that caused e’ to be in the
state according to Definition 9. Let v; = €”,...,v, = ¢
be this path. Based on assumption 2) we can infer that
condition 3 of Definition 10 holds for this path. Based on
the definition of state (Definition 9) it follows that condition
2 holds too. Finally, (e,e”) has to be a dependency in one
of the individual provenance models based on assumption 3)
which means condition 1) of Definition 10 holds. Thus, (e, ¢)
is a dependency in D*(G). Now the same argument can be
applied to find an entity ¢’”” on a path between ¢’ and ¢” and
so on. By induction it follows that (¢/,e) in D*(G).

D*(G) C Dy (G) (sound): Let (e,e’) € D*(G). We have to
prove that (e,e’) € D, (G). In other words, (e, e’) does not
violate any of the three assumptions and, thus, would be in
D,y (G). This is obviously the case, because 1) e’ and e are
connected through a chain of conservative (assumption 3) data
dependencies and temporal causality is not violated. []

Example 8 (Indirect Data Dependencies). Figure 6 shows
several versions of the same execution trace with different
data dependencies and temporal annotations. In trace 6a there
exists a path between A and C and the entities on that path
are connected through data dependencies. However, given the
temporal constraints, C cannot depend on A, because P
stopped reading B before it was written by Py. No matter
what time sequence 11, ..., Ts is chosen, the third condition
of the definition will fail for v; = B. Trace 6b has different
time annotations and in this trace C depends on A at time 4.
For trace 6¢ there is no data dependency between B and A.
Thus, we cannot infer that C depends on A.

VII. CREATING EXECUTION TRACES

To create a re-executable package of a database application
we need to transparently create execution traces. We describe
how such traces can be created using the Unix ptrace utility
on the application side. We then describe a ptrace-like utility
that for creating execution traces on the database side.

A. Creating Execution Traces for the BB Process OS Model

The Unix ptrace system call provides a means by which one
process (the tracer”) can observe and control the execution of
another process (the “tracee”) by examining all system calls
executed by the tracee. For example, when a process accesses a
file or a library using the system call fopen(), ptrace intercepts
the tracee’s fopen() system call. Similarly, if a process forks
or execs another process then ptrace can intercept the fork()
or execve() system call to examine the new called process and
obtain its process id and other details from /proc. PTU [22]
is a system that uses ptrace to construct a provenance graph
that connects process activities and file entities.

We can create an execution trace from a PTU provenance
graph by attaching time stamp intervals to each edge. To
create execution traces, we maintain a stack data structure
for process-process and process-file edges. This data structure
keeps track of file open and close system calls. A process-file
edge is assigned the time interval between the first open system
call and the last close system call. For process-process edges,
the time interval is a point in time, assuming instantaneous
fork or exec of the child process by the parent process.

B. Creating Execution Traces for DB Lineage Model

Dependencies between result and input tuples of a database
operation can be computed using Perm [11].* However, a
system like Perm computes provenance on-demand. Thus, we
need a mechanism for tracking which SQL statements were
executed by an application. This information can then be used
to retrieve provenance for each such statement. As a proof of
concept, we have chosen to create a trace by instrumenting
libpg, the C language client interface of PostgreSQL (and
Perm). By intercepting Select, Insert, Update, Delete state-
ments send to the database via function PQexec in the libpg
interface, we modify each statement (adding the PROVENANCE
keyword supported by Perm) to compute its result tuples and
also return all tuples on which the resulting tuples depend
upon (its Lineage). In the future we will instrument ODBC
as a more generic database client interface. Our interception
layer records when each database statement was executed.

C. Combined Execution Traces

To create combined execution traces we need to connect
traces for the Ppp and Pr;,, models. In particular, we need to
maintain edges between the processes and the SQL statements
and between the tuples of a query result and a process,
i.e., the edges run(Aops, App),readFrom(Epp, Aos). In
general, this information can be maintained on the application
or database side. We chose to store it at the database side
alongside with tuples. To maintain these edges, we modify the
schema of each relation in the database by adding additional
attributes as described in Table I. This modification to a
relation is done whenever the relation is first accessed by
the database application. The values for the attributes are

4Technically, Perm only supports provenance for queries, but updates can
be traced by rewriting them into queries to track their provenance [4].

Name | Default Description

prov_p md5(random()::text) unique query id
prov_usedby 0 session id

prov_v now() timestamp (tuple version)
prov_rowid md5(random()::text) unique row id for all tables

TABLE I: Attributes Added to Existing Relations

set by the libpg layer, which creates a unique identifier for
the operation (query_id) and the id of the process that
issued the query (process_id). The database provides the
timestamp for the tuple when it is inserted. The unique row
id acts a artificial primary key for tuple versions. By adding
these attributes to every relation accessed by the application we
keep track of which tuples where created by the application.
When these inserted tuples are queried, then using Perm’s
provenance tracking mechanism, we can link the Lineage of
these tuples to the application provenance. For Update and
Delete operations, the system modifies the session id, updating
them to the current process that executed the statements.

D. Creating a Virtualization Package

We first review how application virtualization tool create a
package for non-database applications. We then describe the
packing options for database applications supported by LDV.

In virtualization systems such as CDE or PTU a user can
monitor any set of Linux commands by passing them as argu-
ments to the virtualization system. The virtualization system
executes the commands and uses ptrace to identify the code
used by a running application (e.g., program binaries, libraries,
scripts, data files, and environment variables), which it then
records and combines to create a self-contained package. For
example, when a process accesses a file or a dynamically-
linked library using the system call fopen(), the system inter-
cepts that system call, extracts the file path parameter from
the call, and makes a “deep-copy” of the accessed file into
a package directory and consisting of all sub-directories and
symbolic links of the original file’s location. The resulting
package can be redistributed and run on another machine
with the same architecture (e.g. x86). When reexecuting the
package the virtualization system again uses ptrace to intercept
system calls and redirects file-related calls into the package.

To build a virtualization package for a database application,
we must include (or simulate) a database server, with which
the application can interact with. Whether a server can be
included (Server-included packaging option) or has to be
simulated (Server-excluded packing option) depends upon on
the level of control the database application has over the server.
Control could be restricted due to permissions as well as due
to licensing requirements. We consider three scenarios and
describe packaging requirements under each scenario:
Scenario 1: Open-Source DB with Complete Access The
application developer uses an open-source database server that
is under complete control. The developer can start or stop the
server, access its binaries, and access the database files. In this
scenario, it is easy to package the server, since all the server’s

binaries and any dynamically-linked library (e.g., user-defined
functions) can be included in the package.
Scenario 2: Central DB with SQL Access The application
uses a centralized database server. Such a server is usually
being used by multiple users and is managed by central
authority (IT department). The user can only access the server
through its SQL language interface. Packaging the binary or
source code of a central database server is not possible. An
alternative is to package the non-database application, and
provide the user of the shared package an account on the
central server. However, either a new database would need to
be created with pre-existing data or the original database must
be brought to a state prior to database application execution.
The latter functionality is available if the server itself supports
versioning or time-travel feature.
Scenario 3: Proprietary DB with Complete Access The
database server is proprietary. While the user may have control
over starting and stopping the server, the server’s binaries
cannot be included in the package due to licensing constraints.
Using execution traces, we can create a “minimal” database
in the original state for the first scenario. We need to include
all tuples database that were not created by the application
itself (no incoming edges in the trace) and were used by at
least on SQL statement issued by the application (are the
end-point of at least one data dependency). The application
is packaged using ptrace, which can create the package and
the execution trace for the black-box process OS model. The
minimal database is stored in as plain files in the package.
Since it no possible to package the server and database in the
27d and 374 scenarios, we can intercept calls to the database
and record query results returned from the server to be able
to later simulate the database. For PostgreSQL (Perm) we can
record all communication from the Perm server to libpg by
tracing function pgsecure_read (memory_buffer) and
dumping data from this buffer.

VIII. REPEATING EXECUTIONS WITH PACKAGES

The reexecution of a LDV package depends on the type of
package (Server-included or Server-excluded).
Server-included When the application first connects to the
database during reexecution, then LDV intercepts this call
and restores the database following these steps: 1) Extract
the database name dbname from the given connection string;
2) Connect to the default database (postgres) and create a
new database dbname; 3) Connect to dbname and restore
the database content from the LDV package; 4) Return the
connection to dbname in PQconnectdb. Once the database is
restored to its original state all other database commutation
procedes without interference from LDV. Since all tuples
required to answer the applications queries were recorded by
LDV’s monitoring step and restored before any query occurs,
the database application can be repeated successfully.
Server-excluded: In this scenario the package contains the
results of all queries issued during the original execution.
results server and LDV simulates the existence of the server
and replays the recorded query results based on their time

order. In this case, LDV simulates all database communica-
tion made via libpq to re-play the database connection and
queries. A database connection is simulated by changing the
behavior of functions in libpq that connect, read, and write to
database servers. The following steps are taken to simulate the
server: (i) When the application connects to the server, LDV
interrupts functions PQconnectPoll and pgWaitTimed in libpg
to bypass the process of creating a database connection. The
simulated database connection returns a success status without
connecting to any server; (ii) On a write request to a database
server, LDV intercepts function pgsecure_write to ignore the
request and always returns success; (iii) On a read request
to a database server, LDV intercepts function pgsecure_read(
memory_buffer), writes recorded data to memory_buffer and
returns the corresponding result. We assume that the client
issues the same queries to the database server in the same time
order as in the capturing step. By returning the recorded data
in the same order as before, LDV replays the communication
between a client and a server and allows the client to execute
successfully without an actual server.

IX. EXPERIMENTS AND EVALUATION

In this section, we describe our experiments to analyze LDV
audit and replay performance, and compare package size for
databases applications. We also evaluate LDV on provenance
querying by building dependency graphs for the experiments.
Our experiments show a trade-off in LDV performance and
package sizes among our scenarios. While LDV spends more
time on capturing LDV packages and initializing the re-
execution, LDV packages are 28% - 84% smaller in size
than a full capture of the application. Actual runtime of the
application re-execution is about the same for the Open-Source
DB Server scenario, and significantly faster, with 1000%-
10,000% improvement for the Proprietary DB Server scenario
for queries with small result sizes.

A. TPC-H Benchmark

We used the TPC-H benchmark [25] with a scale of 0.01 to
generate data for our evaluation experiments. TPC-H is a de-
cision support benchmark with a suite of business oriented ad-
hoc queries and data modifications. The experiments contain
an application and a PostgreSQL database of approximately
86,000 tuples. The application runs the following steps se-
quentially.

o Test database connection (and prepare database if needed

in audit and re-execution mode)

o Insert 1000 tuples into tables orders and lineitem as

specified by TPC-H SF1

e Send 101 queries to the database using one of the 22

TPC-H queries.

o Update 100 tuples in table orders
. To create a based line for comparison, we measured the
execution time of the application using an uninstrumented
PostgreSQL server. We used PTU to audit the application
dependencies and create a PTU portable software package
without database provenance. This PTU package contains

| Name Scanned / Result Category

Ql Pricing Summary 57982 / 4 large input / small output
Q2 | Minimum Cost Supplier 10100 / 8000 small input / large output
Q3 Shipping Priority 58710 small input / small output

TABLE II: Numbers of scanned and returned tuples in TPC-H
queries used for performance and size evaluation

all binaries, libraries and data required to re-execute the
application.

We measure the LDV package size, audit performance, and
replay performance for the first three queries of TPC-H. The
first query in TPC-H is the Pricing Summary Report Query
(Q1). This query reports the amount of business that was
billed, shipped, and returned as of a given date. The query
scans approximately 96% of tuples in table lineitem, or 66%
of the database, and return 4 tuples (large input / small output).
The second query is the Minimum Cost Supplier Query (Q2).
This query determines which suppliers should be selected to
place an order for a given part in a given region. We relaxed
the query by removing some restricted conditions in the WHERE
clause to include a higher number of tuples in its result (small
input / large output). The third query is the Shipping Priority
Query (Q3). This query retrieves the 10 unshipped orders
with the highest potential revenue (small input / small output).
Actual numbers of tuples scanned and returned in these queries
are shown in Table II.

1) Audit Performance: We use LDV to audit the application
to create an LDV software package. Figure 7 shows the
LDV audit performance for the Open-Source DBS and the
Proprietary DBS scenarios in comparison with the normal
uninstrumented database server.

a) Scenario 1: Open-Source DB Server (DBS): In all
audit phases, the preparation step and the select query step
of the application show a significant overhead comparing to
the normal uninstrumented execution. The overhead of the
preparation step is accounted by the modification to database
tables. In this scenario, LDV needs to add columns to any
accessed tables and fill in their default unique values. For large
tables such as lineitem, this process adds a significant over-
head. The overhead of the select query step is resulted from
querying for provenance and capturing unrecorded tuples. In
the first select query of Q1, LDV needs to record almost 58000
tuples (67% of the database). Additional select queries do
not need to record those tuples again, but they still need to
make provenance queries for those tuples. Similar provenance
queries are required for database update operations, which
results in the overhead from the update query step. These
provenance queries are not needed in insert queries; hence
the overhead is light and lower than other steps.

b) Scenario 3: Proprietary DB Server: This scenario
shows a lower overhead than the Open-Source DBS scenario.
An exception is in auditing Q2 experiment where the returning
result of the select query Q2 is large, and recording such
result repeatedly introduce higher overhead in comparison with
Open-Source DBS and uninstrumented scenarios.

Package Software Server Data Database

‘ binaries binaries directory provenance
PTU v v v (full) X
Open-Source DBS | v/ v V/(empty)
Proprietary DBS v X X 4

TABLE III: Content of PTU and LDV packages: PTU pack-
ages contain data directory of the full database, whereas Open-
Source DBS LDV packages contain a data directory of an
empty database (created by the initdb command)

500
Full Capture C———1
Open-Source DB Server scenario (XXX
Proprietary DB Server scenario BZ&&&

400 |- BN

324.3

Total package size (MB)

TPC-H Query

Fig. 9: Sizes of packages compared with a full capture

2) Performance in Re-Execution: Figure 8 compares the
replay performance of LDV software packages in Open-Source
DBS and Proprietary DBS scenarios and a normal execution.
Open-Source DBS scenario exhibits a long database prepara-
tion since LDV needs to restore database state using audited
provenance. Once the database is restored, performance of
Open-Source DBS scenario is the same as in the normal
uninstrumented execution. It is noticeable that in almost all
experiment steps, Proprietary DBS scenario shows a lower
execution time than Open-Source DBS scenario and normal
execution. This can be explained as Proprietary DBS appli-
cation does not wait for database server to process queries,
but read their results directly from local disks. An exception
appears in the Proprietary DBS scenario with select queries for
the query Q2 where large-size results were returned. In normal
and Open-Source DBS scenarios, the cache from database
server returned results faster than repeatedly reading results
from disks in Proprietary DBS scenario.

3) Package Size: To explore the improvement of LDV
packages over repeatable software packages that contain full
database, we compare the sizes of LDV and PTU packages to
show a remarkably smaller size packages of LDV approach.
A PTU package contains all the necessary binaries, libraries
and files required to re-execute the application. This package
contains all files accessed by the database server in the
application execution. An LDV package contains database
provenance for re-execution, and the database server binaries
and a data directory of an empty database in the Open-Source
DBS scenario (Table III).

Using the application with TPC-H query Q1, Q2, and Q3,
we constructed their corresponding PTU and Open-Source
DBS, and Proprietary DBS LDV packages. Figure 9 shows

(a) Q1

(b) Q2

(c) Q3

PostgreSQL ——1
openBource DB Server scenario XX
Profjetary DB Server scenario EX

1000

< <
100 | a b 100 | a
1%

XX 0.004536

Execution time (seconds)
R

Execution time (seconds)

0.001 0.001

[6%%%

%

0.0001 F

k| 0.0001

le-05 le-05

Updates

Test
Prepare

Other
Selects

Inserts Test

Prepare

Inserts

Fig. 7: Execution time of each step in an execution of TPC-H benchmark application

(a) Q1

(b) Q2

PostgresQL ——
Open-Source DB Server scenario (XX
Proprietary DB Server scenario B |

1000 PostgreSQL 1
Open-Source DB Server scenario X%

Proprietary DB Server scenario B |

39.4

100

XRXK
0.4657

%

X

o
T
0.03
SRR
XX

0

%

SRARXKZ
QX

Execution time (seconds)
S

0.001

XK

%%

0.0001

—T

KX

le-05

Other
Selects

Test
Prepare

First
Select

Updates Inserts Other

Selects

Updates

in Audit mode

(c) Q3

1000 | PostgresQL ——
Open-Source DB Server scenario XX%

Proprietary DB Server scenario &

m
I 0
] &
v |

Other
Select Selects

@
<

100 E| 100 s
e

KRR 178.2)

,_.
5
T
%%

X5

°
2
:
$%0% % %%

KRR

Execution time (seconds)
RRXRRKKS

Execution time (seconds)

0.001 0.001

0.0001 F 0.0001

le-05 le-05
Test

Prepare

Inserts

Updates Test

Prepare

Inserts

PostgresQL ——
Open-Source DB Server scenario (XX
Proprietary DB Server scenario B

PostgresQL ——
Open-Source DB Server scenario (XX
Proprietary DB Server scenario E&a

1000

El 100

=
1S
T
1.852
L

o]

4

X

X

23%%

)
T
0.03

ote!

0.003474

2} 0.00284

K2

%]

X5

%

Execution time (seconds)

e
X

0.001

XX
X

e

e

'Q

XX
2% %

0.0001

KX
&

— T

le-05
First
Select

Other
Selects

Test
Prepare

First
Select

Updates Inserts Other

Selects

Updates

Fig. 8: Re-Execution time of each step in an execution of TPC-H benchmark application in Replay mode

Open-Source DBS LDV packages are smaller than PTU pack-
ages since Open-Source DBS LDV packages does not contain
redundant tuples that PTU packages have. For TPC-H queries
QI and Q3, since the number of output tuples are significantly
smaller than the number of input tuples (Table II), the sizes
of Proprietary DBS LDV packages are usually smaller than in
PTU and Open-Source DBS LDV packages. However, in Q2,
the number of output tuples are high and recorded repeatedly
in the capture of our application. Hence, Proprietary DBS
LDV package size in Q2 is considerably larger than PTU and
Open-Source DBS LDV packages. Figure 10 shows a similar
observation: Q1 requires a high number of tuples from the
orginal database to be recorded, whereas Q10, Q11 and Q14
show a high number of output tuples being repeatedly recorded
for re-execution.

B. Provenance Query

LDV provides a query interface for returning a graph
representation of the a whole or part of an execution trace. This
interface creates a GraphViz-format provenance graph for the
experiment in 0.440.05 seconds. Using this provenance graph,
users can examine dependencies along a timeline. Including
inferred dependencies is optional.

X. CONCLUSIONS

We introduced a light-weight database virtualization (LDV)
system that monitors applications involving a database. This
system creates reexecutable packages including the applica-
tion, its dependencies, data files, the relevant part of the

4000 .“4 18268 Open-Source DB Server scenario sesesd -
Dol Proprietary DB Server scenario Rz
3500 - Q% B B
—~ el B
o 9 oo
g b &
< 3000 - ¥ B i
g X B
K2 Jose
c * B
S 2500 K3 &3 7
I} 94 o
s
3 b 5
o 2000 X & B
a e oo
2 &
£ 1500 - 1
o g
g
& 1000 - 53 N
B B
g B
poes] lo3s]
500 - & K R
0 P %[26! ’.:‘ fé: KOE
1 3 5 6 19

TPC-H Query

Fig. 10: Sizes of audited data captured for provenance query
and re-execution

database, and a combined execution trace (DB and OS prove-
nance). Such packages can be used to repeat an application or
part of an application in a different environment. We have
presented a framework for combining different provenance
models and for inferring data dependencies that cross model
boundaries. Our system creates execution traces (provenance
graphs) according to this framework and uses this type of
provenance to determine which data needs to be included in
a repeatability package. LDV leaves the choice whether the
repeatability package should include the database server to
the user. Our first prototype implementation integrates the PTU
(OS) and Perm (database) provenance systems and instruments
the Perm client interface to monitor SQL statements.

In future work, we plan to instrument client interfaces of
other database systems. Furthermore, we will develop a third
packaging option that uses a temporal database to retrieve
past state of the database needed when reproducing a result
and integrate our approach with the database-independent
GProM [4] provenance middleware.

[1

—

[2

—

[3

=

[5

=

[6

=

[7

—

[8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]
[23]
[24]
[25]

[26]

REFERENCES

Some myths of reproducible computational research. http://ivory.idyll.
org/blog/2014-myths-of-computational-reproducibility.html.

U. Acar, P. Buneman, et al. A graph model of data and workflow
provenance. In TaPP ’10, 2010.

Y. Amsterdamer et al. Putting Lipstick on Pig: Enabling Database-style
Workflow Provenance. PVLDB, 5(4), 2011.

B. Arab, B. Glavic, et al. A generic provenance middleware for database
queries, updates, and transactions. In Proceedings of TaPP, 2014.

N. Balakrishnan, T. Bytheway, et al. Opus: A lightweight system for
observational provenance in user space. In TaPP, 2013.

J. Cheney et al. Provenance in Databases: Why, How, and Where.
Foundations and Trends in Databases, 1(4), 2009.

F. Chirigati and J. Freire. Towards integrating workflow and database
provenance. In Provenance and Annotation of Data and Processes. 2012.
F. S. Chirigati, D. Shasha, and J. Freire. Reprozip: Using provenance
to support computational reproducibility. In 7aPP, 2013.

D. Deutch et al. A provenance framework for data-dependent process
analysis. PVLDB, 7(6), 2014.

J. Freire and C. T. Silva. Making computations and publications
reproducible with vistrails. Computing in Science and Engineering,
14(4), 2012.

B. Glavic et al. Perm: Processing Provenance and Data on the same
Data Model through Query Rewriting. In ICDE ’09.

B. Glavic et al. Using sql for efficient generation and querying of
provenance information. In In search of elegance in the theory and
practice of computation: a Festschrift in honour of Peter Buneman. 2013.
C. A. Goble and D. C. De Roure. myExperiment: social networking
for workflow-using e-scientists. In Proceedings of the 2Nd Workshop
on Workflows in Support of Large-scale Science, 2007.

P. J. Guo et al. CDE: using system call interposition to automatically
create portable software packages. In USENIX Annual Technical
Conference, Portland, OR, 2011.

B. Howe. Virtual appliances, cloud computing, and reproducible
research. Computing in Science & Engineering, 14(4):36-41, 2012.

G. Karvounarakis and T. Green. Semiring-annotated data: Queries and
provenance. SIGMOD Record, 41(3):5-14, 2012.

K. Keahey et al. Virtual workspaces for scientific applications. In
Journal of Physics: Conference Series, volume 78, 2007.

S. Lampoudi. The path to virtual machine images as first class
provenance. Age, 2011.

T. Malik, L. Nistor, and A. Gehani. Tracking and sketching distributed
data provenance. In International Conference on eScience, 2010.

L. Moreau and P. Missier. Prov-dm: The prov data model.
http://www.w3.0rg/TR/2013/REC-prov-dm-20130430/, 2013.

K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. W. Margo, M. I. Seltzer, and R. Smogor. Layering
in provenance systems., 2009.

Q. Pham, T. Malik, and I. Foster. Using provenance for repeatability.
In TaPP, 2013.

Q. Pham, T. Malik, and I. Foster. Auditing and maintaining provenance
in software packages. In IPAW, 2014.

M. Stamatogiannakis et al. Looking inside the black-box: Capturing
data provenance using dynamic instrumentation. In TAPP, 2014.
Transaction Processing Performance Council. TPC-H benchmark spec-
ification. Published at http://www.tcp.org/hspec.html, 2008.

M. Zhang et al. Tracing Lineage beyond Relational Operators. In VLDB,
2007.

