DataSense: Display Agnostic Data Documentation

Poonam Kumari, Michael Brachmann, Oliver Kennedy
University at Buffalo, SUNY
{poonamku,mrb24,okennedy}@buffalo.edu

Producing and consuming documentation is an essential step when creating and analyzing data. Good documentation helps a consumer of data to understand the context of the data and its schema, including (i) semantics (e.g., the currency of an account balance), (ii) data collection techniques (e.g., which assay was used to measure blood iron), (iii) limitations or caveats (e.g., that missing values are due to sensor failure), and (iv) assumptions made (e.g., missing geographical locations were inferred through geocoding). Misunderstanding the context of a dataset can lead to statistical errors and mistakes with potentially serious, life-threatening consequences. In short, good data documentation is critical. Unfortunately, extensive documentation can overwhelm users, making it hard to find elements in the documentation that are relevant for the task at hand. We need a better way to interact with documentation than the current state of the art: dozens or even hundreds of pages of word documents.

Modern code development environments (IDEs) present a compelling solution for code: (i) Syntax highlighting presents a high-level overview of the document structure, helping users to survey it; and (ii) Mouseover detail views help users to learn about the specifics of functions, types, classes, etc. We argue that a similar paradigm is needed for datasets, a paradigm we term display-agnostic data documentation (DAD). In this paper, we outline how DAD can facilitate both discovery and lookup of context-relevant data documentation by inlining them directly and interactively into the data display. This documentation can often be derived from the data or by analyzing provenance. Indeed, many such techniques already exist, ranging from fully automated data documentation techniques like data profiling, provenance summarization, to user-provided prose annotations. For example:

Outliers: Highlighting outliers in a dataset can help users to find errors or interesting data points. Additional textual documentation can be used to explain them.

Missing Values: Under SQL’s NULL Semantics, aggregates silently ignore null values. Highlighting data derived from null values can reveal data errors like failed CAST operations that might invalidate analyses based on the data, or unreliable aggregated results computed mostly from NULL values.

Cell Provenance: Spreadsheet expression cells (e.g., ‘=A22+$B22’) can help users to interpret the role of the cell, for example when the cell’s column name is uninformative. Similar information for database query results (e.g., AVERAGE(ST_Distance(trip.start, trip.end))) i.e., schema-level provenance, can be just as helpful.

Annotations: Semistructured documentation is used in programming languages like Python (__doc__ or PEP484) and Java (Javadoc), and leveraged by IDEs for mouse-over contextual documentation.

Figure 1 show one approach to DAD that we call DataSense: An abstraction layer that links documentation modules that generate contextual documentation, and relational data display managers that render (e.g., as a table, plot, or map) the data and its documentation. DataSense is being implemented as part of the Vizier workflow-notebook system (https://vizierdb.info), with existing support for user- and heuristically-generated prose annotations and profiling metadata, and with support for provenance metadata available soon.