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ABSTRACT
Data provenance has evolved from a niche topic to a main-
stream area of research in databases and other research
communities. This article gives a comprehensive introduc-
tion to data provenance. The main focus is on provenance
in the context of databases. However, it will be insightful to
also consider connections to related research in programming
languages, software engineering, semantic web, formal logic,
and other communities. The target audience are researchers
and practitioners that want to gain a solid understanding
of data provenance and the state-of-the-art in this research
area. The article only assumes that the reader has a basic
understanding of database concepts, but not necessarily any
prior exposure to provenance.
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1
Introduction

The term provenance is used in the art world to describe a record of
the history of ownership of a piece of art. This term has been adapted
by the database community to describe a record of the origin of a
piece of data. Data provenance has emerged as a research topic in
database community in the late 1990’s with some isolated earlier work,
e.g., Stonebraker et al., 1993. However, as we will discuss in detail in
Chapter 5 other research communities have studied concepts that are
closely related to data provenance much earlier. Data provenance, by
explaining how the result of an operation was derived from its inputs,
has proven to be a useful tool that is applicable in a wide variety of
applications including debugging transformations (queries, updates,
transactions, . . . ) and data, to assess the trustworthiness of data, to aid
users in understanding data-intensive processes, to speed-up incremental
maintenance of query results, for explaining surprising outcomes, and for
reasoning about hypothetical changes to inputs and results of operations.
The purpose of this article is to give a comprehensive introduction to
data provenance concepts, algorithms, and methodology developed by
the database community in the last few decades. The indented audience
are researcher and practitioners unfamiliar with the topic that want to
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develop a basic understanding of provenance techniques and the state-
of-the-art in the field as well as researchers with some prior experience
in provenance that want to broaden their horizon. While also providing
a collection of relevant literature references, this article’s main objective
is to introduce the reader to the formalisms, algorithms, and system’s
developments in this fascinating field. To be able to cover topics in
sufficient depth, we will focus on work on provenance in databases
and closely related areas. Provenance for workflow systems, operating
systems, general purpose programming languages, and other areas that
are not related to databases will not be discussed in depth. That being
said, we will point the reader to important work from outside of the
database community where appropriate.

1.1 What is Data Provenance?

Following common terminology we will use the term data item to refer
to a piece of data, e.g., a relation, a tuple, or JSON document. Data
items may be inputs and/or outputs of transformations, e.g., queries,
updates, transactions, application programs. The provenance of a data
item provides a record of how the data item was derived from other
data items by a set of transformations. We distinguish between data
dependencies which record that a data item was produced from /
depends on another data item, e.g., a tuple in the result of a query
was derived from an input tuple, and transformation dependencies
which record that a data item was directly (or indirectly) produced by a
particular transformation. Some provenance models are only concerned
with data dependencies or transformation dependencies while others
support both types of dependencies. Additional metadata about the
execution of a transformation, e.g., the user that executed a transforma-
tion or the execution environment of a transformation, are sometimes
also considered to be data provenance. However, in this article the main
focus is on data and transformation dependencies.

Data and transformation dependencies can be modeled at different
levels of granularity. For instance, we may track the data dependencies
for a query result at the level of attribute values, tuples, or whole
relations. The same applies to transformation dependencies, e.g., we
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Query result

name id
Aishe r1
Peter r2
Astrid r3

Qcoffee−drinker

SELECT name FROM student WHERE daily - coffee > 1
UNION
SELECT name FROM teacher WHERE daily - coffee > 1

student

name GPA daily-coffee id
Aishe 3.5 2 s1
James 2.4 0 s2
Peter 3.6 3 s3

teacher

name salary daily-coffee id
Alice 30,000 1 t1
Peter 131,000 2 t2
Astrid 140,000 3 t3

Figure 1.1: Example database

may track them at the level of queries or individual operators within a
query.

1.1.1 An Example

Consider the database shown in Figure 1.1. The query shown in
this figure returns the names of students and teachers (relations student
and teacher) who consume more than one cup of coffee per day. Note
that this query does not return duplicates (it uses SQL’s UNION which
eliminates duplicates). Let us reason about data dependencies at tuple
granularity. That is, we want to know which of the input tuples were used
to derive an output tuple. Consider the result r1 = (Aishe). Student
Aishe is in the result, because she drinks more than one cup of coffee
per day. The input tuple that justifies the existence of r1 in the query
result is s1 = (Aishe, 3.5, 2). All other input tuples have no bearing on
whether Aishe is in the result or not. Thus, r1 is only data-dependent
on s1, but no other input tuple. Since Aishe is a student and there
is no teacher called Aishe (let alone a teacher drinking a sufficient
amount of coffee), the second part of the query that accesses relation
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teacher is not needed for producing result tuple r1. Thus, r1 is only
transformation-dependent on the part of the query highlighted in red.1
As another example, consider the second result tuple (r2 = (Peter)).
There exist two coffee drinkers named Peter. One is a student (tuple s3)
and one is a teacher (tuple t2). The result tuple r2 is data-dependent
on both of these inputs. Modeling provenance as data dependencies
only may not provide us with enough information for all use-cases of
data provenance. For example, provenance can help us to determine
the effect of deleting a tuple, say s3, from the input. We can use data
dependencies to determine the subset of the output tuples that may be
affected by the deletion. Only tuples that are data-dependent on deleted
inputs may be affected. However, we need additional information about
how input tuples were combined by the query to know with certainty
whether an output will be deleted or not. For instance, to know whether
the deletion of s3 will cause r2 to be deleted from the query result, it is
not enough to just know the data dependencies of r2 (which are s3 and
t2). Additionally, we need to know that as long as one of s3 or t3 is in
the input, then r2 will be in the query result. So far we have reasoned
intuitively about dependencies. To be able to determine dependencies
automatically, we need a formal model of provenance. In Chapter 2 we
will review such models and discuss which models provide sufficient
information to support particular use-cases in Chapter 3.

1.2 Why Should I Care?

Data provenance has been applied for a diverse set of use cases, many
of which we will discuss in detail in Chapter 3. Here we just provide a
brief overview of some common use cases.

1.2.1 Error Diagnosis and Debugging

By tracking which input data and parts of a transformation are re-
sponsible for producing a suspicious output, provenance information

1We may argue about whether the union operation should be considered as
relevant or not. For now let us just assume that it is relevant. We will discuss
transformation dependencies in detail in Section 2.6.
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can be used to narrow down the location of an error. Intuitively, data
that was not needed to produce a query result (on which the result
is not data dependent on) cannot effect the correctness of the query
result. The same applies for transformation dependencies: any part of
the transformation that is not a transformation dependency of the result
cannot have affected the result.
Example 1 (Debugging). For instance, continuing with the example
from Figure 1.1, if the user issuing the query knows that Aishe (tuple
r1) is not a coffee drinker and, thus, should not be in the result of
query Qcoffee−drinker, then the user can restrict their search for errors
in the input data to the data dependencies of r1. In this case the
user only needs to inspect s1 to determine that Aishe’s daily-coffee
value should 0 instead of having to inspect all six input tuples. In
addition to errors in the input, errors in the query result may be caused
by bugs in the query. Analog to how data dependencies are used to
trace errors to the input data, transformation dependencies can be
used to focus attention on the parts of the query (transformation)
that could have caused the error. For instance, in our example, only
the highlighted part of Qcoffee−drinker is responsible for producing
result tuple r1. Obviously, the use of provenance is overkill for this toy
example. However, for realistically sized data sets and more complex
queries, data and transformation dependencies can significantly improve
a user’s productivity when debugging data.

1.2.2 Explaining Outcomes

To interpret the result of a complex query, a user may have to under-
stand why and how the result was proved. Data provenance provides
such an explanation. However, for large datasets, the full provenance of
a query result may be too large to be of any use to a human. Summariza-
tion techniques for provenance that produce compact, but semantically
meaningful summaries of provenance can be used to address this prob-
lem.
Example 2 (Explanations). Continuing with our running example, let
us compute the number of non-casual coffee drinkers (more than one
cup per day) using the SQL query shown below.
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SELECT count (*) as num - drinker
FROM ( SELECT name , daily - coffee FROM student

UNION ALL
SELECT name , daily - coffee FROM teacher ) drinkers

WHERE daily - coffee > 1

For our example database instance, we get back r = (4), i.e., there
are 4 non-casual coffee drinkers. We may explain this result by listing all
data dependencies of r: s1, s3, t2, and t3. However, for larger datasets,
the set of data dependencies may be too large to be of any immediate
use. Instead, we can employ summarization techniques to compactly
describe the set of inputs that are data dependencies. A common
summarization technique uses declarative patterns (a limited form of
queries) to describe sets of tuples. For instance, instead of listing all
data dependencies we may describe them as follows: all students with a
GPA higher than 3.4 and all teachers earning more than 100, 000 are
non-casual coffee drinkers.

We will discuss summarization techniques for provenance in Sec-
tion 4.1.

1.2.3 Security and Auditing

Provenance has also been studied extensively by the security community.
The record of the operations of a system provided by provenance can
be used during the forensic analysis of an attack to understand how a
system was breached (Bates and Hassan, 2019). For example, assuming
that we collect provenance for every SQL operation executed by a
database, then when a user account is compromised this enables us
to answer important questions such as “Which data was accessed or
modified by the compromised account?”. A significant amount of work
from the system’s security community has investigated how to collect
provenance information at the operating system level (Bates et al., 2015;
Pasquier et al., 2017). Another security application of data provenance
is detection of advanced persistent threads (APTs). It was conjectured
it is possible to detect APTs by mining unusual patterns from the
provenance of a system. Another security application of provenance
is auditing. Many organization have to comply with laws that require
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them to report how they processed their data. To support auditing,
database systems maintain a record of SQL operations executed in the
past available as a so-called audit-log (Kaushik et al., 2013; Fabbri and
LeFevre, 2011; Kaushik and Ramamurthy, 2011; Agrawal et al., 2004).
One disadvantage of audit logs is that they do not record which data
was affected / accessed by which operation in the audit log. Provenance
information can complement audit logs with data and transformation
dependencies to provide this information. Provenance has also been
used for access control, e.g., to restrict access to data based on which
other data it was derived from (Park et al., 2012).

Example 3 (Enhancing Auditing with Provenance). Consider the scenario
shown in Figure 1.2. Bob, a DBA for a bank, has abused his privileges
to fix the negative balance of the accounts he has with his employer.
Bob has issued two statements (with ids 1432 and 1433) which add
$10,000 to both his checkings and savings accounts. The bank identifies
account owners by their SSN. Bob’s SSN is 333-233-4534. Bob’s second
statement then reduces the balance of all accounts to compensate for
the $20,000 he added to his accounts. To obfuscate his activity, Bob
did not select his accounts using his social security number, but instead
identified an alternative way to uniquely identify his accounts using
their balance, his state, and his age.

The bank maintains an audit log to have a record of all data modi-
fications in case of a security breach or to investigate illegal data access
by employees. Bob’s illegal operations are recorded in the audit log.
However, without knowing the data dependencies and transformation
dependencies (the provenance) of these operations, it is not obvious
what the purpose and effect of the illegal operations were. Transforma-
tion dependencies would unearth that the first statement only affected
Bob’s account. Data dependencies between tuples in the database state
before the updates and after the updates can be used to determine how
Bob’s changes can be undone.

Of course, Example 3 is too simple to be realistic. Nonetheless, it
illustrates how provenance can complement audit logging. In Section 2.7
we will introduce provenance models for update operations and transac-
tions. One major challenges with supporting provenance for updates



1.2. Why Should I Care? 9

Database state before statement 1432

Owner State Age Balance Type
333-233-4534 IL 36 -3,030 Checking
333-233-4534 IL 36 -1,000 Savings
111-232-2323 IL 34 100,004 Checking

. . . . . . . . . . . . . . .

Database state after statement 1432

Owner State Age Balance Type
333-233-4534 IL 36 6,970 Checking
333-233-4534 IL 36 9,000 Savings
111-232-2323 IL 34 100,004 Checking

. . . . . . . . . . . . . . .

Database state after statement 1433

Owner State Age Balance Type
333-233-4534 IL 36 6,969.99 Checking
333-233-4534 IL 36 8,999.99 Savings
111-232-2323 IL 34 100,003.99 Checking

. . . . . . . . . . . . . . .

Audit log
id acc timestamp statement
. . . . . . . . . . . .

1432 Bob 01-01 8:34 UPDATE accounts
SET Balance = Balance + 10,000
WHERE state = ’IL’AND Age = 36

AND balance IN (-3,030, -1,000)

1433 Bob 01-01 8:35 UPDATE accounts
SET Balance = Balance

- (20000.0 / (SELECT count(*)))
FROM accounts))

. . . . . . . . . . . .

Figure 1.2: Example audit log and database states
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is that it requires access to past database versions, i.e., tuples in the
database state after the update are data-dependent on tuples in the
database state before the update. We will discuss provenance models for
updates in Section 2.7 and methods for capturing update provenance
in Section 4.3.

1.2.4 View Maintenance and Provisioning

Many provenance models use a symbolic representation of a computation
to record how inputs have been combined by a transformation. Such
representations are often invariant under certain changes to the input
(and/or the transformation). That is, it is possible to use the provenance
of a query result to determine how this result would be affected when
the input or transformation is changed in a certain way. A reader
familiar with the literature may recognize this is as the well-known
view maintenance problem (Gupta, Mumick, et al., 1995): given a
database D, a query Q, the query’s result Q(D) and an update ∆D,
compute Q(D∪∆D). Let use consider deletion propagation for a simple
projection query as an example of how to exploit provenance information
for view maintenance. For sake of the example, we will use a simple
provenance model that records the data dependencies for a query result
tuple at tuple-granularity. That is, the provenance for each output tuple
of the query is the set of input tuples it depends on.

Example 4 (View Maintenance). Consider the SQL query shown below
which returns customers which have ordered at least one item. This query
returns two tuples: (Peter) whose provenance consists of the three tuples
{t1, t2, t3} (all the orders from Peter) and (Alice) whose provenance is
{t4} (all of her orders). To determine the effect of deleting some of the
input tuples, we can simply remove them from the provenance of the
result tuples. Any tuple whose provenance is empty will no longer be in
the result. For example, if we delete t1 and t2 then tuple (Peter) is still
in result, because its provenance is not empty ({t3}), because one of
Peter’s order is still present in the input.
SELECT DISTINCT customer FROM orders
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customer item id
Peter Umbrella t1
Peter Raincoat t2
Peter Gumboots t3
Alice Umbrella t4

We will see in Chapter 2 and Section 3.1 that in general we will
need provenance models that record how input data was combined
by a computation to be able to use provenance effectively for view
maintenance. A specific type of view maintenance is what-if analysis
where a user wants to evaluate the effect a hypothetical change to their
data has on a query result. Provenance information can be used to
provision for what-if analysis if the what-if analysis is restricted to set
of scenarios that are known upfront (Assadi et al., 2016).

1.2.5 View Update and How-to Analysis

In the view update problem we are given a query Q and database D
and an update ∆Q(D) to the query’s result Q(D) as input and have to
translated this update into an update ∆D of the database such that
Q(D ∪ ∆D) = Q(D) ∪ ∆Q(D). Since such a ∆D may not exist for all
inputs, the problem is often relaxed to allow for side-effects, i.e., the
query result over D ∪ ∆D is not exactly Q(D) ∪ ∆Q(D). The view
update problem is typically stated as an optimization problem where
the goal is to find a delta ∆D that minimizes side-effects on the input
database and/or query result. Provenance information aids in view
update by identifying which inputs needs to be modified to achieve a
desired update to a query’s result.

Example 5 (View Update). Continuing with Example 4, assume we
would like to delete Peter from the query result. This can be achieved
by deleting all of the tuples from the input database that the result
tuple (Peter) depends on (his orders). In this example, these are input
tuples t1, t2, and t3.

Closely related to the view update problem are how-to queries (Me-
liou and Suciu, 2012) where constraints on what is a desired query
result are specified declaratively and the goal is to produce an update
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Loan applications

name loanamount income assets criminalrecord
Peter 10,000 15,000 500 1
Alice 50,000 135,000 10,000 0
Bob 35,000 20,000 200,000 0

Normalized data
name loanamount income assets criminalrecord
Peter 0.1 0.05 0.002 1.0
Alice 0.5 0.45 0.04 0.0
Bob 0.35 0.06 0.8 0.0

Linear classifier

C(t) = −0.2 · t.loanamount+ 0.6 · t.assets− 0.3 · t.criminalrecord

Figure 1.3: Explaining classification with provenance

to the input database such that the user’s constraints are fulfilled and
a used-specified optimization goal is met. We will discuss applications
of provenance to view update problems in Section 3.2.

1.2.6 Explaining Machine Learning Models and Outcomes

Transparency, fairness, and explainability in machine learning are of
immense importance, because decisions that have significant real world
impact, e.g., whether to accept or reject loan applications or whether
to hire an applicant, are often delegated to machine learning models.
Provenance information, while not a magical solution for explainability,
is certainly relevant for explaining the outcome of applying an ML model
to classify an input as well as for explaining how the training data and
algorithm used to train the model affected the outcome indirectly by
determining the model.

Example 6 (Explaining ML outcomes). Consider a bank that has uses a
linear classifier to decide loan applications. An example relation and the
model are shown in Figure 1.3. Loan applications for which the model C
returns a negative number are denied and loan applications where C is
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positive are granted. Note that the income of a person is not considered
when making loan decisions. Data dependencies at the granularity of
attribute values can help us identify which features of a loan application
are considered in the loan application decision process. However, the the
degree to which a feature affects the result depends on the feature. Note
that this is common for machine learning models to have all (or most)
features affect the classification outcome, but not all to the same degree.
Data dependencies only record the existence of an a dependency, but
do not measure the amount of influence. For instance, in our example
linear model, features assets and criminal-record have large weights, i.e.,
have larger impact on the result in general than loan-amount and income.
However, whether a feature can be held responsible for the classification
of an input o also depends on o’s features. This is less of a concern
with simple models (like our linear classifier), but can be significant for
models where features are not treated independently.

In Section 2.1.5 we will review the notion of responsibility which mea-
sures the degree of impact an input has on the output of a query. We will
discuss the relationship of provenance and other types of explanations
for ML models and outcomes in Section 1.2.6.

1.3 Background and Notation

We now introduce notational conventions used in this article and briefly
review the relational data model and some relational query languages.
Readers familiar with these concepts may skip this section.

1.3.1 The Relational Model

A relation schema R is a list of attribute names (A1, . . . , An). The arity
arity(R) of a relation schema R is the number of attributes in the
schema. Consider a universal domain U of values. Under the named
perspective a tuple over a relation schema R is a function that maps
attributes from R to values from U . Under the unnamed perspective
a tuple with arity n is an element from Un. We will opportunistically
switch between these perspectives to simplify the exposition. A re-
lation R of schema R = (A1, . . . , An) under set semantics is a set
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of tuples over schema R. A database schema D is a set of relation
schema {R1, . . . ,Rm}. A database D over a schema D is set of relations
{R1, . . . , Rn}, one for each relation schema in D. If R is a relation
(D is a database) then we use R (D) to denote its schema. We will
sometimes consider a slightly different definition of relations where each
attribute Ai is associated with a domain Di. Under this model, Relation
schemas are lists (A1 : D1, . . . , An : Dn) and a set relation of schema
(A1 : D1, . . . , An : Dn) is a subset of D1 × . . .× Dn.

A bag semantics (or multiset) relation R of arity n is a multiset of
tuples from Un. That is, in R each tuple is associated with a multiplicity
(the number of duplicates of the tuple that are in the relation). Formally,
a bag relation is a function R : Un → N that associates each tuple t ∈ Un

with natural number R(t) (its multiplicity). Note that here we consider
bag relations to be total functions. Tuples that do not exist in the
relation are assigned multiplicity 0. If U is infinite, then we require
that there exist only finitely many t such that R(t) ̸= 0. That is, we
only consider finite relations. The use of total functions may seem to
complicate matters unnecessarily, but will be beneficial when we discuss
provenance models in Chapter 2.

As we use the two query languages, relational algebra and Datalog,
extensively throughout this work, we briefly review them below.

1.3.2 Relational Algebra

Given a query Q, we use Sch(Q) to denote the schema of the result of Q.
We use JQKD to denote the result of evaluating query Q over database
D. The arity arity(Q) of a query Q is the arity of Sch(Q). Sometimes
we will use Q(D) instead of JQKD. For set semantics relations we will
use the relational algebra shown in Figure 1.4.

As is customary, we define the semantics of algebra operators using
set compressions. We use ◦ to denot concatenation of tuples (and
other types of sequences). For a tuple t, t.A denotes the projection of
the tuple onto a list of expressions. A relation access R returns the
instance of this relation in database D. Selection returns all input tuples
t that fulfill a condition θ, written as t |= θ. Projection projects all
input tuples onto a list of expressions A. We typically will assume that
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JRKD = R (Relation access)
Jσθ(Q)KD = {t | t ∈ JQKD ∧ t |= θ} (Selection)

JΠA(Q)KD = {t.A | t ∈ JQKD} (Projection)
JρA→B(Q)KD = {t[A → B] | t ∈ JQKD} (Renaming)
JQ1 ×Q2KD = {t1 ◦ t2 | t1 ∈ JQ1KD ∧ t2 ∈ JQ2KD}

(Crossproduct)

JQ1 ∪Q2KD = JQ1KD ∪ JQ2KD (Union)
JQ1 ∩Q2KD = JQ1KD ∩ JQ2KD (Intersection)
JQ1 −Q2KD = JQ1KD − JQ2KD (Difference)

Jγf(A)→B(Q)KD = {(f(JΠA(Q)KD)} (Aggregation)
Jγf(A)→B;G(Q)KD = {f(JΠA(σG=t.G(Q))KD) ◦ g | g ∈ JΠG(Q)KD}

Figure 1.4: Set semantics relational algebra

such expressions can consist of references to attributes, constants, and
arithmetic operations, e.g., (A+3)∗C. This variant of projection if often
referred to as generalized projection. In contexts where A is subject to
restrictions, we will explicitly mention that. For convenience, we will
also allow projection to rename the results of expression, e.g. ,ΠA+B→C

projects the input on A+B and the attribute storing the result of this
expression is named C. Renaming ρA1→B1,...,An→Bn renames attribute
Ai as Bi. As a notational shortcut we will write A → B were both
A = (A1, . . . An) and B = (B1, . . . , Bn) are lists of attributes to denote
A1 → B1, . . . , An → Bn. Here, t[A → B] denotes renaming attributes
in the schema of tuple t (assuming the named perspective). Cross
product is the set-theoretical cross product of the two input relations.
Join Q1 ▷◁ Q2 (not shown in the figure) is syntatic sugar for a cross
product followed by a selection. Set operations (union, intersection, and
difference) are defined as in set theory. These operations are only defined
for inputs of the same arity (with the same data types if we consider
typed relations). We consider two variants of aggregation: aggregation
with group-by and aggregration without group-by. Aggregation without
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group-by applies an aggregation function f : {U} → U to all values
from an attribute A. The result is a relation with a single tuple and
single attribute named B. Note that this operator returns a single
result tuple, even if the input is empty. Aggregation with group-by,
partitions the input relation into groups (subsets) such that each group
consists of precisely the set of tuples that have a particular value in
the group-by attributes G. The aggregation function f is then applied
to each group. The operator returns a tuple for each group consisting
of the aggregation function result for that group and the group-by
attribute values. Throughout this paper we will also allow aggregation
to apply a (possibly empty) list of aggregation functions instead of a
single aggregation, e.g., γcount(∗),sum(salary);dept(employee).

Example 7 (Relational algebra (set semantics)). The SQL queries from
Figure 1.1 and Example 2 can be written relational algebra as:

Πname(student) ∪ Πname(teaching) (Figure 1.1)
γcount(∗)(σdaily−coffee>1(Πname,daily−coffee(student)

∪ Πname,daily−coffee(teaching))) (Example 2)

To be able to reason about SQL databases which use the bag
semantics version of the relational model, we also introduce a bag
semantics version of relational algebra. The semantics of the operators
of this algebra is defined in Figure 1.5. Recall that we model bag
relations as functions from tuples to the set of natural numbers N.
Thus, a query result is a function that maps result tuples to their
multiplicity. In Figure 1.5 we define these functions pointwise, i.e., we
define how to calculate the multiplicity of a query result tuple t (the
result of applying function JQKD to t) based on the multiplicities of
input tuples.2 For instance, the number of duplicates of a tuple t in the
result of Q1 ∪Q2 is the sum of the number of duplicates of t in the result
of Q1 and in the result of Q2. Projection sums up the multiplicities of
all input tuples that are projected onto the result tuple t. For a cross
product we have to multiply the multiplities of input tuples. The set

2A reader familiar with K-relations may recognize that for positive relational
algbra we have defined the semantics of operators as is done for K-relations. This is
deliberate and will come in handy when we discuss K-relations in Chapter 2.
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JRKD(t) = R(t) (Relation access)

Jσθ(Q)KD(t) =

⎧⎪⎨⎪⎩
JQKD(t) if t |= θ

0 otherwise
(Selection)

JΠA(Q)KD(t) =
∑︂

t′.A=t

JQKD(t′) (Projection)

JρA→B(Q)KD(t) = JQKD(t[B → A]) (Renaming)

JQ1 ×Q2KD(t) = JQ1KD(t[Sch(Q1)]) · JQ2KD(t[Sch(Q2)])
(Crossproduct)

JQ1 ∪Q2KD(t) = JQ1KD(t) + JQ2KD(t) (Union)

JQ1 ∩Q2KD(t) = min(JQ1KD(t), JQ2KD(t)) (Intersection)

JQ1 −Q2KD(t) = max(0, JQ1KD(t) − JQ2KD(t)) (Difference)

Jγf(A)→B(Q)KD(t) =

⎧⎨⎩1 if t = (f(JΠA(Q)KD)
0 otherwise

(Aggregation)

Jγf(A)→B;G(Q)KD(t) =

⎧⎪⎪⎨⎪⎪⎩
1 if t.G ∈ {t.G | JQKD(t) > 0}

∧t.B = f(JΠA(σG=t.G(Q))KD)
0 otherwise

Figure 1.5: Bag semantics relational algebra
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operations, as expected, correspond to SQL’s UNION ALL, INTERSECT ALL,
and EXCEPT ALL. As syntactic sugar, we will use δ to denote duplicate
elimination which can be expressed as group-by aggregation without an
aggregation function.

Example 8 (Relational algebra (bag semantics)). For instance, below we
show the query from Example 4 expressed in bag semantics relational
algebra using duplicate elimination and using group-by aggregation.

δ(Πcustomer(orders))
γcustomer(orders)

1.3.3 Datalog

Datalog is a query language based on formal logic. A Datalog program
consists of a set of rules of the form

r : Q(X)⏞ ⏟⏟ ⏞
head

:− R1(X1), . . . ,Rn(Xn)⏞ ⏟⏟ ⏞
body

where Q is a predicate (q relation) and all Ri are predicates or their
negation and each Xi is a list of variables from an infinite set of variable
symbols V and constants from a domain U . We use vars(r) to denote
the set variables that occur in rule r. Each Ri(Xi) is called a goal. The
left-hand side (LHS) of a Datalog rule r is called its head head(r) and
the right-hand side (RHS) is its body body(r). A Datalog rule represents
a logical implication:

R1(X1) ∧ . . . ∧ Rn(Xn) → Q(X)

A Datalog rule is safe if all the variables in the head occur in
at least one positive (non-negated) body goal. A Datalog program P

consists of a set of Datalog rules. The relations occurring in a Datalog
are partitioned into two sets. The extensional database (or edb) are
relations that do not occur in the head of rules in P , i.e., these are the
relations in the database. The intentional database (or idb) are relations
that occur in the head of rules (the relations computed by the program).
The set of edb and idb relations are required to be disjoint. Note that
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in contrast to a relational algebra expression, Datalog programs may
compute multiple result relations. A Datalog query Q is a Datalog
program with a distinguished idb relation Q called the answer relation.
Note that Datalog programs can be recursive, e.g., the head predicate of
a rule may appear in the rule’s body. A canonical example of recursion
is the computation of the transitive closure of the edge relation of a
graph.

The semantics of a Datalog program can be defined in several
equivalent ways. Discussing these different semantics in detail is beyond
the scope of this paper. We refer the interested reader to Abiteboul et al.
(1995) and Ceri et al. (1989). For example, the model-theoretic semantics
of Datalog treats the Datalog program and extensional database as a
set of sentences in first-order logic and defines the result of the program
to be the smallest model for this set of sentences.

Here we will use the fixed points semantics of Datalog. A valuation
φ : vars(r) → adom(D) assigns variables from a rule r to constants
from the active domain adom(D) of a database D (which we refer to
as an edb instance in the context of Datalog). The active domain of a
database is the set of constants that occur in D. A valuation is applied
to a Datalog rule r by replacing each variable X in r with φ(X). We
refer to φ(r) as a grounded rule. The semantics of evaluating program
P over an edb database instance D is the least fix point, denoted as
T ∗

P (D), of the immediate consequences operator TP over D. Intuitively,
the immediate consequence operator takes as input an instance I and
returns all new facts that can be derived based on the facts in I using
the rules of P , i.e., that are the heads of grounded rules where the
body evaluates too true in I. Note that as mentioned above the body
of a Datalog rule is interpreted as a conjunction of its goal. A positive
grounded goal R(c) evaluates to true over an instance I if R(c) exists
in I. A negated goal ¬ R(c) evaluates to true over I if R(c) ̸∈ I. The
immediate consequence operator and its fixed point T ∗

P are defined
below.
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TP (I) = {φ(head(r)) | r ∈ P ∧ I |= φ(body(r))}
T 0

P (D) = D

Tn+1
P (D) = Tn

P (D) ∪ TP (Tn
P (D))

T ∗
P (D) = Tm

P (D) where m = argmin
i∈N

(T i
P (D) = T i+1

P (D))

Note that the least fixed point T ∗
P (D) is guaranteed to exist and to

be unique for all positive Datalog programs.

Example 9 (Transitive Closure). The transitive closure of the edge rela-
tion of a directed graph contains all pairs of nodes (a, b) such that there
exists a path from a to b. Below we show a recursive Datalog program
Ptc that computes the transitive closure over a relation edge(in, out)
storing the edges of the input graph. Rule r1 initializes the transitive
closure with the end points of all paths of length 1 (the edges of the
graph). Rule r2 takes the end points of a path of length n (a pair of
nodes that we already have established to be in the transitive closure)
and returns the end points of an extension of such a path by one addi-
tional edge. Figure 1.6 shows an example graph and the evaluation of
Ptc over this graph using the immediate consequence operator.

r1 : tc(X,Y ) :− edge(X,Y )
r2 : tc(X,Y ) :− tc(X,Z), edge(Z, Y )

1.3.4 Query Classes

Many provenance models are limited to certain classes of queries, e.g.,
positive relational algebra. Here we review commonly used classes of
queries.

Relational Algebra

The full relational algebra RA consists of operators projection, union,
selection, cross product, and difference. Positive relational algebra RA+
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Figure 1.6: Computing the transitive closure of a graph with Datalog

consists of all monotone operators of relational algebra, i.e., all operators
of RA expect difference. The name stems from the fact that if expressed
in formal logic, queries of RA+ do not contain negation.3. Adding
aggregation to full relational algebra, we get the class RAagg.

Datalog and First-Order Logic

Many fundamental classes of queries have a natural representation
in Datalog. Conjunctive queries (CQ) are queries that consist of a
single Datalog rule without negation and comparison predicates and
where all body atoms edb relations. By allowing certain comparison
predicates in conjunctive queries we get the classes of conjunctive
queries with inequalities CQ ̸= and conjunctive queries with ordering
CQ<. A union of conjunctive queries (UCQ) is a Datalog query with
one or more rules that are each conjunctive queries. Non-recursive
positive Datalog programs may reference idb relations in rule bodys,

3Assuming that comparison operators such as ̸= are “build-in” and not considered
as negation, e.g., a ̸= b instead of ¬(a = b).
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but no direct or indirect recursion or negated atoms are allowed. This
class of queries is equivalent in terms of expressive power to the class
UCQ, but queries in this class can be exponentially more concise than
the corresponding queries from UCQ. First-order queries FO are non-
recursive Datalog programs with negated atoms. The class Datalog
consists of, possibly recursive, rules without negated atoms. Datalog¬

is the class of Datalog programs with recursion and negation. Note that
the fixed point semantics for Datalog we have introduced is no longer
sufficient for dealing with programs that contain both recursion and
negation, because such programs may not have a unique smallest model.
Several alternative semantics have been proposed in the literature to
deal with this, e.g., the well-founded semantics (Van Gelder et al.,
1991), the stratified semantics (Chandra and Harel, 1985) which is only
applicable to stratified programs (a subclass of Datalog¬), and the
inflationary semantics (Kolaitis and Papadimitriou, 1988). However, the
discussion of these semantics is beyond the scope of this paper.

1.3.5 Query Equivalence and Containment

Semantically, queries can be viewed as functions that map databases
(their input) to relations (the query result). It is often important to be
able to identify two queries which differ in syntax, but have the same
semantics, i.e., produce the same result over all databases. Such queries
are called equivalent. For certain applications it is useful to generalize
this notion and reason about whether one query Q provides strictly
more information than another query Q′, i.e., for any database query
Q′ returns a subset of Q’s result.

Definition 1 (Query Equivalence and Containment). Given two queries
Q and Q′ over the same database schema, we say that Q is equivalent
to Q′, written as Q ≡ Q′ if:

∀D : Q(D) = Q′(D)

Query Q is contained in query Q′, written as Q ⊑ Q′ if:

∀D : Q(D) ⊆ Q′(D)

Note that Q ≡ Q′ if and only if Q ⊑ Q′ ∧Q′ ⊑ Q.
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1.4 Organization of this Monograph

The chapters of this article were written to be mostly self-contained.
That being said, a basic understanding of provenance models is necessary
for following the discussion in Chapter 3 and Chapter 4. Thus, we
recommend readers without background in formal provenance models to
read the beginning of Chapter 2 first before moving on to later chapters.

Chapter 2 introduces the reader to models that define a formal
semantics for provenance. We will introduce well-established models and
will compare them with respect to their expressive power, correctness
guarantees, and supported transformation languages. Furthermore, we
will shine light on the relationship between provenance for non-monotone
queries and why-not provenance which explains missing answers.

In Chapter 3 we will discuss several applications that benefit from or
are enabled by data provenance. As we already hinted at in Section 1.2,
provenance can aide in a variety of view maintenance and update
problems, is used to debug transformations and data, can serve as
the foundation for explanations of outcomes, and is applied to explain
predictions and models in machine learning.

In Chapter 4 we will discuss algorithms, techniques, and systems
that manage provenance information. Our main focus will be on how
to represent and store provenance information, how to automatically
capture provenance information, and how to query data provenance.

We will cover research from other communities that is closely to
related to data provenance in Chapter 5. These include data- and con-
trolflow analysis, program slicing, and other related program analysis
techniques that have been developed by the software engineering, pro-
gramming languages, and compiler communities; taint analysis that
has been used extensively by the security community; justifications and
debugging for logic programming; symbolic program execution; and
explainability in machine learning.



2
Provenance Models - Formalizing Provenance

Semantics

In the introduction, we have discussed the intuitive meaning of prove-
nance concepts such as data dependencies and transformation depen-
dencies. For example, there is a data dependency between an output of
a transformation and one of its inputs if the input was “used to derive”
the output. However, a solid formal semantics is needed to ensure that
the provenance we are tracking for a transformation is sensible. In
the following we discuss such formal provenance semantics. We start
by introducing intuitive requirements for data provenance semantics
and discuss how they relate to the applications discussed in Chapter 3.
One important observation in this regard is that applications differ in
their expressiveness requirements for provenance models. This leads to
interesting trade-offs, because expressiveness often comes at the cost of
computational complexity and results in limitations in terms of the class
of supported transformations. In the beginning of this section we focus
on transformations that are queries. Other types of transformations such
as updates will be covered in Section 2.7. Note that models that stan-
dardize the representation of provenance information such as the open
provenance model (Moreau et al., 2011; Moreau et al., 2007; Moreau
et al., 2008) and the PROV model (Moreau and Missier, 2013b; Moreau

24
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and Missier, 2013a; Moreau and Groth, 2013) will not be discussed here,
because their goal is to provide a standard for representing provenance
rather then defining what the data and transformation dependencies of
a query (transformation) are. We will briefly discuss these models in
Section 4.1.

2.1 Requirements for Provenance Semantics

Consider a single query Q evaluated over a relational database D and
let us assume that we want to define the provenance for a query result
tuple t ∈ Q(D). For now we will consider only data dependencies and
want to compute the set DD(Q,D, t) of tuples from the input database
that t depends on. That is, we are searching for a set DD(Q,D, t) ⊆ D.
How do we know whether there exists a data dependency between t

and a tuple t′ ∈ D?

Example 10 (Data dependencies). Figure 2.1 shows an example online
grocery orders database. To be able to refer to individual tuples, we
assign a unique identifier to each tuple (shown to the right of a tuple).
Consider a query that returns the names of customers from relation
Customers. Figure 2.2 shows this query (Qcustnames) expressed in SQL
and relational algebra and the result of evaluating this query under
set semantics over the database instance from Figure 2.1. Intuitively,
each result tuple depends only on a single input tuple: the customer
with that particular name. For instance, tuple n1 was generated from
tuple c1. Obviously, tuples from relations not accessed by the query,
e.g., Items can not impact the query’s result and, thus, cannot possibly
belong to the set of data dependencies of any of the query’s results.
As another example, consider query QcustW ithOrders which returns the
names of customers that have ordered from our store at least once. Note
that some customers have placed more than one order. The existence
of any of these orders is sufficient for the customer to be included in
the result of the query.

Based on this example, it seems that we should require data depen-
dencies to (i) not contain tuples that are irrelevant for producing the
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Name Age Card id
Peter 39 Visa c1
Alice 25 AE c2
Bob 25 Visa c3

Astrid 26 Master c4

(a) Customers

Item Price Weight (lb) id
Lettuce 0.99 2.5 i1
Oranges 2.49 3 i2
Apples 3.99 6 i3

Bok choy 1.99 1.5 i4
Peanuts 3.99 2 i5

(b) Items
Customer Item NumItems Date id

Peter Lettuce 3 2020-01-03 o1
Peter Oranges 1 2020-01-03 o2
Peter Lettuce 3 2020-01-04 o3
Bob Oranges 2 2020-01-04 o4
Alice Peanuts 3 2020-01-04 o5

(c) Orders

Figure 2.1: Example online grocery store database

Qcustnames : SELECT Name FROM Customers ;
QcustW ithOrders : SELECT DISTINCT Name FROM Orders ;

Qcustnames := ΠName(Customers)
QcustW ithOrders := ΠCustomer(Orders)

Name id
Peter n1
Alice n2
Bob n3

Astrid n4

(a) Qcustnames

Customer id
Peter w1
Alice w2
Bob w3

(b) QcustW ithOrders

Figure 2.2: Online grovery store queries and results
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result of interest and (ii) to contain all tuples that are necessary for
producing the result of interest. Next, we will formalize these intuitions.

2.1.1 Data Dependencies and Inverse Functions

Since queries are functions mapping databases to relations, it is tempting
to define provenance as the inverses of such functions which take a query
result as input and return the database that was used to generate this
result. However, there are several problems which this approach. First
off, most queries are not invertible in the mathematical sense, because
they are not injective. That is, queries may produce the same result
for two different input databases. Even for queries that are invertible,
the inverse query would simply return the input database. However, for
data dependency tracking we are typically interested in tracking data at
a finer granularity, e.g., which input tuples are responsible for producing
a single result tuple. Thus, the inversion of a query in a mathematical
sense does not help us to track data dependencies.

2.1.2 Sufficiency

Let us first adopt a conservative standpoint and ensure that DD(Q,D, t)
is not missing any inputs that were needed to compute t. That is, we
want to ensure that DD(Q,D, t) is sufficient for producing the output
t. We can formalize this as requiring that evaluating Q over DD(Q,D, t)
should at least return t.

Definition 2 (Sufficiency). Let Q be a query, D a database, and t ∈
Q(D). A set Dsub ⊆ D is called sufficient for producing t through Q if:

t ∈ Q(Dsub) (2.1)

Sufficiency has been considered as a requirement for provenance in
early work on database provenance. For instance, in their seminal paper,
Buneman et al. (2001) introduced Why-provenance which is based on
sufficiency (and the criterion of minimality that we discuss next).

Example 11 (Sufficiency). Let us apply our definition of sufficiency
to the example from Figure 2.2. Consider the result tuple with id n1
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(Name=Peter) of query Qcustnames. The tuple corresponding to the
customer named Peter (c1) is sufficient for producing tuple n1:

Qcustnames({c1}) = {n1}

Observe that no subset of the input database that does not contain
c1 can be sufficient. Furthermore, any subset containing {c1}, e.g.,
{c1, c2, c3} is sufficient. Now consider the result tuple w1 for query
QcustW ithOrders. Any one of the orders of the customer named Peter
(tuples o1, o2, and o3) is sufficient for producing this result tuple, i.e.,
Peter is in the result if at least one of his orders exists in the input.

Based on the example above, we may conjecture that any superset of
a sufficient subset of an input database is also sufficient. This conjecture
holds, but only for queries that are monotone. For non-monotone queries,
adding inputs to a sufficient subset of the database may result in the
removal of the result tuple of interest.

Lemma 1 (Supersets of Sufficient Subsets are Sufficient for Monotone
Queries). Let Q be a monotone query, D be a database, and t a tuple
in Q(D). If D′ ⊆ D is sufficient for t then so is any set D′′ for which
D′ ⊆ D′′ ⊆ D.

Proof. The Lemma follows directly from the monotonicity of the query.
Since D′ is sufficient we have t ∈ Q(D′). Recall the definition of mono-
tonicity for queries:D1 ⊆ D2 ⇒ Q(D1) ⊆ Q(D2). Thus,Q(D′) ⊆ Q(D′′)
which implies t ∈ Q(D′′).

2.1.3 Necessity and Minimality

Defining provenance based on sufficiency alone has two major drawbacks:
(i) there may exist more than one sufficient subset of the input database
and it is unclear which subset should be designated to be the provenance
and (ii) sufficiency does not prevent us from including inputs in the
provenance that are irrelevant for deriving the output of interest. This
observations are confirmed by Example 11: we can add tuples from
tables not accessed by the query to a sufficient subset for QcustW ithOrders

and the results is still sufficient. One may be tempted to address these
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two drawbacks by requiring that only inputs that are necessary for
producing the output are included in the provenance.

Definition 3 (Necessity). Let Q be a query and D a database. A tuple
tin ∈ D is necessary for producing a tuple t ∈ Q(D) if:

∀D′ ⊆ D : t ∈ Q(D′) → tin ∈ D′

We use Dnecessary, called the necessary core of D with respect to Q, to
denote the subset of D that consists of all necessary input tuples.

Reconsidering our example query Qcustnames, necessity solves both
(i) and (ii): the necessary core of D is sufficient. However, necessity fails
in the presence of disjunction. For instance, for QcustW ithOrders, none
of the inputs is necessary since subsets of the input are sufficient as
long as they contain at least one tuple from the set {o1, o2, o3} (one of
Peter’s orders). So why do we refer to this as disjunction? The reason
becomes clear if we write the requirement on any sufficient subset of
database D as a logical condition:

∀D′ ⊂ D : o1 ∈ D′ ∨ o2 ∈ D′ ∨ o3 ∈ D′ ⇒ D′ is sufficient

An alternative way to ensure that irrelevant inputs are not included
that does not fail in the presence of disjunctions is to require that in
addition to being sufficient, the provenance of an output should be
minimal.

Definition 4 (Minimality). LetQ be a query,D a database, and t ∈ Q(D).
A set Dsub ⊆ D that is sufficient for producing t through Q is called
minimal if no proper subset of Dsub is sufficient:

̸ ∃D′ ⊂ Dsub : t′ ∈ Q(D′)

However, this only resolves issue (ii) and not (i), because for queries
that are disjunctive in nature, i.e., use disjunctive operators such as
union or projection in relational algebra, there may be multiple alterna-
tive ways of deriving t from the inputs.
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Example 12 (Minimality). We invite the reader to confirm that there
are 3 subsets of the example database that are minimal and sufficient
for producing result tuple w1 of query QcustW ithOrders:

{o1} {o2} {o3}

Note that any subset of the input database that does not contain at
least one of the orders from customer Peter (o1, o2, and o3) cannot
produce w1 as an output and, thus, cannot be sufficient. Furthermore,
any superset of one of the sufficient subsets shown above would be
sufficient, but not minimal.

To summarize, sufficiency ensures that provenance contains enough
information for producing the result through the query, necessity ex-
cludes irrelevant inputs while failing in disjunctive contexts, and minimal-
ity ensure that irrelevant inputs will not be included in the provenance.
For queries that are disjunctive in nature, e.g., queries with union or
projection, there may exist more than one minimal and sufficient subset
of the input database.

2.1.4 Intervention-based Causality

An alternative to defining provenance through sufficiency and minimality
is to rely on intervention-based notions of causality. The causality notion
we review here was introduced by Halpern and Pearl in Chockler et al.
(2008), Halpern and Pearl (2005), Chockler and Halpern (2004), Halpern
(2000), and Pearl (2000). This notion of causality uses interventions
which are changes to the input of an operation to determine which
inputs caused an output. Here we discuss an adoption of this definition
for database queries from Meliou et al. (2010). Interventions in this
context correspond to changes to the input database. Specifically, to
test whether an input tuple tcause is a cause for a result tuple t of a
query Q, we remove this tuple from the input (this is the intervention)
and check whether this causes t to be removed from the output of the
query. If that is then case, then tcause has to exist for t to be in the
result.
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Definition 5 (Counterfactual Causes). A tuple tcause ∈ D is a counter-
factual cause for a tuple t ∈ Q(D) if

t ̸∈ Q(D − {tcause})

Observe the relationship between counterfactual causes and the
notions of sufficiency and minimality (necessity) we have discussed
previously. Any counterfactual cause is strictly necessary for producing
the result tuple of interest: removing the cause from the input results
in a the tuple of interest to be removed from the query’s result. The
relationship between causality and necessity for monotone queries be-
come even more clear if we express them as logical implications. A tuple
tin ∈ D is necessary for producing a result tuple t if every sufficient
subset of D contains tin. Analog, tin is a counterfactual cause for a
monotone query, if any subset D′ of D that does not contain tin is not
sufficient. While Definition 5 only requires that t is not in the result
in a specific such D′, namely (D − {tin}), for monotone queries this
two statements are equivalent. To see why this is the case recall the
definition of a monotone query: for any D′ ⊆ D it is the case that
Q(D′) ⊆ Q(D). Thus, if t ̸∈ (D − {tin}) then the same has to be true
for any subset of D − {tin}. Below we show the conditions for necessity
and counterfactual causality as logical implications.

∀D′ ⊂ D :t ∈ Q(D′) → tin ∈ D′ (Necessity)
∀D′ ⊂ D :tin ̸∈ D′ → t ̸∈ Q(D′) (Counterfactual Causality)

Using the standard logical equivalence a → b ⇔ ¬b → ¬a, it is
immediately obvious that these two formulas are equivalent. That is,
counterfactual causes and necessity are the same for monotone queries!
Thus, counterfactual causes also suffer from the same limitation as
necessity when dealing with disjunctive derivations. While counterfac-
tual causes cannot detect causes when there are multiple alternative
derivations of a result, it is possible to extend this idea to deal with alter-
natives. Intuitively, for a tuple to be a cause when multiple alternative
derivations of a result may exist, it has to become counterfactual under
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the assumption that the alternative derivations which do not contain
this tuple have failed. This can be modeled as creating a hypothetical
database by removing tuples until only derivations containing the tuple
whose causal effect on the result we would like to test remain. This
generalized types of causes are referred to as actual causes. An alter-
native way to interpret actual causes is that these are counterfactual
causes under some intervention that deletes from tuples from the input
database with causing the result of interest to be removed from query’s
result.

Definition 6 (Actual Causes). A tuple tcause is an actual cause for a
tuple t ∈ Q(D), if there exists Γ ⊂ D− {tcause}, called a contingency,
such that the following conditions hold:

t ∈ (D − Γ)
t ̸∈ (D − Γ − {tcause})

Actual causes encode a form of conditional necessity. Under a change
to the input that does not result in t to be deleted, tcause becomes
necessary.

Example 13 (Actual Causes). Consider query QcheapOrders shown in Fig-
ure 2.3. This query returns customers which have ordered “cheap” items
(the item’s price is less than $1.00). Peter, having ordered Lettuce twice,
is the only customer fulfilling this condition. The actual causes for the
result tuple c1 and contingencies for each of these causes are shown
below:

• o1 with contingency {o3}

• o3 with contingency {o1}

• i1 with contingency ∅ (a counterfactual cause)

Note that actual causes strictly generalize counterfactual causes:
every counterfactual cause is an actual cause using the empty set as a
contingency. Note that in Meliou et al. (2010) the user can partition
the input database into tuples that should be considered as causes and
those which are not. For now we will ignore this extension and assume
that no input tuples are excluded from causal analysis.
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QcheapOrders := ΠCustomer(Orders ▷◁ σP rice<1.00(Items))j

Customer id
Peter c1

Figure 2.3: Example illustrating the degree of responsibility of data dependencies.

2.1.5 Responsibility

The concepts we have defined so far are declarative ways of specifying
what properties the provenance (data dependencies) should fulfill. Thus,
they can be used to determine a subset of the input database that
contributes to a result tuple. However, there is no way to measure the
degree of contribution of an input. To illustrate what we mean by degree
of contribution, consider the following example.

Example 14. Reconsider the causes for the result tuple c1 of query
QcheapOrders. For convenience we repeat the contingencies from Ex-
ample 13 for these causes below. Note that tuple i1 is necessary for
producing the result while one of o1 and o2 can be removed without
affecting the result tuple c1. Thus, we could argue that i1 is more
responsible for producing c1 than o1 and o2.

• o1 with contingency {o2}

• o2 with contingency {o1}

• i1 with contingency ∅ (a counterfactual cause)

As shown in this example, not all inputs that belong to the prove-
nance (are causes) have the same impact on the result if removed. An
important take-away message of this example is that the degree of
contribution of a cause seems to be correlated with the size of con-
tingencies for the cause. Meliou et al. (2010) introduced the notion of
responsibility for causes shown below that is based on the size of
contingencies. This is an adaption of the definition from Chockler and
Halpern (2004) to the database context.
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Definition 7 (Responsibility). Let Q be a query, D a database, and
t ∈ Q(D). Let Γcause be the set of all contingencies of an actual cause
tcause. The responsibility ρtcause of tcause for t is:

1
1 + minΓ∈Γcause |Γ|

The degree of responsibility as defined above is a number in the
interval (0, 1]. The responsibility of counterfactual causes, and only that
of counterfactual causes, is 1. Let us revisit the example above to apply
this definition.

Example 15 (Responsibility). Note that the contingencies for the actual
causes of result tuple c1 (Figure 2.3) shown in Example 14 are minimal
in size. Based on these contingencies we can compute the responsibility
of the causes for c1 as shown below:

ρo1 = 1
1 + 1 = 1

2 ρo2 = 1
1 + 1 = 1

2 ρi1 = 1
1 + 0 = 1

Both o1 and o2 are assigned a responsibility of 1
2 since only one

of these two tuples is needed to produce result tuple c1. Tuple i1 has
the maximum responsibility of 1. This tuple is strictly necessary for
computing tuple c1.

Tracking responsibility based on existence of tuples in the query
result is not enough for all types of queries. For example, consider an
aggregation query without group-by. Such a query returns exactly one
result tuple over any database. Removal of a particular input does not
cause the aggregation result tuple to be removed, but instead affects
the aggregated value. For instance, consider a query summing up the
price of items from relation Items (Figure 2.1b). In SQL, this query can
be written as:
SELECT sum(Price) AS totalPrice FROM Items

The total price computed over the example database is $13.45.
A reasonable way to define intervention-based responsibility for such
queries is to measure an input’s relative contribution to the aggregation
function result. For instance, tuple i1 with a price of $0.99 has a relative
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contribution of 0.99
13.45 ≈ 7% while tuple i3 with a price of $3.99 has a

relative contribution of 3.99
13.45 ≈ 30%. For example, Roy and Suciu (2014)

generates explanations for aggregation results as patterns that compactly
encode sets of inputs that have a large effect on the aggregation function
result based on this definition of responsibility.

2.1.6 Syntax Independence

So far we have been concerned with the provenance of a single query,
defining requirements that are not specific to a particular query lan-
guage. In fact, we have treated queries as black box functions that take
a database as an input and returns relations. When dealing with a
concrete query language, say Datalog, we face the potential problem
that there may be multiple equivalent ways for how to specify a par-
ticular such function. That is, two syntactically different queries can
have the same semantics, i.e., specify the same function from databases
to relations. Formally, this is the notion of query equivalence we have
introduced in Section 1.3.4. Buneman et al. (2001) argued that the
provenance of a query should only depend on the semantics and not
on the syntax of a query which means that equivalent queries should
have the same provenance. In Buneman et al. (2001) this property
was called “invariance under query rewriting”. We will refer to this
property as syntax independence. In contrast to the other properties
we have discussed so far, syntax independence is specific to a particular
provenance model P and class of queries C which determines what is
the provenance for a query, database, and result tuple.

Definition 8 (Syntax Independence). Let P be a provenance model, C
a class of queries, and let P(P, Q,D, t) for a query Q ∈ C, database D,
and tuple t ∈ Q(D) denote the provenance of tuple t according to the
model P. The model P is syntax independent if the condition shown
below holds for any pair of queries Q ∈ C and Q′ ∈ C.

Q ≡ Q′ ⇒ ∀D, t ∈ Q(D) : P(P, Q,D, t) = P(P, Q′, D, t)

Note that syntax independence can be problematic when applied to
transformation dependencies, i.e., when the provenance describes which
parts of the query are responsible for producing a result. For instance,
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consider the use of provenance for debugging a query: transformation
dependencies will be used to identify which parts of the query are
responsible for producing query results that the user has identified of
being incorrect. The user can then focus their debugging efforts on these
parts of the query. This, of course, is only sensible if the provenance
is specific to the syntax of the user’s query. That being said, syntax
independence is certainly a sensible notion for data dependencies and
for use cases where the semantics of a query is more important than
the way it is written. Note that the definitions of sufficiency, necessity,
and causality we have presented are syntax independent, because they
treat queries as black-box functions.

Example 16 (Syntax Independence). Consider the two queries Q1 and Q2
shown below. Note that these queries are equivalent under set semantics.
Note that query Q1 is the same as query Qcustnames whose result is
shown in Figure 2.2a. We leave it to the reader to validate that the
actual causes and necessary tuples for both queries are the same.

Q1 := ΠName(Customers) Q2 := ΠName(Customers ▷◁ Customers)

A potential solution for the disadvantage of syntax independence
is to allow provenance to be syntax dependent to enable debugging
of transformations, but define equivalence laws that holds over the
provenance to ensure that equivalent queries have equivalent, but not
equal, provenance.

2.1.7 Computability

Sufficiency, necessity, and causality are only concerned with data de-
pendencies, i.e., which part of the input data is relevant for producing
a result. The next property that we discuss also takes into account
how inputs were combined by the query to produce a result. That
is provenance models that enjoy this property encode both data and
transformation dependencies.

Example 17 (Data and Transformation Dependencies). Reconsider the
query QcheapOrders from Figure 2.3. Recall that three tuples are causes
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for the result tuple c1: {o1, o2, i1}. However, the set of causes or equiv-
alently the set of necessary tuples does not explain how these tuples
were combined by the query to produce the result: tuple o1 was joined
with i1 and tuple o2 was joined with i1.

A major question is how can we check whether a provenance model
correctly models how inputs were combined by a query? For that we
define a property called computability. Computability requires that
the result of the query can be reconstructed from its provenance. Thus, it
ensures that provenance captures the “essence” of the query’s semantics.
Recall that we use P(P, Q,D, t) to denote the provenance of a tuple
t ∈ Q(D) according to a provenance model P. In the following we will
use P(P, Q,D) to denote the union of P(P, Q,D, t) over all t ∈ Q(D).

Definition 9 (Computability). Consider a query Q and database D. The
provenance produced by a provenance model P is computable, if Q(D)
can be reconstructed from P(P, Q,D).

Note that computability is a stricter form of sufficiency: the prove-
nance does not just have to contain a sufficient subset of the input,
but also has to encode how to compute the result using this subset
of the input data. While this property may seem mysterious, it will
become more clear when we introduce provenance models that enjoy
this property.

2.2 Provenance as Annotations on Data

A concept employed by several provenance models is to model prove-
nance as annotations on data. Annotations allow metadata of a certain
type to be associated with pieces of data. For instance, to record the
set of actual causes for each result tuple of a query, we may annotate
result tuples with these sets.

Example 18 (Annotating Data with Provenance). Reconsider query
QcustW ithOrders from Figure 2.2. Below we show the result of this query
annotating each tuple with its set of necessary tuples (shown to the
right of each tuple). For example, Alice is in the result, because her
order (o4) and the item she ordered (i5) exist in the input.
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Name Provenance
Peter {o1, o2, o3, i1, i2}
Alice {o5, i5}
Bob {o4, i2}

While it should be obvious that any type of provenance can be
modeled as annotations on data, the reader may wonder what the
purpose of this exercise is. The main benefit of modeling provenance as
annotation is that the provenance of a query can be defined through
annotation propagation rules instead of rules that invert operations.
By annotation propagation rules, we mean rules that determine the
annotation (provenance) of a query result based on the semantics of
the query and the annotations of its input (e.g., annotating each tuple
with an identifier that serves as its initial provenance).

2.3 Provenance for Monotone Queries

Having introduced necessary background, we are now ready to discuss
provenance models, their properties, and their interrelationships. Some
provenance models are based on declarative definitions similar to the
properties we have discussed in the earlier parts of this chapter, i.e., they
define conditions that the provenance has to fulfill rather than defining
how to calculate provenance, while others use operational definitions, i.e.,
they are defined through the rules they use for computing provenance.
While declarative definitions are conceptually cleaner, operational defini-
tions lay the foundation for efficient provenance capture techniques that
we will discuss in Section 4.3. Thus, it will be insightful to also introduce
operational definitions for some declarative provenance models. Some of
the models discussed in this section do support non-monotone queries.
We will revisit these models when covering non-monotone queries in
Section 2.4.

2.3.1 Why-provenance

Why-provenance is a provenance model defined based on sufficiency and
minimality. This is one of the first attempts to formalize provenance
and was introduced in the seminal paper in Buneman et al. (2001).
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Buneman et al. (2001) introduced this model for a nested data model.
Here we discuss the version of this model for relational data described
in Cheney et al. (2009). Why-provenance is based on sufficient subsets
of the input database. In the terminology of Buneman et al. (2001), any
sufficient subset of the input is called a witness. The set of all witnesses
for a query result is called the set of witnesses of the result.

Definition 10 (Set of Witnesses). Consider a query Q, database D, and
tuple t ∈ Q(D). The set of witnesses Wit(Q,D, t) of t with respect to
Q and D is the set of all witnesses for t:

Wit(Q,D, t) = {D′ | D′ ⊆ D ∧ t ∈ Q(D′)}

Since the concept of a set of witnesses is defined solely through
sufficiency, the set of witnesses of a query result will contain many
witnesses that contain non-necessary tuples. Buneman et al. (2001)
uses minimality (Definition 4) to address this problem. The set of
minimal witnesses contains all witnesses that are minimal, i.e., which
do not contain any other witnesses. That is, the set of minimal witnesses
contains all alternative, non-redundant subsets of the input that are
sufficient for producing a result of interest.

Definition 11 (Set of Minimial Witnesses). Consider a query Q, database
D, and tuple t ∈ Q(D). The set of minimal witnesses MWit(Q,D, t)
of t with respect to Q and D is the set of all witnesses that do not
contain any other witnesses:

MWit(Q,D, t) = {D′ | D′ ∈ Wit(Q,D, t)
∧ ¬∃D′′ ∈ Wit(Q,D, t) : D′′ ⊂ D}

Note that both the set of witnesses and the set of minimal witnesses
are syntax independent, because they are defined declaratively using
sufficiency (and minimality in the case of minimal witnesses).

Example 19 (Witness Sets). Consider the first result tuple w! of query
QcustW ithOrders. Some witnesses (sufficient subsets of the input) for this
tuple are shown below.

{o1, i1} {o2, i2} {o3, i1} {o1, o2, o3, i1} {o1, o5, c1, c2, i1}
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Only three of these witnesses are minimal, corresponding to the the
orders of Peter (o1, o2, and o3) and the item of each of these orders (i1,
i2):

{o1, i1} {o2, i2} {o3, i1}

In addition to the declarative definitions shown above, Buneman
et al. (2001) also introduced a syntax-driven definition called why-
provenance. Here we discuss the adaption of this definition for positive
relational algebra from Cheney et al. (2009). Recall that positive rela-
tional algebra or RA+ is the query language consisting of the relational
algebra operators union, projection, selection, cross product, and re-
naming.1 The term why-provenance is sometimes used in the literature
to denote this model and sometimes to denote a more general concept
which we refer to as data dependencies in this article. To avoid confusion
we will exclusively use the term data dependencies when referring to
the more general concept and reserve why-provenance for the specific
model. Why-provenance is defined as recursive rules which define the
why-provenance for the result of an relational algebra operator based
on the why-provenance of the operator’s inputs. That is, there is one
rule for each operator of RA+. Recall that we use t.A to denote the
projection of a tuple t on a list of attributes A, t[A → B] to denote
renaming attributes A from the schema of tuple t to B, and t[Q] to
denote projecting the tuple t onto the schema of Q.

Definition 12 (Why-provenance Cheney et al., 2009). Let Q be an RA+

query, D a database, and t ∈ Q(D). The why-provenance Why(Q,D, t)
is defined as shown below:

Why(R, D, t) =

⎧⎨⎩{{t}} if t ∈ R

∅ otherwise

Why(ρA→B(Q), D, t) = Why(Q,D, t[A → B])

Why(σθ(Q), D, t) =

⎧⎨⎩Why(Q,D, t) if t |= θ

∅ otherwise

1Note that join is also part of positive relational algebra since it it can be
expressed using cross product and selection.
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Why(ΠA(Q), D, t) =
⋃︂

u∈Q(D):u.A=t

Why(Q,D, u)

Why(Q1 ▷◁ Q2, D, t) = {D′ ∪D′′ | D′ ∈ Why(Q,D, t[Q1])
∧D′′ ∈ Why(Q,D, t[Q2])}

Why(Q1 ∪Q2, D, t) = Why(Q1, D, t) ∪ Why(Q2, D, t)

As was shown in Buneman et al. (2001), every element in the
why-provenance is a witness and Why(Q,D, t) contains all minimal
witnesses from MWit(Q,D, t). Thus, an alternative way of computing
the set of minimal witnesses is to compute the why-provenance and
then removing all non-minimal witnesses. Thus, we will also refer to the
set of minimal witnesses as the minimal why-provenance, denoted
as MWhy(Q,D, t). Since minimal why-provenance is equal to the set
of minimal witnesses, it also is syntax independent.

2.3.2 Lineage

Cui and Widom (2000a) introduced a provenance model called lineage
based on data dependencies that tracks data dependencies separately
for each input relation of a query. That is, for a query accessing relations
R1, . . . , Rn, the provenance is a list (R1

∗, . . . , Rn
∗) where each Ri

∗ is a
subset of Ri. Cui and Widom (2000a) provide a declarative definition
for the lineage of a query for single operator and another definition that
determines how the lineage of multiple operators has to be combined to
calculate the lineage of a query. The authors also introduced a syntax-
dependent definition and did prove that this definition equivalent to
the declarative one.

Definition 13 (Lineage of a Relational Algebra Operator). Let Op be an
relational algebra operator with inputs R1, . . . , Rn. The lineage of a
tuple t ∈ Op(R1, . . . , Rn) is a list ⟨R1

∗, . . . , Rn
∗ ⟩ where Ri

∗ ⊆ Ri such
that:

1. Op(R1
∗, . . . , Rn

∗) = {t}

2. ∀i ∈ {1, . . . , n} : ∀t∗ ∈ Ri
∗ : Op(R1

∗, . . . , {t∗}, . . . , Rn
∗) ̸= ∅

3. (R1
∗, . . . , Rn

∗) is the maximal among all lists fulfilling conditions
(1) and (2).
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Note that condition (1) is a stricter version of sufficiency: instead
of requiring that t is in the result of evaluating query Q over the
provenance, this condition requires that only t is returned. While this
definition works for the operators considered in Cui and Widom (2000a),
it would fail for any operator that returns more than one result tuple for
a single input tuple. For example, consider extending relational algebra
with a “multiple projection” operator that takes multiple projection lists
as an input parameter and projects each input tuple onto all of these
lists. For such an operator, it may be impossible to find an input that
produces exactly one result tuple, since if evaluated over a single input
tuple this operator would return multiple result tuples. Similar issues
can arise from condition (2). This condition works for the operators
considered in Cui and Widom (2000a), but it is possible to construct
new operators for which it fails. For instance, consider an operator
that takes a single relation as input, sorts this relation on one of its
attributes, and then groups each two adjacent with respect to the sort
order and returns for each group the first tuple in sort order. For any
group with less than two tuples, e.g., if the input does only contain
one tuple, no output is produced. The lineage for this operator is the
empty set for any input, because any input tuple would fail condition
(2). Finally, requiring maximality can be problematic when dealing with
operators like set difference that check for the non-existence of input
tuples (we will discuss this further in Section 2.4).

Definition 13 only defines the lineage for queries consisting of a
single operator. The lineage for queries consisting of multiple operators
is defined through transitivity. Intuitively, if an input tuple tin belongs
to the lineage of a tuple top in the input of an operator and top belongs to
the lineage of a result tuple t of the operator according to Definition 13,
then tin belongs to the lineage of t according to the query. In the
definition below we use ⋓ to denote the element-wise union of two lists
of sets, e.g., (S1, S2) ⋓ (S3, S4) = (S1 ∪ S3, S2 ∪ S4). Also recall that ◦
denotes concatenation of tuples and lists.

Definition 14 (Lineage of a Query). Let Q be a query Op(Q1, . . . , Qm)
where Op is an operator with inputs with inputs R1, . . . , Rm. The
lineage Lin(Q,D, t) of a tuple t ∈ Q(D).
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QcheapOrders := Π 0⃝
Customer(Orders 2⃝ ▷◁ 1⃝ σP rice<3.00

3⃝(Items 4⃝))
Q1 := Orders ▷◁ σP rice<3.00(Items)
Q2 := Orders
Q3 := σP rice<3.00(Items)
Q4 := Items

Figure 2.4: Operators identifiers (red labels) and subqueries of query QcheapOrders

• If Q := R, then Lin(Q,D, t) = {t}

• Otherwise, Q := Op(Q1, . . . , Qm). Let (S1
∗, . . . , Sk

∗) be the lin-
eage of t wrt. Op. Consider tuples (t1, . . . , tk) such that ti ∈ Si

∗

for i ∈ {1, . . . , k} and let T denote the set of all such tuples. Then
the lineage of t is defined as

⋓
(t1,...,tk)∈T

Lin(Q1, D, t1) ◦ . . . ◦ Lin(Qk, D, tn)

Note that by defining lineage through transitivity, the definition
makes the implicit assumption that provenance itself is transitive. No
problems arise from this assumption for positive relational algebra
queries, but this assumption is violated by set difference, one of the
non-monotone operators supported by Cui and Widom (2000a) and Cui
et al. (2000). We will discuss this further in Section 2.4.

Example 20 (Lineage). Reconsider query QcheapOrders. For convenience
we assign each operator an identifier and show the subquery rooted
at each operator of this query (Figure 2.4). The intermediate results
produced by each of these subqueries is shown in Figure 2.5. We trace the
lineage of result tuple c1 (customer Peter). There are two tuples in the
join result (t11 and t12), whose Customer value is “Peter”. Evaluating
the join over the set contain only these two tuples returns only c1
(Definition 13, condition 1). Each of these tuples produces a non-empty
result (Definition 13, condition 2) and no other tuple can be added to
the set without violating either condition 1 or condition 2. Tuple t11
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Result of Q1
Customer Item NumItems Date Price Weight (lb) id

Peter Lettuce 3 2020-01-03 0.99 2.5 t11
Peter Lettuce 3 2020-01-04 0.99 2.5 t12

Result of Q2
Customer Item NumItems Date id

Peter Lettuce 3 2020-01-03 t21
Peter Oranges 1 2020-01-03 t22
Peter Lettuce 3 2020-01-04 t23
Bob Oranges 2 2020-01-04 t24
Alice Peanuts 3 2020-01-04 t25

Result of Q3
Item Price Weight (lb) id

Lettuce 0.99 2.5 t31

Result of Q4
Item Price Weight (lb) id

Lettuce 0.99 2.5 t41
Oranges 2.49 3 t42
Apples 3.99 6 t43

Bok choy 1.99 1.5 t44
Peanuts 3.99 2 t45

Figure 2.5: Results of subqueries of query QcheapOrders

(t12) was produced by joining tuples t21 (t23) with tuple t31.

Lin(Op0, D, c1) = ⟨ {t11, t12} ⟩
Lin(Op1, D, t11) = ⟨ {t21}, {t31} ⟩
Lin(Op1, D, t12) = ⟨ {t23}, {t31} ⟩
Lin(Op2, D, t21) = ⟨ {o1} ⟩
Lin(Op2, D, t23) = ⟨ {o3} ⟩
Lin(Op3, D, t31) = ⟨ {t41} ⟩
Lin(Op4, D, t41) = ⟨ i1 ⟩

Using this per operator lineage, we compute the lineage of the query
based on Definition 14 through transitivity and get:

Lin(QcheapOrders, D, c1) = ⟨ {o1, o3}, {i1} ⟩

Note that lineage, even though it is declaratively defined in Def-
inition 13 and Definition 14, is not syntax independent. Intuitively,
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this is true because it is defined over the syntactic structure of a re-
lational algebra expression. Cui and Widom (2000a) also introduced
an operational definition of lineage which consists of rules computing
the per-operator lineage and this definition was proven to fulfill the
conditions of Definition 13 and Definition 14. We show this definition
(with slightly adapted notation) below. Recall that JQKD denotes the
result of evaluating query Q over database D.

Definition 15 (Operational Definition of Operator Lineage). Let D be a
database, R1 and R2 be relations, and t a result tuple. The operational
semantics of the lineage of the operators of RAagg is defined below.

Lin(σθ(R), D, t) = ⟨ {t} ⟩
Lin(ΠA(R), D, t) = ⟨ JσA=t(R)KD ⟩

Lin(R1 ▷◁ R2, D, t) = ⟨ t[Sch(R1)], t[Sch(R2)] ⟩
Lin(γG;aggr(A), D, t) = ⟨ JσG=t.G(R)KD ⟩

Lin(R1 ∪R2, D, t) = ⟨ JσSch(R1)=t(R1)KD, JσSch(R2)=t(R2)KD ⟩
Lin(R1 −R2, D, t) = ⟨ {t}, JR2KD ⟩

We invite the reader to verify that the lineage computed using the
rules from Definition 15 is same as lineage computed using Definition 13
and Definition 14. In contrast to why-provenance, lineage is not syntax
independent. For instance, Cheney et al. (2009) shows examples of
equivalent queries that have different lineage.

Example 21 (Syntax Dependence of Lineage, adapted from Cheney et
al. (2009), proof of Proposition 2.4). Consider a relation R(A,B) with
instance {(1, 2), (1, 3)} and the two queries shown below which are
equivalent under set semantics.

Q1 := R Q2 := ΠA,B(R ▷◁ ρB → C(R))

The result tuple (1, 2) is derived from (1, 2) by query Q1 while for
query Q2, this result can be produced in two ways: either by joining
(1, 2) with itself or by joining (1, 2) with (1, 3). Thus,

Lin(Q1, D, (1, 2)) = ⟨ {(1, 2)} ⟩
Lin(Q2, D, (1, 2)) = ⟨ {(1, 2)}, {(1, 2), (1, 3)} ⟩
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Cheney et al. (2009) observed that if tuples are associated with
identifiers that allow us to determine which relation they belong too,
then lineage can be defined to be a subset of D instead of defining it
as a sequences of sets of tuples. While this simplifies definitions, this
transformation is lossy: the sequence of subsets in the lineage encodes
some information about the structure of the query for which it was
derived for. To be precise, we can “read” reconstruct from the lineage
the sequence of leaf nodes of the relational algebra tree for the query.
However, it is questionable whether this information can be used in
any meaningful way, because the lineage does not encode any other
information about the query, e.g., how these the relations accessed by
the query were combined.

Cui et al. (2000) did extent lineage for bag semantics. Two alternative
semantics were provided. One is basically the same as the one for set
semantics which minor changes to the operational semantics to deal
with bags. The second one is closer to why-provenance in nature in that
it is a set of alternative derivations (the derivation set of a result). A
derivation set for a set of n result tuples can be of size exponential in
n. The reason for this exponential blow-up is that if a tuple t appears
in the query result more than once, then the derivation set contains
all of the possible ways to derive each duplicate. For instance, consider
a relation R(A,B) with instance {{ (1, 2), (1, 2) }}. Evaluating a query
Q := ΠA(R) over this instance under bag semantics yields {{ (1), (1) }}.
Each of the two duplicates of tuple (1) can be derived each of the
duplicates of (1, 2) leading to 4 possible combinations (which duplicate
in the result is generated by which duplicate in the input). We will
refrain from discussing the intricacies of this model further, because the
semiring-based model for the provenance of queries under bag semantics
that we will discuss in Section 2.3.4 is clearly superior. This model is
based on sound principles and only requires polynomial space to encode
the provenance of a query under bag semantics. Intuitively, the blow-up
in the representation is based on considering the duplicates in a bag to
have an inherent identity, but then not considering this identity when
tracking provenance.
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2.3.3 Where-Provenance

In addition to why-provenance, Buneman et al. (2001) introduced a sec-
ond type of provenance called Where-provenance. Where-provenance,
like why-provenance, also encodes data dependencies. However, in con-
trast to why-provenance, this model tracks copying of values instead of
sufficiency of inputs. The model presented in Buneman et al. (2001) and
ported to relational algebra in Cheney et al. (2009) tracking copying
of values at the granularity of attribute values. We adopt the nota-
tion from Cheney et al. (2009) for identifying attribute values (with
a minor modification). If t is a tuple from a relation R with schema
R = (A1, . . . , An), then we use (R, t, Ai) to denote the value of attribute
Ai of tuple t. We refer to such triples as cells. The where-provenance of
a cell in the result of a query is then defined to be a subset of all cells
from the input database.

Example 22 (Where-provenance). QueryQV isaOrderedItems returns names
of customers that have a Visa credit card and have at least ordered
once. The value of cell (Q, v1, Name) (Peter) obviously was copied
from (Customers, c1, Name). However, note that the join condition
enforces that the value of attribute Name for any result tuple has
to be equal to the value of attribute Customer of all Orders tuples
it is derived from. That is, the where-provenance for (Q, v1, Name)
should also include (Orders, o1, Customer), (Orders, o2, Customer),
and (Orders, o3, Customer).

QV isaOrders := ΠName(Orders ▷◁Customer=Name σCard=V isa(Customers))

Name id
Peter v1
Alice v2

As illustrated in the example above, where-provenance should not
just consider direct copying of values as in, e.g., projection, but also
how indirect copying through equality constraints enforced by the query,
e.g., in a join or selection, cause the values of a attribute in the query
result to be equal to the values of an input attribute. The definition of
where-provenance shown below is adapted from Cheney et al. (2009)
using slightly different notation.
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Definition 16 (Where-provenance). Let Q be a query with result schema
(A1, . . . , An), D a database, t a tuple in Q(D), and A ∈ {A1, . . . , An}.
Furthermore, let R1 be a relation with schema (B1, . . . , Bm) and R2
a relation with schema (C1, . . . , Ck). The where-provenance of value
t.A according to Q and D, denoted as Where(Q,D, t, A), is defined as
shown below.

Where(R, D, t, A) = {(R, t, A)}
Where(σθ(R), D, t, A) = Where((R), D, t, A)

Where(ΠU (R), D, t, A) = Where(R, D, t, A)
Where(ρE→F (R), D, t, A) = Where(R, D, t,G) where G[E → F ] = A

Where(R1 ∪R2, D, t, A) = Where(R1, D, t, Ai)
∪ Where(R2, D, t, Bi) for A = Ai

Where(R1 ▷◁ R2, D, t, A) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
Where(R1, D, t, A) if A ∈ Sch(R1) − Sch(R2)
Where(R2, D, t, A) if A ∈ Sch(R2) − Sch(R1)
Where(R1, D, t, A) if A ∈ Sch(R1) ∩ Sch(R2)

∪Where(R2, D, t, A)

This definition of where-provenance is syntax dependent.

Example 23 (Syntax Dependence of Where-provenance). Consider the
two queries shown below that are equivalent under set semantics.

Q1 := ΠCustomer,Item(Orders)
Q2 := ΠCustomer,Item(Orders) ▷◁ ΠCustomer(Orders)

Let us compute the where-provenance of the Customer attribute of
result tuple (Peter, Lettuce). For query Q1 this cell is copied from
(Orders, o1, Customer) and (Orders, o3, Customer). The where-prove-
nance for this cell according to queryQ2 additionally contains (Order, o2,

Customer) because of the redundant self-join that matches o1 and o3
with o2.

Bhagwat et al. (2004) extended this definition to be syntax indepen-
dent, by merging the where-provenance of all queries that are equivalent
to the input query.
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Definition 17 (Syntax Independent Where-Provenance). Consider a query
Q, database D, and t ∈ Q(D). Let A be an attribute in the schema of
Q, then

IWhere(Q,D, t, A) =
⋃︂

Q≡Q′

Where(Q,D, t, A)

The definition above cannot be used directly to compute IWhere,
because there are infinitely many queries that are equivalent to a query
Q. For example, Q ▷◁ Q, Q ▷◁ Q ▷◁ Q, . . . are all equivalent to Q under
set semantics. As observed in Bhagwat et al. (2005) and Bhagwat et al.
(2004), for any input query Q there has to exists a finite set of queries
Q1, . . . , Qn such that the union of the where-provenance of these queries
is equal to the syntax independent where-provenance. To see why this
has to be the case note that the size of the set IWhere(Q,D, t, A) is
limited by the size of D and, thus, has to be finite. Thus, there has
to exist a number n such that for any set of n+ 1 queries equivalent
to Q at least two queries have the same where-provenance. Bhagwat
et al. (2004) did present an algorithm that, given an input query Q,
generates a set of queries such that the union of their where-provenance
is equal to the syntax independent where-provenance of Q. The main
idea behind the construction applied by this algorithm it to extend
the input query with additional joins through which additional cells
can be incorporated into the provenance. Intuitively, under syntax
independent where-provenance, the provenance of a cell in the result
of a query contains all input cells that have the same value as the
output cell. For instance, for the result tuple n1 from query Qcustnames

from Figure 2.2, IWhere(Qcustnames, D, n1, Name) contains not just
(Customer, c1, Name), the cell from which the value Peter is copied
from by this query, but also all other occurrences of this value. In the
example database from Figure 2.1 these are:

{(Orders, o1, Customer),
(Orders, o2, Customer),
(Orders, o3, Customer)}

Several other forms of where-provenance have been considered in
the literature. Glavic et al. (2013b) and Glavic (2010) presented a



50 Provenance Models - Formalizing Provenance Semantics

version of where-provenance called Copy-Contribution Semantics
(C-CS) that tracks where-provenance at the granularity of tuples: the
provenance of a result tuples contains all input tuples for which at
least one (all) attribute values have been copied to this result tuple.
Buneman et al. (2008) presented a type of where-provenance for nested
relational calculus and nested relational algebra and for the nested
update language (an update language for nested relations). Provenance
annotations are represented as colors that are propagated through
operations in this model. Buneman et al. (2008) did formalize semantic
properties that should hold for where-provenance over nested data. A
provenance semantics is copying if for any value-color pair in the output
of an operation this value-color pair exists somewhere in the input.
That is, provenance is attached to values as colors and transformations
(queries and updates) may not break the association between a value
and its color. Cheney et al. (2014) introduce an expressive provenance
model that generates traces for the execution of a query. Where-
provenance can be extracted from such traces. We will revisit this
model in Section 2.6.

2.3.4 Provenance Polynomials and the Semiring Annotation Model

Why-provenance, lineage, and where-provenance all have in common
that they track data dependencies and are based on sufficiency (and
other properties). Next we introduce the semiring annotation frame-
work (Green and Tannen, 2017; Karvounarakis and Green, 2012; Green
et al., 2007a) which is a general framework for expressing set semantics,
bag semantics, various extensions of the relational model such as incom-
plete databases, and provenance through a general type of annotated
relations. Provenance polynomials, the most general provenance model
that can be expressed in this framework is the first model we introduce
that is based on computability and, thus, also encodes how inputs were
combined to produce a result. Furthermore, many other provenance
models including why-provenance and lineage can be expressed in this
model. This also enables these models to be compared in terms of
their expressive power. An interesting outcome of the comparison is
that while not specifically designed for this purpose, we will see that
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k1 ⊕K k2 = k2 ⊕K k1 (commutativity of addition)
k1 ⊗K k2 = k2 ⊗K k1 (commutativity of multiplication)

(k1 ⊕K k2) ⊕K k3 = k1 ⊕K (k2 ⊕K k3) (associativity of addition)
(k1 ⊗K k2) ⊗K k3 = k1 ⊗K (k2 ⊗K k3)

(associativity of multiplication)
k1 ⊕K 0K = k1 (neutral element of addition)
k1 ⊗K 1K = k1 (neutral element of multiplication)
k1 ⊗K 0K = 0K (annihilation by zero)

k1 ⊗K (k2 ⊕K k3) = (k1 ⊗K k2) ⊕K (k1 ⊗K k3)
(multiplication distributes over addition)

Figure 2.6: Equational Laws of Commutative Semirings

why-provenance also encodes computability. In the following, we will
first introduce K-relations, the datamodel of the semiring annotation
framework, and queries over this model. Afterwards, we will discuss
provenance polynomials, the most general type of provenance express-
ible in this framework, and will show how some of the provenance types
we have discussed so far can be expressed as K-relations.

K-relations

The foundation of the semiring framework are K-relations, which are
relations where tuples are annotated with elements from an annotation
domain K. What is specific to K-relations is that the domain of an-
notations K has to be equipped with two binary operations ⊕K and
⊗K (addition and multiplication) and two distinguished elements 0K
and 1K that are the neutral elements of ⊕K and ⊗K, respectively. It is
required that the mathematical structure K = (K,⊕K,⊗K,0K, 1K) is a
commutative semiring. That is, these operations have to obey the
equational laws shown in Figure 2.6. These operations will be used to
define a query semantics for K-relations that is independent of the choice
of annotation domain. The rationale for requiring that the operations
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comply with the equational laws of commutative semirings will become
clear in the next subsection.

Formally, K-relations are functions that take a tuple as input and
return the tuple’s annotation from the annotation domain K. The
distinguished zero element (0K) of the semiring is used to annotate
tuples that are not part of the relation. That is, all tuples with the
same schema as the relation are mapped to an annotation. Thus, if the
domain of an attribute is infinite (e.g., floating point numbers), then
any K-relation over such a domain would be infinite in size. To avoid
having to deal with infinite relations, it is required that only finitely
many tuples are annotated with non-zero elements from K. Technically,
these relations are still infinite in size, but can be finitely represented
by only explicitly listing tuples whose annotation is not 0K. To simplify
the definition of K-relations, we will follow Green et al. (2007a) and
assume that there is a domain U that is used as the domain for all
attributes.

Definition 18 (K-relations). Let K = (K,⊕K,⊗K, 0K, 1K) be a commuta-
tive semiring and U be a universal domain of values. An n-ary K-relation
R is a function Un → K such that the set {t | t ∈ Un ∧ R(t) ̸= 0} is
finite.

Because K-relations are functions it is customary to use R(t) to
denote the annotation associated with tuple t, i.e., the result of applying
function R to t. Before discussing the semantics of queries over this
model, let us first show how set and bag semantics as well as some
extensions of the relational data model can be expressed as K-relations
through an appropriate choice of semirings.

• Natural Numbers (N = (N,+, ·, 0, 1)): the semiring of natural
numbers with standard addition and multiplication can be used to
model bag semantics by annotating each tuple with its multiplicity,
i.e., the number of duplicates of this tuple that exist in the relation.
Tuples that do not exist are annotated with 0 (zero duplicates of
such a tuple exist).

• Boolean Semiring (B = ({⊤,⊥},∨,∧,⊥,⊤)): the semring whose
elements are the boolean constants true (⊤) and false (⊥) with
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disjunction (∨) as addition and conjunction (∧) as multiplica-
tion can be used to model set semantics. Tuples that exist are
annotated with ⊤ and tuples that do not with ⊥.

• Possible Worlds Semiring (W = (2W ,∪,∩, ∅,W )): An incom-
plete database models uncertainty in data by encoding it as a set
of deterministic databases called possible worlds. Intuitively,
each world records one possible state of the real world and it is un-
known which possible world corresponds to the actual state of the
real world. Let us associate each possible world with an identifier
and let W denote the set of all these identifiers. An alternative
way to encode an incomplete database is then to annotate each
tuple with the set of identifiers of the worlds it appear in. That
is, the annotation of a tuple is an element from the powerset of
W (2W ).

We limit the discussion to these three semiring here, because our
main interest in semirings is their use in modeling data provenance.
In Section 2.9 we will provide some literature references to work using
K-relations for different purposes.

Example 24 (Encoding Relational Data Models as K-relations). Figure 2.7
shows examples of set, bag, and incomplete relations (shown on the
left) and their K-relational encoding (shown on the right). All of these
relations have a single attribute Name. The relation shown on the top is
a set semantics relation with two tuples. In the K-relational framework,
set semantics can be encoded using the Boolean semiring. The two
tuples that are part of this relation are annotated with ⊤. All other
possible tuples of this relation are annotated with ⊥. As mentioned
before, we use the finite representation of K-relations where all tuples
not explicitly listed in the table are assumed to be annotated with 0K
(are not in the relation). Below this relation we show an example of
a bag semantics relation which contains two duplicates of the tuple
(Peter) and three duplicates of tuple (Alice). Using semiring N, each
tuple is annotated with its multiplicity, e.g., (Peter) is annotated with
2. Finally, on the bottom left we show an incomplete relation with
two possible worlds w1 and w2. Alice exists in both worlds (we are
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Set semantics with semiring B

Name
Peter
Alice

Name B
Peter ⊤
Alice ⊤

Bag semantics with semiring N

Name
Peter
Peter
Alice
Alice
Alice

Name N
Peter 2
Alice 3

Incomplete Databases with semiring W

w1
Name
Alice
Bob

w2
Name
Peter
Alice

Name W
Bob {w1}
Alice {w1, w2}
Peter {w2}

Figure 2.7: Examples how to encode set semantics, bag semantics, and incomplete
databases as K-relations – many different variants of the relational datamodel can
be expressed using an appropriate choice of semiring to annotate tuples.

certain that Alice exists). Bob and Peter, however, only appear in one
of the two worlds. Using semiring W for the set of worlds {w1, w2} this
incomplete relation is encoded by annotating each tuple with the set of
world is appears in, e.g., (Peter) only appears in world w2 and, thus, is
annotated with {w2}.

Abusing notation, we will will sometimes use K to refer to a semiring
as well as its domain.

Positive Relational Algebra Over K-relations

Defining a query semantics over a data model like K-relations which
allows many different types of relational semantics to be encoded as
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R1 ∪R2 = R2 ∪R1 k1 ⊕K k2 = k2 ⊕K k1

(R1 ∪R2) ∪R3 = R1 ∪ (R2 ∪R3) (k1 ⊕K k2) ⊕K k3 = k1 ⊕K (k2 ⊕K k3)
R1 ∪ ∅ = R1 k1 ⊕K 0K = k1

R1 ×R2 = R2 ×R1 k1 ⊗K k2 = k2 ⊗K k1

(R1 ×R2) ×R3 = R1 × (R2 ×R3) (k1 ⊗K k2) ⊗K k3 = k1 ⊗K (k2 ⊗K k3)
R1 × {()} = R1 k1 ⊗K 1K = k1

R1 × ∅ = ∅ k1 ⊗K 0K = 0K

R1 × (R2 ∪R3) k1 ⊗K (k2 ⊕K k3)
=(R1 ×R2) ∪ (R1 ×R3) =(k1 ⊗K k2) ⊕K (k1 ⊗K k3)

Figure 2.8: Relational algebra equivalences and corresponding semiring laws

annotation is challenging. One major advantage of the semiring model
is that it defines a version of relational algebra that is defined for
any semiring and that coincides with standard set and bag semantics
for a appropriate choices of semirings. This semantics combines the
annotations of the input tuples of an operator using the operations of
the semiring to produce the annotation of an output tuple. Semiring
addition is used for disjunctive use of inputs as in union and projection
and multiplication is used for conjunctive use of inputs as is the case for
join. The reader may wonder what informed the choice of commutative
semirings as the annotation structure in K-relations? Green et al. (2007a)
observed that there exists a common core of equivalence laws that hold
over relational algebra operators under many variants of the relational
model including set semantics, bag semantics, incomplete databases,
and several others. These laws are shown in Figure 2.8 on the left.
Specifically, cross product and union are commutative and associative,
the empty set is the neutral element of union, the cross product of a
relation with the empty set returns the emptyset, the singleton relation
containing the empty tuple is the neutral element of cross product2,
and cross product distributes over union. In Figure 2.8 we pair each

2Note that for incomplete databases, the neutral element is the incomplete
relation that is the singleton set containing the empty tuple in every possible world.
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relational algebra equivalence with a particular semiring law. Note
that there is a one-to-one correspondence between each of these laws if
we replace relations with semiring elements and replace union (cross
product) with addition (multiplication). This correspondence informs
the choice of semirings as the structures that govern how annotations
are propagated from input tuples to query results. Since K-relations
are functions, a convenient way of defining the semantics of an algebra
operator is to define the K-relation that is the result of an operator in a
point-wise manner by stating how the annotation of a result is computed
from the annotations of tuples in the operators input(s). In fact, Green
et al. (2007a) defined the positive relational relational algebra (RA+)
over K-relations in this fashion.

Definition 19 (RA+ over K-relations). For a semiring K and tuple t and
condition θ, we use θ(t) to denote a function that returns 1K if t fulfills
the condition θ and 0K otherwise. Let R, R1, and R2 be K-relations
and t with the same schema as the result of an algebra operator.

• Rename: ρA→B(R)(t) = R(t[B → A])

• Projection: ΠU (R)(t) = ∑︁
t=t′[U ]R(t′)

• Selection: σθ(R)](t) = R(t) ⊗K θ(t)

• Natural Join: (R1 ▷◁ R2)(t) = R1(t[R1]) ⊗K R2(t[R2])

• Union: (R1 ∪R2)(t) = R1(t) ⊕K R2(t)

Example 25 (Queries over K-relations). Figure 2.9 shows the relations
Customers and Orders from our running example as B- (encoding set
semantics), N- (encoding bag semantics), and W-relations (encoding
an incomplete database with worlds {w1, w2, w3, w4}). Annotations are
shown on right of tuples. We assume that each input tuple appears
once under bag semantics (semiring N) and have made some rather
arbitrary choices of which possible worlds a tuple belongs to for the
incomplete versions of these relations (semiring W). All tuples shown
here are assumed to exist under set semantics (are annotated with
⊤). Consider the evaluation of query QcustW ithLargeOrders (Figure 2.9c)
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Name Age Card B N W
Peter 39 Visa ⊤ 1 {w1, w3}
Alice 25 AE ⊤ 1 {w1, w2, w3}
Bob 25 Visa ⊤ 1 {w1, w3}

Astrid 26 Master ⊤ 1 {w1, w3}
(a) Customers

Customer Item NumItems Date B N W
Peter Lettuce 3 2020-01-03 ⊤ 1 {w1}
Peter Oranges 1 2020-01-03 ⊤ 1 {w2, w3}
Peter Lettuce 3 2020-01-04 ⊤ 1 {w3, w4}
Bob Oranges 2 2020-01-04 ⊤ 1 {w1, w3}
Alice Peanuts 3 2020-01-04 ⊤ 1 {w3}

(b) Orders

QcustW ithLargeOrders := ΠName(Customers ▷◁Name=Customer QlargeOrders)
QlargeOrders := ΠCustomer(σNumItems>3(Orders))

(c) Query QcustW ithLargeOrders

Customer B N W
Peter ⊤ 2 {w1, w3, w4}
Alice ⊤ 1 {w3}
(d) Result of Subquery QlargeOrders

Name B N W
Peter ⊤ 2 {w1, w3}
Alice ⊤ 1 {w3}

(e) Query Result

Figure 2.9: Example for K-relational query semantics

which returns names of customers which have issued at least one order
with three or more items. The result of this query is shown in Figure 2.9e.
Figure 2.9d shows the result of the subquery QlargeOrder which returns
the customers of orders with three or more items. This subquery first
applies a selection to check that orders have three or more items. The
annotations of Orders tuples for which the condition evaluates to true
are multiplied with 1K (retained unmodified) while the annotations of
all other input tuples are multiplied with 0K. Thus, the later (e.g., the
second order) will be annotated with 0K in the result of the selection
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which means that these tuples are not in the result of the selection.
The remaining tuples are then projected onto their Customer attribute
resulting in the intermediate result shown in Figure 2.9d. The annotation
of a tuple in the result of a projection is computed by summing up the
annotations of input tuples projected onto this output. In our example,
the result tuple (Peter) is derived from the first and third order. Thus,
its annotation is the sum of the annotations of these two tuples. For
semiring B (set semantics), we get ⊤ ∨ ⊤ = ⊤ (the tuple exists). For
bag semantics (N), we get 1 + 1 = 2, i.e., the tuple (Peter) appears
twice in the result of QlargeOrders. For semiring W (incomplete data),
the tuple exists in worlds {w1} ∪ {w2, w3} = {w1, w2, w3}.

The result of QlargeOrders is then joined with relation Customers. For
instance, the first tuple of Customers joins with the first result tuple of
QlargerOrders. The annotations of these two tuples are multiplied. We
get:

⊤ ∧ ⊤ = ⊤ 1 · 2 = 2 {w!, w3} ∩ {w1, w3, w4} = {w1, w3}

Finally, this tuple is projected onto its Name attribute. There is only
one tuple with Name equal to Peter. This output tuple, thus, is mapped
to the same annotation as the input tuple from which it was produced.
We invite the reader to verify that the annotations correctly encode
the query result under set semantics (the two tuples exist), under bag
semantics (the first result tuple appears twice and the second one
appears once), and under incomplete query semantics (the first tuple is
in the result in possible worlds w1 and w3 and the second tuple is in
the result in possible world w3).

Homomorphisms

An advantage of generalizing the relational data model and query
semantics to semiring annotations is that it allows us to apply results
from universal algebra to understand the relationship between extensions
of the relational model. Of specific importance are homomorphisms.
A homomorphism from a semiring K1 to a semiring K2 is a mapping
from the domain of K1 to the domain of K2 which is compatible with
the semiring structure.
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Definition 20 (Semiring Homomorphisms). Let K1 and K2 be semirings,
a mapping h : K1 → K2 is a homomorphism if for all k1, k2 ∈ K1, we
have:

h(k1 ⊕K1 k2) = h(k1) ⊕K2 h(k2)
h(k1 ⊗K1 k2) = h(k1) ⊗K2 h(k2)

h(0K1) = 0K2

h(1K1) = 1K2

Green et al. (2007a) observed that semiring homomorphisms can be
lifted to homomorphisms between K-relations by applying the homo-
morphism to the annotation of each tuple of a relation:

h(R)(t) = h(R(t))

This idea can be extended to homomorphisms over databases in
the obvious way: applying the homomorphism to each relation in the
database. Since queries over K-relations use the operations of K to
compute the annotation of a query result, it follows that homomorphisms
commute with queries (Green et al. (2007a), Proposition 3.5):

h(Q(D)) = Q(h(D))

As we will see in the following, homomorphisms are an essential tool
for studying the relative informativeness of provenance models that can
be expressed in the semiring annotation framework. Note that if for any
query and database there exists a homomorphism h : K1 → K2 then
it is possible to compute the result of any query in K2 by evaluating
the query in K1 and then applying h to derive the query result in
K2 (using the equivalence shown above). If this is the case, then K1
is more informative than K2, because the K1 annotation of a query
result contains sufficient information for computing the result in K2.
This will become more clear in the following when we discuss concrete
examples. In Section 3.1 we will revisit homomorphisms and show
that homomorphism over relations annotated with a semiring encoding
provenance can be used to implement view maintenance.
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Provenance Polynomials

Now we are finally ready to introduce provenance polynomials, the
most informative provenance model expressible in the semiring annota-
tion model. We will show that provenance tracked using this semiring
enjoys the computability property (Definition 9) for any other semiring
(and, thus, set and bag semantics). The basic idea behind provenance
polynomials is to represent provenance as symbolic expressions that
record how the annotation of a query result tuple was computed by
combining the annotations of input tuples using addition and multi-
plication. The annotations of input tuples are represented as variables.
The elements of the provenance polynomial semiring are polynomials
with natural number coefficients and exponents over these variables. We
will N[X] to denote the set of all such polynomials for a set of variables
X.

• Provenance Polynomials N[X] = (N[X],+·, 0, 1)

Example 26 (Provenance Polynomials). Figure 2.10 shows Customers
and Orders as N[X]-relations. Each tuple is annotated with a variable
identifying the tuple, e.g., customer Bob is assigned variable x3. Con-
sider the annotations of the two result tuples of QcustW ithLargeOrders

shown in Figure 3.1d. The first tuple is annotated with x1 · (y1 + y3).
This annotation records that this tuple was produced by joining (multi-
plication), the tuple corresponding to customer Peter (x1) with the first
(y1) and third tuple (y3) of the Orders relation. Similarly, the second
result tuple was produced by joining the tuple for Alice x4 with the
fifth tuple (y5) of the Orders relation.

The semiring N[X] enjoys the important property that for any other
semiring K and assignment µ : X → K (mapping each variable to an
element from K), there exists a unique homomorphism evalµ : N[X] →
K by applying µ to replace variables in polynomials with elements from
K and then evaluating the resulting symbolic expressions in K.

Definition 21 (evalµ). Let K be a semiring and µ : X → K a valuation
from X to K. We define evalµ : N[X] → K as shown below.
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Name Age Card N[X]
Peter 39 Visa x1
Alice 25 AE x2
Bob 25 Visa x3

Astrid 26 Master x4

(a) Customers
Customer Item NumItems Date N[X]

Peter Lettuce 3 2020-01-03 y1
Peter Oranges 1 2020-01-03 y2
Peter Lettuce 3 2020-01-04 y3
Bob Oranges 2 2020-01-04 y4
Alice Peanuts 3 2020-01-04 y5

(b) Orders

QcustW ithLargeOrders := ΠName(Customers ▷◁Name=Customer QlargeOrders)
QlargeOrders := ΠCustomer(σNumItems>3(Orders))

(c) Query QcustW ithLargeOrders

Name N[X]
Peter x1 · (y1 + y3)
Alice x4 · y5

(d) Query Result

Figure 2.10: Example N[X]-relations

evalµ(k1 + k2) = evalµ(k1) ⊕K evalµ(k2)
evalµ(k1 · k2) = evalµ(k1) ⊗K evalµ(k2)

evalµ(x) = µ(x)

Intuitively, the fact that evalµ is a semiring homomorphism means
that N[X] generalizes the computation in any other semiring K by
recording the structure of the computation without making any as-
sumption of its semantics apart from requiring that it obeys the laws
of commutative semirings.3 Note that this property means that prove-
nance polynomials fulfill our computability requirement, because we

3This result follows from the fact that N[X] is the free object in the variety
of semirings. In universal algebra, a variety is the set of all algebraic structures
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can evaluate a query in semiring N[X] and then derive the query result
in any other semiring using evalµ.

Example 27 (From provenance polynomials to other semirings). Let us
apply evalµ to derive the original set, bag, and incomplete database
results of QcustW ithLargeOrders (Figure 2.9e) from the N[X] result shown
in Figure 3.1d. Consider the annotation of the first result tuple:

x1 · (y1 + y3)

To determine the result under set semantics we substitute the variables
with the B-annotations from Figure 2.9a and Figure 2.9b:

µ(x1) = ⊤ µ(y1) = ⊤ µ(y3) = ⊤

To compute the query result under set semantics we apply evalµ to
the polynomial to replace variables based on µ and evaluate the resulting
expression using the addition (∨) and multiplication (∧) operations of
the semiring B:

evalµ(x1 · (y1 + y2))
=evalµ(x1) ∧ (evalµ(y1 + y2))
=evalµ(x1) ∧ (evalµ(y1) ∨ evalµ(y2))
=⊤ ∧ (⊤ ∨ ⊤) = ⊤

For bag semantics, we replace variables with multiplicity 1 (each
tuple in the input appears once in our example) and get:

evalµ(x1 · (y1 + y2)) = 1 · (1 + 1) = 2

of a given signature σ (the number and arity of operations of the structure) that
obey a set of equational laws. For example, semirings have signature σ = (2, 2, 0, 0),
because they have two binary operations (addition and multiplication) and two
0-ary operations (the constants 0K and 1K) and obey the laws shown in Figure 2.6.
The free object in a variety is a structure whose elements are congruence classes of
symbolic expressions that combine a set of variables using the variety’s operations
with respect to the equational laws of the variety. For instance, for semirings and a set
of variables X = {x1, x2, x3}, x1 · (x2 + x3) and (x1 · x2) + (x1 · x3) are two symbolic
expressions from the free semiring (N[X]) that belong to the same congruence class,
because of the distributivity law of semirings. For any free object over variables X,
any valuation µ : X → K into the domain of another algebraic structure can be
extended to a homomorphism between algebraic structures by applying µ to the
variables in the symbolic expression and then evaluating the resulting expression in
the target structure.
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That is, this tuple appears twice in the query result under bag
semantics. Finally, for the incomplete database version of these relations,
we replace variables as shown below.

µ(x1) = {w1, w3} µ(y1) = {w1} µ(y3) = {w3, w4}

Applying evalµ we get:

evalµ(x1 · (y1 + y2)) = {w1, w3} ∩ ({w1} ∪ {w3, w4}) = {w1, w3}

Other Provenance Semirings

We now will discuss several other provenance semirings which, like
provenance polynomials, encode provenance as symbolic expressions.
The difference between N[X] and these other provenance semirings
is that additional equivalences are assumed to hold. This means that
polynomials (provenance expressions) that are not equivalent under
N[X] may be equivalent under some of these semirings. Intuitively, this
means that these semirings are less informative and can only correctly
model the provenance for semirings K that fulfill these additional laws
enforced by the provenance semiring. Interestingly, some of these semir-
ings correspond to provenance models we have introduced earlier, thus,
shedding light on their expressiveness and on which provenance model
is the right choice for set and bag semantics.

Green (2011) and Green (2009) studied query equivalence and con-
tainment for K-relations. Two queries are equivalent for semiring K, if
they return the same result on every K-database.4 In addition, to prov-
ing new complexity results, this work also investigated how the choice of
semirings affects query equivalence. A result that is of specific interest
for our study of provenance is that queries are equivalent under bag
semantics (N) if and only if they are equivalent under N[X]. This means
that N[X] is a syntax independent provenance model bag semantics.

4Containment is somewhat harder to define over annotated relations, because
this requires a notion “smaller than” to compare the annotations two relation assign
to a tuple. Green (2009) utilized the natural order of a semiring for this purpose
which orders elements based on addition. An element k1 ∈ K is smaller than or equal
to an element k2 ∈ K with respect to the natural order if there exists an element k3
such that k1 ⊕K k3 = k2.Kostylev et al. (2013) studied containment for K-relations
independent of the natural order.



64 Provenance Models - Formalizing Provenance Semantics

R ∪R = R k ⊕K k = k

(idempotence of addition)
R ▷◁ R = R k ⊗K k = k

(idempotence of multiplication)
R ∪ ΠR(R ▷◁ S) = R k1 ⊕K (k1 ⊗K k2) = k1 (absorption)

Figure 2.11: Relational algebra equivalences that hold under set semantics, but
not under bag semantics. For each equivalence, we show the corresponding semiring
equivalence.

Note that in Cheney et al. (2009) it was claimed that provenance poly-
nomials are syntax dependent. While queries that are equivalent under
set semantics may not be equivalent under N[X]-relational semantics,
this is to be expected, because additional equivalences hold under set
semantics that do not hold under bag semantics. We show these equiva-
lences in Figure 2.11. Namely, join and union are idempotent, and the
union of a relation R with the result of joining this relation with another
relation is equal to R. As in Figure 2.8 we can identify equivalence laws
over semiring operations that correspond to these equivalences. For
example, idempotence of join and union correspond to idempotence of
the multiplication and addition operations of the semiring. As we will
see in the following, the semiring of positive boolean algebra expressions
obeys precisely these additional equivalences and, thus, is the right
choice of provenance model for set semantics. Provenance according to
this semiring is exactly the same as minimal why-provenance. That is,
this is another justification for the choice of minimal why-provenance as
a provenance model for set semantics queries and another way to prove
that minimal why-provenance is syntax independent for set semantics.

We now introduce provenance semirings PosBool[X], Why[X], and
Which[X] and explain why these semirings correspond to the minimal
why-provenance, why-provenance, and lineage provenance models.5 For
each of these semirings it will be insightful to consider two equivalent

5The lineage provenance model only corresponds to Which[X] if we ignore the
query syntax information encoded by this model as discussed in Section 2.3.2.
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definitions: one as congruence classes of polynomials based on the
semiring laws and additional equivalences and one that is a more
direct way of defining this semiring. Figure 2.12, inspired by Green and
Tannen (2017), shows how these provenance semirings (and additional
provenance semirings that we do not discuss here) are derived from N[X]
by enforcing additional equivalences. We also show which semirings
have the same equivalences as bag and set semantics and which of
the provenance models we have discussed earlier correspond to which
semirings (shown as dashed boxes besides the semirings that encode
these models).

• Positive Boolean Algebra Semiring
PosBool[X] = (PosBool[X],∨,∧,⊥,⊤):
The elements of the PosBool[X] are positive boolean formulas
over a set of variables X. Addition is logical or (with neutral
element ⊥) and multiplication is logical and (with neutral element
⊤). Note that boolean algebra fulfills the three algebraic laws
for set semantics shown in Figure 2.11, e.g., k1 ∨ k1 = k1. For
the alternative definition of PosBool[X] as equivalence classes
of polynomials, we apply all equivalence from Figure 2.11, e.g.,
x1 +(x1 ·x2) and x1 are considered to be the same in this semiring.

• Why-provenance Semiring
Why[X] = (22X

,∪,⋓, ∅, {∅}):
The elements of this semiring are set of sets of tuples with union as
addition and pair-wise union (⋓) as multiplication. Addition and
multiplication in this semiring are idempotent, but the absorption
law does not hold, e.g., {w1} ∪ ({w1}⋓{w2}) = {w1, (w1 ∪w2)} ≠
{w1}. For the alternative definition, polynomials are equated based
on idempotence of addition and multiplication, e.g., x1 + x1 = x1.
This semiring encodes why-provenance.

• Which-provenance Semiring
Which[X] = (2X ∪ {⊥},∪+,∪×,⊥, ∅):
The elements of this semiring are sets of variables (tuple identifiers)
and a special element ⊥ which denotes that a tuple does not exist.
Operations ∪+ and ∪× are both regular set union, but differ in how
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N[X] (N)

B[X] Trio[X]

Sorp[X] Why[X] Why-provenance

PosBool[X] (B)Minimal
Why-provenance Which[X] Lineage

k ⊕K k = k k ⊗K k = k

k ⊕K k = k
k ⊗K k = k

k1 ⊕K (k1 ⊗K k2) = k1

k ⊗K k = k
k1 ⊕K (k1 ⊗K k2) = k1

k1 ⊕K k2 = k1 ⊗K k2
for ki ̸= 0

Figure 2.12: Provenance semirings organized by their informativeness from most
informative (top) to least informative (bottom). Solid edges indicate that the starting
point of the edge fulfills less equivalences as the end point of the edge. Each edge
is labeled with the additional equivalence that is introduced. The semirings shown
in red indicate the least informative provenance semiring that is sufficient to model
the provenance of the semiring shown in red, i.e., query equivalence in these two
semirings is the same. For instance, queries are equivalent in PosBool[X] iff they are
equivalent under set semantics (B). Dashed nodes indicate which provenance model
a semiring corresponds to, e.g., Why[X] encodes Why-provenance.

they deal with the special element ⊥: k1∪+⊥ = ⊥∪+k1 = k1 while
k1∪×⊥ = ⊥∪×k1 = ⊥. With the exception of how the zero element
of the semiring is treated, addition is equivalent to multiplication
in this semiring. Furthermore, both operations are idempotent
and fulfill the absorption law. This semiring corresponds to the
lineage provenance model if we ignore the order of leaves in the
algebra tree of the query encoded by the lineage model.

Figure 2.12 shows several additional models that each correspond to a
subset of the equivalences from Figure 2.11. Semiring B[X] and Trio[X]
are of no further interest to us here, but Sorp[X] where addition is
idempotent and absorptive, will be relevant for modeling the provenance
of recursive queries in Section 2.5.
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Where-provenance

Foster et al. (2008) extended the semiring framework to track the
provenance for path queries over XML data.6 The addition operation of
the semiring is used to combine the annotations of multiple paths that
match a query and multiplication is used to combine the annotations of
the individual elements on a path. Using an encoding of relations as
XML data and relational algebra queries as path queries, the approach
can be used to compute a type of where-provenance for relational algebra
expressions. Interestingly, this encoding of a relation as an annotated
XML-document allows annotations to be placed on attribute-values,
relations, and the database itself in addition to the annotation of tuples
as supported by K-relations.

In the next subsection we will review the PI-CS model from Glavic
and Alonso (2009a) that was shown be equivalent to provenance poly-
nomials for RA+ queries. Another provenance model of interest that is
powerful enough to encode provenance polynomials is the provenance
games model from Köhler et al. (2013) that defines provenance for
Datalog queries through an interpretation of the evaluation of such
queries as two player games. This model has the advantage of encoding
the input query’s structure and, thus, is advantageous for debugging
queries. Since this model is intimately related to negation, we will delay
its discussion until Section 2.4.

2.3.5 Perm Influence Contribution Semantics

Glavic (2010) and Glavic and Alonso (2009a) introduced a provenance
model called Perm influence contribution semantics or PI-CS
for short. The model represents provenance as bags of lists of tuples
and was partially inspired by the lineage model. Note the difference
to lineage which is a list of sets of tuples. This model has in common
with lineage that it has a syntax-driven semantics which is shown to
fulfill a set of declarative conditions. The provenance of a query result
according to this model is a bag of witness lists. A witness list, is
a list containing one element for each relation accessed by the query.

6This work did use unordered XML.
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PI(R, D, t) = {{< u >n| un ∈ R ∧ u = t }}

PI(σC(Q1), D, t) = {{< u >n| un ∈ Q1(D) ∧ u = t }}

PI(ΠA(Q1), D, t) = {{< u >n| un ∈ Q1(D) ∧ u.A = t }}

PI(Q1 ▷◁C Q2, D, t) = {{< u, v >n×m| un ∈ Q1(D) ∧ u = t.Q1

∧ vm ∈ Q2(D) ∧ v = t.Q2 }}

PI(Q1 ∪Q2, D, t) = {{< u,⊥ >n| un ∈ Q1(D) ∧ u = t }}
∪ {{< ⊥, u >n| un ∈ Q2(D) ∧ u = t }}

Figure 2.13: Compositional Semantics for PI-CS

Each element of a witness list is either a tuple from the corresponding
relation or the special element ⊥. The declarative conditions that define
the PI-CS provenance for a query result include the ones defined for
lineage with some adjustments to deal with bags, to account for the fact
that the provenance is a set of lists of tuples instead of list of sets of
tuples, and to deal with nested subqueries, set difference, and outer joins.
Notably, this model was the first to support nested subqueries (Glavic
and Alonso, 2009b).

We show the compositional semantics of PI-CS for RA+ in Fig-
ure 2.13.7 The provenance semantics of each operator is defined using
bag comprehensions. We use tn to denote n duplicates of a tuple t, e.g.,
tn ∈ Q1(D) means that tuple t appears in Q1(D) with multiplicity n.

Glavic et al. (2013b) showed that for positive relational algebra
(RA+), the provenance polynomial for a query result can be extracted
from its PI-CS provenance using the function h shown below. WLOG
assume that Q accesses relations R1, . . .Rm. We use w[i] to denote the
ith element of a witness list w.

7To be consistent with other provenance definitions discussed so far, we use a
notation that is slightly different from Glavic (2010), Glavic et al. (2013b), and
Glavic and Alonso (2009a).
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h(PI(Q,D, t)) =
∑︂

wn∈PI(Q,D,t)
n ·

m∏︂
i=1

mon(w[i])

mon(e) =

⎧⎨⎩w[i] if w[i] ̸= ⊥
1 otherwise

This definition has to be interpreted as follows: each witness list
is translated into a monomial (a product of variables). ⊥ elements
are replaced with 1 (do not contribute to the result). The polynomial
corresponding to a bag of witness lists is then the sum of the translation
of each monomial multiplied by the witness lists multiplicity in the bag.
Example 28 (PI-CS Provenance). As an example for PI-CS provenance,
we compute the provenance of query QcustW ithLargeOrders using this
model. This query accesses two relations: Customers and Orders. Every
witness list for the query consists of a tuple from the customer relation
and a tuple of orders relations representing two tuples that got joined.
We show PI(QcustW ithLargeOrders, D, t) for the two result tuples of this
query below. The first result tuple was produced by joining x1 with y1
and x1 with y3. Thus, its PI-CS provenance contains two witness lists
< x1, y1 > and < x1, y3 >. The second tuple was produced by joining
x4 with y5. Its provenance consists of a single witness list < x4, y5 >.

Name PI
Peter {{< x1, y1 >,< x1, y3 > }}
Alice {{< x4, y5 > }}

Using function h, we get back the provenance polynomials for these
tuples:

h({{< x1, y1 >,< x1, y3 > }}) = (x1 · y1) + (x1 · y3)
h({{< x4, y5 > }}) = x4 · y5

2.4 Non-monotone Queries, Negation, and Why-not Provenance

So far we have discussed how the existence of a tuple in the result
of a query can be explained by the existence of tuples in the input
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database (and how such tuples were combined to produce the result).
This is sensible for monotone queries. However, when dealing with
non-monotone queries, e.g., queries with negation, the non-existence
of inputs may be necessary for a producing a result. The notions of
sufficiency and necessity (Definition 2 and Definition 3) fail to provide
a full picture of why a result exists for non-monotone queries.

Example 29 (Influence of Missing Tuples). Set difference is an example
of a non-monotone operator which checks for non-existence of tuples in
its right input. Consider a two relations R(A) and S(B) and assume we
want to compute Q := R− S under set semantics. We also show how to
express this query as a Datalog rule below to point out the negation
causing the non-monotonicity of this operation. Evaluating the query
over the database instance shown below, a single result tuple (1) is
returned. Obviously, (1) has to exist in R for (1) to be in the result of
the query. Additionally, (1) has to not exist in S. That is, the existence
of (1) in the query result depends on the fact that (1) does not exist in
S.

Q := R− S (relational algebra)
Q(X) :−R(X),¬S(X) (Datalog)

R
A
1
2

S
B
2
3

Query Result

A
1

This example motivates the need to reason about both existing and
missing tuples when dealing with non-monotone queries. Our notions
of sufficiency and necessity / minimality are based on existing tuples
alone and, thus, can not track such dependencies of outputs on missing
inputs. Extending provenance models with support for general types
of negation is challenging, because the number of tuples that could
exist, but do not, can be very large or even infinite (if the domain of an
attribute is infinite). For example, consider a relation R(A,B,C,D,E)
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and assume that the data type of all attributes is 64-bit integers. Then
there are (264)5 ≈ 2 · 10100 tuples that could belong to R. Naturally,
the vast majority of these tuples would not be part of this relation,
even if it is contains, say, 100 billion (1011) tuples. In the following, we
will first discuss provenance models for non-monotone queries covering
set difference, aggregation, Datalog with negation, and first-order logic.
Afterwards, we will discuss how provenance models which support
negation unify provenance and why-not provenance (explaining missing
answers).

2.4.1 Set Difference

The lineage and PI-CS provenance models we have discussed before
support set difference. However, both models are subject to limitations
that are ultimately rooted in the fact that they are based on per-operator
sufficiency and do not consider missing inputs as potential causes for
a query result. Under PI-CS only tuples from the left input of a set
difference are considered to belong the provenance. For Lineage, all
tuples from the right input are in the provenance for every output
of the set difference. This gross overestimation was motivated based
on the recognition that non-existence of inputs can be required for
the set difference to the produce a result. However, as we will see in
the following, this approach can still produce incorrect results. The
limitations of these provenance models are most obvious in queries with
double negation (computing the difference of a relation and the result
of another set difference operation), e.g., R− (S − T ). For such a query,
tuples from relation T can contribute to the result by removing tuples
from relation S which would have otherwise removed tuples from R.

Example 30 (Set Difference with Lineage and PI-CS). Below we show
three tables R, S, and T. The query Q := R− (S − T ) returns a single
result (1). Intuitively, this tuple is in the result, because (i) (1) exists
in R and (ii) tuple (1) exists in T causing (1) to not be in the result of
subquery S − T . Using the lineage and PI-CS models, the provenance
of this query result is:

• Lineage: ⟨ {r1}, ∅, ∅ ⟩

• PI-CS: {{< r1,⊥,⊥ > }}
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Note that both models fail to detect the influence of t1 on the query
result.

R
A id
1 r1

S
B id
1 s1

T
C id
1 t1

Query
Result

A
1

Monus Semirings

Geerts and Poggi (2010) extended the semiring model with support
for set difference by introducing a monus operation. The resulting
mathematical structures are called monus semirings or m-semirings
for short. The monus operation ⊖K is based on the natural order
⪯K which orders the elements of a semiring based on the addition
operation of the semiring. Specifically, k1 ⪯K k2 if there exists k3 such
that k1 ⊕K k3 = k2. For some semirings, the natural order is a partial
order. These semirings are called naturally ordered. A counter example
is the semiring Z because k1 ⪯Z k2 for any k1 and k2 in Z. For example,
1 ⪯Z −3 and −3 ⪯Z 1 because 1+−4 = −3 and −3+4 = 1. The monus
k1 ⊖K k2 is defined to be the smallest k3 such that k2 ⊕K k3 ⪰K k1.
The monus operation is only well-defined if (i) the semiring is naturally
ordered and (ii) for all k1, k2 ∈ K, the set {k3 | k1 ⪯K k2 + k3} has a
unique smallest element.

Definition 22 (Set Difference Over K-relations). Let K be a m-semiring
and R and S be two K-relations with the same arity. The set difference
over K-relations is defined as:

(R − S)(t) := R(t) ⊖K S(t)
k1 ⊖K k2 := min

⪯K
{k3 | k1 ⪯K k2 ⊕K k3}

Semirings N, B, and the provenance polynomial semiring are all
m-semirings. For semiring N, the monus operation is the truncating
minus (k1 ⊖Nk2 = k1

.−k2 = max(0, k1 −k2)), for B the monus operation
is k1 ⊖B k2 = k1 ∧ ¬k2, and for N[X] the coefficients of each monomial
are subtracted using the truncating minus, for example
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(3 · x2
1 · x2 + 1 · x3 · x3

4 + 1 · x5) ⊖N[X] (1 · x2
1 · x2 + 5 · x5

3 + 3 · x5))
=(3 .− 1) · x2

1 · x2 + (1 .− 0) · x3 · x3
4 + (0 .− 5) · x5

3 + (1 .− 3)x5)
=2 · x2

1 · x2 + 1 · x3 · x3
4

However, the provenance polynomial semiring looses its generality
property when moving from semirings to m-semirings. Geerts and Poggi
(2010) showed that a more general structure is needed whose elements
are symbolic expressions involving the monus operation. We will use
N⊖[X] to denote this m-semiring.

Example 31 (Set Difference with Monus Semirings). Reconsider the
database instance and query Q := R− (S−T ) from Example 30. Below
we show a bag semantics (m-semiring N) and provenance (m-semiring
N⊖[X]) version of this database. Tuple (1) appears thrice in the result
of the query under bag semantics. The provenance annotation of this
tuple is r1 − (s1 − t1). As an example for the universality property of
N⊖[X], we apply the homomorphism evalµ corresponding to valuation
µ µ(r1) = 3, µ(s1) = 1, and µ(t1) = 2 which models our example bag
semantics instance to derive the bag query result from the N⊖[X] result:

evalµ(r1 − (s1 − t1)) = evalµ(r1) .− (evalµ(s1) .− evalµ(t1))
= 3 .− (2 .− 1) = 3

R
A N N⊖[X]
1 3 r1

S
B N N⊖[X]
1 1 s1

T
C N N⊖[X]
1 2 t1

Query result

C N N⊖[X]
1 3 .− (1 .− 2) = 3 r1 − (s1 − t1)

As pointed out in Amsterdamer et al. (2011c), there exists an
equivalence that holds under both set and bag semantics relational
algebra, but does not hold for all monus semirings. That is, m-semirings
may be considered to be too general for modeling set difference. Other
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attempts to extend semirings with support for difference also do not
fulfill all of these equivalences. Green et al. (2009) annotates tuples with
integer numbers (the ring Z) and defines difference using the subtraction
operation of this ring. This semantics does differs from both set and bag
semantics. Amsterdamer et al. (2011d) extended the semiring model
with support for aggregation (more on this later) and applied this
extension to define a semantics for set difference. This model does not
correctly model difference for bag semantics.

The divergence of semantics for set difference over K-relations and
the discussion in Amsterdamer et al. (2011c) point out a critical design
decision that has to be made for any provenance model that is con-
structed based on a given set of algebraic equivalences: what is the set
of query semantics that the provenance model should support and what
is the set of equivalences that hold for all of these query semantics. For
example, m-semirings do not enforce an equivalence for set difference
holds under both set and bag semantics. The trade-off is between gen-
erality (less equivalences means that a larger class of query semantics is
supported by the provenance model) and complexity of the provenance
model and size of the representation (additional equivalences can be
used to compress provenance).

2.4.2 Aggregation

Amsterdamer et al. (2011d) did present an extension of the semiring
provenance model to support aggregation. A major challenge of dealing
with aggregation over K-relations is that the values of result tuples
(aggregation function results) may depend on the annotation of input
tuples. For example, when calculating the sum over a column under bag
semantics, the multiplicity (N annotation) of a tuple affects the result
of the sum.

Example 32 (Aggregation over Semirings). Query γsum(A);(R) computes
the sum over column A. Under bag semantics, the number of duplicates
of the two input tuples affects the sum. Over the example database the
sum is calculated as 3 · 2 + 5 · 3 = 21. The result tuple (21) appears
once (is annotated with 1). Now consider evaluating the query over a
N[X]-relation. We cannot assign a concrete value to the aggregation
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result, because the sum depends on what annotations are represented
by variables x1 and x2.

R
A N N[X]
3 2 x1
5 3 x2

N Query Result

A N
21 1

N[X] Query Result

A N[X]
? 1

The example above motivates the need to encode how the result of
an aggregation function is computed based on the annotations of tuples.
For some semirings like N, the result is a concrete value. To preserve the
generality of provenance semirings like N[X] we cannot settle on concrete
values, because the aggregation result will be different under different
valuations. For instance, applying the valuation µ(x1) = 1 and µ(x2) = 2
over the database shown above, the sum evaluates to 3 · 1 + 5 · 2 = 13.
Amsterdamer et al. (2011d) addressed this issue by defining symbolic
expressions that record how the result of an aggregation function is
combined by aggregating the result of pairing values (from an attribute)
with the annotation of the tuple they belong to. For instance, in the
example we have to combine the annotation of the first tuple with
its value in attribute A (3) and add the result to the combination
of the annotation of the second with this tuple’s A attribute value
(5). If we can define an appropriate class of symbolic expressions that
encode such computations, then we can specialize them (using semiring
homomorphisms extended to these type of expressions) to compute a
concrete aggregation result. Note that such expressions contain two
types of operations:

• Aggregation: we need a binary operation to be able to aggregate
values, e.g., addition corresponds to the sum aggregation function.

• Pairing aggregation function domain values with semiring
values: we need a binary operation that takes an attribute value
(a value from the domain of the aggregation function’s input) and
a semiring annotation and returns a value from the aggregation
function domain.

In the example above, we assumed implicitly that the “pairing”
function for integers (input to the sum aggregation function) and N
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annotations multiplies the two inputs. This is sensible for bag semantics,
because if an input tuple has multiplicity x and its value in the attribute
over which we are aggregating over is y, then the tuple contributes x · y
to the sum. In Amsterdamer et al. (2011d) aggregation functions are for-
malized as monoids. A monoid M = (M,+M ,0M ) is a set M equipped
with a binary operation +M that is associative, commutative, and has
neutral element 0M . Many common aggregation functions including
min, max, and sum (the monoid for sum can also express count) are
monoids. We show the definition for some aggregation functions below.

SUM := (R,+, 0) MIN := (R,min,∞) MAX := (R,max,−∞)

We would expect the “pairing” operation ∗K,M : K ×M → M for
an aggregation monoid M and semiring K to fulfill several natural
equivalences:

• If we union two sets of tuples (semiring addition), then the ag-
gregation function result computed for the union of these sets
should be the same as aggregating the aggregation results for the
two sets. Similarly, if we have a tuple with an attribute value
m1 +M m2 annotated with k, then the result of aggregating over
this tuple should be the same as aggregating over two tuples with
annotation k and values m1 and m2, respectively. That is, the
pairing operation should distribute over semiring and monoid
addition.

(k1 ⊕K k2) ∗K,M m = k1 ∗K,M m+M k2 ∗K,M m

k ∗K,M (m1 +M m2) = k ∗K,M m1 +M k ∗M,K m2

• Tuples that do not exist (annotated with 0K) should not affect
the result of aggregation.

0K ∗K,M m = 0M

• Tuples whose value in the attribute we are aggregating over is
the neutral element of the aggregation function (0M ) should not
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contribute to the result of aggregation independent of the tuple’s
annotation.

k ∗K,M 0M = 0M

• The pairing operation behaves as multiplication in the semiring,
e.g., in N multiplication of natural numbers is both the multiplica-
tion operation of the semiring as well as the “pairing” operation.

(k1 ⊗K k2) ∗K,M m = k1 ∗K,M (k2 ∗K,M m)

• Tuples annotated with the one element of the semiring, e.g., tuples
with multiplicity 1 in N, contribute exactly their attribute value
to the aggregation result.

1K ∗K,M m = m

A mathematical structure that fulfills the laws shown above is called
a K-semimodule. For instance, the semimodule for sum aggregation
(SUM) and bag semantics (semiring N) is simply multiplication, the
semimodule for min aggregation (MIN) and bag semantics (N) is: return
∞ for annotation 0 and the input domain value m otherwise. The
semimodule for min aggregation and set semantics (B) returns m for
annotation ⊤ and ∞ otherwise.

As mentioned above, for provenance semirings8, it is not possible
to define a sensible semimodule operation, because the aggregation
result value cannot be determined unless a homomorphism is applied
to map the input relation to a semiring like N where this operation
is well-defined. Amsterdamer et al. (2011d) addressed this problem
by defining an extended aggregation domain whose values are bags of
elements from K ×M . Such elements are written as k ⊗m instead of
(k,m). Note that K×M with bag union and the empty bag is a monoid.
That is, we can aggregate over such bags. Note that elements from
the monoid M we started with are embedded in the new aggregation
domain through the mapping ι : M → K⊗M defined as ι(m) = 1K ⊗m.
A semimodule over such symbolic expressions can then be defined as

8But also for some other non-provenance semirings
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multiplying the semiring part of each pair in a bag by the semiring
element we are pairing with:

k ∗K⊗M

⨄︂
ki ⊗mi =

⨄︂
(k ⊗K ki) ⊗mi

Now we take the congruence of the elements from K × M with
respect to the monoid addition and semiring operations satisfying the
semimodule laws. The resulting structure is denoted as K ⊗M . As a
notational convention, elements from K⊗M are written as sums instead
of bags, e.g., the bag {{ k1 ⊗m1, k1 ⊗m1, k2 ⊗m2 }} would be written
as k1 ⊗m1 +K⊗M k1 ⊗m! +K⊗M k2 ⊗m2. For some semirings-monoid
combinations, the monoid K⊗M is isomorphic to M . That is, computing
aggregations in K ⊗M is the same as aggregation in M . For example,
this is the case for N and all of the aggregation monoids presented
above. For such K-M pairs, the operation ∗K⊗M behaves exactly like
semimodule ∗K,M . That is, an aggregation in K⊗M corresponds directly
to a concrete aggregation result value.

Any semiring homomorphism h : K1 → K2 can be lifted to a monoid
homomorphism hM : K1 ⊗M → K2 ⊗M by applying h to the semiring
part of the pairs in an K1 ⊗M -element:

hM (
∑︂

ki ⊗mi) =
∑︂

h(ki) ⊗mi

To model the output of aggregation over K-relations, Amsterdamer
et al. (2011d) map the input relation to a K-relation whose attribute
values are elements from K ⊗M using ι and sum up input values using
the addition operation of the monoid K ⊗M . For aggregation without
group-by, the result is an K-relation with a single tuple annotated with
1K (aggregation always return a single result tuple) whose attribute
value is the symbolic aggregation result. This construction may seem
opaque, but will become clear in the example shown below.

Example 33 (Aggregation over K ⊗M -relations). Reconsider the N[X]-
relation and query γsum(A)(R) from Example 32. To evaluate this ag-
gregation we first use ι to lift the input from a K-relation over numbers
to a K-relation over N[X] ⊗ SUM. The result is shown below on the left.
To calculate the sum over this lifted relation, we then use ∗N[X]⊗SUM to
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pair a tuple’s A value with its N[X] annotation and then sum up the re-
sulting N[X] ⊗ SUM values using the addition operation of N[X] ⊗ SUM
as shown below. Recall that ∗N[X]⊗SUM is defined as multiplication of
the semiring part of an K ⊗M element with the input annotation.

x1 ∗N[X]⊗SUM (1 ⊗ 3) +N[X]⊗SUM x1 ∗N[X]⊗SUM (1 ⊗ 5)
= x1 ⊗ 3 +N[X]⊗SUM x2 ⊗ 5

Note that the result value in N[X]⊗SUM encodes the computational
steps required to compute the sum in any other semiring. To illustrate
this, let us recompute the query result in N using a valuation

µ(x1) = 2 µ(x2) = 3

which maps the variables of the N[X]-relation to the N annotations
from Example 32. Lifting homomorphism evalµ to N[X] ⊗ SUM and
applying the lifted homomorphism to the query result shown below, we
get the result of the sum under bag semantics:

evalSUM
µ (x1 ⊗ 3 +N[X]⊗SUM x2 ⊗ 5)

=evalµ(x1) ⊗ 3 +N⊗SUM evalµ(x2) ⊗ 5
=2 ⊗ 3 +N⊗SUM 3 ⊗ 5

Recall that for semiring N and monoid SUM, ⊗ behaves exactly like
the semimodule ∗N,SUM and +N⊗SUM behaves exactly like +SUM. Thus,
the symbolic expression corresponds to:

=2 ∗N,SUM 3 +SUM 3 ∗N,SUM 5
=6 + 15 = 21

R over domain N[X] ⊗ SUM

A N[X]
1 ⊗ 3 x1
1 ⊗ 5 x2

Query Result

sum(A) N[X]
x1 ⊗ 3 +N[X]⊗SUM x2 ⊗ 5 1

Amsterdamer et al. (2011d) also considered aggregation with group-
by. Aggregation with group-by is challenging if the group-by values
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are symbolic (produced by a previous aggregation step). In this case,
the group membership of tuples is no longer fixed, but can vary under
different valuations. A similar problem arises when applying a selection
to filter the result of an aggregation operator, because the unknown
aggregation function result determines whether a tuple would be filtered
out or not. To be able to represent the result of such operations, the
symbolic expressions from K ⊗ M are extended with equality com-
parisons. We do not further expand on the formal definition of this
extended symbolic expressions here, but instead provide an example.
See Amsterdamer et al. (2011d) for the detailed construction.

Example 34 (Filtering Aggregation Results). Continuing with Exam-
ple 33, consider an extended query σsum(A)=15(γsum(A)(R)). Whether the
single result tuple of the aggregation fulfills the condition sum(A) = 15
depends on the value of sum(A). In semiring N[X], sum(A) is a sym-
bolic expression that does not correspond to a concrete number. For
some valuations, the selection condition may hold while for others it
may fail. As mentioned above, Amsterdamer et al. (2011d) resolves this
issue by extending the domain of tuple annotations with comparisons
between K ⊗ M values. Semiring homomorphisms are lifted to these
extended structure by applying them to the semiring values of an ele-
ment. For semrings and monoid pairs where K ⊗M is isomorphic to M ,
the equalities are evaluated and are replaced with 1K if the condition
evaluates to true and with 0K otherwise. The result of the selection is
shown below. The tuple exists if the value of the tuple is equal to 15.
This is reflected in the tuple’s annotation.

Query Result

sum(A) N[X]
x1 ⊗ 3 +N[X]⊗SUM x2 ⊗ 5 [x1 ⊗ 3 +N[X]⊗SUM x2 ⊗ 5 = 1 ⊗ 15]

Now let us apply the lifted homomorphism for the valuation shown
below (the first does not exist and the second tuple has multiplicity 3).

µ(x1) = 0 µ(x2) = 3
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Applying the lifted homomorphism the value of attribute sum(A)
evaluates to 15. Since this part works exactly as in Example 33 we omit
the details.

evalSUM
µ ([x1 ⊗ 3 +N[X]⊗SUM x2 ⊗ 5 = 1 ⊗ 15])

=

⎧⎨⎩1 if evalSUM
µ (x1 ⊗ 3 +N[X]⊗SUM x2 ⊗ 5) = evalSUM

µ (1 ⊗ 15)
0 otherwise

=

⎧⎨⎩1 if µ(x1) ⊗ 3 +N⊗SUM µ(x2) ⊗ 5 = µ(1) ⊗ 15
0 otherwise

=

⎧⎨⎩1 if 0 ⊗ 3 +N⊗SUM 3 ⊗ 5 = 1 ⊗ 15
0 otherwise

=1

The Lineage and PI-CS provenance models also support aggregation.
However, these models only compute a sufficient subset of the input as
the provenance for an aggregation result. That is, in contrast to the ex-
tended semiring model, these approaches do not enjoy the computability
property for aggregation, because it is not possible to recompute the
aggregation result based on the provenance alone without knowing the
query.

2.4.3 Datalog with Negation (First-Order Logic Queries)

We now discuss provenance models for first-order logic queries, that is
queries that are expressed as formulas in first order logic. Such queries
may contain both existential and universal quantification as well as
negation. An alternative syntax for such queries is Datalog¬ (Datalog
with negation but no recursion).9

Semiring Provenance for FOL

Grädel and Tannen (2017) and Tannen (2017) did present an extension
of the semiring framework for FOL model checking. In this framework,

9Datalog rules are existential in nature. A universal quantification can be ex-
pressed by rewriting it based on DeMorgan’s rules: ∀x : ϕ(x) ⇔ ¬∃x : ¬ϕ(x).
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πJR(x)Kν = π(R(ν(x))) πJ¬R(x)Kν = π(¬R(ν(x)))

πJxop yKν = if ν(x) op ν(y) then 1K else 0K πJ¬φKν = πJnnf(φ)Kν

πJφ1 ∨ φ2Kν = πJφ1Kν + πJφ2Kν πJφ1 ∧ φ2Kν = πJφ1Kν · πJφ2Kν

πJ∃xφKν =
∑︂
a∈A

πJφKν[x ↦→a] πJ∀xφKν =
∏︂
a∈A

πJφKν[x ↦→a]

Figure 2.14: Computing the annotation of a first-order logic formula φ based on a
K-interpretation π and valuation µ.

facts (grounded atoms) are annotated with elements from a semiring
K. Based on such a K-interpretation π and a valuation µ of the free
variables of a formula φ to values from a domain of values A, the
formula evaluates to a value πJφKν from K. The zero element of a
semiring denotes false and non-zero elements denote various shades
of truth. For instance, for semiring B the annotation of a formula
is its truth value under classical first-order logic and under semiring
N the annotation is the number of proof trees for the formula given
the valuation. Of course, here we are mainly interested in provenance
semirings and the fact that queries with negation can be expressed as
FOL formula.

Tannen (2017) used an interesting trick to deal with negation. In-
stead of extending the semiring structure with a new operation that
models negation, the input formula is transformed into negation nor-
mal form to restrict the use of negations to the atoms of the for-
mula. A formula is in negation normal form, if negation only occurs
in the form of negative facts. For a formula φ, nnf(φ) denotes the
equivalent formula in negation normal form. Any FOL formula can
be brought into negation normal form by pushing negation through
operations using DeMorgan’s rules, e.g., ¬∃x : φ ⇔ ∀d : ¬φ and
¬(φ1 ∧ φ2) ⇔ ¬φ1 ∨ ¬φ2. For example, the negation normal form of
the formula ¬∃x : marriedto(Peter, x) which checks that nobody is mar-
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ried to Peter is nnf(φnotMarried) = ∀x : ¬ marriedto(Peter, x). To deal
with negative facts (missing tuples) in formulas, Tannen (2017) defined
K-interpretations to assign separate annotations to the positive and
negative version of a fact. Not all possible such assignments are sensible.
It can neither be the case that for a K-interpretation π and fact R(a)
we have π(R(a)) = π(¬R(a)) = 0K (it is not possible for both R(a) and
its negation to be false) or π(R(a)) ̸= 0K and π(¬R(a)) ̸= 0K (both
R(a) and its negation are true).10

Figure 2.14 shows the rules for computing the K-annotation of a
formula φ based on a valuation µ and K-interpretation π. Conjunction
and universal quantification are translated into semiring multiplication,
disjunction and existential quantification are translated as semiring
addition. This is sensible, because in semiring B multiplication is con-
junction and addition is disjunction and quantification can be rewritten
into disjunction (conjunction) by grounding the formula. Note that op
denotes a comparison operator: either = or ̸=.

Provenance tracking for first-order formula has to take into account
the dual nature of facts. Towards this goal, Grädel and Tannen (2017)
and Tannen (2017) introduced a semiring structure whose elements
are polynomials over two sets of variables: variables from X which
are used exclusively to annotate positive facts and variables from X̄

are exclusively used to annotate negative literals. Note that this is a
rediscovery of an earlier approach (Damásio et al., 2013) which applied
this idea to track provenance for recursive Datalog queries with negation.
We will discuss this approach in more detail in Section 2.5.2. For any
variable x ∈ X, there exists a corresponding variable x̄ ∈ X̄ and vice
versa. For any interpretation using this semiring, we have to require
that if x annotates a fact R(a), then x̄ can only annotate ¬R(a)
(and vice versa). The elements of the new provenance semiring are
then defined to be equivalence class of polynomials from N[X ∪ X̄]
based on the congruence x · x̄ = 0. The resulting structure is denoted
by N[X, X̄]. Intuitively, this congruence encodes the logic equivalence
R(a) ∧ ¬R(a) ≡ false.

10We are oversimplifying here for educational purposes. Grädel and Tannen (2017)
uses a more general type of consistency and completeness check and related it to
properties of the semiring that is used.
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A N[X, X̄]-interpretation π fulfills two purposes: assigning a truth
value to each fact (and its negation) and decide for which facts we want
to track provenance. Interestingly, it is also possible to leave the truth
value of some facts undecided. Below, we show all feasible combinations
for annotating R(a) and ¬R(a) in π and their meaning. If we annotate
R(a) with 1 (or 0), this corresponds to asserting the fact R(a) (negated
fact ¬R(a)), but not tracking provenance for it. Annotating R(a) with
a variable x and ¬R(a) with 0 we assert that R(a) is true and that
we want to track provenance for this positive fact. Analog, annotating
¬R(a) with a variable x̄ and R(a) with 0 we assert that R(a) is false
and that we want to track provenance for this negative fact. By setting
R(a) = x and ¬R(a) = x̄, we leave the truth of R(a) undecided. Note
that R(a) = 0 and ¬R(a) = 0 lead to incompleteness, because it cannot
be the case the both the fact and its negation are false. R(a) = 1 and
¬R(a) = 1 leads to inconsistency, because it cannot be the case that
both a fact and its negation are true.

π(R(a)) = 1 π(¬R(a)) = 0 (true, no provenance)
π(R(a)) = 0 π(¬R(a)) = 1 (false, no provenance)
π(R(a)) = x π(¬R(a)) = 0 (true, track provenance)
π(R(a)) = 0 π(¬R(a)) = x̄ (false, track provenance)
π(R(a)) = x π(¬R(a)) = x̄ (undetermined)

A N[X, X̄]-interpretation π with undetermined facts represents a
set of possible worlds, one for each assignment of the undetermined
facts to truth values. The annotation of a formula computed for such
an interpretation encodes the provenance of the formula in each of
these worlds. By applying a homomorphism to such an annotation
that replaces the annotation of undetermined facts with one of four
other options shown above, we get the provenance of the formula in
this possible world. Thus, undetermined facts can be used for reverse
reasoning: given a search space of models (determined by the choice of
undetermined facts) find models that fulfill certain desirable properties.
We will discuss such hypothetical reasoning in more detail in Section 3.2.
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Example 35 (Dual Polynomial Provenance). Consider the query R− S

over relations R(A) and S(B) and let us assume that the value domain is
A = {1, 2, 3}. We can express this query as the following FOL formula:

φR−S := R(x) ∧ ¬S(x)

Note that x is a free variable in this formula. All valuations for x for
which φR−S evaluates to true (an annotation other than 0K) are the
answers of the query. The N[X, X̄]-interpretation shown below encodes
the instances of relations R and S where (i) R(1) and R(2) exists and
we want to track provenance for these facts, (ii) R(3) does not exist
and we do not want to track provenance for this negative fact, and (iii)
S(1), S(2), and S(3) do not exist and we want to track provenance for
these negative facts.

π(R(1)) = x1 π(¬R(1)) = 0 π(S(1)) = 0 π(¬S(1)) = y1̄

π(R(2)) = x2 π(¬R(2)) = 0 π(S(2)) = 0 π(¬S(2)) = y2̄

π(R(3)) = 0 π(¬R(3)) = 1 π(S(3)) = 0 π(¬S(3)) = y3̄

Consider the three possible valuations for x over A:

µ1(x) = 1 µ2(x) = 2 µ3(x) = 3

The annotations of the formula under these three valuations (query
answers) are computed by multiplying (conjunction) the annotations
assigned to the relevant R and S facts by the N[X, X̄]-interpretation π.
For example, for query result (1) (the valuation µ1), the annotation is
x1 · y1̄, the result exists if R(1) is true and S(1) is false.

πJφR−SKµ1 = x1 · y1̄ πJφR−SKµ2 = x2 · y2̄ πJφR−SKµ3 = 0 · y3̄ = 0

Provenance Games

Köhler et al. (2013) introduced provenance games, a graph-based
provenance model for non-recursive Datalog queries with negation. This
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Q(X) :− R(X,Y ),¬ R(Y,X) (r)

¬Q(a) Q(a) ¬Q(b) Q(b)

r(a,a) r(a,b) r(b,a) r(b,b)

g1(a, a) g2(a, a) g1(a, b) g2(b, a) g1(b, a) g2(a, b) g1(b, b) g2(b, b)

¬R(a,a)

R(a,a)

¬R(a,b)

R(a,b)

¬R(b,a)

R(b,a)

¬R(b,b)

R(b,b)

rR(a, a) rR(a, b)

¬Q(a) Q(a) ¬Q(b) Q(b)

r(a,a) r(a,b) r(b,a) r(b,b)

g1(a, a) g2(a, a) g1(a, b) g2(b, a) g1(b, a) g2(a, b) g1(b, b) g2(b, b)

¬R(a,a)

R(a,a)

¬R(a,b)

R(a,b)

¬R(b,a)

R(b,a)

¬R(b,b)

R(b,b)

rR(a, a) rR(a, b)

Figure 2.15: Example instantiated game (top) and solved game (bottom).
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approach constructs a graph modeling the evaluation of the query. This
type of graphs are called instantiated games. An instantiated game
GQ,D for a query Q and database D can be interpreted as the game
graph of a two player game (in the game-theoretic sense). Köhler et al.
(2013) demonstrated that the existence of winning strategies for a player
starting at one of the positions (nodes) of the game is intimately related
to the success / failure of rules and goals as well as to the existence of
tuples. By labeling each node in the graphs as winning (green) if there
exists a winning strategy for a player starting at this node and loosing
(red) otherwise, we get what we will refer to as a solved game Gγ

Q,D.11

Some of the edges in a solved game correspond to moves in the game
that are disadvantageous for the player taking such a move. It turns
out that “good” moves that are “provenance-relevant” and “bad” moves
should be removed from the provenance graph. The result of removing
all edges corresponding to bad moves is called a provenance game and
is denoted by ΓQ,D. The provenance game for an idb tuple t is then the
subgraph of ΓQ,D containing all nodes reachable from the tuple node
for t.

Instantiated Games The nodes of such a graph represent the grounded
atoms, goals, and rules of a Datalog program wrt. to the active domain
of a database and the also encode which tuples exist in the database.
For each idb and edb relation, the graph contains for each tuple that can
be formed using values of the active domain of the database a positive
and negated tuple node. The positive version represents the claim that
the tuple exists and the negated version represents the claim that the
tuple does not exist. Furthermore, the graph contains a node for each
grounded rule instance and grounded versions of goals in a grounded
rule’s body. For a grounded rule there exists a node labelled r(c) where
c is the tuple of constants bound to the variables of the rule (sorted
based on the order of occurrence of variables in the rule). A goal node
labelled gi(c) denotes the ith grounded goal of a grounded rule with
arguments c. Rules nodes are connected to goal nodes. Positive goals

11The type of two player games considered here permit draws. However, instan-
tiated games FOL queries (non-recursive Datalog without recursion) do not have
drawn positions.
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are connected to negated tuples, negated goals are connected to positive
tuples. idb tuples are connected to the rules that derive them. Negated
tuples are connected to positive tuples. Furthermore, there are special
nodes (fact nodes) for tuples of edb relations. Positive edb tuple nodes
are connected to such fact nodes.

Example 36 (Instantiated Provenance Game). Figure 2.15 shows the
instantiated game the following query and database:

Q(X) :− R(X,Y ),¬R(Y,X) (r)
D := {R(a, a),R(a, b)}

Note that the active domain of the database and query is {a, b}. Thus,
there are two tuple nodes for the idb predicate Q (Q(a) and Q(b)). There
are four possible ground instances of rule r (r(a, a), r(a, b), r(b, a), and
r(b, b)). The instantiated game contains two fact nodes representing the
two tuples in the database. Grounded rule nodes are connected to the
nodes for tuples they derive and to grounded goal nodes. For example,
consider the following ground instance of rule r:

Q(a) :− R(a, a)⏞ ⏟⏟ ⏞
g1(a,a)

,¬R(a, a)⏞ ⏟⏟ ⏞
g2(a,a)

The tuple node Q(a) is connected to this grounded rule (r(a, a)). This
node, in turn, is connected to nodes representing the two grounded
goals in the body of this grounded rule instance. The first goal asserts
the existence of edb tuple R(a, a) and is connected to negated tuple
node ¬R(a, a) while the second goal asserts that R(a, a) does not exist
and is connected to tuple node R(a, a).

The reason why positive goals are connected to negated tuples (and
vice versa) will become clear when we discuss the interpretation of such
a graph as a two-player game.

Solved Games An instantiated game can be interpreted as the game
graph of a two player game. In a game graph the nodes represent
positions of the game and the edges represent allowable moves. A play
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of such a game starts in one of the positions. The two players playing
the game take turns picking moves (chose one of the outgoing edges of
the current node). If the current position has no outgoing edges (valid
moves), then the player whose turn it is looses the play. A position of a
game is winning, if the player starting in this position has a winning
strategy, i.e., if no matter what moves the opponent takes, the starting
player can force a win. A position is loosing if there exist a winning
strategy for the opponent (the player that does not start in this position).
We can label the positions of a game as won (green) and lost (red) based
on the existence of winning strategies. The reason for this excursion
into game theory is that, as was demonstrated in Köhler et al. (2013),
the following holds:

• Tuples: A tuple exists iff the position corresponding to the tuple
is won.

• Rules: A grounded rule is successful iff the position corresponding
to the rule is lost.

• Goals: A goal is successful if the position corresponding to the
goal is won.

That is, in a precise sense a solved game encodes query evaluation.

Example 37 (Solved Game). Figure 2.15 (bottom) show the solved
version of the instantiated game discussed in Example 36. Tuple node
Q(a) is a winning position, that is this tuple belongs to the result of
the query. Only one of two grounded rules deriving this result succeeds.
This grounded rule r(a, b) is lost in the solved game. The grounded
rule is successful, because all of the gaols in its body succeeded (the
corresponding goal nodes are won). The first goal succeeds because
tuple R(a, b) exists (is won). The second goal succeeds, because tuple
R(b, a) does not exist (is lost). The other grounded rule deriving this
result (r(a, a)) failed, because it’s second goal fails. This goal (¬R(a, a))
failed because tuple R(a, a) exists.

Note that the structure of the instantiated game, specifically how
goals are connected to tuple nodes and the existence of fact nodes,
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Q(a) r(a,b)

g1(a, b)

g2(b, a)

¬R(a,b) R(a,b)

R(b,a)

rR(a, b)

Figure 2.16: Subgraph of the solved provenance game encoding the provenance
of Q(a). This tuple’s existence is justified by the successful grounded rule instance
r(a, b). This grounded rule succeeds, because tuple R(a, b) exists and tuple R(b, a)
does not exist.

is chosen such that correspondence between won / lost positions and
existing / missing tuples holds.

Provenance Game Given a winning position, not all outgoing moves
may guarantee a win. In particular, moving to a losing position is a
“winning” move, while moving to a wining position is a “loosing” move,
because the opponent can force a win from this position. Intuitively,
the existence of winning moves is what causes a position to be winning
and the lack of winning moves (all moves lead to winning positions) is
what causes a position to be lost.

Example 38 (Provenance Game). Continuing with Example 37, Fig-
ure 2.16 shows the provenance game for Q(a), i.e., the subgraph of the
solved game from Figure 2.15 containing only nodes reachable from
Q(a) through winning edges. For example, there are two edges starting
in Q(a) corresponding to the two grounded rule instances r(a, a) and
r(a, b). Only the later is successful (lost in the game). Moving from Q(a)
is a loosing move, because node r(a, a) is won and the subtree rooted at
this node is not included in the provenance game for Q(a). Intuitively,
this is what we would expect, because only successful rule derivations
contribute to the existence of a query result. All nodes reachable from
r(a, b) are reachable through winning moves and, thus, are included in
the provenance game for Q(a).

Note that a provenance game explains both successful derivations
of existing tuples as well as why the derivation of missing tuples failed.
In Section 2.4.3 we will discuss how provenance games are used to unify
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provenance with why-not provenance (explaining why a tuple is not in
the result of a query).

Condensing Provenance Games Note that some nodes in provenance
games only exist to ensure the correspondence between winning strate-
gies and the existence of tuples. Such nodes can be removed without
loosing information if we forsake the interpretation of provenance graphs
as games. Lee et al. (2018) and Lee et al. (2017) introduced a prove-
nance graph model that encodes precisely the same information as
provenance games, but avoids such redundancies. These graphs only
have a single node for each tuple t instead of a negated and positive
tuple node. Furthermore, the rule nodes are labelled as “won” (green)
if the grounded rule is successful.

Lee et al. (2018) proved that N[X, X̄]-provenance can be extracted
efficiently from provenance games and, thus, also from the provenance
graph model of Lee et al. (2017). The main difference between such
provenance graphs / games and FOL semiring annotation is (i) that
these models are more verbose and (ii) that they encode which rules
were used to derive a result. Thus, for use cases like debugging Datalog
queries where the provenance should accurately reflect the derivation
using the rules of the query, provenance games are preferable, while for
use cases where the query syntax is irrelevant the FOL semiring is a
superior choice.12

Why-not provenance and Queries with Negation

Provenance for queries explains how results of a query are derived from
the query’s inputs. In contrast, why-not provenance explains why a
query result is missing. Why-not provenance has sometimes also been

12Note that it is possible to track rule derivation in semirings by annotating each
rule with an annotation and multiply monomials corresponding to a grounding of
a rule r with the annotation of r. This further reduces the distinction between the
two model. One remaining difference though is that the provenance game model
“foctorizes” provenance based on the structure of the query. This is exploited in Lee
et al. (2018) to choose a factorization that is worst-case optimal in size using the
factorization techniques from Olteanu and Závodný, 2015.
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referred to as explanations for missing answers. We will use the term
why-not provenance.

Why-not provenance techniques can be classified (Herschel et al.,
2017) based on whether they explain a missing answer based on missing
and existing input tuples (instance-based explanations) or identify which
parts of the input query caused the failure to derive the missing answer
(query-based).

Example 39 (Instance-based versus Query-based Explanations). Relations
train(from, to) and city(name, pop) shown below store train connections
and cities with their population. Query Q returns cities that have
a population of at least 6 million people and are starting points of
train connections. Given such a query, a user may be surprised to see
that Chicago is not in the result. That is, the user is interested in
an explanation for why (Chicago) ̸∈ Q(D). Instance-based approaches
explain such missing answers based on the input database. For example,
they may enumerate tuples that could be inserted into D such that
evaluating Q over the resulting database returns the missing answer.
In our example, inserting, e.g., (Chicago, 10, 000, 000) into relation city
would be sufficient for producing the missing answer. Query-based
explanations assume that the input database is correct. The failure
to derive the missing answer is explained by identifying parts of the
query that can be held responsible for not producing the missing answer.
In our example, one possible such explanation is that the selection’s
condition is too restrictive. For instance, if we change the condition to
pop > 2, 000, 000, then Chicago would be returned by the query.

Πfrom(train ▷◁from=name σpop>6,000,000(city))

train
from to

Chicago New York
Chicago Portland

New York Boston

city

from pop
Chicago 2,695,598

New York 8,336,817
Boston 692,600

Portland 654,741

Q

from
New York
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Traditionally, provenance and why-not provenance have been studied
independently of each other. However, as observed in Köhler et al. (2013),
for queries with general negation there is no clear distinction between
the two problems. Explaining why a t is not in the result of a query
Q is equivalent to asking why t is in the result of the complement QC

of the query. The complement QC of a query Q returns all tuples of
the schema of Q that are not returned by Q. Let us use TupQ,U to
denote all tuples over domain U with the same arity as Q, i.e., all tuples
that could be produced by Q. For the complement QC or Q and every
database D we require that:

∀t ∈ TupQ,U : t ∈ QC(D) ⇔ t ̸∈ Q(D)

Note that the complement of a query is only has finite results over
finite domains. An alternative to defining the complement over some
universal domain U is to require that only values that exist in the
database or query are considered as viable attribute values for tuples.
Note that this is the so-called active domain of the database adom(D).
Similar to the notation above we use TupQ,adom(D) to denote all tuples
with the same schema as the result of query Q with values from the
active domain of the database D. The alternative definition of the
complement of a query is:

∀t ∈ TupQ,adom(D) : t ∈ QC(D) ⇔ t ̸∈ Q(D)

Note that the complement of a query Q from a class of queries C
may not be expressible in this class. For example, the complement of
positive relational algebra queries (RA+) is not expressible in RA+,
because it requires the use of negation.

Example 40 (Complement of a Query). Consider the Datalog query
shown below that returns cities that are starting points of train con-
nections over a database with a single edb relation train(from, to). The
complement of this query can be computed by negating Q. However,
this would result in an unsafe rule. To ensure safety we have to “guard”
the negated atom Q(X) by ensuring that X appears positively in the
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body. Towards this goal we use an unary predicate adom that contains
all values from the activate domain of the database. This is computed
by projecting the edb relation on each of its attributes.

Q(X) :− train(X,Y )
QC(X) :− adom(X),¬ Q(X)

adom(X) :− train(X,Y )
adom(X) :− train(Y,X)

Evaluating these queries over the edb instance shown below, Q
returns Chicago and New York (these cities are starting points of train
connections) and QC returns Portland and Boston (these cities are not
starting points of train connections).

train
from to

Chicago New York
Chicago Portland

New York Boston

Q

X
Chicago

New York

QC

X
Portland
Boston

Based on the realization that why-not provenance and why-provenan-
ce are two sides of the same coin for provenance models that support
classes of queries that are closed under taking complements (which
requires support for negation), we can use provenance models for such
classes of queries to explain missing answers. However, instance-based
approaches for missing answer can track dependencies on missing input
tuples. That is, we have to use provenance models, such as the prove-
nance games and dual polynomials model, that can track missing inputs
as dependencies.

Example 41 (Explaining Missing Answers with Provenance). Using prove-
nance games (or the equivalent graph model from Lee et al. (2018)
and Lee et al. (2017)) or the FOL semiring approach, we can track the
provenance of missing answers. In this example, we will show both the
FOL semiring approach and show provenance graphs according to Lee
et al. (2018). The boolean query shown below as a FOL formula and as
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train
from to

Portland Chicago
Boston Portland

train (Dual Polynomials)

π(train(Portland, Portland)) = 0 π(¬train(Portland, Portland)) = 1
π(train(Portland,Chicago)) = 1 π(¬train(Portland,Chicago)) = 0
π(train(Portland,Boston)) = 0 π(¬train(Portland,Boston)) = 1
π(train(Chicago, Chicago)) = 0 π(¬train(Chicago, Chicago)) = x2̄

π(train(Chicago,Boston)) = 0 π(¬train(Chicago,Boston)) = x3̄

π(train(Boston,Chicago)) = 0 π(¬train(Boston,Chicago)) = 1
π(train(Boston,Boston)) = 0 π(¬train(Boston,Boston)) = 1

Figure 2.17: Example train connections and N[X, X̄]-interpretation for computing
the why-not provenance explaining why Chicago has no outgoing train connections

Datalog query returns true if there are no train connections starting
in Chicago. For simplicity, we assume that the active domain of the
database can be accessed through a predicate adom. Recall that for
the FOL semiring approach we need to first translate the formula φ
into negation normal form (nnf), because this approach only supports
negation at the fact level.

φ := ¬∃x : train(Chicago, x)
nnf(φ) := ∀x : ¬train(Chicago, x)

Q() :− adom(X), train(Chicago,X) (r1)

Figure 2.17 shows an example instance of the train relation. Assuming
that Portland, Chicago, and Boston are the only cities, we can construct
a N[X, X̄]-interpretation of all positive and negated facts. Here we assign
all facts a truth value, but only track negated facts for train connections
starting in Chicago by assigning them negated provenance tokens (x1̄,
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Q()

r1(Chicago) r1(Portland) r1(Boston)

g11(Chicago) g12(Chicago) g11(Portland) g12(Portland) g11(Boston) g12(Boston)

adom(Chicago) train(Chicago,Chicago) adom(Portland) train(Chicago,Portland) adom(Boston) train(Chicago,Boston)

Figure 2.18: Provenance graphs explaining why there are no outgoing train connec-
tions from Chicago.

x2̄, and x3̄). Using this interpretation the annotation for the formula φ
is derived as follows:

πJnnf(φ)Kν

=
∏︂

c∈{Chicago,P ortland,Boston}
π(¬train(Chicago, c))

=π(¬train(Chicago, Chicago))
· π(¬train(Chicago, Portland))
· π(¬train(Chicago,Boston))

=x1̄ · x2̄ · x3̄

The result can be interpreted as follows: there are no outgoing train
connections from Chicago as long as all three possible such train con-
nections do not existing the database. Figure 2.18 shows the provenance
graph according to Lee et al. (2018) for the Datalog version of this query.
Recall the green (light) nodes are successful goal and rules (existing
tuples) and red (dark) nodes are failed rules and goals (missing tuples).
The query returns true, because there are three grounded versions of
rule r1 (with X = Chicago, X = Portland, and X = Boston) that
successfully derive this result. Each of these grounded rule instances is
successful, because both of its goals are successful. The first goal of each
of these grounded rules is successful, because the binding for X exists in
the active domain (adom). The second goals are successful, because the
corresponding outgoing train connection does not exist. Observe the
differences between these two provenance models. The FOL semiring
expression is much more concise, but the provenance graph provides
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additional information about how the rule of the query has derived the
result.

While such provenance models are expressive enough to explain miss-
ing answers, directly applying them to explain missing answers is not
practically feasible. The reason is that, as mentioned above, the number
of possible tuples is typically very large. Approaches for why-not prove-
nance address this issue by using compact representations of provenance
such as pattern-based summaries (Lee et al., 2020) or constraint-based
symbolic models (Herschel and Hernandez, 2010; Herschel et al., 2009),
or by just returning part of the provenance (Wu et al., 2014; Wu et al.,
2013). We will discuss such representations and how they are computed
in detail in Section 4.1 and Section 4.3. Reconsider Example 39 and
let us assume that any natural number below 100 million is viable as a
value for attribute pop (a city’s population). Then inserting any tuple
(Chicago, c) for 6, 000, 000 < c < 100, 000, 000 into relation city would
cause (Chicago) to appear in the query result. This set of tuples can
be compactly encoded as a C-table (Imieliński and Lipski Jr, 1984), i.e.,
a relation where attribute values can be constants and variables from a
set Σ and each tuple is associated with a so-called local condition which
is a logical formula that constraints under which conditions the tuple
exists.

(Chicago, x) for x > 6, 000, 000 ∧ x < 100, 000, 000
(Encoding why-not provenance compactly using constraints)

This type of encoding of the why-not provenance has been used by,
e.g., Herschel and Hernandez (2010) and Herschel et al. (2009).

The causality framework from Meliou et al. (2010) can also be used
to compute which missing inputs are causes for missing query answers by
slightly adapting the definition of causes as shown below. This definition
assumes that a set of possible missing input tuples Dn with Dn ∩D = ∅
is provided by the user.13

13Dn is called the set of endogenous tuples. For the positive case (called Why-
so Meliou et al. (2010)), the user can decide which tuples from the input database
should be consider as possible causes (are endogenous) and which ones should not
be considered as causes (are exogenous).
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Definition 23 (Actual Causes (Missing Answers)). A tuple tcause ̸∈ D is
an actual cause for a tuple t ̸∈ Q(D), if there exists Γ ⊆ Dn − {tcause},
called a contingency, such that the following conditions hold:

t ̸∈ (D ∪ Γ)
t ∈ (D ∪ Γ ∪ {tcause})

Reconsider scenario from example 40. We are interesting in know-
ing why there are no outgoing train connections from Chicago. We
consider the missing train connections train(Chicago, Portland) and
train(Chicago,Boston) as endogenous and all other missing tuples as
exogenous. Both of the endogenous tuples are counterfactual (and, thus,
also actual) causes for the empty result tuple (the query is boolean).
That means, that the query returns true (the empty tuple) as long as
one of these two tuples is inserted into the input database.

2.5 Recursion and Iteration

In this section, we discuss provenance models that support recursion
or iterative queries. The challenge dealing with recursion is that under
certain provenance semantics, recursive queries can lead to infinite
provenance, because there may exist infinitely many derivations of a
result. We will use Datalog to express recursive queries and will discuss
semiring provenance for recursive Datalog queries.

As a prerequisite, we review the semantics of non-recursive Datalog
over K-relations. Recall the semantics for Datalog queries discussed
in Section 1.3.3. For now, we will only consider unions of conjunctive
queries (the query class UCQ), i.e., Datalog programs without negation
and recursion where all rules have the same idb predicate in their head,
say Q, and no idb predicates appear in the body of rules. In terms of
expressive power, this class of queries is equivalent to positive relational
algebra without generalized projection and where selection (and join)
conditions are limited to equality comparisons. Consider such a Datalog
program with n rules:
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r1 : Q(X1) :− R11(X11), . . . ,R1k1(X1k1)
. . .

rn : Q(Xn) :− Rn1(Xn1), . . . ,Rnkn(Xnkn)

We now define the semantics of UCQ queries over K-relations fol-
lowing Green et al. (2007a). Note that our notation differs slightly from
the one used in Green et al. (2007a). A valuation φ for a rule r is a
binding of the variables of the rule to constants from the database. The
set of all constants that occur in the database is referred to as the active
domain adom(D) of the database D). For a Datalog rule r we use r[φ]
to denote the result of applying the valuation φ to the rule r. We refer
to r[φ] as a grounded rule. For an input database D, the body of a
grounded rule evaluates to either true of false. We say a grounded rule
r[φ] derives a tuple t if the head of r[φ] is Q(t). We use Ground(r, t) to
denote the set of all grounded instances of rule r which derive t.

The annotation of a result tuple t of a UCQ query Q evaluated over
a K-database D is the sum over all the annotation of all grounded rules
of Q wrt. D. The annotation corresponding to a grounded rule is the
product of the annotations associated to all atoms appearing the body
of the rule.

Q(t) :=
∑︂
r∈Q

∑︂
r[φ]∈Ground(r,t)

∏︂
Ri(t′)∈body(r[φ])

Ri(t′)

(Semantics of UCQ queries over K-relations)

Note the correspondence to RA+over K-relations. In relational
algebra, a Datalog rule can be expressed as join over all relations in
the body of the rule and a projection corresponding to the head of the
rule. Thus, each grounded rule’s body corresponds to a single join result
(computed as the multiplication of input tuple annotations). Multiple
grounded instances of a rule may derive the same output tuple (multiple
join results may be projected onto the same output tuple). Thus, we
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need to sum up (projection) the annotations for all of these join results.
Furthermore, a result may be derived by more than one rule (belongs
to multiple inputs that are “unioned” together). Thus, the annotations
for each of these rules should be summed up.

Example 42 (UCQ over K-relations). Figure 2.19 shows a UCQ query
which returns the end points of paths of length up to 2 that exists in
an input graph. The edb relation edge stores the edge relation of the
input graph. For example, there are two grounded rules that produce
result tuple ta,a = (a, a) and succeed over the example database:

up2hop(a, a) :− edge(a, a)
up2hop(a, a) :− edge(a, a), edge(a, a)

The annotation corresponding to the first grounded rule is x1 and the
one for the second one is x1 · x1 = x1

2. Thus, this tuple is annotated
with x1 + x1

2.

a b c

x1

x2 x3

r1 : up2hop(X,Y ) :− edge(X,Y )
r2 : up2hop(X,Z) :− edge(X,Y ), edge(Y,Z)

edge

start end N[X]
a a x1
a b x2
b c x3

Query Result (up2hop)

X Y N[X]
a a x1 + x1

2

a b x2 + x1x2
b c x3
a c x2x3

Figure 2.19: Datalog over K-relations
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a b c

x1

x2 x3

TC(X,Y ) :− edge(X,Y )
TC(X,Z) :− TC(X,Y ), edge(Y,Z)

edge
start end N[X]

a a x1
a b x2
b c x3

Query Result (TC)

X Y N∞[[X]]
a a x1 + x1

2 + x1
3 . . .

a b x2 + x1x2 + x1
2x2 + x1

3x2 + . . .
b c x3
a c x2x3 + x1x2x3 + x1

2x2x3 + . . .

Figure 2.20: Example recursive query: transitive closure of the edge relation of a
directed graph. Additional edges that are part of the transitive close, but not the
input edge relation are shown as dashed, red arrows. The provenance of edges in the
result of the query that start in node a have an infinite number of derivations that
differ in the number of repetitions of the self-loop.

When moving from UCQ to Datalog with recursion, the formula for
computing the annotation of a query result is no longer sufficient. The
reason is that the body of a grounded rule may reference annotations of
idb tuples that depend on the annotation of the tuple at the rule’s head.

Example 43 (Recursive Datalog over K-relations). Figure 2.20 shows a
Datalog program that computes the transitive closure (TC) of the edge
relation of a directed graph. Each derivation of a query result through
the rules of the query corresponds to a path in the graph. In contrast
to our previous example, these paths may be of arbitrary length. For
instance, there are infinitely many ways of deriving the result (a, a) by
taking the edge annotated with x1 a given number of times. Figure 2.21
shows the proof trees for some of these derivations. Thus, the provenance
polynomial is an infinite sum:

∞∑︂
i=1

x1
i



102 Provenance Models - Formalizing Provenance Semantics

TC(a,a)

edge(a,a)

TC(a,a)

TC(a,a)

edge(a,a)

. . .

TC(a,a)

TC(a,a)

TC(a,a)

edge(a,a)
x1 x1

2 x1
n

Figure 2.21: Proof trees for result edge(a, a)

To be able to express infinite sums we have to extend N[X] with support
for infinite sums. The solution is to use the semiring N∞[[X]] whose
elements are formal power series. A formal power series is a (possibly
infinite) sum of monomials with coefficients (that may be infinite) such
as the sum shown above.

Green et al. (2007a), the paper that introduced the semiring prove-
nance model, did present an algorithm for computing such formal power
series. Specifically, the authors did demonstrate that the provenance
of a recursive (positive) Datalog query of query result is the solution
of an algebraic system of equation whose variables are the annotations
of edb and idb tuples. The least fixpoint of such a system of equations
is then the result of the recursive query evaluated over an input K-
database. For example, the part of the equation for the result tuple
T(a, a) from Figure 2.20 is:

xTC(a,a) = x1 + xTC(a,a)x1 (2.2)

Luttenberger and Schlund (2014) showed that for certain queries
and semirings, it is possible to represent the provenance as regular
expressions. For example, the infinite sum from the example above
can be written as the regular expression x1

∗. Algorithms for solving
algebraic systems of equations over semirings have received attention in
other contexts. For instance, Esparza et al. (2007), Luttenberger and



2.5. Recursion and Iteration 103

r1(a, a) r2(a, a, a)

TC(a,a)

edge(a,a)

Figure 2.22: A provenance graph ac-
cording to Köhler et al. (2012) for the
transitive closure query result TC(a, a)

× ×

+ TC(a,a)

+ edge(a,a)

Figure 2.23: Provenance Circuit for
TC(a, a)

Schlund (2013), and Esparza et al. (2014) present methods for solving
such equation systems.

2.5.1 Circuits and Provenance Graphs for Datalog Derivations

An alternative to encoding all possible derivations using formal power
series is to encode the algebraic equation system that determines the
annotations of tuples as a graph. Köhler et al. (2012) did introduce a
graph-based provenance model for Datalog with recursion. Such graphs
contain nodes representing tuples and nodes representing grounded
rules (the labels of such nodes encode the valuation). Figure 2.22
shows an example of such a graph for tuple TC(a, a) in the result
of the transitive closure query from Figure 2.20. Note how the graph
encodes Equation (2.2): rule nodes encode multiplication while multiple
incoming edges for a tuple node represent addition. One advantage of
such provenance graphs is that they are better suited for debugging
complex queries, because they are based on the syntactic structure
of the queries making it easier to identify which parts of a program
caused a bug. Similar data structures have also been used as compressed
representations of such algebraic equation systems, e.g., see Esparza et al.
(2014). Another related representation are circuits. Deutch et al. (2014)
studied the applicability of circuits for encoding semiring annotations
that are the result of recursive Datalog queries and identified for which
classes of semirings this is possible (semirings which are absorptive).
Circuits also have been used to compactly represent provenance for
non-recursive queries with negation (monus-semirings) in Amarilli et
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al. (2015) and Senellart (2017). Figure 2.23 shows the provenance
circuit for TC(a, a) using the notation from Senellart (2017). Note the
correspondence to the provenance graph from Figure 2.22. Deutch et al.
(2014) presented several optimization for such circuits that are based
on absorption. For instance, self-dependencies can be removed, because
they are redundant for absorptive semirings.

2.5.2 Recursive Datalog with Negation Under Well-founded Se-
mantics and Answer Set Programming

Provenance Circuits and formal power series are defined for Datalog
without negation. Several semantics have been proposed for Datalog
queries that contain both recursion and negation, e.g., stratified seman-
tics which is only applicable to programs without cycles (recursion)
that contain negation. Damásio et al. (2013) introduced a provenance
model for the so-called well-founded semantics (Van Gelder et al., 1991;
Flum et al., 1997; Kemp et al., 1995) which is defined for any recursive
Datalog programs with negation, even programs where recursion goes
through negation. A canonical example is the program shown below
which, interpreted under well-founded semantics, computes that win-
ning positions of a two-player game (the type of game we discussed
in Section 2.4.3).

win(X) :− move(X,Y ),¬win(X)

The provenance model of Damásio et al. (2013) uses the m-semiring
KW hyNot of equivalence classes of boolean formulas over a set of vari-
ables. The set of variables used is specific to a Datalog program P . It
contains one variable for each grounded rule of the program (this model
also tracks transformations) and two variables xr(a) and x¬r(a) for each
grounded atom in the Herbrand Base H of P . As mentioned before this
work was the first to use separate provenance tokens for positive and
negative facts. This trick is also used by the FOL semiring approach
described in Section 2.4.3. Recall that the Herbrand Base of a logic
program consists of all grounded atoms based on the active domain of
the program. Note that in contrast to the definition of Datalog programs
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we have used where the program and edb database instance are separate,
here the program includes the data as logical facts. Similar to the K-
interpretations from Section 2.4.3, an interpretation of a logic program
is then a mapping that assigns to each atom in the H a Boolean formula,
i.e., an element of semiring KW hyNot. Damásio et al. (2013) presented
fixpoint algorithms that compute the interpretations of positive pro-
grams based on a generalization of the immediate consequence operator
and of programs with negation using a fixpoint computation that closely
mirrors the alternating fixpoint computation of well-founded seman-
tics (Van Gelder et al., 1991). Furthermore, Damásio et al. (2013) also
applied this model to track the provenance of answer set programming.
Answer set programming extends Datalog with non-determinism. One
way to express this is through rules with disjunctions in their head.
Intuitively, a rule encodes a set of possible worlds (any of the atoms in
the head could be true). An answer set program may have multiple solu-
tions. Extending their work on semiring annotations for first-order logic,
Grädel and Tannen (2020) studied semiring annotations for fixed-point
logic and games.

2.6 Transformation Provenance

When discussing provenance models in this chapter, we have mostly
focused on the data dependencies encoded by these models. However, we
have already seen that some models track additional information related
to how a data item was produced by a transformation. For example,
the provenance polynomials model distinguishes between conjunctive
and disjunctive use of inputs. Another example are the provenance
traces of Cheney et al. (2014) which provide a detailed account of a
query’s computation and provenance games which record how the rules
of a Datalog query are used to derive a result. Provenance models for
updates such as the MV-semiring provenance model Arab et al. (2018b)
and Arab et al. (2016) and the model from Bourhis et al. (2020) also
track which transformations (updates) affected a result. We will discuss
these models in more depth in Section 2.7.

In this section, we will discuss models that track transformation
dependencies and take a closer look at the transformation dependencies
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tracked by the models we have introduced earlier. Note that, as men-
tioned earlier, for why-not provenance this type of provenance has been
called query-based explanations.

2.6.1 Provenance for data integration and exchange

We start by reviewing provenance models that track transformation
dependencies in data integration and exchange. For that we briefly
review the foundations of data exchange to the extend necessary to
understand these provenance models. We refer the interested reader to
Fagin et al., 2005b, the seminal paper that formalized data exchange.
In data exchange, we are given a schema mapping M = (S,T,Σ)
which consists of a source schema S, a target schema T, and a set of
logical constraints Σ relating the elements of the two schemata, and
an instance I of the source schema. The task is to translate instance I
into an instance J of T such that (I,J) fulfills Σ. The constraints Σ are
expressed in some logical formalism, a common one being the language
of source-to-target tuple-generating dependencies (st-tgds), An st-tgd is
FOL formula of the form

∀x : ϕ(x) → ∃y : ψ(x,y)

where ϕ is a conjunction of atoms from the source schema and ψ is
a conjunction of atoms of over the target schema. Intuitively, a st-tgd
specifies the requirement that if a certain set of tuples exist in the
source instance than a corresponding set of tuples has to existing in the
target instance. A solution for schema mapping is any target instance
J (an instance of T) such that (I,J) |= Σ. Note that the existentials in
ϕ are used to deal with elements (attributes) from the source schema
that have no correspondence in the target, i.e., we have to “invent”
values for such attributes. Because of the existence of existentials and
because of the open world assumption that is made in data exchange
(the target instance is allowed to contain data that does not stem from
applying the schema mapping to the source instance), data exchange
scenarios typically have infinitely many solutions. Fagin et al. (2005b)
demonstrated how to represent a subspace of these solutions relevant
for answering a certain class of queries as an incomplete database called
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Source Schema

LivesAt(Name, City)

Source Instance

LivesAt
Name City
Alice Chicago
Bob New York

Target Schema

Person(Name,Address)
Address(Id,City)

Universal Solution

Person
Name Address
Alice n1
Bob n2

Address
Id City
n1 Chicago
n2 New York

st-tgds

σ1 : ∀x, y : LivesAt(x, y) → ∃z : Person(x, z), Address(z, y)

Figure 2.24: Example data exchange scenario

the universal solution. While the set of possible worlds represented
by a universal solutions are typically infinite, using an encoding of
incomplete relations as tables with labelled null values (V-tables, see
Imieliński and Lipski Jr (1984)). Queries over the target instance are
then answered using certain answer semantics, i.e., only results that exist
in every possible world are returned. Importantly, union of conjunctive
queries can be answered efficiently over the universal solution for a
data exchange scenario. However, we will not dive deeper into these
intricacies of data exchange.

Example 44 (Data Exchange Scenario). Consider the data exchange
scenario shown in Figure 2.24. The source schema consists of a relation
LivesAt that stores the names of persons and the city they live. This
schema is mapped to a target schema with two relations Person and
Address storing the name of persons and the the address they live at. The
attribute address of relation Person is a foreign key to relation Address
that stores the identifier and city of addresses. The tgd σ1 vertically
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partitions the LivesAt relation into the Person and Address relations.
In the source, addresses do not have an identifier. The existentially
quantified variable z is used to ensure that when splitting a LivesAt tuple
into a Person and Address tuple, the association between the person
and their address is preserved. The example source instances stores the
addresses of two persons. A universal solution for this data exchange
scenario is shown on the bottom right of Figure 2.24. Labelled nulls n1
and n2 are used to represent the unknown identifiers of the Chicago
and New York address, respectively.

It has been shown that it is possible to use query languages, e.g.,
SQL, to compute universal solutions. These query languages do not
support incompleteness14, but it is possible to simulate the semantics
of labelled nulls to the degree that is sufficient for query answering by
using Skolem functions.15

Routes for Schema Mappings

Chiticariu and Tan (2006) introduce a provenance model for schema
mappings that uses “routes” to explain why a tuple is in the target
instance of a solution for a schema mapping. A route is a sequence
of “satisfaction steps” each of which of the form K1

σ,h→ K2. Here
σ : ∀ϕ(x) → ∃y : ψ(x,y) is a tgd, K1 is an instance of (I,J) that
fulfills σ and h is a homomorphism such that h(ϕ(x)) ⊆ K1 and K2 =
K1 ∪ h(ψ(x,y)). Intuitively, a route step is the “application” of a tgd
whose premise is fulfilled and records the consequence of the tgd for a
particular premise.

Example 45 (Routes). One possible route for Example 44 is shown
below. Using the homomorphism {x ↦→ Alice, y ↦→ Chicago, z ↦→ n1},

14While SQL supports incompleteness through NULL values, it does not support
the open world assumption, queries do not return certain answers, and there is no
support for labelled nulls.

15The use of function symbols to encode which values an unknown value depends
on has a long-standing tradition in data integration (Hull and Yoshikawa, 1990;
Arocena et al., 2013) and has been the basis of more expressive schema mapping
languages such as SO-tgds (Fagin et al., 2005a).
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mapping σ derives the target instance tuples Person(Alice, n1) and
Address(n1, Chicago).

{LivesAt(Alice, Chicago)} σ1,h→ {Person(Alice, n1), Addres(n1, Chicago)}
h = {x ↦→ Alice, y ↦→ Chicago, z ↦→ n1}

Mapping and Transformation Provenance

Glavic et al. (2010) and Glavic et al. (2011) introduced a provenance
model that tracks the transformation dependence of a tuple on the
schema mappings that were used to derive it as well as the part of the
(relational algebra) transformation that implements these mappings
which is responsible for producing the result. This two types of prove-
nance are referred to as mapping provenance and transformation
provenance in this work. The approach annotates parts of relational
algebra transformations with the mappings that they implement. The
transformation provenance for a result tuple t ∈ Q(D) for a query
(relational algebra expression) Q and database D is a set of annotated
versions of Q where each operator is associated with a boolean value
{0, 1}. Each of the annotated trees in the transformation provenance of
a query result encodes which operators did contribute to the result wrt.
to a witness list in the PI-CS provenance of the query result. Recall
that the PI-CS provenance (Example 28) consists of witness lists which,
for SPJU queries, are alternative derivations of a result tuple. In the
tree for a witness list w, operators annotated with 1 do contribute to t
while the remaining operators (annotated with 0) do not. An operator
of the query does contribute to a query result t wrt. to a witness list w
if its evaluating the subquery rooted at this operator over the tuples
from the witness list returns a non-empty result. The intuition is that
if this combination of input tuples did produce an empty result for the
operator, then this operator did not contribute to the result given this
subset of the input.

Definition 24 (Transformation Provenance). An annotated algebra tree
for a query Q is a pair (TreeQ, θ) where TreeQ = (V,E) is a tree
that contains a node for each algebra operator used in Q and θ : V ∈
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Treeq → {0, 1} is a function that associates each operator in the tree
with an annotation from {0, 1}. We define a preorder on the nodes
to give each node an identifier. Let I(op) denote the identifier for a
node representing operator op and let Qop denote the subtree rooted at
operator op. Furthermore, let D be a database and t ∈ Q(D). Recall
that PI(Q,D, t) denotes the PI-CS provenance of t. The transformation
provenance of an output tuple t is the set T (Q, t) of annotated-trees
defined as follows:

T (Q, t) = {(TreeQ, θw) | w ∈ PI(Q,D, t)}

θw(op) =

⎧⎨⎩0 if Qop(w) = ∅
1 otherwise

Note that transformation provenance can be used to track transfor-
mation dependencies for relational algebra statements (and SQL based
on a canonical translation between relational algebra and parts of SQL
query blocks) independent of whether they represent a mapping or not.
For tracking provenance of schema mappings that are implemented
as transformations in relational algebra, Glavic et al., 2010 assumes
that for each tgd σ in Σ implemented by a query Q, there exists a
function µσ,Q that maps operators of Q to 1 if they implement σ and 0
otherwise. Note that an operator may be part of the implementation
of more than one mapping. The mapping provenance for a result
tuple wrt. to a witness list w of the tuple’s provenance is then the
set of tgds which are implemented precisely by the operators in the
transformation provenance (the function µσ,Q for the tgd is equal to θw

for all operators).

Example 46 (Transformation and Mapping Provenance). Figure 2.25
shows a mapping scenario mapping persons, some with associated ad-
dresses, to a person and address relation in the target. In the target
there is a single relation Person recording which person lives at which
address. Tgd σ1 maps persons and their address to the target while σ2
maps only persons to ensure that persons without associated address
are also copied to the target. The transformation implementing these
two tgds (query Qσ1,σ2) uses an outer join to match persons with their



2.6. Transformation Provenance 111

Source Schema

PersonName(Name)
LivesAt(Name,Address)

Source Instance

LivesAt
Name City
Alice Chicago
Bob New York

PersonName
Name
Alice
Bob
Peter

Target Schema

Person(Name, City)

Universal Solution produced
by Qσ1,σ2

Person
Name City
Alice Chicago
Bob New York
Peter fCity(Peter)

st-tgds

σ1 : ∀x, y : PersonName(x) ∧ LivesAt(x, y) → Person(x, y)

σ2 : ∀x : PersonName(x) → ∃y : Person(x, y)

transformations implementing tgds σ1 and σ2

Qσ1,σ2 := Π 0⃝
Name,if isnull(City) then fCity(Name) else City(

PersonName 2⃝ ▷◁
1⃝

Name=Name LivesAt 3⃝)

Figure 2.25: Data exchange scenario with two tgds mapping persons with addresses
and persons without addresses.
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addresses (if they exist). Here we use if θ then e1 else e2 to denote an
expression that evaluates to e1 if condition θ holds and e2 otherwise.
Furthermore, isnull(e) returns true if e evaluates to null and false
otherwise. fCity is a Skolem function used to generate an address value
(modeling a labelled null) that is unique for a given name. We show the
identifier associated with an operator in a red cycle besides the operator.
The projection, outer join, and access of relation PersonName implement
both mappings. The access of relation LivesAt, however, is only relevant
for σ1. Consider result tuple ta = (Alice, Chicago). The single witness
list in the provenance of this tuple is < (Alice), (Alice, Chicago) >. The
subqueries rooted at each of the query’s operators returns a non-empty
result for the tuples {(Alice), (Alice, Chicago)}. Thus, the transforma-
tion provenance T (Qσ1,σ2 , ta) contains of a single annotated algebra
tree where all operators are annotated with 1 (are in the provenance).
The mapping provenance is {σ1}, because σ1 is the only tgd which is
implemented by all operators of the query.

2.6.2 Schema Mappings Provenance through M-semirings

Semiring provenance models the computation of a transformation by
recording how inputs have been combined. The advantage of these
models is that they have been formally proven to capture the essence of
the computation, because the result of the computation can be computed
based on the provenance (recall that we referred to this property as
computability). To be more precise, the annotation of a result tuple in
any semiring K can be reconstructed based on its N[X] (provenance
polynomial) annotation and the annotation of input tuples (encoded
as a valuation of the variables in the polynomial to elements of K).
However, such semiring annotations to not capture which parts of the
transformation affected the result. The model has to be extended to
keep track of this information.

Karvounarakis (2009) did extend semirings for the tracking the prove-
nance of schema mappings in data / update exchange (Karvounarakis
et al., 2013; Fagin et al., 2005b). In update exchange (Karvounarakis
et al., 2013; Green et al., 2010; Ives et al., 2008; Green et al., 2007b;
Ives et al., 2005), a set of peers exchange information based a mapping
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between their schemata. In Karvounarakis et al. (2013), updates to
the data of one peer are translated into updates over the database of
other peers based on mappings between the schemata of these peers. In
update exchange, provenance can be used to track how data is derived
and to reason about trust (some peers may mistrust updates coming
from some other peers). However, this also requires knowing based on
which mapping a result was produced. Karvounarakis (2009) and Kar-
vounarakis et al. (2013) did extend semirings with with unary functions
M = {m1, . . . ,mn} with m : K → K for all m ∈ M. These functions
represent the application of mappings. The resulting structure is referred
to as M-semirings. Any such function m is required to commute with
addition (mapping application commute with union) and return 0K if
the input is 0K (a mapping cannot create outputs based on non-existing
inputs).

m(0K) = 0K m(k1 ⊕K k2) = m(k1) ⊕K m(k2)

The elements of the M-semiring for tracking the provenance of
schema mappings are symbolic expressions build from semiring oper-
ations and applications of the mapping functions. For example, if a
result tuple is annotated with m3(x1 · x2) + m2(x3) then this tuple
was derived by “applying” schema mapping m3 to the input tuples
annotated with variables x1 and x2 or applying schema mapping m2 to
the tuple annotated with x3.

2.6.3 Provenance Traces

Cheney (2007) argued that provenance is intimately related to the notion
of program slicing. A program slice for a result (or value of a variable
in a program) consists of the parts of the program that are sufficient to
compute the result. Mapping this idea to databases, a slice of a query
would be the part of the query responsible for producing a result. In that
sense, a program slice is a type of transformation provenance. Perera
et al. (2012) extended the idea of program slices to provenance trace
slices that explain the evaluation of functional programs. Intuitively, a
provenance trace slice tracks both data dependencies and transformation
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dependencies and models the part of an execution trace for the program
that produced a result of interest. Cheney et al. (2014), based on this
earlier work, developed a tracing mechanism for queries expressed in
nested relational calculus (N RC) over nested multisets (bag semantics).
The provenance trace of a query over a database is essentially an
unrolling of the query, i.e., it shows how subexpressions of the query are
applied to values to compute the result. This model has been proven
to be computable, i.e., Cheney et al., 2014 presented an evaluation
semantics called trace replay and proved that the result produced by
replaying a trace is the same as the result of the original query for
which the trace was produced. Multisets are modelled by the approach
as mappings from tuple identifiers to tuples where [id].t denotes a tuple
t with identifier id.

Traces can be sliced to find the part of the computation that is
relevant for producing some part of the query’s output. The user provides
as input a pattern that describes which part of the query result they
want to track. Patterns are nested values where some elements may be
“holes”. A hole □ indicates that we do not want to track provenance for
this part of the nested value. Given a pattern and a trace for a query
and database, the trace slice can be derived by removing from the trace
parts that are not relevant for producing the part of the result described
by the pattern.

Example 47 (Provenance Trace). Figure 2.26 shows a query that sums
up the values of attribute A for all tuples from relation R where the
value of attribute B is greater than 2. We show both a SQL and an
N RC version of this query. For readers unfamiliar with N RC, the result
relation is constructed using the relation ({}) and tuple constructors
(⟨⟩) to create a relation with a single tuple with an attribute Total
whose value is the result of summing up (sum) the result of a set
comprehension (the result of such a comprehension ⋃︁

{e′ | x ∈ e} is the
union of the relations produced by substituting variable x in e′ with
all values from the result of expression e). This comprehension uses
a conditional expression (if(·, ·, ·)) to generate for each tuple x from
R with either the empty set (if B ≤ 2) or with a projection of the
tuple on attribute A (implemented using the tuple constructor). That
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Query expressed in SQL and N RC

SELECT sum(A) AS Total FROM R WHERE B > 2;

Q = {⟨Total : sum
(︂⋃︂

{if(x.B > 2, {⟨A : x.A⟩}, {}) | x ∈ R}
)︂
⟩}

R
id A B

[r1] 2 3
[r2] 3 1
[r3] 5 4

Query Result

id Total
ϵ 7

Provenance trace for the query

T = {⟨Total :sum(
⋃︂

{if(x.B > 2, {⟨A : x.A⟩}, {}) | x ∈ R} ▷ {

[r1].if(x.B > 2, {⟨A : x.A⟩}, {}) ▷true {⟨A : 2⟩},
[r2].if(x.B > 2, {⟨A : x.A⟩}, {}) ▷false {},
[r3].if(x.B > 2, {⟨A : x.A⟩}, {}) ▷true {⟨A : 5⟩}
})⟩}

Trace slice for result tuple ⟨ttl : 7⟩

T = {⟨Total :sum(
⋃︂

{if(x.B > 2, {⟨A : x.A⟩}, {}) | x ∈ R} ▷ {

[r1].if(x.B > 2, {⟨A : x.A⟩}, {}) ▷true {⟨A : 2⟩},
[r2].□,
[r3].if(x.B > 2, {⟨A : x.A⟩}, {}) ▷true {⟨A : 5⟩}
})⟩}

Figure 2.26: Example Provenance Trace
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is, this comprehension returns a relation with a single attribute A that
contains the A values of all tuples where B < 2. Figure 2.26 also shows
an example instance and the result of this query over this instance as
well as the trace for this query and the trace slice for the aggregation
result. Note how the trace mirrors the structure of the query, but the
set comprehension has been unrolled, showing the computation for
each of the three input tuples. Furthermore, the trace records for each
conditional expressions both its result and whether the condition of the
expression evaluated to true or false for an input. For instance, for the
first tuple the condition evaluated to true and, thus the projection of
tuple ⟨A : 2, B : 3⟩ on A is returned (⟨A : 2⟩). For the slice of the query,
the expression that evaluated to the empty set (for the second tuple)
has been replaced with a hole □, because this tuple does not affect the
result.

Comparing provenance traces with transformation provenance, routes,
and M-semirings, both provenance traces and transformation prove-
nance determine which syntactic constructors of a query contribute
to a result. However, transformation provenance, while being defined
based on data dependencies, does not convey data dependencies directly
while they are encoded in the traces. Furthermore, trace slices have a
stronger theoretical foundation. M-semirings only record application
of transformations (mappings), but do not record the syntactic struc-
ture of Σ in the derivations. Comparing provenance traces with plain
semiring provenance (without mappings), provenance traces are more
verbose and may sometimes produce an overestimation of what inputs
are relevant for a slice. However, the syntactic structure encoded in the
traces, similar to transformation provenance, makes them better suited
for, e.g., debugging use cases.

2.6.4 Query-based Explanations for Why-not Provenance

Transformation dependencies have also been studied in the context of
why-not provenance where these are called query-based explanations. A
query-based explanation for a missing answer records which parts (e.g.,
operators) of the query are responsible for the failure to derive the result.
Chapman and Jagadish (2009) first introduced query-based explanations



2.6. Transformation Provenance 117

for why-not provenance that are determined based on data dependencies
using the lineage provenance model. The approach determines based on
the missing answers of interest which tuples from the input database
may contribute to these answers. These tuples are referred to as unpicked
data items. Lineage is then used to determine manipulations (operators)
for which an unpicked data item or a successor of an unpicked data item
(a tuple whose lineage contains the unpicked data item) is in the input
of the operator, but no successor of this unpicked data item is in the
output. Such operators are called picky manipulations. The intuition is
that such an operator filters out data items that could potentially have
been used to derive the missing answer. The explanation for a why-not
question is then the set of frontier picky manipulations.

Example 48 (Query-based Explanations). Consider a query returning all
students with GPA higher than 3.0:

Πname(σGP A>3.0(students))

Assume that we are interesting in knowing why Peter is not in the result.
For example, if a single student named Peter exists in the input with a
GPA of 2.5, then the selection operator would be identified as frontier
picky, because it filters out the only input tuple (Peter, 2.5) that could
been used to produce the missing answer (Peter).

The why-not definition of Chapman and Jagadish (2009) has several
limitations. Notably, it may produce false negatives (operators that
can be held responsible for the missing answer may not be part of an
explanation) and false positives (operators whose modification have no
effect on the missing answer may be part of an explanation). Follow-up
work such as Bidoit et al., 2015; Bidoit et al., 2014 has focused on
resolving some of these limitations.

Example 49 (False Positives and Negatives). As an example for a false
negative consider a query over relations person(name,home,work) and
address(aid,city) that joins persons with their work addresses they live
at:

Πname,city(person ▷◁work=aid address)
An example instance is shown below.
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name home work
Peter 1 2

aid city
1 New York
2 Boston

For instance, we may be interested in knowing why tuple (Peter,New
York) is not in the result. This result could be produced by changing the
join condition to join on home = aid. However, the join is not identified
as frontier picky, because it contains a success of tuple (Peter,1,2)
that is compatible with the missing answer.

Query Repairs

A query-based explanation informs the user which operators in a query
are responsible for the failure to return the missing answer of interest.
However, this may not be sufficient for the user to determine how to
repair the query such that the missing answer is returned. Bidoit et al.,
2016 referred to this problem as query refinement. We will use the term
query repair.

Example 50 (Query Repair). Continuing with Example 49, we can repair
this query by changing the join condition to:

home = aid

2.7 Updates and Transactions

We now discuss provenance models for updates and transactions. There
are two main difference between queries and updates: (i) updates change
the state of the database and (ii) typically a database state is the results
of a history of updates, so transformation provenance is important to
track which updates affected which version of a tuple. Buneman et al.
(2008) did present one of the first provenance models for updates. This
provenance model was defined for nested relational calculus (N RC)
queries and a nested update language (N UL) defined in this work. In
this work, provenance is defined as annotations (colors) on data. The
authors present both an explicit provenance semantics (the input query
determines how colors are propagated) as N RC and N UL over colored
data (in the nested relational model used in this work, annotated objects
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can be modeled as value-annotation pairs) and an implicit provenance
semantics (colors are not accessible to the query and are propagated
automatically). Since the semantics is defined based on “copying” of
objects from a nested input instance to a nested output instance, this
is essentially a type of where-provenance. In Vansummeren and Cheney
(2007) this model was applied to track the provenance of SQL DML
operations. While this work represented an important step forward, it
is subject to a few limitations: (i) transformation provenance is not
tracked, i.e., there is no record of which update in a sequence of update
operations created a particular object in a nested relational instance;
(ii) dependencies that are not copying of values are not tracked. For
instance, when two sets e1 and e2 are combined with union, then the
resulting set object is considered to be created by the query. While
the provenance annotations of elements from the two input sets are
propagated, we loose the information that the output was derived from
the sets e1 and e2; (iii) the approach does not support transactions.

Databases allow updates to be grouped into transactions that are ex-
ecuted atomically and in isolation (at least conceptually). Database sys-
tems apply concurrency control protocols to ensure the so-called ACID
properties (atomicity, consistency, isolation, and durability). While con-
currency control is a fascinating topic, a thorough overview of this field
is beyond the scope of this work. What is relevant in terms of prove-
nance tracking is that concurrency control protocols enable multiple
transaction to be executed in parallel while maintaining consistency.
The notion of correctness that is typically applied is serializability which
requires that the concurrent execution of a transactional history (a set
of transactions with an execution order for all or their operations) is
equivalent in a precise sense to a serial execution of the involved trans-
action, i.e., a history where there is no interleaving of the operations
of transactions. While serializability is desirable, it can come at a high
price. Thus, relaxed versions of concurrency control protocols such as
snapshot isolation (Berenson et al., 1995) have been developed that do
not guarantee serializability. For the purpose of developing a provenance
model for transactional updates, this entails that we need to reason
about how tuple versions created by one transaction depend on tuple
versions created by other (perhaps concurrently running) transactions.



120 Provenance Models - Formalizing Provenance Semantics

2.7.1 MV-semirings

Arab et al. (2018b) and Arab et al. (2016) did extend the semiring
provenance model to support updates and transactions in addition to
queries. The approach is a strict generalization of the semiring model
with support for updates where the annotation of a result tuple of a
query explains both how this tuple was generated from input tuples
from the current version of the database as well as how these input
tuples were created by a transaction history from past tuple versions
(tuples that no longer exist in the current version of the database).
This work did introduce multi-version semirings (MV-sermirings), a
specific class of semirings that are used to encode how tuples are derived
by a transactional history. For a semiring K a corresponding MV-
semiring Kν can be constructed whose elements are symbolic expressions
consisting of function symbols that represent applications of updates,
addition, multiplication, and elements of the embedded semiring K.
The elements of an MV-semiring Kν are equivalence classes of such
symbolic expression based on evaluation of addition and multiplication
in semiring K for operands that are in K. That is, except for symbolic
expressions involving unary function symbols (representing application
of updates) Kν behaves exactly as K which means that Kν is backward-
compatible to K in terms of query evaluation. Intuitively, a Kν-relation
encodes the history of a K-relation. Arab et al. (2018b) showed how to
create the current version of a K-database created by a transactional
history by evaluating the symbolic expression that is the Kν-annotation
of a tuple by interpreting the function symbols of this expression as
functions K → K. In the following, we will describe this provenance
model in more detail, but will only show the application of this model
by example instead of formally defining the semantics of updates and
transactions over this model. We refer the reader to Arab et al. (2018b)
and Arab et al. (2016) for update and transaction semantics.

Example 51 (Transaction Provenance (Arab et al., 2018b)). Figure 2.28a
shows an example database storing information about bank accounts
and overdrafts. MV-semiring annotations are shown on the left of each
tuple. Suppose a user Bob executed the Transactions T5 shown in
Figure 2.27 under the snapshot isolation concurrency control protocol
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(Berenson et al., 1995). This transaction implements a new policy of
giving a $100 bonus to all savings accounts and an additional $300
bonus to all savings accounts with a balance higher than $5000. The
database instance after the execution of Transaction T5 is shown in
Figure 2.28b. Attribute values affected by an update are highlighted in
red. Meanwhile, Alice did withdraw money ($1500) from her checking
account which triggered Transaction T6. This transaction inserts an
overdraft record into the relation Overdraft(cust,bal) since the total
balance of Alice’s accounts is negative after the withdrawal. The states
of the Account and Overdraft relations after the execution of both
transactions are shown in Figure 2.28c. Alice, surprised to receive an
overdraft notice, checks her account. She observes that the total balance
of her accounts is positive and, thus, she should not have received
the $100 overdraft. This unexpected result is caused by a concurrency
anomaly called write-skew (Berenson et al., 1995) which can occur
under snapshot isolation. Under snapshot isolation, each Transaction
T executes over a private snapshot which contains changes made by
transactions that committed before T ’s start. Hence, Transactions T6
sees the previous balance of $1000 for Alice’s savings account and after
the withdrawal of $1500 from her checking account, it computes a total
balance of 1000 + (−1100) = −100 < 0. In the MV-semiring model the
annotation of a tuple version encodes the complete derivation history of
the tuple, i.e., which updates have created the tuple version using which
previous tuple versions. For instance, the annotation of the overdraft
tuple in the database version created by transaction T6 shows that this
tuple became valid after the commit of this transaction at version 16
(database versions are identified by a totally ordered domain of version
identifiers) and was produced by an insert statement executed by this
transaction at version 15. The inserted tuple in turn was generated by
joining (multiplication) two tuples that were both committed at version
4 by transaction T1. Each of these tuples were created by an insert of
transaction T1 executed at versions 2 and 3, respectively. From this
tuple’s annotation and the annotations of the tuples recording Alice’s
account balances we can determine that the overdraft was based on
transaction T6 seeing an outdated account balance (not including Bob’s
changes) while the current balance of Alice’s accounts includes these
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T SQL Time
T5 UPDATE Account SET bal = bal + 100 10

WHERE typ = ’Savings’;

T6 UPDATE Account SET bal = bal - 1500 11
WHERE cust = ’Alice’ AND typ = ’Checking’;

T5 UPDATE Account SET bal = bal + 300 12
WHERE typ = ’Savings’ AND bal > 5000 ;

T5 COMMIT; 13
T6 INSERT INTO Overdraft 14

(SELECT cust, a1.bal + a2.bal
FROM Account a1, Account a2
WHERE a1.cust = ’Alice’ AND a1.cust = a2.cust
AND a1.typ̸=a2.typ AND a1.bal + a2.bal < 0);

T6 COMMIT; 15

Figure 2.27: Example audit log for a transactional history

changes (and, thus, does not warrant an overdraft penalty).

Version Annotations

Before defining MV-semirings, we first define the t unary function sym-
bols called version annotations that are used in the symbolic expressions
of an MV-semirings. A version annotation Xid

T,ν(k) denotes that an op-
eration of type X (update U , insert I, delete D, or commit C) that was
executed at time ν − 1 by transaction T affected a previous version of a
tuple with identifier id and previous provenance k. Assuming domains
of tuple identifiers I, version identifiers V (this model assumes a totally
ordered domain of versions and each update of a history is executed at
a particular version), and transaction identifiers T (each transaction
is assigned a unique identifier from T, A denotes the set of all version
annotations:

Iid
T,ν , U

id
T,ν , D

id
T,ν , C

id
T,ν for id ∈ I, ν ∈ V, T ∈ T (2.3)
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Account

cust typ bal
C1

T1,4(I1
T1,2(x1)) Alice Checking 400

C2
T1,4(I2

T1,3(x2)) Alice Savings 1000
C3

T2,3(I3
T2,1(x3)) Peter Savings 4990

Overdraft
cust bal

(a) Database before execution of T5 and T6

Account cust typ bal
C1

T1,4(I1
T1,2(x1)) Alice Checking 400

C2
T5,14(U2

T5,11(C2
T1,4(I2

T1,3(x2)))) Alice Savings 1100
C3

T5,14(U3
T5,13(U3

T5,11(C3
T2,3(I3

T2,1(x3))))) Peter Savings 5390

(b) Database after execution of T5

Account cust typ bal
C1

T6,16(U1
T6,12(C1

T1,4(I1
T1,2(x1)))) Alice Checking -1100

C2
T5,14(U2

T5,11(C2
T1,4(I2

T1,3(x2)))) Alice Savings 1100
C3

T5,14(U3
T5,13(U3

T5,11(C3
T2,3(I3

T2,1(x3))))) Peter Savings 5390

Overdraft cust bal
C4

T6,16(I4
T6,15(U1

T6,12(C1
T1,4(I1

T1,2(x1)) · C2
T1,4(I2

T1,3(x2))))) Alice -100

(c) Database after execution of T6

Figure 2.28: Running example database states

The nesting of version annotations in an Kν-annotation of a tuple t
encodes the sequence of operations that lead to the creation of tuple t
and from which previous tuple versions it was derived from.

Example 52. Consider the N[X]ν-relation Account in Figure 2.28b. The
second tuple is annotated with C2

T5,14(U2
T5,11(C2

T1,4(I2
T1,3(x2)))), i.e., it

was created by an update of Transaction T5, which updated a tuple
that was inserted by T1. Based on the outermost commit annotation,
this tuple version was committed at version 13.

MV-semiring Annotation Domain

Fixing a semiring K, the domain of semiring Kν is defined based on the
set of all finite symbolic expressions P following the syntax defined by
the grammar shown below where k ∈ K and A ∈ A.

P := k | P + P | P · P | A(P ) (2.4)

The semantics of these expressions is defined in Definition 25 and Fig-
ure 2.29. Note that + and · in these expressions are used to encode that
a tuple depends on multiple input tuples, e.g., a query such as the one
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Evaluation of expressions with operands from K

k + k′ = k ⊕K k
′ k · k′ = k ⊗K k

′ (if k ∈ K ∧ k′ ∈ K)

Equivalences involving version annotations

A(0K) = 0K A(k + k′) = A(k) + A(k′)

Figure 2.29: Equivalences that hold for Kν

used by the insert of example Transaction T6 or an update that modifies
two tuples that are distinct in the input to be the same in the output
(e.g., UPDATE Account SET typ = ’Savings’). For example, consider a
query Πtyp(Account) evaluated over the instance from Figure 2.28a. The
result tuple (Savings) is derived from the second and third tuple in
the Account table (the two tuples with this value in attribute typ) and,
thus, would be annotated with C2

T1,4(I2
T1,3(x2))+C3

T2,3(I3
T2,1(x3)). Recall

that addition represents alternative use of tuples. The elements on an
MV-semiring are equivalence classes (denoted as []∼) of these symbolic
expression wrt. the standard semiring laws as shown in Figure 2.6 and
additional equivalences shown in Figure 2.29. These equivalences equate
expressions in the “embedded” semiring K to be evaluated in semiring K
(k1 + k2 = k1 +K k2). The remaining two equivalences intuitively mean
that updating a non-existing tuple does not lead to an existing tuple
(A(0K) = 0K) and that addition distributes over updates (applying an
update to the union of two relations is the same as applying the update
to the inputs of the union and returning the union of the result).

Definition 25. Let K = (K,⊕K,⊗K, 0K,1K) be a commutative semiring.
The MV-semiring Kν corresponding to K is the structure

Kν = (Kν ,+Kν , ·Kν , [0K]∼, [1K]∼)

where ·Kν and +Kν are defined as

[k]∼ ·Kν [k′]∼ = [k · k′]∼ [k]∼ +Kν [k′]∼ = [k + k′]∼

The addition and multiplication operations of an MV-semiring out-
put a symbolic expression by connecting the inputs with + or · and
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then return the equivalence class for this expression. Consider semir-
ing N and recall that this semiring is used to encode bag semantics
relations by annotating each tuple with a natural number representing
its multiplicity. For example, assume a tuple t is annotated with the
Nν-expression U1

T,ν(3 · 6). Here 3 and 6, elements from the embedded
semiring N, represent multiplicities. Applying equivalence k ·k′ = k ·K k′,
we can evaluate 3 · 6 = 3 ⊗N 6 = 18. Thus, t appears with multiplicity
18 and was updated by an update (U) of transaction T . The update
was run at time ν − 1 and, thus, the tuple became valid at time ν.

An important result proven in Arab et al., 2018b is that semiring
homomorphisms any h : K1 → K2 can be lifted to a MV-semiring ho-
momorphisms hµ : Kν

1 → Kν
2 that preserves the structure of symbolic

expressions by applying the homomorphism h to each element from
K1 that occurs in such a symbolic expression. This implies that N[X]ν ,
the MV-semiring version of the provenance polynomial semiring is the
most general MV-semiring and, thus, the right choice for capturing
provenance. Furthermore, Arab et al., 2018b also introduced an “un-
versioning” homomorphism that maps Kν-relation to a K-relation by
interpreting the version annotations as functions from K to K. Intu-
itively, this homomorphism evaluates the history encoded in annotations
of tuples to compute the current version of the relation.

2.7.2 Provenance for Hyperplane Update Queries

Bourhis et al. (2020) did present an algebraic provenance model for
hyperplane update queries which is a restricted update language that is
nonetheless of interest, because a sound and complete axiomatization
of set equivalence for this class of update queries exists (Karabeg and
Vianu, 1991). The authors identify the “correct” algebraic structure to
capture these axioms which also allows a normal form to be defined
that removes redundant sub-expressions in a provenance annotation to
reduce the storage size of provenance. For instance, under set semantics
(which is what is studied in this work), inserting the same tuple twice
as a part of a single transaction16 is redundant. Importantly, homomor-
phisms between algebraic structures used for provenance annotations

16Note that in this work concurrent executions of transactions is not considered.



126 Provenance Models - Formalizing Provenance Semantics

propagate through updates. In this work update operations (transac-
tions) are themselves annotated and these annotations propagate to the
results of an update (transaction). Thus, this approach also encodes
transformation provenance. Given that homomorphisms commute with
operations, this has the advantage that the effect of aborting a trans-
action on the database produced by a history of transactions can be
computed from the result of the history.

2.8 Summary and Conclusions

In this chapter, we have discussed a wide range of provenance models and
studied their properties. We saw how progressively more complex query
classes, require more sophisticated provenance models. Generalizing
computations based on the algebraic properties, the foundation of the
semiring annotation frameworks and its extensions, has proven to lead
to expressive and general provenance models. Such models do enjoy
the computability property, and, thus, are often more informative than
provenance models based on sufficiency and necessity. In addition, the
study of such general provenance models has also lead to a better
understanding how provenance models compare with respect to their
expressive power.

2.9 Additional References

It is not possible to do full justice to the broad body work on provenance
models in this article. Instead we provide the reader with a list of
additional references that may be of interest.

2.9.1 Surveys

Past surveys on database provenance have also covered and compared
provenance models. Herschel et al. (2017) did cover why and why-
not provenance models. Cheney et al. (2009) did present a detailed
introduction and comparison of provenance models. However, the field
has evolved significantly in the decade after the publication of this work.
In this chapter we tried to cover as much as possible of this evolution.
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Karvounarakis and Green (2012) and Green and Tannen (2017) did
provide an overview of the K-relational model.

2.9.2 Causality, Interventions, Responsibility, Resilience, Sensitivity

Causality in databases has been studied extensively in recent years.
For instance, Freire et al. (2015) studied the complexity of resilience
and responsibility for self-join free conjunctive queries and Freire et al.
(2020) studied queries with self-joins. Bertossi and Salimi (2013) did
establish interesting connections between causality, database repairs,
and consistency-based diagnosis. Salimi et al. (2016) did provide a
critique of the notion of responsibility from Meliou et al. (2010) and
proposed an alternative definition based an interpretation rooted in
probabilistic / incomplete databases.

2.9.3 Semirings and Annotations

Geerts et al. (2012) did study annotation structures for RDF queries.
To deal with the OPTIONAL construct of the SparQL query language
(essentially an outer join), the authors introduce spm-semirings, and
extension of semirings with an operator that realizes the specific version
of difference needed to implement OPTIONAL. Kostylev et al. (2013)
studied the containment of queries over K-relations. While this problem
was previously studied in Green (2009), Kostylev et al. (2013) drops the
assumption that containment is based on the natural order of semirings.
Kostylev and Buneman, 2012 investigated the semantics of queries
over relations annotated with multiple semirings. Buneman et al., 2013
study an annotation model where the boundaries between data and
annotations are blurred. Queries are free to interpret part of the input
as data or as annotations.

Annotation can serve purposes different from provenance, e.g., they
can be used to store documentation. If the purpose of annotations is not
provenance, then propagating annotations based on data dependencies
(provenance) may not be what the user wants. Consequently, general
annotation management systems like DBNotes (Chiticariu et al., 2005),
Mondrian (Geerts et al., 2006), and BDBM (Eltabakh et al., 2008) allow
more control over how annotations propagate. InsightNotes (Ibrahim
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et al., 2015) enables the user to summarize annotations using data
mining techniques. Annotation management is itself a broad field that
we can not discuss in detail in this article.



3
Applications

In this chapter, we will discuss several motivating applications for data
provenance and will review the requirements these applications impose
on the provenance models we have discussed in Chapter 2. We will
reflect on these requirements when discussing provenance systems and
algorithms for capturing, storing, and analyzing provenance in Chap-
ter 4.

3.1 View Maintenance, What-if Analysis, and Provisioning

The potential for provenance to support maintenance of materialized
views (Gupta, Mumick, et al., 1995) has been recognized early-on
(Cui and Widom, 2001; Buneman et al., 2002; Cong et al., 2012).
When the results and provenance for a view are materialized, then the
effect of deleting tuples from the input database on the view can be
determined based on the provenance of the view alone. As discussed in
Section 2.9.3, homomorphisms commute with queries over K-relations
and, thus, factor through queries. Note that given the provenance in
semiring N[X], deletion of a set of tuples is a homomorphism (replacing
the variables that correspond to these tuples with 0). This application of
homomorphisms is called deletion propagation. Deletion propagation

129
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Name Age Card N[X]
Peter 39 Visa x1
Alice 25 AE x2
Bob 25 Visa x3

Astrid 26 Master x4

(a) Customers
Customer Item NumItems Date N[X]

Peter Lettuce 3 2020-01-03 y1
Peter Oranges 1 2020-01-03 y2
Peter Lettuce 3 2020-01-04 y3
Bob Oranges 2 2020-01-04 y4
Alice Peanuts 3 2020-01-04 y5

(b) Orders

QcustW ithLargeOrders := ΠName(Customers ▷◁Name=Customer QlargeOrders)
QlargeOrders := ΠCustomer(σNumItems>3(Orders))

(c) Query QcustW ithLargeOrders

Name N[X]
Peter x1 · (y1 + y3)
Alice x4 · y5

(d) Query Result

Figure 3.1: Example of using an N[X]-relation for deletion propagation

is a special case of view maintenance where we want to update the
materialized result Q(D) of a query Q to reflect the deletion of a set of
tuples ∆D from D, i.e., we want to compute Q(D − ∆D) from Q(D)
and ∆D.

Example 53 (Deletion Propagation with Provenance). In Figure 3.1 we
revisit a previous example for provenance polynomials. Recall that the
query shown in this figure returns customers with large orders. Assume
we want to evaluate how the deletion of tuple y1 (highlighted in red)
from the input affects the result of the query. Such a deletion can
be implemented as a semiring homomorphism N[X] → N[X] defined
through a variable assignment µ that is the identity for all tuples we
want to keep and maps all variables to 0 (recall that tuples are annotated
with 0 are not part of the relation) for tuples we would like to delete.
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We then apply this homomorphism to the query result to evaluate the
effect of the deletion on the result of the query. The homomorphism
evalµ based on the variable assignment µ shown below implements the
deletion of y1.1

µ(x) =

⎧⎨⎩0 if x = y1

x otherwise

For the first tuple in the query result we get

evalµ(x1 · (y1 + y3)) = x1 · (0 + y3) = x1 · y3

That is the tuple still exists when y1 is deleted.

In general, provenance models for positive queries are not sufficient
to deal with insertions, because, as discussed in Section 2.4.3, they do
not record the provenance of missing answers. A more powerful model
that supports queries with negation and missing answers (these two are
intimately related as has been shown in Köhler et al. (2013)) is needed to
deal with both inserts and deletions of input data (Grädel and Tannen,
2017; Xu et al., 2018; Lee et al., 2017; Lee et al., 2018). Ikeda and Widom
(2010) and Ikeda et al. (2011b) use provenance information to selectively
refresh outputs of a workflow based on changes to input data. Psallidas
and Wu (2018b) use provenance to refresh visualizations in the context
of an interactive visualization system. In what-if analysis, the effect
of hypothetical changes to data on a query result is evaluated. Thus,
what-if analysis is a specific type of view maintenance. If the possible
hypothetical scenarios are known up-front then one can provision for
these scenarios, that is compute auxiliary data structures upfront to
speed-up the subsequent what-if analysis. Provisioning is typically based
on compacting and simplifying provenance expressions (Deutch et al.,
2013a; Deutch et al., 2013b; Assadi et al., 2016). Assadi et al. (2016)
did study algorithms that approximate answers to what-if queries by
creating sketches for a given set of hypothetical scenarios expressed as
subsets of the database that can be combined to form scenarios.

1Recall that any assignment of variables to a elements of a semiring K extends
to a homomorphism evalµ : N[X] → K that replaces each variable x in a polynomial
with µ(x) and then evaluates the resulting expression in K.
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Example 54 (What-if). Let us provision for two hypothetical scenarios
for the database and query from Figure 2.10. Say we want to evaluate the
effect of removing either all customers with Visa cards or all customers
with Master cards. We can provision for these scenarios by replacing
all variables corresponding to these subsets of the input database with
a single variable representing the scenario, e.g., replacing x1 and x3
(customers with Visa cards) with xvisa, and all other variables with a
multiplicity (1 for all tuples in the example). Evaluating the query over
this “conditioned” database we get the relation shown below.

Name N[X]
Peter 2 · xvisa

Alice xmaster

By assigning xvisa and xmaster to either zero or one, we can evaluate
four different hypothetical scenarios:

• xvisa = 1 ∧ xmaster = 1: this is the original database.

• xvisa = 1 ∧ xmaster = 0: deletion of all customers with Master
cards. Under this scenario only the first query result tuple exists.

• xvisa = 0 ∧ xmaster = 1: deletion of all customers with Visa cards.
Under this scenarios only the second query result exists.

• xvisa = 0 ∧ xmaster = 0: deletion of all Visa and Master card
customers resulting in an empty query result.

3.2 View Update and How-to Analysis

While view maintenance is concerned with computing how modifications
to the inputs of a query impact the query’s result, view update takes as
input a change ∆Q to the result of a query Q and the task is to compute
an update ∆D to the input database such that Q(D∪∆D) = Q(D)∪∆Q.
Deletion propagation is a restricted version of the view update problem
where only deletions to the view are allowed and these have to be
translated into deletions of the input database. Note that there are
instances of the view update problem where no solution exists, because
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either there exists no input D′ such that ∆Q ⊆ Q(D′) or any such D′

causes side-effects on the view, i.e., additional undesired tuples to be
inserted or some of tuples Q(D) to be deleted. Naturally, one would
like to optimize for solutions that minimize side-effects on the view (or
produce no side-effects if this is possible). Given an instance of the view
update problem, ideally one would like to also minimize the side-effects
on the input database. That is, we only want changes that are necessary
for producing the requested update to the view.

As discussed above, provenance polynomials are sufficient for eval-
uating the effect of input deletions on the result of a positive relational
algebra query (or equivalently a Datalog query without recursion and
negation). This implies that the provenance of a query is also enough to
find solutions for the deletion propagation problem for both set and bag
semantics (and in fact for any semiring). To see why this is the case con-
sider the following brute force approach which takes as input a query Q,
an input K-database D, and an update ∆Q. The approach first evaluates
Q in N[X] over an abstractly-tagged version of D, i.e., a N[X]-database
DN[X] where each tuple t for which D(t) ̸= 0K holds is annotated with
a unique variable xt. We then enumerate all possible assignments µ of
variables from the provenance polynomials of the query result Q(DN[X])
to elements from K such that µ(xt) ⪯K D(t) (we can only reduce anno-
tations which corresponds to a deletion). For each such µ we apply the
homomorphism evalµ to test whether the desired deletion is achieved
and what the side-effects on the view are (other tuples that got deleted).
The source side-effects are simply the number of variables mapped to 0K
by µ. Of course this brute force algorithm is highly inefficient because
the number of possible assignments is 2n where n is the number of
tuples in the input. Buneman et al. (2002) studied the complexity of
the view deletion problem for union of conjunctive queries when either
the side-effects on the input or on the view should be minimized and
noted its connection to annotation placement (essentially view update
for annotated relations). Cong et al. (2012) did built on this work and
investigated the complexity of these problems for subclasses of the cases
considered by Buneman et al. (2002). How-to queries (Meliou and Suciu,
2012) are a variation of the view update problem, where the user can
specify constraints on what changes to the input database are allowable.
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Example 55 (View Deletion with Provenance). Reconsider the query
result from Figure 3.1d and let us explore the following view deletion
problem for bag relations: we want to delete tuple (Peter) while min-
imizing side-effects on the query result (view). For the sake of this
example let us assume that all input tuples appear with multiplicity 1.
That means we have to find an assignment of variables to either 0 or 1
that is a solution to the following optimization problem:

maximize evalµ(x4 · y5) (keep (Alice) if possible)
subject to evalµ(x1 · (y1 + y3)) = 0 (delete (Peter))

Two solutions without view side-effects are:

• Delete Peter from the customer relation (x1 = 0)

• Delete orders y1 and y3 (y1 = 0 and y3 = 0)

For example, under the first solution the updated query result is:

Name N[X]
Peter 0
Alice 1

To use set semantics instead of bag semantics we simply use semiring B
instead of N.

Readers familiar with linear programming or constraint optimization
in general may have observed already that the optimization problem
we solved in the example above can be expressed as an integer linear
program. In fact, view update problems have been cast as constraint
optimization problems in the past (Shu, 2000). Another example are
How-to queries that have also been implemented in Meliou and Suciu
(2012) using MILP (mixed integer linear programming).

3.3 Error Diagnosis and Debugging

One of the most wide-spread use cases for data provenance is debugging
of operations and data. For instance, data and transformation depen-
dencies are used to track an erroneous or suspicious query result back
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to the data and/or operations that caused this result. Examples of this
usage of provenance and related techniques are error diagnosis with
view-conditioned causality (Meliou et al., 2011), retroactive debugging
of transactions with provenance (Niu et al., 2017a), exposing intermedi-
ate results for debugging SQL queries (Grust et al., 2011; Dietrich and
Grust, 2015), debugging for dataflow programs (Gulzar et al., 2017a;
Gulzar et al., 2017b; Interlandi et al., 2018) including watch-points
for declarative programs and delta debugging, and automated fault
localization (Alvaro et al., 2015).

3.4 Metadata Management, Versioning, and Reproducibility

Provenance provides a record of how data was derived from other data
and by which transformations. Such information is essential for finding
relevant data in large data repositories, to understand the version
history of datasets and to provide evidence of how data was derived for
reproducibility of computational experiments.

3.4.1 Metadata Management and Versioning

The emergence of data lakes has resulted in a need to track dataset and
code versions as well as their inter-dependencies. Systems like Apache
Atlas (Apache, 2017) and Ground (Hellerstein et al., 2017) manage
coarse-grained workflow provenance to enable users to make sense
of dataset derivation in such an uncontrolled environment. Similarly,
the need for provenance to keep track of dataset versions was also
recognized in the context of the DataHub project (Bhardwaj et al.,
2015; Bhattacherjee et al., 2015; Chavan et al., 2015). In the context of
workflow systems, it has been recognized that in addition to tracking
the provenance of a workflow execution it is also necessary to track the
provenance of the evolution of the workflow specification (Koop, 2016;
Callahan et al., 2006). For example, this idea has been implemented
in VisTrails (Scheidegger et al., 2008) and Vizier (Brachmann et al.,
2019).
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3.4.2 Tracking Sources in Data Integration and Curation

Data integration and curation techniques enable heterogeneous data
from multiple sources to be cleaned and transformed to prepare it
for analysis. For example, virtual data integration enables data from
multiple sources to be queried using a unified schema. Provenance in-
formation can help to track data from multiple sources and explains
how data was transformed by the integration process. Ives et al. (2008)
and Green et al. (2010) use provenance to track trust for update ex-
change in a collaborative data sharing system. The TRAMP system
(Glavic et al., 2010) tracks the provenance of schema mappings in data
exchange and their implementation as transformations in a declarative
query language. SPIDER (Alexe et al., 2006) uses transformation and
data dependencies to explain how tuples are derived through schema
mappings. Dong and Srivastava (2013) uses provenance to explain data
fusion decisions. DeepDive (Niu et al., 2012) utilizes provenance for
knowledge-base construction.

3.4.3 Reproducibility

Reproducibility of computational experiments is a challenging task
(Janin et al., 2014; Pimentel et al., 2019; Freire et al., 2012; Davison
et al., 2014), because the results of an experiment and whether it will be
possible to repeat the experiment may depend on details of the execution
environment. Furthermore, just setting up the right environment is
insufficient for reproducibility since the right operations have to be
executed in the right order to repeat a computation. For example,
consider a complex analysis workflow that requires the right set of shell
scripts to be executed in the right order and requires the right input data
to be placed in a particular location in the user’s file system. Provenance
can be used to complement approaches such as containerization and
packaging of environments (Chirigati et al., 2013; Pham et al., 2015;
That et al., 2017; Pham et al., 2013). Both workflow and OS provenance
information have been used successfully to aide reproducibility (Freire
et al., 2011; Freire and Silva, 2012; Chirigati et al., 2013; Pimentel et al.,
2019; Freire and Chirigati, 2018; Pham et al., 2013; Pham et al., 2015).
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3.5 Incomplete and Probabilistic Databases

Provenance has proven to be essential in probabilistic databases (Van
den Broeck and Suciu, 2017; Suciu, 2020; Suciu et al., 2011; Benjelloun
et al., 2006). In this field, provenance information is often referred
to as lineage. It was shown that provenance in semiring PosBool[X]
(see Section 2.3.4) can be used to compute the probability of the re-
sults of a query evaluated over a tuple independent database, i.e., a
database where tuples are independent events associated with a marginal
probability (the probability that the tuple exists). Importantly, tuple
independent databases are insufficient as a closed representation system
for probabilistic data. That is, it is not possible to evaluate queries over
the result of another query. Closedness can be achieved if provenance is
maintained (Benjelloun et al., 2006; Van den Broeck and Suciu, 2017;
Fink et al., 2012). We omit the technical details here and instead refer
the interested reader to one of the excellent overview articles on the
topic (Van den Broeck and Suciu, 2017; Suciu, 2020; Suciu et al., 2011).

Example 56 (Probabilistic Query Processing with Provenance). Recon-
sider the example from Figure 3.1d. Let us assume that the input is a
tuple-independent database with marginal probabilities:

p(x1) = 1.0 p(x2) = 0.8 p(x3) = 0.2 p(x4) = 0.3
p(y1) = 0.4 p(y2) = 0.3 p(y3) = 0.2 p(y4) = 0.1
p(y5) = 0.3

The semantics of queries over a probabilistic database are defined using
the so-called possible world semantics. Given a probabilistic database

D = {D1, . . . , Dn}

which is a set of possible worlds, deterministic databases that each
encode one possible state of the real world, and a probability distribution
P over these worlds, the result Q(D) of a query Q over D is the set of
worlds created by evaluating Q over each possible world in D:

Q(D) = {Q(D) | D ∈ D}
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The probability of a possible query resultR is the sum of the probabilities
of all possible worlds that yield R:

P [Q(D) = R] =
∑︂

D∈D:Q(D)=R

P (D)

Note that, while clean and simple, this definition is not practical, because
for typical probabilistic data models, the number of possible worlds can
be exponential in the size of the representation. For instance, the number
of possible worlds encoded by a tuple-independent probabilistic database
D with n tuples is 2n (all subsets of D). Thus, it is preferable to evaluate
queries over a more compact encoding. Without presenting all of the
technical details, recall from Section 3.2 that for sufficiently expressive
provenance models (enjoying the computability property discussed in
Section 2.1.7), we can evaluate the effect of all possible deletions of
input tuples on the result of query using only the provenance of the
query result. This can be exploited for probabilistic query processing:
each assignment of the variables in the provenance to 0 or 1 corresponds
to one possible world of the input probabilistic database. Thus, we
can (i) evaluate the query with provenance tracking (e.g., semiring
PosBool[X]) and (ii) treat each variable x as a random variable such that
P [X = 0] = 1 − p(x) and P [X = 1] = p(x). The problem of computing
the probability of a query result then boils down to computing the
probability that the provenance formula evaluates to true.2

Consider the first result tuple tP eter = (Peter) of our example query.
Under semiring PosBool[X] its annotation is

x1 ∧ (y1 ∨ y2)

Recall that for independent events P (A ∧ B) = P (A) · P (B) and
P (A∨B) = 1−(1−P (A))·(1−P (A)). Since the input tuples are assumed
to be independent in an tuple-independent probabilistic database, the

2Note that this is equivalent to the well-known problem of weighted model
counting which is known to be intractable (#P-hard). See, e.g., Van den Broeck and
Suciu (2017).
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probability of this formula being true is:

p(tP eter) = p(x1) · (1 − (1 − p(y1)) · (1 − p(y3))
= 1 · (1 − (1 − 0.4) · (1 − 0.2))
= (1 − 0.6 · 0.8) = 0.52

Note that in general even if the inputs are independent, queries may
introduce correlations and, thus, the simple and efficient formulas used
above are often not applicable.

In addition to providing a technical tool for computing probabil-
ities and for achieving closedness for queries over probabilistic data,
provenance can also aide in explaining how uncertainty in input data
or uncertainty introduced by heuristic curation operations causes the
output of an analysis to be uncertain. Note that most cleaning and
curation algorithms are heuristic in nature in that they choose one
possible repair among the space of all possible repairs. While methods
for evaluating computations over probabilistic and uncertain data can
quantify the uncertainty of analysis results, provenance is needed to
identify its causes (Yang et al., 2015; Brachmann et al., 2019).

3.6 Security, Privacy, and Auditing

Provenance information can be utilized for a wide range of use cases
related to security and privacy.

3.6.1 Access Control

Fine-grained access control (Wang et al., 2007) enables access
control policies to be specified at the level of tuples or individual cells
(attribute-values of a tuple). When evaluating queries over databases
with fine-grained access control policies, it is necessary to ensure that
no information about tuples and attribute-values a user has no access to
are exposed by query results. According to Wang et al. (2007), a query
evaluation algorithm should be sound (it does only return answers that
would be in the result of the query without access control, perhaps with
attribute values replaced with NULL values to “mask” them) and secure
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which is defined as that the same answer is returned for all databases
that are indistinguishable under the access control policies (e.g., two
databases that only differ in tuples that are access restricted by the
policy are equivalent because these tuples cannot be exposed).

The purpose of provenance-based access control (Nguyen et al.,
2013; Park et al., 2012) is to enable access control policies that are
based on provenance information. For example, a user should be given
access to any data that is derived from data they have produced.

3.6.2 Auditing

Many organizations keep records of their data operations to detect secu-
rity breaches, for forensic investigations, or to comply with regulations.
Audit logs (Becker and Chambers, 1988) keep a record of operations
executed on a database. Audit logs can be used to prove that a business
complies with data management regulations such as who in the orga-
nization should be allowed what type of access to which data. When
combined with time travel, audit logging provides a full record of past
operations and states of a database (Arab et al., 2018b). Provenance
information can complement such audit logs and time travel by provid-
ing data and control dependencies. For instance, to understand which
data was affected by a security breach, we need to understand which
data was modified directly or was indirectly affected by the actions of a
compromised accounts. Provenance for transactional workloads (Arab
et al., 2018b) provides precisely this information.

Another type of auditing that has been proposed in the literature is
to determine whether a query exposed any sensitive information. This
line or work typically defines disclosure based on intervention: if deleting
a tuple from the input does not affect the result of the query, then the
information of this tuple is assumed to not have been exposed (Agrawal
et al., 2004). Note that this is essentially the notion of counterfactual
causality we have discussed in Section 2.1.4. Kaushik et al. (2013) and
Kaushik and Ramamurthy (2011) study how to determine this type
of causes efficiently. Methods for capturing counterfactual causes are
also applicable to this problem. We discussed in Section 2.1.4 that
counterfactual causes are insufficient for queries that are disjunctive in
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nature. Thus, the notion of disclosure used for auditing queries is too
weak to prevent exposure of sensitive information for such queries.

3.7 Explanations for Outcomes

The need to explain an outcome arises in many application domains.
While there is no commonly accepted definition of what constitutes
an explanation, a common theme is that explanations are high-level
descriptions of root causes for an observation meant for consumption by
an end user. Covering the large and diverse body of work on explanations
in detail is far beyond the scope of this article. We refer the reader
to Glavic et al. (2021) for a recent overview article. Here we limit the
discussion to clarifying how provenance information can aide explanation
tasks.

3.7.1 Explaining Query Results with Provenance Summaries

Provenance in its raw form, while providing sufficient information for
explaining outcomes, may be to detailed to be suitable for human
consumption. For instance, the size of fine-grained provenance for an
aggregation query, e.g., using lineage, may be linear in the input size.
Ideally, higher-level explanations should be generated based on prove-
nance to explain an output. Techniques that have been used to produce
such explanations include

• Declarative summaries. Declarative descriptions of what data
belongs to the provenance, e.g., through selection patterns (El
Gebaly et al., 2014; Roy and Suciu, 2014; Wu and Madden, 2013;
Lee et al., 2020) can be used to summarize provenance. For exam-
ple, the provenance contains all cities where state = IL.

• Taxonomies. Taxonomies can be used to replace sets of tuples
with a higher-level concept that subsumes them (Cate et al., 2015;
Glavic et al., 2015), e.g., replacing a set of persons that are working
in politics with the concept politician.

• Collapsing provenance graphs. These techniques hierarchically
group nodes of a complex provenance graph into subgraphs. The
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user can explore the provenance by collapsing and expanding
such subgraphs. For instance, the nodes of a workflow provenance
graph may be grouped into modules (Biton et al., 2007; Biton
et al., 2008).

• Natural language explanations. Some approaches use natural
language to describe provenance (Deutch et al., 2017; Deutch
et al., 2020; Deutch et al., 2018a).

We will discuss techniques for provenance summarization in more
depth in Section 4.2.

3.7.2 Explanations for Machine Learning Models and Predictions

Explainability of machine learning predictions is one of the fundamental
research challenges of today. To understand a prediction one needs to
understand why a machine learning model did produce a prediction for a
given input, but also how the model was generated and how the training
data and training method indirectly influenced the prediction, e.g., to
detect bias and ensure fairness criteria (Salimi et al., 2018; Farnadi
et al., 2018; Jagadish et al., 2019). In addition to aiding explainability
and fairness analysis, provenance has been used to diagnose problems
in ML pipelines (Zhang et al., 2017). Furthermore, causality (which
is intimately related to provenance) has been used to guide users on
what non-sensitive information they can safely make public without
risking that some sensitive information can be inferred from this data
using a set of machine learning models (Fernandez et al., 2019). Re-
cently, provenance and methods from the ML community (the influence
functions from Koh and Liang (2017)) have been combined to explain
errors in the result of queries that have access to the predictions of
an ML model. By combining these two techniques, the errors can be
traced back to the training data based on which the model was created.
Deutch and Frost (2019) generates a minimal perturbation of the input
to be classified fulfilling a set of user provided constraints that causes
an requested change to the classification outcome. Wu et al. (2020) uses
a provenance model for linear algebra operations (Yan et al., 2016) to
incrementally update regression models.
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3.8 Additional Applications

3.8.1 Query Equivalence and Containment Checking

Query equivalence and containment are fundamental problems that
have been studied extensively in database research. Unfortunately, these
problems are computationally hard or undecidable, even for relatively
simple query classes. There is a lack of practical, best-effort techniques
for proving or disproving equivalence and containment of queries. Prove-
nance models that use symbolic expressions to encode the evaluation
of a query over multiple database instances, can be utilized to reason
about the behavior of a query over all possible database instances
as required for query equivalence and containment. Recent work on
checking equivalence of relational queries (Chu et al., 2018) explored
this idea. This work did extended K-relations by defining a new class
of mathematical structure called U -semirings which have additional
operations representing, e.g., negation, and are used to prove query
equivalence.

3.8.2 Performance Monitoring and Observability

Understanding and debugging the performance behavior of DISC sys-
tems and other distributed systems can be challenging. Even at the
most basic level, performance monitoring requires the orchestration
of monitoring tools across the machines of a cluster, gathering and
aggregation of the collected information, continuous monitoring for
"interesting" events, and analysis of root causes for events of interest. At
the most basic level, provenance can aid in the drill down involved when
trying to understand what causes an event. Even low-level performance
monitoring is already challenging in a distributed setting. When debug-
ging the behavior of a DISC system which execute programs written
in a high-level language, then the additional challenge arises of how to
connect the high-level operations expressed by the user to the low-level
performance events captured by monitoring tools. Provenance informa-
tion (Gulzar et al., 2017a) for such higher-level dataflow languages can
help to track performance information at the right level of detail (Olston
and Reed, 2011; Interlandi et al., 2016).
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3.8.3 Recommendations and Query-by-Example

The need to recommend data or workflow steps arises in many appli-
cations. For instance, to guide a user to construct a data wrangling
pipeline (Kandel et al., 2011; Guo et al., 2011) by recommending the
most likely next step based on a repository of past interactions. A de-
tailed record of how data has been derived from other data and through
which operations can provide important features for learning recom-
mendations. In Scheidegger et al. (2008) a query-by-example approach
based on provenance was proposed to create workflows by analogy.
Similarly, Query-by-explanation (Deutch and Gilad, 2016; Deutch and
Gilad, 2019) constructs a query based on data examples with prove-
nance. Ives et al. (2012) proposed to employ methods from link analysis
(e.g., PageRank) to identify important nodes in provenance graphs and
use this information for the purpose of recommendation.



4
Provenance Capture, Storage, and Querying

Having discussed formal provenance models and applications of prove-
nance, in this chapter we will discuss algorithms and systems for cap-
turing, storing, compressing, summarizing, and querying data prove-
nance. We will start by reviewing different mechanisms for representing
provenance information. A major focus will be methods for compact
representation of provenance for storage as well as how to summarize
it for human consumption. Afterwards, we will cover algorithms for
capturing provenance information and discuss how these algorithms
can be implemented on-top of database systems or as extensions of
DBMS kernels. Finally, we will discuss approaches for querying and
analyzing provenance information and give an overview of provenance
management systems.

4.1 Storage, Compression, and Summarization

When storing provenance we have to decide where to store it and
how to encode it. Either we can store provenance inside the system
for which we are recording provenance, e.g., store the provenance of
relational queries inside the database, or outside the system. Storing
provenance inside the system has the advantage that we do not have to
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ship information between systems. However, this comes at the potential
cost that we inherit the limitations of the data model of the system.
For example, a native graph model may be more efficient for storing
a graph-based provenance model than a relational database. Storing
provenance outside of the system that executes the transformations for
which we want to capture provenance is not subject to these limitations,
but has the disadvantage that we do not benefit from the functionality
build into the system for managing the recorded provenance information.
For example, if we store the provenance of a relational query inside a
relational database, then we can query provenance using the database’s
query language. Furthermore, when capturing provenance we have to
transfer this data from the system under observation to the system
we are use for provenance storage. None of these two approaches is
fundamentally superior to the other. Rather they represent different
trade-offs. In addition to choosing where to store provenance information
we have to decide how to encode it. As we will see in the following,
the choice of encoding can not only affect size, but may also affect the
runtime of provenance capture and querying.

4.1.1 Storing Provenance As Trees and Graphs

We start with a trivial observation, that nonetheless will be relevant to
our discussion of provenance compression in the following: many of the
provenance models we have discussed in Chapter 2 have a natural repre-
sentation as trees or graphs. One example are provenance games which
are defined as graphs. Another example are provenance polynomials
which can be expressed as expression trees which are binary trees whose
internal nodes are labeled with “+” and “×” and whose leaf nodes are
labeled with variables. For example, the expression tree for the polyno-
mial x1 · (x2 + x3) is shown in Figure 4.1 (left). Even for provenance
models like Lineage that encode binary relationships between the inputs
and outputs of a transformation, graph-based representations may be
beneficial if we want to track provenance across multiple transformations
(or for intermediate results of a single transformation).

Example 57 (Using graphs to store provenance for multiple transforma-
tions). Consider a user running a queryQ1 := γhobby;avg(age)→avgage(person)
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+

x1 ×

x2 x3

+

× ×

x1 x2 x1 x3

Figure 4.1: Encoding provenance polynomial x1 · (x2 + x3) as an expressions tree.
This polynomial can also be written as x1 · x2 + x1 · x3 resulting in an equivalent,
but larger tree.

r1

s1 s2

t1 t3 t2 t4

person
name hobby age id
Alice Hiking 45 t1
Peter Movies 32 t2
Bob Hiking 35 t3
Gert Movies 52 t4

Q1

hobby avgage id
Hiking 40 s1
Movies 40 s2

Q2

cnt id
2 r1

Figure 4.2: Storing Lineage for multiple transformations using graphs.

which returns the average age of persons pursuing a particular hobby.
Afterwards, the user runs a query Q2 := γcount(∗)→cnt(σavgage≥40(Q1))
to determine the number of hobbies where the average age of persons
that pursue this hobby is greater than 39. An example database is
shown in Figure 4.2. The lineage of the final result r1 is {s1, s2}, the two
tuples in the result of Q1. Each of these tuples depends on the two input
tuples belonging to the tuple’s group. We can encode this information
as a graph where the nodes are tuples and the edges represent lineage
relationships between inputs and outputs (Figure 4.2, top). For instance,
s1 is connected to t1 and t3, the tuples that are in tuple s1’s lineage.
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4.1.2 Compressing Provenance

Provenance models that are based on data dependencies (and potentially
encode additional information such how inputs have been combined)
encode a relationship between the outputs and the inputs of a trans-
formation. Thus, in the worst-case the size of the provenance may be
quadratic in the size of the input and output. When provenance is
recorded for multiple transformations as in Example 57 or for inter-
mediate results produced by a transformation, then the provenance’s
size can increase by a factor that depends on the number of trans-
formations (or number of intermediate results if we choose to break
down a transformation into multiple steps). In the following we will
discuss techniques for compressing provenance information. Some of
these techniques are applicable to any provenance model that can be
encoded as a dependency graph while others exploit the semantics of
specific provenance models.

4.1.3 Sharing Common Subexpressions

The reason we emphasized the representation of provenance as trees and
graphs, is that this representation allows provenance to be compressed
by sharing common subgraphs instead of repeating them. For example,
consider the provenance polynomial shown below:

x1 · (x2 + x3) + x4 · (x2 + x3)

The subexpression (x2 + x3) appears twice. Figure 4.3 (top) shows
the expression tree for this polynomial. We can compress the polynomial
by sharing the tree (x2 + x3) resulting in the directed acyclic graph
(DAG) shown in Figure 4.3 (bottom). The observation that provenance
can be compressed was already made in early work on provenance
compression (Chapman et al., 2008; Anand et al., 2009). Note that
these approaches are mostly independent of the provenance model as
long as provenance is represented as a graph.

In addition to sharing common subexpressions, other compression
techniques that have been explored in Chapman et al. (2008) and Anand
et al. (2009) are encoding sets of dependencies based on subset or sub-
sequence relationships, e.g., instead of listing all dependencies of a data
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Figure 4.3: Compressing the tree representation of a provenance polynomial by
sharing a common subexpression (x2 +x3) resulting in a more compact representation
as a DAG.

item, one may state how its set of dependencies differs from the set of de-
pendencies of another data item. For example, consider two data items d1
and d2 with dependencies S1 = {a, b, c, d} and S2 = {b, c, d, e}, respec-
tively. The set of dependencies for d2 can be expressed as S1 ∪{e}−{a}.
Furthermore, basic assumptions about the structure of provenance,
e.g., dependencies are assumed to be transitive, can be used to further
compress provenance. For example, if data item d1 depends directly on
data item d2 and d2 depends on d3 then under the assumption that data
dependencies are transitive, d1 depends on d3. If data dependencies are
transitive, then it suffices to only store direct dependencies, because all
remaining dependencies can be generated by computing the transitive
closure of the set of direct dependencies. Generalizing the example
of transitivity, provenance can be compressed by stating declarative
constraints that have to hold for the provenance and then removing
from the provenance all dependencies that can be inferred based on
these constraints.
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4.1.4 Factorizing Provenance

For provenance models that are based on algebraic structures such as
provenance polynomials and any other provenance model that can be
expressed in the semiring framework, compression can be achieved by
rewriting expressions using the algebraic laws of these structures (e.g.,
distributivity). For example, consider the polynomial x1 · x2 + x1 · x3.
Using distributivity, this polynomial can be written as x1 · (x2 + x3).
As another example, consider the PosBool[X] expression x1 ∨ (x1 ∧ x2).
In semiring PosBool[X], absorption can be used to compress formulas.
For instance, x1 ∨ (x1 ∧ x2) is equivalent to x1. In addition to sharing
of common subexpressions using distributivity, formulas can sometimes
be further compressed by using graphs to share common subexpressions
in different parts of an expression. We already discussed an example
for such sharing when discussing general compression strategies above.
Reconsider the example polynomial shown in Figure 4.3. An alternative,
equivalent, way to encode such sharing is to allow subexpressions to
be assigned to variables. For example, the polynomial shown in this
figure is x1 · (x2 + x3) + x4 · (x2 + x3). We can give an identity to the
subexpression (x2 + x3), e.g., xsub = (x2 + x3). Then the polynomial
can be written as

xsub = x2 + x3

x1 · xsub + x4 · xsub

Note that in this example we could have also used distributivity to
rewrite the polynomials as

(x1 + x4) · (x2 + x3)
.

In general, however, graph-based representations may be more com-
pact than any equivalent tree-based representation produced by dis-
tributivity. Note that these types of graphs are the arithmetic version of
the Boolean circuits that are used for encoding the provenance of recur-
sive queries as discussed in Section 2.5.1 except that for non-recursive
queries these circuits do not contain cycles.
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Given these mechanisms for compressing a provenance polynomial,
an interesting question is how to efficiently find the smallest possible
encoding of the polynomials. We can study either the offline problem of
compressing an existing provenance polynomial or the online problem
of computing a compressed representation during provenance capture.
The latter has the advantage that it not just reduces the size of the
provenance, but also may improve the runtime of provenance capture. A
variant of the latter that has been studied extensively is query evaluation
in factorized databases (Olteanu and Schleich (2016), Olteanu and
Závodný (2015), and Olteanu and Závodny (2011)). Specific attention
has been paid to the problem of selecting a factorization structure for
a query that results in the worst-case optimal size of the factorized
provenance polynomials for this query. Here by factorization structure,
we mean that provenance polynomials are structured according to a
“plan” for the query. Compression of provenance is only one application
of this work. Its main focus is factorization of the data itself.

As an example of the factorization structures mentioned above,
consider the query ΠA(R(A,B) ▷◁A=C S(C,D)). The flat provenance
of a query result is a sum ∑︁

ri · sj for some set of indexes i, j and
where ri is a variable annotating a tuple from R and sj is a variable
annotating a tuple from S. One possible factorization structure for
this query is ∑︁

i ri · (∑︁j sij) which avoids repetition of each annotation
ri of a tuple from R. This is achieved by multiplying r1 with the
sum of all annotations of tuples from S that join with a the tuple
of R annotated with ri. The details of how the worst-case optimal
factorization structure is chosen is beyond the scope of this paper. We
refer the reader to Olteanu and Závodný (2015) and Olteanu and Schleich
(2016). There are several systems that implement this approach, e.g.,
FDB (Bakibayev et al., 2012) is a database that natively uses factorized
representations of data and the Pug system (Lee et al., 2018) applies the
technique from Olteanu and Závodný (2015) to rewrite an input Datalog
program to compute provenance graphs with worst-case optimal size.
Compressed representations of algebraic and Boolean expressions have
been studied in many other contexts, e.g., for tractable query evaluation
over probabilistic data and for solving specific classes of intractable
problems (e.g., constraint solving) in polynomial time.
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4.1.5 Encoding Provenance in the Host Data Model

So far we have discussed how to compactly encode provenance informa-
tion. As mentioned in the beginning of this section, another choice we
have to make is where to store provenance information. If we choose to
store provenance natively inside the system for which we are recording
provenance, then one option to realize this idea is to encode provenance
in the native data model of this system (we refer to this as the host
data model). We will review three such storage themes here.

Relational Encoding of Provenance Polynomials in Perm

This approach was pioneered in the Perm system Glavic (2010), Glavic
and Alonso (2009b), Glavic and Alonso (2009c), Glavic et al. (2013b),
and Glavic and Alonso (2009a) for encoding provenance according to the
PI-CS model as annotations on data. Recall that for positive relational
algebra this model encodes provenance polynomials. Here we will focus
on the encoding of provenance polynomials only and refer the interested
reader to Glavic and Alonso (2009c) and Glavic et al. (2013b) for a
detailed description. Consider a positive relational algebra query Q

and let (R1, . . . , Rn) be the relations accessed by Q in the order they
appear as leaf nodes (left to right) of the relational algebra tree for Q.
For instance, for query R ∪ (S ▷◁ T ), we get (R,S, T ). To encode the
provenance polynomial p = Q(D)(t) for a tuple t in the result of Q over
a database D, we normalize the polynomial as follows:

1. Sum of product form: Using the equational laws of semirings
we transform p into a sum of products: ∑︁m

i=1
∏︁k

j=1 xij .

2. Ordering variables: Then variables are sorted based on which
leaf node they stem from.1 Furthermore, we pad monomials with
ones such that each monomial has n elements where n is the
number of relations accessed by the query. That is, the polynomial
is now of the form ∑︁m

i=1
∏︁n

j=1 eij where each eij is either 1 or a
1In general, it is not possible to determine with certainty which leaf node a

variable stems from using the polynomial alone. Here we will ignore this aspect.
In the context of the Perm system this problem does not arise, because the PI-CS
provenance model used there explicitly encodes this order.



4.1. Storage, Compression, and Summarization 153

variable x stemming from the annotation of a tuple in relation
Rj .

3. Encoding monomials: Each monomial e1 ·. . .·en is then encoded
as a single tuple by concatenating the result tuple t and tuples
t1, . . . , tn. If ei = x for some variable x, then ti is the tuple from
relation Ri annotated with x. Otherwise, ti is a tuple of null values
with the same arity as Ri.2

4. Encoding the polynomial: The polynomial p is encoded as the
set of tuples generated for its monomials.

Note that the approach from Glavic and Alonso (2009a) represents
provenance using input tuples in lieu of variables. The rationale behind
this decision is that it enables queries over provenance to access attribute
values of input tuples in the provenance which is not directly possible
when abstract variable symbols are used. However, for applications
where only the identity (variables) of input tuples is needed this would
be overkill. For such applications, one can use a different encoding of
variables, e.g., using unique tuple identifiers.

Example 58 (Relational encoding of provenance polynomials). Figure 4.1
shows an example query that returns the names of customers and of
employees that work for at least one department. Consider the result
tuple (Peter). There are three tuples in the result of the two joins
that are projected onto this result tuple corresponding to the three
departments Peter is working for. The provenance polynomial for this
result is e1 · (x1 · d1 + x3 · d2 + x3 · d3) + c1. The sum of products
representation of this polynomial is:

e1 · x1 · d1 + e1 · x2 · d2 + e1 · x3 · d3 + c1

Ordering variables based on the order of relation accessed in the
algebra tree for the query and padding the monomials with ones we get:

2We assume that the input database is abstractly tagged, i.e., each input tuple
is annotated with a unique variable. Furthermore, we assume that there no tuples in
the input that only consist of null values. For databases that violate this assumption,
we can use an additional Boolean column per input relation that stores whether
ei = 1.
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(e1 · x1 · d1 · 1) + (e1 · x2 · d2 · 1) + (e1 · x3 · d3 · 1) + (1 · 1 · 1 · c1)

The relational encoding of the polynomials for all three answers
of this query is shown on the bottom of Figure 4.4. Note how the
4 monomials of the provenance polynomial for (Peter) are encoded
as 4 tuples and how variables are represented by the tuples that are
annotated with these variables in the input database.

A few remarks are in order. The advantage of this encoding of
polynomials is that the provenance is stored alongside the data as a
single relation that is suited well for queries that retrieve the provenance
for some result tuples only (by applying a selection to filter result
tuples) or retrieve only parts of the provenance (by applying selections
or projections to filter out parts of provenance that are of interest). We
will discuss this point in more detail in Section 4.4. A disadvantage of
this encoding is that it is quite verbose and does not support some of the
storage optimizations we discussed above. This encoding of provenance
was used for a larger class of algebraic operators including aggregation
and nested subqueries with correlations (Glavic et al., 2013b; Glavic
and Alonso, 2009b).

Relational Encoding of Provenance Polynomials in Orchestra

A similar encoding is used in the Orchestra system (Green et al., 2010;
Karvounarakis et al., 2010) to store the provenance of schema mappings
in update exchange. In Orchestra, a set of peers in a network specify
mappings between their schemas. Based on these schema mappings and
a provenance-based trust policy, Orchestra translates updates to one
peer into updates to the databases of other nodes in the network. The
provenance model used in this work is the extension of the semiring
model with functions that represent applications of schema mappings.
Recall that we already did discuss this model in Section 2.6.2. Like
the encoding used by Perm, monomials are encoded as the tuples (or
some unique identifier such as a key) whose variables appear in the
monomial. However, this approach materializes intermediate results
at the granularity of schema mappings. While this comes at the cost
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emp
eid name N[X]
1 Peter e1
2 Bob e2
3 Alice e3

empdept
eid did N[X]
1 1 x1
1 2 x2
1 3 x3
2 1 x4
3 2 x5

dept
did dname N[X]
1 Sales d1
2 IT d2
3 HR d3

cust
cid name N[X]
1 Peter c1
2 Malice c2

Query

SELECT name
FROM emp

NATURAL JOIN empdept
NATURAL JOIN dept

UNION ALL
SELECT name
FROM cust

Algebra tree
∪

custΠname

▷◁

▷◁ dept

emp empdept

Query result annotated with provenance
Sch(Q) emp empdep dept cust Padded
name eid name eid did did dname cid name Monomial
Peter 1 Peter 1 1 1 Sales null null e1 · x1 · d1 · 1
Peter 1 Peter 1 2 2 IT null null e1 · x2 · d2 · 1
Peter 1 Peter 1 3 3 HR null null e1 · x3 · d3 · 1
Peter null null null null null null 1 Peter 1 · 1 · 1 · c1
Bob 2 Bob 2 1 1 Sales null null e2 · x4 · d1 · 1
Alice 3 Alice 3 2 2 IT null null e3 · x5 · d2 · 1

Malice null null null null null null 2 Malice 1 · 1 · 1 · c2

Figure 4.4: Relational encoding of provenance polynomials. The provenance polyno-
mial for each result tuple has been normalized by rewriting it into a sum of products
and ordering variables of monomials based on the order of relation accesses in the
relational algebra tree for the query. Result tuples whose provenance consists of more
than one monomial are represented as multiple tuples in the encoding. For instance,
the provenance of (P eter) is e1x1d1 + e1x2d2 + e1x3d3 + c1.
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of having to materializing these intermediate results, the benefit is
that it may result in an encoding that is more compact compared to
the Perm encoding, because of sharing of common subexpressions and
factorization.

Example 59 (Factorization and Sharing). By splitting the provenance
polynomials into parts corresponding to individual schema mappings,
Orchestra generates a factorization that reflects this structure. For
example, consider the two mappings and N[X]-instance for the rela-
tions used in the schema mappings shown in Figure 4.5. Orchestra
would create two relations to store the provenance of m1 and m2.
These relations store all successful bindings of the variables of a tgd
to values. The provenance table for m1 records that the provenance
of tuple td = Department(HR) is x1 + x2. The provenance table for
m2 records that tuple ManagedDepartment(HR) is derived by joining
td with Manager(Alice,HR) and Manager(Astrid,HR), i.e., its prove-
nance is the annotation of Department(HR) multiplied with y1 and y2.
This corresponds to the factorized representation of the provenance
polynomial as shown as a graph in Figure 4.5 or as the expression with
assignment shown below.

xd = x1 + x2

y1 · xd + y2 · xd

Provenance Graphs in Pug

The Pug system’s provenance graph model (Lee et al., 2018) for Datalog
queries uses factorization based on the query structure (recall that we
discussed this model briefly in Section 2.4.3). By default Pug does
not optimize this factorization to ensure that the structure of the
provenance reflects the structure of user’s query which is important for
debugging queries. However, if the user is only interested in provenance
polynomials, then, as mentioned above, Pug can rewrite the query to
generate a worst-cast optimal factorization of the polynomial.
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m1 :∀x, y : Employee(x, y) → Department(y)
m2 :∀x : Department(x),Manager(y, x) → ManagedDepartment(x)

Employee
name dept N[X]
Peter HR x1
Bob HR x2

Department
dept N[X]
HR x1 + x2

Manager

name dept N[X]
Alice HR y1

Astrid HR y2

Managed Department

dept N[X]
HR (x1 + x2) · (y1 + y2)

m1’s provenance

name dept
Peter HR
Bob HR

m2’s provenance

name dept
Alice HR

Astrid HR
+

×

y1

×

y2+

x1 x2

Figure 4.5: Example schema mapping and Orchestra provenance encoding.
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Where-Provenance in DBNotes

As yet another example of a relational encoding we discuss how where-
provenance is stored in the DBNotes system. Recall that where-provenance
(Section 2.3.3) uses attribute-level granularity. The where provenance
of the value of an attribute A of a tuple t is a set of input attribute
values. Each such values is identified through a unique tuple identifier
and the attribute’s name. The schema of each relation R is extended
with one additional attribute Aa for each attribute A of the relation.
These attributes are used to store annotations. If the where-provenance
of one or more attribute values of a tuple contains more than one input
attribute value, then the tuple is replicated n times where n is the
maximum number of elements in the where-provenance of any attribute
of the tuple.

Example 60 (DBNotes where-provenance storage scheme). Consider
the where provenance of evaluating the query student ∪ teacher over
the database shown below. We show the set of input attribute values
that contribute to a result attribute value as a superscript for this
value. The relational encoding of where-provenance encodes result tuple
(Peter) using two tuples to store the two attribute values in the where-
provenance of the name attribute of this tuple.

student
name id
Peter s1
Bob s2

teacher
name id
Peter t1
Alice t2

Query result with
where-provenance

name
Peter{t1.name,t1.name}

Bob{s2.name}

Alice{t2.name}

Relational encoding of the
query’s where-provenance

name namea

Peter s1.name

Peter t1.name

Bob s2.name

Alice t2.name
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4.1.6 Encoding Provenance using User-Defined Types

An alternative to using the native data model of the system for which
we are capturing provenance is to use the extensibility mechanisms of
such a system to define new data types for representing provenance
information. Of course this is only possible if the system has an extensible
type system. For example, most database systems support user-defined
datatypes (UDTs) and user-defined functions (UDFs). For instance, the
ProvSQL system (Senellart et al., 2018) uses UDTs to store provenance
circuits for monus-semiring provenance, the extension of provenance
polynomials with support for set difference we discussed in Section 2.4.1.
As we will see in Section 4.3, encoding provenance using a UDT provides
us with more flexibility for how to store provenance, but can lead to
large tuple sizes when the provenance of a tuple is encoded as a single
attribute value. However, most DBMS are optimized for large quantities
of moderately sized tuples. In Senellart et al. (2018) this problem is
circumvented by storing nodes of a circuit as separate values instead
of encoding the whole circuit as a single value. We will continue this
discussion in Section 4.3.

4.1.7 Native Provenance Storage

Yet another option is to extend the storage and execution engine of
a database system to support provenance. This option is the most
flexible, but is also the most invasive. This option gives us the flexibility
to piggyback provenance on existing data structures that are created
during query evaluation. For example, the Smoke system (Psallidas
and Wu, 2018a) utilizes data structures such as hash tables created by
implementations of join and aggregation operators to store provenance
with less overhead.

4.1.8 Standardized Representations of Provenance

The storage formats for provenance we have discussed so far are mostly
specific to a provenance model and the main focus is on how to com-
pactly represent provenance to enable efficient capture and querying. In
this article, we have been using the term provenance model in a narrow



160 Provenance Capture, Storage, and Querying

sense to denote a syntax that is used to encode provenance information
as well as a semantics that defines what the provenance of a transfor-
mation, e.g., a query, is. We have discussed such provenance models in
depth in Chapter 2. A separate body of work has focused on creating
standardized representations of provenance information that are generic
enough to apply to a wide range of provenance use cases. To make
clear the distinction between the models discussed in Chapter 2 and
such models, we will refer to the later as standardized representations.
Because of their generic nature, such standardized representations can
serve as a storage format for exchanging provenance information among
provenance-enabled systems. Two such standardized representations are
the PROV model (Moreau and Groth, 2013) and the open provenance
model (OPM) discussed in Moreau et al. (2011). We briefly discuss the
PROV model here.

PROV is a graph-based model. A PROV graph consists of a number
of different node types:

• entities are the objects whose provenance we want to track (rep-
resented as rectangles in PROV graphs)

• activities are actions that consume and produce entities (repre-
sented as rectangles with rounded edges in PROV graphs)

• agents control, trigger, and execute activities (represented as
“house shapes” in PROV graphs)

Figure 4.6 shows the provenance of a query Q (an activity) executed
by a person named Bob (an actor) at the granularity of relations (the
entities). Note that we use ovals to denote agents. Edges in PROV
graphs represent provenance relationships between the elements (of the
graph). Important types of edges are:

• wasDerivedFrom edges connect entities to other entities they were
derived from, i.e., such edges encode data dependencies

• wasGenereatedBy edges connect entities to the activities involved
in their creation (in our terminology this a type transformation
dependency)
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wasGeneratedBy
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Figure 4.6: Example PROV graph recording the derivation of a query result
relation (an entity) from multiple input relations (entities). The query (an activity)
was executed by user Bob (an agent).

• used edges connect activities to the entities consumed by the
activities

• wasAttributeTo edges connect entities to the agents that can be
credited with their creation

• wasAssociatedWith edges connect activities to the agents that
controlled, executed, or triggered them

In our example shown in Figure 4.6, the query activity Q was
attribute to Bob who submitted the query. The query’s result was also
attributed to Bob. The query result was generated by by the query which
used the two input relations R and S.
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4.2 Provenance Summarization

So far we have focused on how effective storage strategies are in reducing
the size of provenance information and what their cost is. However, size
and performance of compression are not the only factors that should be
considered. Other important factors are how a storage strategy affects
the performance of querying, or more generally, analyzing provenance
information and, if provenance will be consumed by a human, how
the storage strategy affects understandability. In this section, we will
discuss techniques for producing summaries of provenance for human
consumption. These differ from the compression techniques discussed
earlier in that (i) understandability is a major concern and that (ii)
aggressive compression is required to produce summaries that are small
enough to be consumed by a human. To achieve these goals, most
techniques permit summaries to over- and/or under-approximate the
provenance. That is, not all provenance may be represented by the
summary (under-approximation) or some of the data represented by
the summary may not be in the provenance (over-approximation).

4.2.1 Pattern- and Constraint-based Summaries

One common method for summarizing provenance is to use a declarative
description of the data that belongs to a query’s provenance. A common
type of declarative summaries are selection patterns which are tuples
over constants and variables paired with constraints on the values
these variables can take. For instance, the pattern (Peter, xage);xage >

30 ∧ xage ≤ 40 “covers” all tuples for which the first attribute value is
the constant “Peter” and the second attribute is an integer between
30 and 40. Many approaches for summarizing provenance have used a
restricted form of such patterns for which variables are unconstrained
(represent any value) and do not repeat. Such patterns can be compactly
represented by using a “don’t care” value ∗ that denotes variables (since
variables are unique within a pattern and are not constrained, their
identity is irrelevant). For instance, (Peter, ∗) is a pattern that represents
all persons named “Peter” no matter what their age is.

Such patterns have been used to identify subsets of an aggrega-
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tion query’s provenance that have a large effect on the result, e.g.,
find branches that contributed the most to a company’s sales. These
approaches use intervention to measure the impact the subset of the
input data described by a pattern has on a query result: what is the
change to the query result when deleting this subset from the database.
Recall that we already discussed a provenance model based on inter-
vention in Section 2.1.4. Wu and Madden (2013) presented Scorpion,
an intervention-based system for explaining aggregate query results.
Roy and Suciu (2014) presented a similar approach that also takes
inclusion dependencies (foreign keys) into account to only consider in-
terventions that respect the constraints of the input database’s schema.
For example, an intervention that removes a teacher has to also re-
move the students that are advised by the teacher (assuming that there
is foreign key from students to teacher). Selection patterns have also
been used in Lee et al. (2020) to summarize why-not provenance. This
work uses sampling to scale why-not provenance to non-trivial database
sizes. Declarative summaries of data have been used extensively for
applications other than data provenance, e.g., to explain classifications
outcomes (Vollmer et al., 2019; El Gebaly et al., 2018; El Gebaly et al.,
2014) or for interactive data exploration (Joglekar et al., 2019). One
challenge in all of these approaches is that the number of candidate
patterns, while polynomial in the size of the input data, is exponential
in the number of attributes. Approaches that explore the search space
exhaustively are, thus, limited to relatively small schemas (in terms of
the number of attributes in the schema). Some approaches like, e.g.,
Lee et al. (2020), Wu and Madden (2013), and El Gebaly et al. (2014),
use heuristics to prune the search space by considering only a subset of
all possible pattern candidates as well as using sampling to speed-up
the evaluation of a pattern’s impact. In addition to the impact that
deleting a subset of the data corresponding to a pattern has on the
query result, other measures may be used to measure the “quality” of
a pattern-based explanation such as (i) the size of the explanation (if
a set of pattern is returned); (ii) the amount of non-provenance data
covered by the pattern (does the pattern mostly describe provenance
information); (iii) and the informativeness of the pattern, i.e., how much
new information is conveyed by the pattern, e.g., a pattern consisting
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tax
name city state tax-2019 tax-2020

Eton Fragrance Los Angles CA 13,232,343 14,532,343
Bill Smith San Antonio CA 9,123,123 12,123,123

William Entryway Lake Washington WA 8,122,233 6,122,233
Bob Pretzel Chicago IL 1,432,232 1,032,232

Pete Everyman Chicago IL 4,534 15,534
Alice Smith Chicago IL 14,543 22,543

SELECT sum(tax -2020 - tax -2019) AS taxincr
FROM tax

taxincr
1,919,000

Figure 4.7: Using pattern-based summaries to explain the outcome of an aggregate
query based on intervention (finding influential subsets of the provenance).

only of placeholders does not convey any new information. Approaches
differ in what metrics they optimize for and which hard constraints
they enforce for explanations. For example, given an aggregate query,
direction (higher or lower), and a database, the approach described in
Roy and Suciu (2014) selects a pattern that has the largest impact on
the result of the aggregation query.

Example 61 (Summarizing provenance with patterns). Consider the tax
dataset shown in Figure 4.7. We are using the query shown in this
figure to calculate the total increase in tax revenue from 2019 to 2020.
A pattern based summarization technique can be used to explain which
are the major contributors to the observed increase. For instance, we
may employ the technique from Roy and Suciu, 2014 that returns a
pattern such that removing the data covered by the pattern leads to
the greatest decrease of the aggregation result.3 In this example, some
persons’ tax has increased (Eton, Bill, Pete, and Alice) while the tax of
the remaining persons decreased. It is easy to see that in this case the
pattern that leads to the greatest decrease of the result is state = CA

(or (∗, ∗, CA, ∗, ∗) if we use the placeholder notation introduced above),
3This method also reasons about foreign key constraints, but since our example

uses a single relation this is not relevent here.
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since both Eton and Bill saw a large tax increase in 2020 while most
other persons did see a decrease. While Pete and Alice also saw an
increase in tax, their total contribution is not enough to offset other
decreases that would be included for patterns that also cover these two
persons.

4.2.2 Summarization with Ontologies

An alternative to using queries to describe provenance data declaratively,
is to use a hierarchy of concepts encoded as an ontology to summarize
data. For instance, we can replace many instances of a more specific
concept with a general concept that subsumes them. For example, if all
cities in California are in the provenance then we may represent this
set of cities using the more general concept, e.g., “CaliforniaCity” or
“USCity”. To use an ontology to summarize (provenance) data, we need
to relate the constants / tuples occurring in the database with concepts
in the ontology. For instance, one way to achieve this is to require
that all constants from the database (the database’s active domain
adom(D)) exist as base concepts (concepts that are not subsuming any
other concepts) in the ontology:

Definition 26 (Ontology). Given a database D with active domain
adom(D), an ontology is a pair (C,⊑) where

• C ⊆ adom(D) is a set of concepts

• ⊑, called the subsumption relation, is a reflexive and transitive
binary relation over C

We require that ∀c ∈ adom(D) : ¬∃c′ ∈ C : c′ ⊏ c.

Summarization with ontologies and summarization with queries are
more closely related to each other than one may expect. Cate et al.
(2015) showed how to automatically derive an ontology from queries
based on query containment. For instance, the query

QlargeCAcities := Πcityname(σstate=CA∧population>100,000(cities))
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ACity

NACity

USCity

IllinoisCity

chicago

WashingtonCity

seattle

NYStateCity

newyork

DCCity

washington dc

EuropeanCity

GermanCity

berlin munich

FrenchCity

paris lyon dijon

Train
fromCity toCity
new york washington dc
new york chicago
chicago seattle

washington dc seattle
berlin paris
berlin munich
paris lyon
paris dijon

2hop
X Y

new york seattle
chicago washington dc
berlin lyon
berlin dijon

. . . . . .

Figure 4.8: Example train connection database and city ontology from Glavic et al.
(2015).

which computes cities in California with more than 100,000 inhabitants
is contained in

QCAcitites := Πcityname(σstate=CA(cities))

which returns all cities in California.
Thus, the concept corresponding to QlargeCAcitites is a subconcept of

the concept corresponding to QCAcities. Cate et al. (2015) demonstrated
how to use an ontology to generalize a missing answer, i.e., the user
provides as input a non-answer to a query and the approach generalizes
this missing answer to a most general explanation which is a tuple of
concepts from an ontology that covers only missing answers, includes the
missing answer provided by the user, and none of the concepts can be
generalized further without covering also existing answers. Glavic et al.
(2015) utilizes the concept of most general explanations to summarize
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why- and why-not provenance for unions of conjunctive queries using
taxonomies and demonstrated how to use Datalog to compute such
summaries. Data X-ray Wang et al. (2015) implements an approximate
algorithm that find explanations based on a taxonomy in linear time.

Example 62 (Summarization with ontologies). Consider the ontology
and database shown in Figure 4.8. The Datalog query shown below
returns train connections with one intermediate stop.

2hop(X,Y ) :− bidir(X,Z), bidir(Z, Y )
bidir(X,Y ) :− Train(X,Y )
bidir(Y,X) :− Train(X,Y )

A user may wonder why there are no train connections from Chicago
to Berlin with one intermediate stop. The why-not provenance of this
missing answer consists of all failed derivations of the first rule with
X = chicago, Y = berlin, and Z bound to any city. However, there
is not just no train connection from Chicago to Berlin, there are no
train connections from any American city to any European city. Thus,
instead of listing all of these derivations, we can use the ontology from
Figure 4.8 to compactly explain this more general observation:

2hop(NACity,EuropeanCity) :− bidir(NACity,ACity),
bidir(ACity,EuropeanCity)

4.3 Provenance Capture

To be able to benefit from provenance information, we have to devise
techniques for capturing provenance. Methods for provenance capture
differ in the types of transformations they support, in how they capture
provenance, and in when provenance is captured (during the execution
of a transformation or after the fact). We will first discuss what aspects
of these methods are of interest to us and then discuss individual classes
of methods in more detail.
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• When to capture provenance? Methods that capture prove-
nance proactively during the execution of a transformation have
traditionally been called eager while methods that capture prove-
nance retroactively are referred to as lazy. Eager methods have
the disadvantage that we pay the overhead of provenance capture
for all transformations upfront. The additional computational re-
sources used to capture provenance may be wasted if the captured
provenance information is never used. Lazy methods have the
disadvantage that it may not always be possible to capture prove-
nance retroactively, because we may lack relevant information
that is needed for capture. Note that eager and lazy are only two
extremes of a spectrum: hybrid methods capture some informa-
tion during transaction execution and then use this information
later on for retroactive provenance tracking. These methods have
the advantage that they enable lazy capture for larger classes of
transformations without having to pay the high upfront cost of
provenance capture of many eager methods.

• What to information is required for capture? For methods
that are lazy (or hybrid), we will discuss what information needs to
be captured during transformation execution and what overhead
this entails. For instance, as we will see in the following, provenance
for queries and transactions can be captured retroactively using
the time travel and audit logging facilities build into many DBMS.

• Backward vs. forward tracing? To compute provenance we
can either start from the result of a transformation and then trace
these results backwards to the inputs they depend on or we can
start from the input data and track its impact on (intermediate)
results of the transformation. We refer to the earlier as back-
wards tracing and the later as forward tracing. A prevalent
type of forward tracing is annotation propagation. In anno-
tation propagation we annotate the input data with provenance
tokens that are propagated and combined during transformation
execution to produce results that are annotated with provenance
information.
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• External vs. internal capture? To capture provenance we can
either extend the system on which we are executing transforma-
tions with native provenance capture capabilities (we call this
approach internal capture) or we limit our interactions with the
system to the API provided by the system and compute prove-
nance information outside of the system (we refer to this approach
as external capture). Of course, it is possible for a method to
do some work internally and some work externally. A specific
type of external capture is language-level instrumentation where
the provenance computation is expressed in the same language
as the transformation for which we want to capture provenance.
One example of such a technique is to use SQL to capture the
provenance of SQL queries, e.g., see Glavic et al. (2013b), Cui
et al. (2000), and Bhagwat et al. (2004).

4.3.1 Backward Tracing (Inversion)

Inversion computes the provenance for a data item in the result of a
query Q over a database D by inverting the query. However, queries are
typically not injective, i.e., the query may produce the same result for
two input databases. Such queries are not invertible in the mathematical
sense. This implies that it in general it is not possible to compute
provenance using just the query result and query. Inversion methods,
thus, either require access to the input data or other types of additional
information to be able to capture provenance.

An early example of a provenance capture method for the Lineage
model (introduced in Section 2.3.2) that employs inversion was described
in Cui et al. (2000). This procedure takes as input an RAagg query and
divides this query into “blocks” where some operators (e.g., aggregation
and difference) are block boundaries. Starting from a result tuple t, the
approach then recursively traces the tuple back to their provenance in
the database one block at a time. Note that this requires the result of
the root operator of each block to be materialized (or to be recomputed
on the fly when needed). Blocks are classified based on the types of
operators that occur in the block. Cui et al. (2000) defines a separate
tracing procedure for each block type which consists of running one or
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more queries that trace the input or intermediate provenance produced
for a parent block back to the inputs of a block.

Tracing SPJ Queries

Let us consider first tracing an SPJ query, i.e., a query consisting only of
selection, projection, and joins. Recall that the lineage of a query result
is a list of subsets ⟨R1

∗, . . . , Rn
∗ ⟩ of the input relations Ri accessed by

the query that fulfills the conditions of Definition 13 and Definition 14.
Definition 13 defines the lineage of a single operator by requiring that
when replacing the operator’s inputs with the lineage of a result tuple
t, we get the result set {t}. Furthermore, each tuple t∗ ∈ Ri

∗ together
with Rj

∗ for all j ̸= i is sufficient for producing the result. Finally,
⟨R1

∗, . . . , Rn
∗ ⟩ is maximal among all subsets fulfilling the other two

conditions.
The tracing procedure for SPJ queries consists of a single query plus

an operator SplitA1,...,Am(R) which returns a list of projections of R,
one for each Ai:

SplitA1,...,Am(R) = ⟨ ΠA1(R), . . . ,ΠAm(R) ⟩

Consider an SPJ query of the form shown below. Note that any SPJ
query can be brought into this form by applying standard relational
algebra equivalences.

ΠA(σθ(R1 ▷◁ . . . ▷◁ Rm))

Given such an SPJ query, the lineage of one result tuple t consists
of all tuples from an input relation Ri that contribute to a result of
the join (R1 ▷◁ . . . ▷◁ Rm) that fulfills the selection condition θ and
is projected onto t by the projection of Q. This set of tuples can be
computed by evaluating the join and selection and then filtering out
tuples that are not projected on t using a condition A = t. Then the
split operator is applied to generate the individual Ri

∗ that constitute
the lineage of the result.
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sales
item shop quantity id
Coffee Chicago 2 s1
Coffee Schaumburg 3 s2
Tea Springfield 10 s3
Tea Chicago 1 s4

items
item price id
Coffee 13 i1
Tea 7 i2

Query result

item
Coffee
Tea

Figure 4.9: Computing lineage using inversion.

Definition 27 (Lineage SPJ Tracing). Let D be a database and t be a
tuple in Q(D) for a query Q:

ΠA(σθ(R1 ▷◁ . . . ▷◁ Rm))

The tracing query TQt,Q shown below computes the lineage of t wrt. Q
and D.

TQt,Q := SplitSch(R1),...,Sch(Rm)(σθ∧A=t(R1 ▷◁ . . . ▷◁ Rm))

Before presenting an example of applying the tracing procedure, let
us briefly reason about how it compares against the input query in terms
of performance The input query and tracing query differ in three points:
(i) the tracing query applies additional selection conditions; (ii) there is
no projection in the tracing query; and (iii) the tracing query applies
the split operator. The additional selection conditions may result in the
tracing query being significantly smaller. However, if this condition is
not very selective, then the tracing query may actually be slower than
the input query, because of the larger result size (no projection on A)
and the cost of the split operator. Nonetheless, it is not unreasonable
to assume that in most cases the lineage of a single result tuple of an
SPJ query will be small compared to the size of the input.

Example 63 (Computing Lineage According to Cui et al. (2000)). Fig-
ure 4.9 shows an example sales database. We demonstrate the inversion
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approach using the query shown below which returns items with sales
(quantity times price) of more than $20.

QHighSaleItems := Πitem(σquanitity·price>20(sales ▷◁ items))

The tracing query for the result tuple tcoffee = (Coffee) according to
Definition 27 is

TQtcoffee,QHighSaleItems
:=

SplitSch(sales),Sch(items)(σquanitity·price>20(sales ▷◁ items))

Evaluating this query over the example database we get:

⟨ {(Coffee, Chicago, 2), (Coffee, Schaumburg, 3)}, {(Coffee, 13)} ⟩

That is, coffee is in the result, because of the first two tuples from
relation sales and the first tuple of relation items.

ASPJ Queries

The SPJ tracing procedure can be extended to support aggregation.
Recall from the operational definition of lineage (Definition 15) that
the lineage of an aggregation operator (with group-by) consists of all
input tuples that have the same group-by value as the result tuple of
interest. For now consider an aggregation query as shown below.

γG;fA(ΠA(σθ(R1 ▷◁ . . . ▷◁ Rm)))

Thus, the input tuples of the aggregation that contribute to a result
tuple t can be retrieved through a selection σG=t.G, i.e., all input tuples
that have the same values in the group-by attributes G as the output
t. The extended tracing query for a query with a single aggregation as
the last operation is:

TQt,Q := SplitSch(R1),...,Sch(Rm)(σθ∧G=t.G(R1 ▷◁ . . . ▷◁ Rn))
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Multi-block Queries

As mentioned above, more complex queries are split into blocks such
that each block contains at most one aggregation operator. The reason
for introducing block-wise tracing is that a single tracing query is only
sufficient to invert a single such block, but tracing across blocks requires
access to intermediate results. For instance, if there is a query with two
levels of aggregation, e.g., counting the number of departments (outer
aggregation) that have more than 10 employees (inner aggregation with
group-by), then the first tracing query can only determine which output
tuples of the inner aggregation contribute to the final query result. A
second tracing query has to be used to then capture the lineage of these
tuples back to the input database. We refer the interested reader to Cui
et al. (2000) for a detailed description of the algorithm for splitting a
query into multiple blocks and for tracing procedures for set operations.

Discussion

The backward tracing procedure according to Cui et al. (2000) we
have introduced in this section does only require access to the input
database and query to compute provenance. However, it is more efficient
if intermediate results of subqueries corresponding to tracing blocks
are stored as materialized views. Cui and Widom (2000b) discussed
heuristics for choosing which views to create for this purpose. As we will
discuss in the following, some forward tracing procedures can capture
the provenance of a query using a single query instead of tracing it one
block at a time. Furthermore, they support more informative provenance
models such as provenance semirings. Another optimization proposed
in Cui and Widom (2000b) is that if the query result contains keys of
all or some of the input relations, then the values of these tuples for a
query result of interest can be used to directly fetch tuples that belong
to the lineage from the input relations using a selection on the key.

4.3.2 Annotation Propagation (Forward Tracing)

An alternative to inversion is to annotate tuples from the input database
with their provenance and then propagate and combine these annota-
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tions during query processing to produce results annotated with prove-
nance. Annotation propagation is particularly well-suited for provenance
models that are defined using annotation propagation such as the semir-
ing model and its extensions. However, any type of provenance can be
computed using this approach as long as the annotated result produced
for a subquery contains sufficient information to calculate provenance
annotations for down-stream operators (ancestors). Fortunately, this is
the case for the provenance models we have discussed in Chapter 2.

Computing Semiring Annotations

As one example for an annotation propagation approach, we discuss
an approach for calculating semiring provenance using the examples of
provenance polynomials and lineage. In Section 4.3.3 we will discuss
possible ways of implementing annotation propagation.

Example 64 (Annotation Propagation). Recall from Section 2.3.4 and
Section 2.3.4 the semiring of provenance polynomials and the one used
for lineage:4

• Which[X] = (2X ∪ {⊥},∪+,∪×,⊥, ∅) (lineage)

• N[X] = (N[X],+·, 0, 1) (provenance polynomials)

We now revisit computing provenance for query QHighSaleItems from
Example 63 bottom-up with forward tracing (annotation propagation)
instead of inversion. Recall that the example database used for this
is shown in Figure 4.9. We show subqueries of this query below. Fig-
ure 4.10 shows the intermediate and final results of the query using
annotation propagation (which for the case of semirings is the same as
K-relational query semantics as discussed in Section 2.3.4). In the input
relations every tuple is annotated with unique variable (e.g., using tuple
identifiers). Subquery Q2 is a natural join of the two input relations. In
K-relational semantics, each result tuple of a join is annotated with the
product of the annotations of the two input tuples it is derived from. In
semiring Which[X] multiplication is defined as set union. Query Q1 then

4As discussed in Chapter 2 the semiring version of lineage differs from lineage by
not tracking the order in which relations are accessed by a query.
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applies a selection to the result of Q2 which filters out the last tuple
(annotated with s4 · i2). Finally, query QHighSaleItems projects the result
of Q1 on attribute item. In K-relational algebra, an output tuple of a
projection operator is annotated with the sum of the annotations of all
input tuples projected onto this output. For example, tuple (Coffee)
is derived from the first two tuples in the result of query Q2 and, thus,
is annotated with s1 · i1 + s2 · i1. Addition in semiring Which[X] is set
union. Thus, modulo the split of lineage into subsets of the individual
input relations of the query, forward tracing with semirings produces
the same result as inversion.

QHighSaleItems := Πitem(σquanitity·price>20(sales ▷◁ items))
Q1 := σquanitity·price>20(sales ▷◁ items)
Q2 := sales ▷◁ items

Note that the slight difference in semantics between forward tracing
(annotation propagation) and backward tracing (inversion) is not an
inherent property of these two fundamental approaches, but due to our
choice to semiring used in forward tracing.

4.3.3 Extending Systems for Provenance Capture

We now discuss how database systems can be extended to support
provenance capture. While our focus is on relational databases, the
methods we will discuss are of broader interest, e.g., for implementing
provenance capture on big data platforms such as Spark (Zaharia et al.,
2010) or MapReduce (Dean and Ghemawat, 2004).

Instrumenting Queries for Capture

One common method for implementing provenance capture by annota-
tion propagation is to use an encoding of annotated relations in the host
data model (as discussed in Section 4.1.5) or using user-defined types
(as discussed in Section 4.1.6) and implement annotation propagation
over this encoding by instrumenting the input query for which we
want to capture provenance. Here by instrumenting we mean rewriting
the query such that it returns this encoding of query results annotated
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sales
item shop quantity Which[X] N[X]
Coffee Chicago 2 {s1} s1
Coffee Schaumburg 3 {s2} s2
Tea Springfield 10 {s3} s3
Tea Chicago 1 {s4} s4

items
item price Which[X] N[X]
Coffee 13 {i1} i1
Tea 7 {i2} i2

Annotated result of Q1

item shop quantity price Which[X] N[X]
Coffee Chicago 2 13 {s1, i1} s1 · i1
Coffee Schaumburg 3 13 {s2, i1} s2 · i1
Tea Springfield 10 7 {s3, i2} s3 · i2
Tea Chicago 1 7 {s4, i2} s4 · i2

Annotated result of Q2

item shop quantity price Which[X] N[X]
Coffee Chicago 2 13 {s1, i1} s1 · i1
Coffee Schaumburg 3 13 {s2, i1} s2 · i1
Tea Springfield 10 7 {s3, i2} s3 · i2

Annotated result of QHighSaleItems

item Which[X] N[X]
Coffee {s1, s2, i1} s1 · i1 + s2 · i1
Tea {s3, i2} s3 · i2

Figure 4.10: Computing lineage and provenance polynomials bottom-up with
annotation propagation.
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with provenance. Many of the provenance management systems we
will discuss in Section 4.5 such as Perm, GProM, DBNotes, Orchestra,
ProvSQL and many others implement this approach.

As one example of instrumentation we now discuss the instrumen-
tation approach implemented in Perm (Glavic et al., 2013b; Glavic
and Alonso, 2009a)5 to compute the relational encoding of provenance
polynomials discussed in Section 4.1.5. Figure 4.11 shows an overview
of how this approach works. On the left-hand side of this figure we show
the evaluation of a query that returns the home states of students that
study Computer Science. For convenience, we write the query in SQL,
but note that the instrumentation rules developed in Glavic and Alonso
(2009a) are defined for relational algebra queries. For the example query,
IL in the result depends on the the input tuples annotated with v and
y and, thus, is annotated with v + y. Similarly, tuple NY depends on
x. To calculate the relational encoding of provenance as introduced
before, the input query is instrumented to produce this encoding. This
is achieved in two steps: first the attributes of input relation student
are duplicated to produce the relational encoding of the input N[X]-
relation. A renaming function P () is applied to create unique names for
the duplicated attributes storing provenance information. An additional
purpose of the naming scheme applied by function P is to identify which
attributes store the provenance of which input table. For sake of the ex-
position we have simplified this function to only take an attribute name
as an input. The definition from Glavic et al. (2013b) additionally takes
as input the query and name of the relation the attribute belongs to.
This additional information is used to ensure that provenance attribute
names are unique and to identify the table access operator of the query
whose provenance they are recording. For instance, for a query R ▷◁ R

over a relation R(A,B), the provenance attribute names are:

prov_R_a, prov_R_b, prov_R_1_a, prov_R_1_b

The initial values of the annotation attributes are then propagated
by instrumenting each operator of the query. As shown in Figure 4.11
the provenance polynomial v + y for result tuple IL is encoded as the

5The GProM (Arab et al., 2018a) system also implements this method.
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name state major N[X]
Alice IL CS v
Bob NY CS x

Peter IL CS y
Fran IL Math z

↓
SELECT state
FROM student
WHERE major = ’CS’

↓
state N[X]

IL v + y
NY x

→
Encode

→
Instrumentation

→
Encode

name state major
Alice IL CS
Bob NY CS

Peter IL CS
Fran IL Math

↓
SELECT state ,

name AS P(name),
state AS P(state),
major AS P(major)

FROM student
WHERE major = ’CS’

↓
state P(name) P(state) P(major)

IL Alice IL CS
IL Peter IL CS

NY Bob NY CS

Figure 4.11: Capturing a relational encoding of provenance polynomials with
instrumentation (Arab et al., 2018a).

first two tuples in the result of the instrumented query. The first encodes
variable v as the input tuple annotated with v while the second encodes
variable y as the input tuple annotated with y. Glavic and Alonso
(2009a) demonstrated that this type of instrumentation is correct, i.e.,
the instrumented query produces the relational encoding of provenance
polynomials for the result of the query evaluating under N[X]-relational
(provenance polynomial) semantics.

The instrumentation framework of Glavic and Alonso (2009a) im-
plements instrumentation as a rewrite operator ·+. This operator takes
as input the query Q for which provenance should be captured and
returns a query Q+ that captures the provenance of Q. The operator
·+ is defined as a recursive set of rewrite rules — one for each type of
algebra operator supported by the approach. During the rewriting we
maintain a list of provenance attributes PQ for the instrumented result
of a subquery Q. Figure 4.12 shows the rewrite rules implementing
·+ (top) and the rules that determine PQ (bottom). Recall that the
relational encoding of provenance polynomials used by this approach
encodes a tuple t annotated with a polynomial p as a set of tuples each
of which encodes one monomial of the polynomial in sum of products
form. The provenance attributes of a query consist of the attributes of
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Structural Rewrite

Q = R : Q+ = ΠR,R→P (R))(R) (R1)
Q = σθ(Q1) : Q+ = σθ(Q1

+) (R2)
Q = ΠA(Q1) : Q+ = ΠA,P(Q+)(Q1

+) (R3)
Q = γG;f(a)→x(Q1) : Q+ = ΠG,x,P(Q+)(γG;f(a)→x(Q1) (R4)

▷◁G=ϵX ΠG→X,P(Q1+)(Q1
+))

Q = δ(Q1) : Q+ = Q+
1 (R5)

Q = Q1 ▷◁θ Q2 : Q+ = ΠQ1,Q2,P(Q+)(Q1
+ ▷◁θ Q2

+) (R6)
Q = Q1 ▷◁θ Q2 : Q+ = ΠQ1,Q2,P(Q+)(Q1

+ ▷◁θ Q2
+) (R7)

Q = Q1 ∪Q2 : Q+ = (Q1
+ × null(P(Q2

+))) (R8)
∪ (ΠQ1,P(Q+)(Q2

+ × null(P(Q1
+))))

Q = Q1 ∩Q2 : Q+ = ΠQ1,P(Q+)(δ(Q1 ∩Q2) (R9)
▷◁Q1=ϵX ΠQ1→X,P(Q1+)(Q1

+)
▷◁Q1=ϵY ΠQ2→Y,P(Q2+)(Q2

+))
Q = Q1 −Q2 : Q+ = ΠQ1,P(Q+)(δ(Q1 −Q2) (R10)

▷◁Q1=ϵX ΠQ1→X,P(Q1+)(Q1
+)

× null(P(Q2
+)))

Provenance Attribute List

P(Q) =

⎧⎪⎨⎪⎩
P(Q1) if Q = σθ(Q1) | ΠA(Q1) | γG;f(a)→x(Q1) | δ(Q1)
P (R) if Q = R

P(Q1) :: P(Q2) otherwise

Figure 4.12: Algebraic rewrite rules for instrumenting a query to capture PI-CS
provenance which corresponds to provenance polynomials for positive queries.
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all leaf nodes (table access operators) of the algebra tree of the query.
Thus, P(Q) for a subquery Q consists of the list of attributes from the
leaf nodes occurring in Q. For unary operators these are all provenance
attributes for the input of the operator (first case in Figure 4.12). For
binary operators (e.g., join or union) this is the concatenation (denoted
as ::) of the list of provenance attributes for the left input (Q1) and the
right input (Q2) of the query (last case in Figure 4.12). For table access
operators, P (R) denotes the provenance attributes for this relation.

We now discuss some of the rules presented in Figure 4.12. For each
table access operator, a projection is used in the instrumented query
(R1) to duplicate the attributes of the relation R (here R denotes the
schema of relation R) and rename them as provenance attributes. For a
selection, the provenance polynomial of each result tuple is the same as
the corresponding input tuple (R2). The provenance polynomial for a
result tuple t of projection (R3) consists of the sum of annotations for all
input tuples u of the projection that are projected on t. Since addition
is expressed as union in the encoding, the rewrite rule just projects
the result of the instrumented input on the projection expressions A
and the provenance attributes of the input. In the result, the tuple
t and its annotation are encoded as the set of tuples containing the
provenance encoding of all input tuples u projected onto t. Each result
tuple of a join (R6) is annotated with the product of the annotations
of the two tuple that were joined. In the relational encoding, this is
achieved by concatenating the provenance attributes of the left and
the right input. An output tuple in the result of a union operator is
annotated with the sum of the annotations of this tuple in the left
and right input (R8). Thus, in the instrumented version we can just
union the two inputs. However, the provenance attribute lists from the
two inputs will not be union compatible, because the subtrees rooted
at the two inputs of the union operator contain disjoint sets of leaf
nodes. To make the inputs union compatible, the provenance attributes
of both inputs are padded with null values such that both input have
the provenance attributes of both inputs (recall that in the relational
encoding if all provenance attributes for an input relation are null this is
interpreted as a 1, the neutral element of multiplication of the semiring).
Let us consider aggregation, as an example of an operator for which
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the PI-CS provenance produced by this instrumentation differs from
the extension of semirings for this operator. The PI-CS provenance
of a result tuple t of a group-by aggregation operator consists of the
provenance of all input tuples that belong to the group based on which
t was generated. The instrumentation rule for aggregation (R4) joins
the result of aggregation in the original query with the instrumented
input of the aggregation on the group-by attributes.

Example 65 (Computing provenance polynomials using instrumentation
according to Glavic and Alonso, 2009a). Let us apply the instrumentation
techniques to the query QHighSaleItems and its subqueries from Exam-
ple 63. The results of evaluating these queries under N[X] semantics is
shown in Figure 4.10:

QHighSaleItems := Πitem(σquanitity·price>20(sales ▷◁ items))
Q1 := σquanitity·price>20(sales ▷◁ items)
Q2 := sales ▷◁ items

For ease of presentation we discuss the instrumentation of this query
bottom-up. The final result of instrumentation is shown below (we
abbreviate QHighSaleItems as QHSI and abbreviate some of the attribute
names). First R1 is applied to duplicate the attributes of relations sales
and items. Afterwards, the natural join (Q2) is instrumented by joining
sales+ with items+ and adding a projection to reorder the attributes
(non-provenance attributes before provenance attributes). The selection
following the join is instrumented by applying the selection to its
rewritten input. Finally, the projection of QHighSaleItems is instrumented
by appending the provenance attributes of Q1 to the projection output.
Figure 4.13 shows the result produced by the instrumented query. For
convenience, we show which attributes are query result attributes and
which attributes are provenance attributes (and which input relation
they encode). Furthermore, we show the monomial corresponding to
each tuple on the right.
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Query result sales items

item P(item) P(shop) P(quantity) P(item) P(price) N[X]
Coffee Coffee Chicago 2 Coffee 13 s1 · i1
Coffee Coffee Schaumburg 3 Coffee 13 s2 · i1
Tea Tea Springfield 10 Tea 7 s4 · i2

Figure 4.13: Query result for produced by query QHighSaleItems instrumented to
capture a relational encoding of provenance polynomials.

sales+ = Πitem,shop,quantity,item→P (i),shop→P (s),quantity→P (q)(sales)
items+ = Πitem,price,item→P (i),price→P (p)(items)
Q2

+ = Πitem,shop,quantity,price,P (i),P (s),P (q),P (i),P (p)(sales+ ▷◁ items+)
Q1

+ = σquanitity·price>20(Q2
+)

QHSI
+ = Πitem,P (i),P (s),P (q),P (i),P (p)(σquanitity·price>20(sales ▷◁ items))

Piggy-backing Capture on Query Processing

An alternative to instrumentation is to extend the execution engine of a
database system to propagate provenance during query execution. While
this approach is more invasive than instrumentation, there are several
potential benefits: (i) we have more flexibility in designing the data
structures used to store provenance, e.g., provenance data structures
can be shared across multiple tuples or across operators in a query plan;
and (ii) data structures that are generated during query processing,
e.g., the hash table used by a hash join operator, can be reused for
provenance capture. For instance, the Ariadne system implements this
approach to capture provenance in a data streaming system (Glavic
et al., 2013a). Another example of a provenance system extending a
database execution engine is TripleProv (Wylot et al., 2014). Psallidas
and Wu (2018a) presented Smoke which implements sharing of query
execution data structures for provenance capture and query execution
in an in-memory, compilation-based query engine. For example, the
hash tables used for hash join and hash-based group-by aggregation
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are extended to allow the mappings between input and output tuple
identifiers encoding the provenance of an operator to be materialized
efficiently.

Control Dependencies Logging and Replay

Yet another approach is to only capture “control flow” information at
query runtime and then capture data dependencies during a second
execution of the query which operates on provenance encoded as sets of
identifiers instead of over the input data of the query. This approach
was first proposed in Müller and Grust (2015) where it was realized
by translating SQL queries into Python programs and then using data-
and control-flow analysis techniques from the programming languages
community for realizing the two-step capture process. Müller et al. (2018)
ported this approach for using instrumentation in SQL to capture
provenance. To capture an input query’s provenance, the query is
instrumented to write control-dependencies (e.g., which tuples pass
filter conditions and ordering of tuples in windows) to a log table (in
the implementation this log table is stored as a relation). Then in a
second step the query is instrumented again, but this time to compute
provenance. This version of the query just operates on sets of tuple
identifiers encoding provenance instead of data. This phase replays
control-flow decision based on the log of control flow decision produced
in the first phase since such decisions are typically based on data values.
For example, which input tuples pass a selection is determined based on
whether the selection condition evaluates to true or not. Importantly,
this approach supports a very large subclass of SQL including recursion
and window functions. It was shown to significantly outperform Perm
(Glavic et al., 2013b) for several TPC-H queries with nested subqueries
while being slower for some queries without these features. However,
this may in part be due to the fact that a less informative provenance
model was used and that tuple identifiers instead of full tuples are
captured.
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Capturing Provenance for Updates and Queries Retroactively

To capture the provenance of a query Q, instrumentation evaluates
an instrumented query over the same input database to produce data
annotated with provenance. However, this requires that both Q and the
instrumented query are executed over the same database state. Thus,
this approach can not be applied if Q was executed at some point in past
and the database has been updated since then. However, for database
systems that support time travel (Jensen and Snodgrass, 1999), i.e.,
enable access to past version of the database, the provenance of Q can
be captured by going back in time to the database version that was
valid when Q was executed and run the instrumented query over this
database version. For example, this idea was described in Zhang and
Jagadish (2010). Of course, for this to be feasible, we need to know
precisely at what time the query was executed. One way to achieve this
is to rely on audit logging (Becker and Chambers, 1988) which keeps a
record of executed SQL statements. Most major DBMS support audit
logging.

Similar challenges are faced when capturing the provenance of up-
date operations. Since updates modify the database, after running an
update, time travel is required to capture the provenance of the update
retroactively by accessing the state of the database before the update.
Capturing provenance information for updates (and transactions) en-
tails two additional challenges: (i) to execute an instrumented update
we would have to create a copy of the temporal snapshot valid before
the update to evaluate this update to capture provenance and (ii) cap-
turing provenance retroactively for updates belong to transactions that
were executed under weaker isolation levels (Berenson et al., 1995) re-
quires us to understand the interaction of transactions under such lower
isolation levels to know which versions of a data item was seen or modi-
fied by which statement of a transaction. Gawlick and Radhakrishnan,
2011 were the first to realize that audit logging paired with temporal
databases are sufficient for capturing provenance information. Arab
et al. (2018b) and Arab et al. (2016) introduced the first approach for
capturing provenance for transactions and updates using the provenance
model discussed in Section 2.7. This work introduced reenactment,



4.3. Provenance Capture 185

Account Provenance for the First Update Provenance for the Second Update u1 u2

cust typ bal P(cust,u1) P(typ,u1) P(bal,u1) P(cust,u2) P(typ,u2) P(bal,u2) U1 U2

C2
T5,14(U2

T5,11(C2
T1,4(c2))) Alice Savings 1100 Alice Savings 1000 Alice Savings 1100 T F

C3
T5,14(U3

T5,13(U3
T5,11(C3

T2,3(c3)))) Peter Savings 5390 Peter Savings 4990 Peter Savings 5090 T T

Figure 4.14: Relational encoding of the provenance and intermediate results for
relation Account with respect to Transaction T5.

a method that uses queries, time-travel, and audit logging to capture
provenance of updates using queries. Importantly, this method does
not entail any changes to the database and does not require past states
of the database to be replicated for capture. Reenactment is based on
the observation that it is possible to simulate the operations of up-
dates and even transactional histories under lower isolation levels using
queries. Such queries are called reenactment queries. With reenactment,
provenance of past queries and transactions is captured retroactively in-
curring only a small overhead on transaction execution and at the same
time reducing provenance capture costs compared to an approach that
directly instruments updates. Reenactment uses a relational encoding
of provenance similar to the one for provenance polynomials discussed
in Section 4.1.5.

Example 66 (Relational Encoding of Transaction Provenance). Recall
Example 51 which illustrated how a transaction anomaly (a so-called
write-skew which can occur under snapshot isolation can be detected
using the MV-semiring model from Arab et al. (2016). Figure 4.14 shows
the relational encoding of the provenance (annotation) of the state of
the Account relation after the execution of the example transaction
T5. The MV-semiring annotation encoded by a tuple are shown on the
left. In addition to the attributes of the Account relation, additional
provenance attributes are used to store the previous tuple versions before
the second and before the first update of the transaction the tuple was
derived from. Furthermore, additional attributes record transformation
dependencies, i.e., which of the two updates of the transaction did affect
the current tuple version (after transaction T6’s commit).

This relational encoding is produced through reenactment. The
details of constructing a reenactment query are beyond the scope of
this paper. However, we will show an example for the critical step of
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translating updates (and transactions) into queries.

Example 67. Assume a user is interested in evaluating the effect
of an update over the current version of a bag semantics relation
Emp(name,salary) which increases the salary of all employees by $500
if their current salary is less than $1000. For simplicity, assume that
the user is not interested in provenance (we use semiring N instead of
N[X]ν). This request is expressed using an REENACT statement in GProM
(Arab et al., 2018a), the system implementing reenactment:
REENACT (

UPDATE Emp SET salary = salary + 500
WHERE salary < 1000;

);

To reenact this update over the current version of relation Emp, we
can construct a reenactment query which returns the new state of Emp
produced by the update. This state is computed as a union between
the set of tuples that would not be updated (do not fulfill the update’s
condition) and the updated versions of tuples that fulfill the update’s
condition (we have to increase their salary by 500):
SELECT * FROM Emp
WHERE NOT( salary < 1000)
UNION ALL
SELECT name , salary + 500 AS salary , b FROM Emp
WHERE salary < 1000;

To reenact a sequence of updates, a common table expression (CTE)
is generated for the result of each update and used as input to the next
update in the sequence. For example,
REENACT (

UPDATE Emp SET salary = salary + 500
WHERE salary < 1000;
UPDATE Emp SET salary = 0
WHERE salary < 500;

);

can be reenacted using the query shown below.
WITH up1 AS (

SELECT * FROM Emp WHERE NOT( salary < 1000)
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UNION ALL
SELECT name , salary + 500 AS salary , b
FROM Emp WHERE salary < 1000)

SELECT * FROM up1 WHERE NOT( salary < 500)
UNION ALL
SELECT name , 0 AS salary , b FROM up1
WHERE salary < 500

4.3.4 Optimizing Provenance Capture

Given the potential size of provenance information, capturing provenance
can result in quite significant overhead for query processing. There are
several ways of how the runtime and storage requirements of provenance
capture can be improved: (i) provenance capture can utilize existing
data structures that are generated during query evaluation (we already
discussed this approach in Section 4.3.3; (ii) the capture process can be
optimized to directly produce compressed provenance reducing the size
and potentially runtime of capture; (iii) specialized query optimization
techniques can be used that are fine-tuned for the characteristics of
provenance capture queries.

Generation of compressed provenance during capture has been stud-
ied intensively. Bao et al. (2012) investigated how to compress data
dependencies by breaking a query into multiple parts and materializing
data dependencies for each part. This allows common subexpressions
to be shared, and, thus, reduces provenance size. For instance, two
result tuples t1 and t2 may both depend on an intermediate result s1
that in turn depends on input tuples i1, . . . , i100. We can compress this
provenance by splitting it into the dependencies of t1 and t2 on s1 and
the dependencies of s1 on ij for j ∈ {1, . . . , 100}. This is closely related
to how factorization and arithmetic circuits are used to compress prove-
nance polynomials, e.g., in Olteanu and Závodný (2015). Amsterdamer
et al. (2011b) studied the problem of rewriting a query Q into a query
Q′ that is equivalent to Q under set semantics and produces provenance
(using the provenance polynomial model) of minimal size (defined as
having less and or “smaller” monomials). The SubZero system (Wu
et al., 2012) optimizes queries over provenance by deciding when to
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re-execute parts of a computation and when to use materialized prove-
nance information. Furthermore, the system compresses provenance
by pairing up sets of input and output data items for which all ele-
ments are data dependent on each other, e.g., a set of data dependencies
{(o1, i1), (o1, i2), (o1, i3), (o2, i1), (o2, i2), (o2, i3), (o3, i1), (o3, i2), (o3, i3)}
can be compressed as {o1, o2, o3}×{i1, i2, i3}. Note that we can interpret
this compression scheme as factorizing a set of dependencies as a cross
product. The Smoke system (Psallidas and Wu, 2018a) mentioned above
optimizes lineage capture for known workloads, e.g., by partitioning a
backwards provenance index (mapping output tuple identifiers to input
tuple identifiers) based on group-by attributes to enable queries using
the same group-by attributes (or a sub- or superset of these group-by
attributes) to be refreshed to reflect a filter criterion (the filtered result
of one query is traced back to the relevant subset of its provenance and
then the other queries that should be refreshed are reevaluated over the
provenance instead of the full database).

As an example of (iii), consider Niu et al. (2018) and Niu et al.
(2017b) which did present heuristic and cost-based optimization tech-
niques that are targeted at diverse provenance capture and analysis
tasks. The authors observed that database optimizers are not well
equipped to deal with provenance capture queries created by instrumen-
tation, because of the unusual structure exhibited by these queries. Since
an exhaustive exploration of the search space is not feasible for query
optimization in general, database optimizers focus on optimizations
that benefit typical use cases. Niu et al. (2017b) demonstrated that
algebraic rewrites that target common issues for provenance capture
operations such as prevalence of operators that block join reordering
can significantly improve the performance of capture queries (by several
orders of magnitude in some cases).

4.4 Querying, Exploring, and Visualizing Provenance

In addition to provenance capture and storage capabilities, provenance
management systems should support the user in analyzing the captured
provenance information by providing query, analysis, and visualization
capabilities for provenance information.
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4.4.1 Querying Provenance

Two fundamental approaches for querying provenance information have
been proposed. Either the query language for which provenance should
be captured is extended with new language features for querying (and
potentially capturing) provenance or a new query language specialized
for provenance is proposed. In the following we will refer to the language
for which we are capturing provenance as the target language and the
data model used by this query language the target data model. Note
that the first approach is not applicable for, e.g., workflow provenance,
where the transformations for which provenance is captured are not
declarative queries.

Extending Query Languages for Provenance Support

When provenance information is encoded in the target data model,
then the target language can be used to query provenance information.
For instance, the Perm (Glavic et al., 2013b) and GProM (Arab et al.,
2018a) systems implement this approach. These systems extend a target
language, e.g., SQL, by adding support for provenance capture as a
query feature. This enables flexible combination of provenance capture
with queries over provenance information and data.

Example 68 (Querying Provenance with SQL). The syntax of provenance
capture in GProM is PROVENANCE OF (Q) where Q is the query for which
provenance should be captured. For example, the query shown below
captures the provenance of a query counting the number of students
per country:

PROVENANCE OF (
SELECT country , count (*) AS ttlstudents
FROM students
GROUP BY country

)

The PROVENANCE OF construct is a query construct that can be used
in almost any place where a SELECT block would be allowed. This can
be used to specify provenance capture and queries over provenance
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in a single query. For instance the query shown below captures the
provenance of a query that returns the number of students with a GPA
higher than 3.0 and then computes the number of students per country
that are in the provenance of this query.

SELECT count( DISTINCT PROV_student_name ) AS num_stds
FROM ( PROVENANCE OF (

SELECT country , count (*) AS ttlstudents
FROM students
WHERE gpa > 3.0
GROUP BY country ))

As another example of the benefits of having the full expressive
power of SQL available for querying provenance, consider computing the
difference between the provenance of two queries Q1 and Q2 (which we
assume access the same input, i.e., their provenance is union compatible).

WITH prov1 AS (
PROVENANCE OF (

Q1
),
prov2 AS (

PROVENANCE OF (
Q2

)
SELECT PROV_COUNTRY FROM prov1 WHERE
EXCEPT ALL
SELECT PROV_COUNTRY FROM prov2 WHERE
UNION ALL
SELECT PROV_COUNTRY FROM prov2 WHERE
EXCEPT ALL
SELECT PROV_COUNTRY FROM prov1 WHERE

Provenance-specific Query Languages

Several query languages specific for provenance have been proposed.
When designing new query languages for provenance we have the free-
dom to tailor the language for provenance. However, often it is necessary
to query provenance alongside the data it is describing which would
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require many of the features of the target language to be integrated into
the provenance query language. (Karvounarakis et al., 2010) presented
the ProQL query language for querying provenance graphs for schema
mappings encoding provenance polynomials. The language is inspired
by query languages for semi-structured data. A query in ProQL returns
subgraphs of a provenance graph, a distinguished set of nodes, and
optionally evaluates the provenance polynomial corresponding to the
graph in a specific application semiring under a given assignment of
variables to semiring values.

Example 69 (ProQL Queries). The query shown below retrieves all
derivations of tuples from a relation cities where attribute country
is equal to US. The query returns the subgraph of the provenance
containing these derivations (specified in using INCLUDE PATH clause)
and returns these city tuples (specified using the RETURN clause). The
FOR clause specifies variable bindings. Variables can be bound to tuples
and mappings. In the for clause, the user can also specify how tuples
bound to variables should be connected in the graph.
FOR [ cities $x]
WHERE $x. country = US
INCLUDE PATH [$x] <-+ []
RETURN $x

As mentioned above the language also allows the result returned by
a query to be evaluated in a specific semiring. For that the user has to
specify the semiring of choice and can optionally specified what annota-
tions are assigned to input tuples. For example, the query shown below
counts the number of derivations (semiring N selected by specifying
NUMBER OF DERIVATIONS) while assigning each input tuple the default
multiplicity of 1.
EVALUATE NUMBER OF DERIVATIONS OF {

FOR [ cities $x]
WHERE $x. country = US
INCLUDE PATH [$x] <-+ []
RETURN $x

} ASSIGNING EACH leaf_node $y {
CASE $y in cities and $y. country = US: SET 1
DEFAULT : SET 0
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}

Anand et al. (2010) introduces QLP, a query language for provenance
graphs (the language was developed for querying workflow provenance,
but could be applied to other provenance graph too). This is a closed
language, i.e., query results are valid provenance graphs that can be
queried further.

Example 70 (QLP Queries). In the QLP language, queries are specified
as paths of interest. Keyword derived specifies that nodes should be
connected, possibly indirectly. For example, the three example queries
from Anand et al. (2010) shown below intuitively mean:

• Find the subgraph of the provenance containing all number deriv-
ing node 19

• Find the subgraph containing all nodes derived from 6

• Find the subquery containing all paths leading through an activity
Slicer:1.

* derived 19
6 derived *
* through Slicer :1 derived *

Deutch et al. (2015b), Deutch et al. (2018b), and Deutch et al.
(2015a) introduced an approach for provenance capture that captures
provenance for a Datalog query encoded as derivation trees. The user
can specify tree patterns to state which parts of the provenance they
are interested in. Given a user query, the approach instruments the
query to capture provenance that matches the users query.

Optimizing Queries over Provenance

The performance of provenance queries can be affected significantly by
the choice of storage layout. Heinis and Alonso (2008) did investigate how
to speed up forward (which outputs depend on an input) and backward
(on which inputs does an output depend on) queries over provenance
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graphs. This work uses a generalization of a common relational encoding
of interval data that allows for efficient reachability queries without
having to resort to recursive queries whose evaluation is quite inefficient
in most relational systems. The optimization techniques of Niu et al.
(2017b) and Niu et al. (2018) are also applicable for optimizing queries
over provenance data in addition to optimizing provenance capture.

4.4.2 Provenance Visualization and Exploration

The size of fine-grained provenance information can be overwhelming for
users. In addition to supporting queries over provenance, this problem
can be addressed by creating suitable, possibly interactive, visualiza-
tions that empower the user to explore provenance information. Some
examples of visualization approaches for provenance are Hoekstra and
Groth (2014), Suriarachchi et al. (2015), Borkin et al. (2013), Kunde
et al. (2008), and Rio and Silva (2007).

4.5 Provenance Management Systems

In the preceding sections we have discussed methods and algorithms for
managing provenance. We now give a brief (and incomplete) overview
of systems for managing provenance information.

4.5.1 Relational Systems

The Perm system extends PostgreSQL with support for provenance
capture implemented using instrumentation. The system was the first
to support complex SQL features like nested subqueries. Provenance
capture using the relational encoding of provenance discussed in Sec-
tion 4.1.5 is integrated into SQL as a query feature that can be combined
with other SQL features to enable complex queries over provenance.
GProM (Arab et al., 2018a) implements this approach in a middle-
ware that supports multiple database backends. This system implement
provenance-aware query optimization techniques (Niu et al., 2017b),
supports provenance tracking for transactions using reenactment (Arab
et al., 2018b), and has been used as a platform to study other extensions
of the relational model that can be implemented using implementation
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such as uncertain (Feng et al., 2019) and temporal data management
(Dignös et al., 2019). The PUG system (Lee et al., 2018) extends
GProM with support for capturing and summarizing provenance for
queries with negation and, thus, also why-not provenance. Smoke (Psal-
lidas and Wu, 2018a) implements provenance capture in a main-memory
database system utilizing existing data structures created during query
processing for capture. Müller et al. (2018) implemented provenance
capture for a large subset of SQL including recursive queries, window
functions, and nested subqueries using the two-stage approach described
in Section 4.3.3. The Orchestra update exchange system tracks semir-
ing provenance for schema mappings in a distributed setting. Trio
(Agrawal et al., 2006) is system for probabilistic data management that
eagerly captures provenance of SQL queries. The lineage provenance
capture approach described in Section 4.3.1 was implemented in the
WHIPS data warehousing system (Cui et al., 2000).

4.5.2 Big Data Platforms

Titian (Interlandi et al., 2016) tracks provenance information for
Apache Spark. The system has been used as a platform to implement
debugging frameworks for big data analytics (Gulzar et al., 2017a). Peb-
ble (Diestelkämper and Herschel, 2020) tracks provenance of nested
in Apache Spark. To improve the performance of provenance capture,
Pebble instruments queries to capture row level provenance during query
execution and then combines this with instance-independent informa-
tion about the structural transformations (e.g., unnesting) applied by
the query to restore fine-grained provenance at the level of individual
nested elements withing a tuple. The Lipstick system (Amsterdamer
et al., 2011a) captures semiring provenance for a subset of the PIG
language that is implemented on top of MapReduce. Other systems in
this space are Newt (Logothetis et al., 2013), RAMP (Ikeda et al.,
2011a), HadoopProv (Akoush et al., 2013), and PROVision (Zheng
et al., 2019).
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4.5.3 Why-not Provenance

The first instance-based approach was presented in Huang et al. (2008).
The first query-based approach in Chapman and Jagadish (2009).
Artemis (Herschel et al., 2009) computes instance-based why-not
provenance using techniques from incomplete databases (C-tables as in-
troduced in Imieliński and Lipski Jr (1984)) to compactly represent the
large space of missing answers and uses constraint solving to find such
explanations. Conseil (Herschel, 2013) computes hybrids of instance-
and query-based explanations for missing answers. Ted++ (Bidoit
et al., 2015) computes syntax-independent query-based explanations.
The Pug system (Lee et al., 2018) unifies why and why-not provenance
through provenance tracking for queries with negation and efficiently
creates approximate summaries of why-not provenance. ConQueR
(Tran and Chan, 2010) explains missing answer by refining the input
query such that it returns the missing answer.



5
Connection to Other Research Fields

While the term data provenance mainly emerged in the database
and HPC communities, many of the concepts and methods applied
in database provenance are closely related to work in other research
fields such as programming languages and compilers, formal languages,
logic programming, and security. Often, the development of these meth-
ods predates their use by the database community. In this chapter,
we discuss these lines of work and explain how the relate to database
provenance techniques and concepts discussed in the previous chapters.

5.1 Dataflow Analysis, Controlflow Analysis, and Program Slicing

In programming languages and compiler design it is crucial to under-
stand the flow of control and information in a program, either statically
for all possible inputs or dynamically for a particular given input. For
instance, many compiler optimizations rely on knowing which variables
the values of a variable at a position in a program depends on. Extract-
ing this type of information is referred to as dataflow and controlflow
analysis (Allen, 1970). Data and controlflow can either be analyzed
statically, i.e., for all possible inputs, or dynamically for a given input.
Static analysis is typically done using worst-case analysis, i.e., it creates
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Input Program
1 int f(int x) {
2 y = 0;
3 z = 0;
4 if (x < 20)
5 y = 15;
6 else
7 z = x;
8 print("%u,%u", y, z);
9 }

Slice for y at line 9
1 int f(int x) {
2 y = 0;
3
4 if (x < 20)
5 y = 15;
6
7
8 print("%u,%u", y, z);
9 }

Figure 5.1: Example Program

an over-approximation of all possible dependencies for any possible
input. Mapping these concepts to the terminology for provenance we
have used in this article, dataflow analysis produces data dependencies.

Example 71 (Data- and Controlflow Analysis). Consider the C program
shown below. Let us consider the value of variable z at line 8. The values
of variable z at this line and which other variables it depends on is
determined by control flow decisions. If variable x’s value is greater than
or equal to 20 then line 7 gets executed and z is assigned the current
value of x. That is for some inputs the value of variable z depends on
the value of x at line 2.

Another related program analysis technique is program slicing. Pro-
gram slicing (Weiser, 1981) identifies which part of the program (called
a slice) is relevant for computing the value of a variable at a particular
statement. Like data and control flow analysis, program slicing can be
done statically (returning a slice that is sufficient for producing the vari-
able’s value for any possible input) or dynamically (return a slice specific
to a particular input).1 Program slices are computed using dataflow
analysis. Oversimplifying a bit, we need to include all statements that
are control or data dependencies for the variables at the statement
of interest. Cheney (2007) noted the relationship between program

1Note that computing a minimal slice is undecidable. This was proven in Weiser
(1981) through a reduction from the halting problem.
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slicing and data provenance. Note that using our terminology, a pro-
gram slice consists of the parts of the program that are transformation
dependencies of the output of interest.

Example 72 (Program Slicing). To compute a static program slice for the
output variable y at line 9, we determine the dependencies of variable y
at 9. The value of y may depend on the value of x because the execution
of line 5 that changes the value of y depends on the value of x (if x
is less than 20). Furthermore, if x is larger than or equal to 20 then
the final value of y will be the value assigned at line 2. Thus, these
statements and the if statement have to be included in the slice.

5.2 Taint Analysis

In security applications, there is often a need to analyze how inputs
affect the execution of a program. For example, this information may be
used to determine misuse of program inputs that enable exploits. Taint
analysis (Schwartz et al., 2010) is a method for tracking dependencies by
tainting data values in the program’s input and then propagating these
taints through the execution of the program. Annotation propagation
techniques for provenance capture are closely related to taint tracking.
The main difference is that taints are typically mere sets of identifiers
while provenance annotations may store more detailed information, e.g.,
provenance polynomials also record how inputs have been combined to
compute a result.

5.3 Symbolic Execution

Symbolic execution is a program analysis technique which reasons
about all possible executions of a program. Instead of a concrete input,
the input of a program under symbolic execution is a set of symbolic
values that can represent any possible input. In the symbolic execution
of a program, logical formula are constructed for possible execution
paths in the program that encode constraints on the values of variables
that have to hold to follow this execution path. To find concrete inputs
that lead to particular execution path, satisfiability solvers (Moura and
Bjørner, 2011) are used to find concrete inputs that result in a particular
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1 static int f(char x, char y) {
2 if (x == ’a’)
3 return -1;
4 if (x == ’b’) {
5 if (y == ’a’) {
6 return 0;
7 }
8 return 1;
9 }

10 return 2;
11 }

Figure 5.2: Concrete and Symbolic Execution

execution path. Symbolic execution is applied in test case generation,
because it allows the automatic generation of test cases that cover all
execution paths of a program.

Example 73 (Symbolic Execution). Consider the program shown in
Figure 5.2. Function f takes two parameter. In symbolic execution we
assign two symbolic values, say vx and vy to these two input parame-
ters. Then symbolic expressions (logical formula) are constructed for
execution paths. For example, consider the execution path that does
not execute the body of the first if statement and which executed line 6
because the conditions of the if statements on lines 4 and 5 evaluated
to true. This execution path is taken if vx ̸= a (the condition of the
first if statement fails), vx = b (the condition of the second if statement
evaluates to true), and vy = a (the condition of the second if statement
evaluates to true). Thus, the symbolic expression associated with this
execution path is:

vx ̸= a ∧ vx = b ∧ vy = a

To find a concrete input for function f that exercises this execution
path, we can use a constraint solver (Moura and Bjørner, 2011) to find
a satisfying assignment for the symbolic expression. The assignment
vx = b and vy = a is the only satisfying assignment for this formula.

As discussed in Chapter 2 the concept of symbolic expressions is
also used by several provenance models, e.g., provenance polynomials.
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Similar to symbolic execution this enables reasoning about evaluation of
queries over all possible inputs. For instance, as outlined in Section 3.2
and Section 3.5 we can use this property for solving the view deletion
and probabilistic query processing problems.

5.4 Applications of Semirings

In addition to their use in provenance models, the use of semirings in
many areas of computer science predates their use for provenance. For
instance, semirings can be used to evaluate properties of context-free
grammars such that ambiguity of a grammar (Chomsky and Schützen-
berger, 1959). Another application of semirings are variants of shortest
path problems over graphs (Mohri, 2002; Ramusat et al., 2018). To
support such applications, solvers for equation systems over semirings
have been developed (e.g., Esparza et al. (2014)). Gondran and Minoux
(2008) provides a detailed discussion of semirings and their applications.

5.5 Justifications and Debugging for Logic Programming

Debugging of logic programs has been studied intensively in the past.
Many techniques developed by this field are related to provenance. For
example, we already discussed the provenance model from Damásio
et al. (2013). Caballero et al. (2015), Brain et al. (2007), Brain and Vos
(2005), Comini et al. (1995), Drabent et al. (1988), and Pereira (1986)
are examples of approaches for debugging logic programs.
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Summary and Conclusions

In this article we have provided a comprehensive overview of research on
database provenance. Provenance is an active research area in databases
as well as in other fields of computer science. Great progress has been
made since provenance started to receive more widespread attention in
the early 2000s. While concepts similar to provenance have been studied
much earlier in other fields (see Chapter 5), the study of database
provenance has lead to new developments that go beyond what has
been proposed in other fields. One noteworthy contribution are formal
provenance models which often provide stronger guarantees than, e.g.,
data dependency tracking and taint tracking in programming languages.
Apart from formal provenance semantics, methods for capturing, query-
ing, and storing provenance information have emerged and have lead to
the integration of provenance functionality in data management systems.
While there are several good surveys that cover database provenance
(e.g., Cheney et al., 2009; Herschel et al., 2017), they either do not
provide a detailed introduction of provenance concepts or have been
published to long ago to cover more recent developments in the field.
The goal of this article is to close this gap. Because this article is meant
as a technical introduction to fundamental concepts in provenance re-
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search in databases, we had to exclude many interesting lines of work
on data provenance in fields other than databases and even from the
database community. For instance, there is a large body of work on
workflow provenance that we merely touched upon.



Acknowledgements

This work is supported in part by NSF Awards OAC-1640864 and
IIS-1956123. The conclusions and opinions in this work are solely those
of the authors and do not represent the views of the National Science
Foundation.

203



References

Abiteboul, S., R. Hull, and V. Vianu. (1995). Foundations of Databases.
Addison-Wesley.

Agrawal, P., O. Benjelloun, A. D. Sarma, C. Hayworth, S. Nabar, T.
Sugihara, and J. Widom. (2006). “An Introduction to ULDBs and
the Trio System”. IEEE Data Engineering Bulletin. 29(1): 5–16.

Agrawal, R., R. Bayardo, C. Faloutsos, J. Kiernan, R. Rantzau, and R.
Srikant. (2004). “Auditing compliance with a hippocratic database”.
In: Proceedings of the Thirtieth international conference on Very
large data bases-Volume 30. VLDB Endowment. 516–527.

Akoush, S., R. Sohan, and A. Hopper. (2013). “HadoopProv: Towards
Provenance As A First Class Citizen In MapReduce”. TaPP.

Alexe, B., L. Chiticariu, and W. Tan. (2006). “SPIDER: a schema
mapPIng DEbuggeR”. In: Proceedings of the 32nd international
conference on Very large data bases. VLDB Endowment. 1179–1182.

Allen, F. (1970). “Control flow analysis”. Proceedings of a symposium
on Compiler optimization. 5(7): 1–19.

Alvaro, P., J. Rosen, and J. M. Hellerstein. (2015). “Lineage-driven Fault
Injection”. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM. 331–346.

204



References 205

Amarilli, A., P. Bourhis, and P. Senellart. (2015). “Provenance Circuits
for Trees and Treelike Instances”. In: Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part II. 56–68. doi: 10.1007/
978-3-662-47666-6\_5. url: https://doi.org/10.1007/978-3-662-
47666-6%5C_5.

Amsterdamer, Y., S. Davidson, D. Deutch, T. Milo, J. Stoyanovich, and
V. Tannen. (2011a). “Putting Lipstick on Pig: Enabling Database-
style Workflow Provenance”. Proceedings of the VLDB Endowment.
5(4): 346–357.

Amsterdamer, Y., D. Deutch, T. Milo, and V. Tannen. (2011b). “On
Provenance Minimization”. In: Proceedings of the 30th Symposium
on Principles of Database Systems (PODS). 141–152.

Amsterdamer, Y., D. Deutch, and V. Tannen. (2011c). “On the Limita-
tions of Provenance for Queries with Difference”. In: TaPP ’11: 3rd
USENIX Workshop on the Theory and Practice of Provenance.

Amsterdamer, Y., D. Deutch, and V. Tannen. (2011d). “Provenance for
Aggregate Queries”. In: Proceedings of the thirtieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems.
ACM. 153–164.

Anand, M. K., S. Bowers, and B. Ludäscher. (2010). “Techniques for ef-
ficiently querying scientific workflow provenance graphs.” In: EDBT.
Vol. 10. 287–298.

Anand, M. K., S. Bowers, T. McPhillips, and B. Ludäscher. (2009).
“Efficient Provenance Storage over Nested Data Collections”. In:
EDBT ’09: Proceedings of the 12th International Conference on
Extending Database Technology. 958–969.

Apache. http://atlas.apache.org/. (Accessed on 2017).
Arab, B., S. Feng, B. Glavic, S. Lee, X. Niu, and Q. Zeng. (2018a).

“GProM - A Swiss Army Knife for Your Provenance Needs”. IEEE
Data Engineering Bulletin. 41(1): 51–62.

Arab, B., D. Gawlick, V. Krishnaswamy, V. Radhakrishnan, and B.
Glavic. (2016). “Reenactment for Read-Committed Snapshot Isola-
tion”. In: Proceedings of the 25th ACM International Conference on
Information and Knowledge Management. 841–850.

https://doi.org/10.1007/978-3-662-47666-6\_5
https://doi.org/10.1007/978-3-662-47666-6\_5
https://doi.org/10.1007/978-3-662-47666-6%5C_5
https://doi.org/10.1007/978-3-662-47666-6%5C_5


206 References

Arab, B., D. Gawlick, V. Krishnaswamy, V. Radhakrishnan, and B.
Glavic. (2018b). “Using Reenactment to Retroactively Capture
Provenance for Transactions”. IEEE Transactions on Knowledge
and Data Engineering. 30(3): 599–612. doi: 10.1109/TKDE.2017.
2769056.

Arocena, P. C., B. Glavic, and R. J. Miller. (2013). “Value Invention
for Data Exchange”. In: Proceedings of the 39th International Con-
ference on Management of Data. 157–168.

Assadi, S., S. Khanna, Y. Li, and V. Tannen. (2016). “Algorithms
for Provisioning Queries and Analytics”. In: 19th International
Conference on Database Theory, ICDT 2016, Bordeaux, France,
March 15-18, 2016. 18:1–18:18. doi: 10.4230/LIPIcs.ICDT.2016.18.
url: https://doi.org/10.4230/LIPIcs.ICDT.2016.18.

Bakibayev, N., D. Olteanu, and J. Závodný. (2012). “FDB: A query
engine for factorised relational databases”. Proceedings of the VLDB
Endowment. 5(11): 1232–1243.

Bao, Z., H. Köhler, L. Wang, X. Zhou, and S. W. Sadiq. (2012). “Ef-
ficient provenance storage for relational queries”. In: 21st ACM
International Conference on Information and Knowledge Manage-
ment, CIKM’12, Maui, HI, USA, October 29 - November 02, 2012.
Ed. by X. Chen, G. Lebanon, H. Wang, and M. J. Zaki. ACM.
1352–1361. isbn: 978-1-4503-1156-4. doi: 10.1145/2396761.2398439.
url: https://doi.org/10.1145/2396761.2398439.

Bates, A. and W. U. Hassan. (2019). “Can Data Provenance Put an
End To the Data Breach?” IEEE Security & Privacy. 17(4): 88–93.
doi: 10.1109/MSEC.2019.2913693. url: https://doi.org/10.1109/
MSEC.2019.2913693.

Bates, A., D. Tian, K. R. B. Butler, and T. Moyer. (2015). “Trustworthy
Whole-System Provenance for the Linux Kernel”. In: 24th USENIX
Security Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015. Ed. by J. Jung and T. Holz. USENIX As-
sociation. 319–334. url: https : //www.usenix . org/conference/
usenixsecurity15/technical-sessions/presentation/bates.

Becker, R. A. and J. M. Chambers. (1988). “Auditing of data analyses”.
Journal on Scientific and Statistical Computation: 747–760.

https://doi.org/10.1109/TKDE.2017.2769056
https://doi.org/10.1109/TKDE.2017.2769056
https://doi.org/10.4230/LIPIcs.ICDT.2016.18
https://doi.org/10.4230/LIPIcs.ICDT.2016.18
https://doi.org/10.1145/2396761.2398439
https://doi.org/10.1145/2396761.2398439
https://doi.org/10.1109/MSEC.2019.2913693
https://doi.org/10.1109/MSEC.2019.2913693
https://doi.org/10.1109/MSEC.2019.2913693
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/bates
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/bates


References 207

Benjelloun, O., A. D. Sarma, A. Y. Halevy, and J. Widom. (2006).
“ULDBs: Databases with Uncertainty and Lineage”. In: Proceedings
of the 32th International Conference on Very Large Data Bases
(VLDB). 953–964.

Berenson, H., P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
(1995). “A critique of ANSI SQL isolation levels”. ACM SIGMOD
Record. 24(2): 1–10.

Bertossi, L. and B. Salimi. (2013). “Causality in Databases, Database
Repairs, and Consistency-Based Diagnosis”.

Bhagwat, D., L. Chiticariu, W. C. Tan, and G. Vijayvargiya. (2005).
“An Annotation Management System for Relational Databases”.
VLDB J. 14(4): 373–396. doi: 10.1007/s00778-005-0156-6. url:
https://doi.org/10.1007/s00778-005-0156-6.

Bhagwat, D., L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. (2004).
“An Annotation Management System for Relational Databases”. In:
VLDB ’04: Proceedings of the 30th International Conference on Very
Large Data Bases. 900–911.

Bhardwaj, A., A. Deshpande, A. J. Elmore, D. Karger, S. Madden,
A. Parameswaran, H. Subramanyam, E. Wu, and R. Zhang. (2015).
“Collaborative data analytics with DataHub”. Proceedings of the
VLDB Endowment. 8(12): 1916–1919.

Bhattacherjee, S., A. Chavan, S. Huang, A. Deshpande, and A. Parameswaran.
(2015). “Principles of dataset versioning: Exploring the recreation/s-
torage tradeoff”. Proceedings of the VLDB Endowment. 8(12): 1346–
1357.

Bidoit, N., M. Herschel, and A. Tzompanaki. (2015). “Efficient Computa-
tion of Polynomial Explanations of Why-Not Questions”. In: Proceed-
ings of the 24th ACM International Conference on Information and
Knowledge Management, CIKM 2015, Melbourne, VIC, Australia,
October 19 - 23, 2015. Ed. by J. Bailey, A. Moffat, C. C. Aggarwal,
M. de Rijke, R. Kumar, V. Murdock, T. K. Sellis, and J. X. Yu. ACM.
713–722. isbn: 978-1-4503-3794-6. doi: 10.1145/2806416.2806426.
url: https://doi.org/10.1145/2806416.2806426.

Bidoit, N., M. Herschel, K. Tzompanaki, et al. (2014). “Query-Based
Why-Not Provenance with NedExplain”. In: Extending Database
Technology (EDBT).

https://doi.org/10.1007/s00778-005-0156-6
https://doi.org/10.1007/s00778-005-0156-6
https://doi.org/10.1145/2806416.2806426
https://doi.org/10.1145/2806416.2806426


208 References

Bidoit, N., M. Herschel, and K. Tzompanaki. (2016). “Refining SQL
Queries based on Why-Not Polynomials”. In: 8th USENIX Workshop
on the Theory and Practice of Provenance (TaPP 16). Washington,
D.C.: USENIX Association.

Biton, O., S. Cohen-Boulakia, S. Davidson, and C. Hara. (2008). “Query-
ing and Managing Provenance through User Views in Scientific
Workflows”. Data Engineering, 2008. ICDE 2008. IEEE 24th Inter-
national Conference on: 1072–1081.

Biton, O., S. Cohen-Boulakia, and S. B. Davidson. (2007). “Zoom*
userviews: Querying relevant provenance in workflow systems”. In:
Proceedings of the 33rd international conference on Very large data
bases. VLDB Endowment. 1366–1369.

Borkin, M. A., C. S. Yeh, M. Boyd, P. Macko, K. Z. Gajos, M. I.
Seltzer, and H. Pfister. (2013). “Evaluation of Filesystem Provenance
Visualization Tools”. IEEE Trans. Vis. Comput. Graph. 19(12):
2476–2485. doi: 10.1109/TVCG.2013.155. url: https://doi.org/10.
1109/TVCG.2013.155.

Bourhis, P., D. Deutch, and Y. Moskovitch. (2020). “Equivalence-
Invariant Algebraic Provenance for Hyperplane Update Queries”. In:
Proceedings of the 2020 International Conference on Management
of Data, SIGMOD Conference 2020, online conference Portland,
OR, USA, June 14-19, 2020. Ed. by D. Maier, R. Pottinger, A.
Doan, W.-C. Tan, A. Alawini, and H. Q. Ngo. ACM. 415–429. isbn:
978-1-4503-6735-6. doi: 10 . 1145/3318464 . 3380578. url: https :
//doi.org/10.1145/3318464.3380578.

Brachmann, M., C. Bautista, S. Castelo, S. Feng, J. Freire, B. Glavic,
O. Kennedy, H. Müller, R. Rampin, W. Spoth, and Y. Yang. (2019).
“Data Debugging and Exploration with Vizier”. In: Proceedings of
the 44th International Conference on Management of Data (Demon-
stration Track).

https://doi.org/10.1109/TVCG.2013.155
https://doi.org/10.1109/TVCG.2013.155
https://doi.org/10.1109/TVCG.2013.155
https://doi.org/10.1145/3318464.3380578
https://doi.org/10.1145/3318464.3380578
https://doi.org/10.1145/3318464.3380578


References 209

Brain, M., M. Gebser, J. Pührer, T. Schaub, H. Tompits, and S. Woltran.
(2007). “Debugging ASP Programs by Means of ASP”. In: Logic
Programming and Nonmonotonic Reasoning, 9th International Con-
ference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007, Pro-
ceedings. Ed. by C. Baral, G. Brewka, and J. S. Schlipf. Vol. 4483.
Lecture Notes in Computer Science. Springer. 31–43. isbn: 978-3-
540-72199-4. doi: 10.1007/978-3- 540-72200-7\_5. url: https:
//doi.org/10.1007/978-3-540-72200-7%5C_5.

Brain, M. and M. D. Vos. (2005). “Debugging Logic Programs under
the Answer Set Semantics”. In: Answer Set Programming, Advances
in Theory and Implementation, Proceedings of the 3rd Intl. ASP’05
Workshop, Bath, UK, September 27-29, 2005. Ed. by M. D. Vos and
A. Provetti. Vol. 142. CEUR Workshop Proceedings. CEUR-WS.org.
url: http://ceur-ws.org/Vol-142/page141.pdf.

Buneman, P., J. Cheney, and S. Vansummeren. (2008). “On the Expres-
siveness of Implicit Provenance in Query and Update Languages”.
ACM Transactions on Database Systems (TODS). 33(4): 1–47.

Buneman, P., S. Khanna, and W.-C. Tan. (2001). “Why and Where: A
Characterization of Data Provenance”. In: ICDT. 316–330.

Buneman, P., S. Khanna, and W.-C. Tan. (2002). “On Propagation
of Deletions and Annotations through Views”. In: PODS ’02: Pro-
ceedings of the 21th Symposium on Principles of Database Systems.
150–158.

Buneman, P., E. V. Kostylev, and S. Vansummeren. (2013). “Annota-
tions are relative”. In: Proceedings of the 16th International Confer-
ence on Database Theory. ACM. 177–188.

Caballero, R., Y. Garcia-Ruiz, and F. Saenz-Perez. (2015). “Debugging
of Wrong and Missing Answers for Datalog Programs with Con-
straint Handling Rules”. In: Proceedings of the 17th International
Symposium on Principles and Practice of Declarative Programming.
PPDP ’15. Siena, Italy: ACM. 55–66. isbn: 978-1-4503-3516-4.

Callahan, S. P., J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva,
and H. T. Vo. (2006). “Managing the evolution of dataflows with
vistrails”. In: Data Engineering Workshops, 2006. Proceedings. 22nd
International Conference on. IEEE. 71–71.

https://doi.org/10.1007/978-3-540-72200-7\_5
https://doi.org/10.1007/978-3-540-72200-7%5C_5
https://doi.org/10.1007/978-3-540-72200-7%5C_5
http://ceur-ws.org/Vol-142/page141.pdf


210 References

Cate, B. ten, C. Civili, E. Sherkhonov, and W.-C. Tan. (2015). “High-
level why-not explanations using ontologies”. In: Proceedings of the
34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems. ACM. 31–43.

Ceri, S., G. Gottlob, and L. Tanca. (1989). “What you always wanted to
know about Datalog(and never dared to ask)”. IEEE Transactions
on Knowledge and Data Engineering. 1(1): 146–166.

Chandra, A. K. and D. Harel. (1985). “Horn Clauses Queries and
Generalizations”. J. Log. Program. 2(1): 1–15. doi: 10.1016/0743-
1066(85)90002-0. url: https://doi.org/10.1016/0743-1066(85)90002-
0.

Chapman, A. and H. V. Jagadish. (2009). “Why Not?” In: SIGMOD
’09: Proceedings of the 35th SIGMOD International Conference on
Management of Data. 523–534.

Chapman, A., H. V. Jagadish, and P. Ramanan. (2008). “Efficient
Provenance Storage”. In: SIGMOD ’08: Proceedings of the 35th
SIGMOD International Conference on Management of Data. 993–
1006.

Chavan, A., S. Huang, A. Deshpande, A. J. Elmore, S. Madden, and
A. G. Parameswaran. (2015). “Towards a Unified Query Language
for Provenance and Versioning”. In: 7th USENIX Workshop on
the Theory and Practice of Provenance, TaPP 2015, Edinburgh,
Scotland, UK, July 8-9, 2015. Ed. by P. Missier and J. Zhao. USENIX
Association. url: https://www.usenix.org/conference/tapp15/
workshop-program/presentation/chavan.

Cheney, J. (2007). “Program Slicing and Data Provenance”. IEEE Data
Engineering Bulletin. 30(4): 22–28.

Cheney, J., A. Ahmed, and U. A. Acar. (2014). “Database Queries
that Explain their Work”. In: Proceedings of the 16th International
Symposium on Principles and Practice of Declarative Programming,
Kent, Canterbury, United Kingdom, September 8-10, 2014. Ed. by
O. Chitil, A. King, and O. Danvy. ACM. 271–282. isbn: 978-1-4503-
2947-7. doi: 10.1145/2643135.2643143. url: https://doi.org/10.
1145/2643135.2643143.

https://doi.org/10.1016/0743-1066(85)90002-0
https://doi.org/10.1016/0743-1066(85)90002-0
https://doi.org/10.1016/0743-1066(85)90002-0
https://doi.org/10.1016/0743-1066(85)90002-0
https://www.usenix.org/conference/tapp15/workshop-program/presentation/chavan
https://www.usenix.org/conference/tapp15/workshop-program/presentation/chavan
https://doi.org/10.1145/2643135.2643143
https://doi.org/10.1145/2643135.2643143
https://doi.org/10.1145/2643135.2643143


References 211

Cheney, J., L. Chiticariu, and W.-C. Tan. (2009). “Provenance in
Databases: Why, How, and Where”. Foundations and Trends in
Databases. 1(4): 379–474.

Chirigati, F. S., D. Shasha, and J. Freire. (2013). “ReproZip: Using
Provenance to Support Computational Reproducibility.” In: TaPP.

Chiticariu, L. and W.-C. Tan. (2006). “Debugging Schema Mappings
with Routes”. In: VLDB ’06: Proceedings of the 32th International
Conference on Very Large Data Bases. 79–90.

Chiticariu, L., W.-C. Tan, and G. Vijayvargiya. (2005). “DBNotes:
a Post-it System for Relational Databases based on Provenance”.
In: SIGMOD ’05: Proceedings of the 31th SIGMOD International
Conference on Management of Data. 942–944.

Chockler, H. and J. Halpern. (2004). “Responsibility and blame: A
structural-model approach”. Journal of Artificial Intelligence Re-
search. 22(1): 93–115. issn: 1076-9757.

Chockler, H., J. Halpern, and O. Kupferman. (2008). “What causes a
system to satisfy a specification?” ACM Transactions on Computa-
tional Logic (TOCL). 9(3): 1–26. issn: 1529-3785.

Chomsky, N. and M. P. Schützenberger. (1959). “The algebraic theory
of context-free languages”. In: Studies in Logic and the Foundations
of Mathematics. Vol. 26. Elsevier. 118–161.

Chu, S., B. Murphy, J. Roesch, A. Cheung, and D. Suciu. (2018).
“Axiomatic foundations and algorithms for deciding semantic equiva-
lences of SQL queries”. Proceedings of the VLDB Endowment. 11(11):
1482–1495.

Comini, M., G. Levi, and G. Vitiello. (1995). “Efficient Detection of In-
completeness Errors in the Abstract Debugging of Logic Programs”.
In: Proceedings of the Second International Workshop on Automated
Debugging, AADEBUG 1995, Saint Malo, France, May 22-24, 1995.
159–174.

Cong, G., W. Fan, F. Geerts, J. Li, and J. Luo. (2012). “On the
Complexity of Annotation Propagation and View Update Analyses”.
IEEE Transactions on Knowledge and Data Engineering.

Cui, Y. and J. Widom. (2000a). “Practical Lineage Tracing in Data
Warehouses”. In: ICDE. 367–378.



212 References

Cui, Y. and J. Widom. (2000b). “Storing Auxiliary Data for Efficient
Maintenance and Lineage Tracing of Complex Views”. In: DMDW
’00: Proceedings of the 2th International Workshop on Design and
Management of Data Warehouses.

Cui, Y. and J. Widom. (2001). “Run-time Translation of View Tuple
Deletions using Data Lineage”. Tech. rep. Stanford University.

Cui, Y., J. Widom, and J. L. Wiener. (2000). “Tracing the Lineage of
View Data in a Warehousing Environment”. TODS. 25(2): 179–227.

Damásio, C. V., A. Analyti, and G. Antoniou. (2013). “Justifications
for logic programming”. In: Logic Programming and Nonmonotonic
Reasoning. Springer. 530–542.

Davison, A. P., M. Mattioni, D. Samarkanov, and B. Telenczuk. (2014).
“Sumatra: A Toolkit for Reproducible Research”. Implementing
Reproducible Research: 57.

Dean, J. and S. Ghemawat. (2004). “MapReduce: simplified data pro-
cessing on large clusters”. In: Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation -
Volume 6. OSDI’04. San Francisco, CA.

Deutch, D., Z. Ives, T. Milo, and V. Tannen. (2013a). “Caravan: Provi-
sioning for What-If Analysis”. CIDR ’13.

Deutch, D. and N. Frost. (2019). “Constraints-based explanations of
classifications”. In: 2019 IEEE 35th International Conference on
Data Engineering (ICDE). IEEE. 530–541.

Deutch, D., N. Frost, and A. Gilad. (2017). “Provenance for Natural
Language Queries”. Proceedings of the VLDB Endowment. 10(5).

Deutch, D., N. Frost, and A. Gilad. (2020). “Explaining Natural Lan-
guage Query Results”. VLDB J. 29(1): 485–508. doi: 10 .1007/
s00778-019-00584-7. url: https://doi.org/10.1007/s00778-019-
00584-7.

Deutch, D., N. Frost, A. Gilad, and T. Haimovich. (2018a). “Nlprove-
nans: Natural Language Provenance for Non-Answers”. Proc. VLDB
Endow. 11(12): 1986–1989. doi: 10.14778/3229863.3236241. url:
https://doi.org/10.14778/3229863.3236241.

https://doi.org/10.1007/s00778-019-00584-7
https://doi.org/10.1007/s00778-019-00584-7
https://doi.org/10.1007/s00778-019-00584-7
https://doi.org/10.1007/s00778-019-00584-7
https://doi.org/10.14778/3229863.3236241
https://doi.org/10.14778/3229863.3236241


References 213

Deutch, D. and A. Gilad. (2016). “QPlain: Query by explanation”. In:
32nd IEEE International Conference on Data Engineering, ICDE
2016, Helsinki, Finland, May 16-20, 2016. 1358–1361. doi: 10.1109/
ICDE.2016.7498344. url: https://doi.org/10.1109/ICDE.2016.
7498344.

Deutch, D. and A. Gilad. (2019). “Reverse-Engineering Conjunctive
Queries from Provenance Examples”. In: Advances in Database
Technology - 22nd International Conference on Extending Database
Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019. 277–
288. doi: 10.5441/002/edbt.2019.25. url: https://doi.org/10.5441/
002/edbt.2019.25.

Deutch, D., A. Gilad, and Y. Moskovitch. (2015a). “Selective Provenance
for Datalog Programs Using Top-K Queries”. Proceedings of the
VLDB Endowment. 8(12).

Deutch, D., A. Gilad, and Y. Moskovitch. (2015b). “selP: Selective
tracking and presentation of data provenance”. In: Data Engineering
(ICDE), 2015 IEEE 31st International Conference on. IEEE. 1484–
1487.

Deutch, D., A. Gilad, and Y. Moskovitch. (2018b). “Efficient Provenance
Tracking for Datalog Using Top-K Queries”. VLDB J. 27(2): 245–
269. doi: 10.1007/s00778-018-0496-7. url: https://doi.org/10.1007/
s00778-018-0496-7.

Deutch, D., T. Milo, S. Roy, and V. Tannen. (2014). “Circuits for
Datalog Provenance”. In: ICDT. 201–212.

Deutch, D., Y. Moskovitch, and V. Tannen. (2013b). “PROPOLIS:
Provisioned Analysis of Data-Centric Processes”. Proceedings of the
VLDB Endowment. 6(12).

Diestelkämper, R. and M. Herschel. (2020). “Tracing nested data with
structural provenance for big data analytics”. In: Proceedings of the
23rd International Conference on Extending Database Technology,
EDBT 2020, Copenhagen, Denmark, March 30 - April 02, 2020.
Ed. by A. Bonifati, Y. Zhou, M. A. V. Salles, A. Böhm, D. Olteanu,
G. H. L. Fletcher, A. Khan, and B. Yang. OpenProceedings.org.
253–264. isbn: 978-3-89318-083-7. doi: 10.5441/002/edbt.2020.23.
url: https://doi.org/10.5441/002/edbt.2020.23.

https://doi.org/10.1109/ICDE.2016.7498344
https://doi.org/10.1109/ICDE.2016.7498344
https://doi.org/10.1109/ICDE.2016.7498344
https://doi.org/10.1109/ICDE.2016.7498344
https://doi.org/10.5441/002/edbt.2019.25
https://doi.org/10.5441/002/edbt.2019.25
https://doi.org/10.5441/002/edbt.2019.25
https://doi.org/10.1007/s00778-018-0496-7
https://doi.org/10.1007/s00778-018-0496-7
https://doi.org/10.1007/s00778-018-0496-7
https://doi.org/10.5441/002/edbt.2020.23
https://doi.org/10.5441/002/edbt.2020.23


214 References

Dietrich, B. and T. Grust. (2015). “A SQL Debugger Built from Spare
Parts: Turning a SQL: 1999 Database System into Its Own De-
bugger”. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM. 865–870.

Dignös, A., B. Glavic, X. Niu, M. H. Böhlen, and J. Gamper. (2019).
“Snapshot Semantics for Temporal Multiset Relations”. Proceedings
of the VLDB Endowment. 12(6): 639–652.

Dong, X. L. and D. Srivastava. (2013). “Compact explanation of data fu-
sion decisions”. In: Proceedings of the 22nd international conference
on World Wide Web. International World Wide Web Conferences
Steering Committee. 379–390.

Drabent, W., S. Nadjm-Tehrani, and J. Maluszynski. (1988). “Algorith-
mic Debugging with Assertions”. In: Meta-Programming in Logic
Programming, Workshop on Meta-Programming in Logic, META
1988, University of Bristol, 22-24 June, 1988. 501–521.

El Gebaly, K., P. Agrawal, L. Golab, F. Korn, and D. Srivastava.
(2014). “Interpretable and informative explanations of outcomes”.
Proceedings of the VLDB Endowment. 8(1).

El Gebaly, K., G. Feng, L. Golab, F. Korn, and D. Srivastava. (2018).
“Explanation Tables”. Sat. 5: 14.

Eltabakh, M. Y., M. Ouzzani, W. G. Aref, A. K. Elmagarmid, Y. Laura-
Silva, M. U. Arshad, D. Salt, and I. Baxter. (2008). “Managing
Biological Data using BDBMS”. In: ICDE ’08: Proceedings of the
24th International Conference on Data Engineering (demonstration).
1600–1603.

Esparza, J., S. Kiefer, and M. Luttenberger. (2007). “On fixed point
equations over commutative semirings”. In: STACS 2007. 296–307.

Esparza, J., M. Luttenberger, and M. Schlund. (2014). “FPsolve: A
Generic Solver for Fixpoint Equations over Semirings”. In: Imple-
mentation and Application of Automata. 1–15.

Fabbri, D. and K. LeFevre. (2011). “Explanation-based auditing”. Pro-
ceedings of the VLDB Endowment. 5(1): 1–12.

Fagin, R., P. Kolaitis, L. Popa, and W. Tan. (2005a). “Composing
schema mappings: Second-order dependencies to the rescue”. ACM
Transactions on Database Systems (TODS). 30(4): 994–1055.



References 215

Fagin, R., P. G. Kolaitis, R. J. Miller, and L. Popa. (2005b). “Data
Exchange: Semantics and Query Answering”. Theoretical Computer
Science. 336(1): 89–124.

Farnadi, G., B. Babaki, and L. Getoor. (2018). “Fairness in Relational
Domains”. In: Proceedings of the 2018 AAAI/ACM Conference
on AI, Ethics, and Society, AIES 2018, New Orleans, LA, USA,
February 02-03, 2018. 108–114. doi: 10.1145/3278721.3278733. url:
https://doi.org/10.1145/3278721.3278733.

Feng, S., A. Huber, B. Glavic, and O. Kennedy. (2019). “Uncertainty
Annotated Databases - A Lightweight Approach for Approximat-
ing Certain Answers”. In: Proceedings of the 44th International
Conference on Management of Data.

Fernandez, C., F. J. Provost, and X. Han. (2019). “Counterfactual
Explanations for Data-Driven Decisions”. In: Proceedings of the
40th International Conference on Information Systems, ICIS 2019,
Munich, Germany, December 15-18, 2019. url: https://aisel.aisnet.
org/icis2019/data%5C_science/data%5C_science/8.

Fink, R., L. Han, and D. Olteanu. (2012). “Aggregation in probabilistic
databases via knowledge compilation”. Proceedings of the VLDB
Endowment. 5(5): 490–501.

Flum, J., M. Kubierschky, and B. Ludäscher. (1997). “Total and partial
well-founded datalog coincide”. In: Database Theory—ICDT’97.
Springer. 113–124.

Foster, J. N., T. J. Green, and V. Tannen. (2008). “Annotated XML:
Queries and Provenance”. In: PODS ’08: Proceedings of the 27th
Symposium on Principles of Database Systems. 271–280.

Freire, C., W. Gatterbauer, N. Immerman, and A. Meliou. (2015).
“The complexity of resilience and responsibility for self-join-free
conjunctive queries”. Proceedings of the VLDB Endowment. 9(3):
180–191.

https://doi.org/10.1145/3278721.3278733
https://doi.org/10.1145/3278721.3278733
https://aisel.aisnet.org/icis2019/data%5C_science/data%5C_science/8
https://aisel.aisnet.org/icis2019/data%5C_science/data%5C_science/8


216 References

Freire, C., W. Gatterbauer, N. Immerman, and A. Meliou. (2020). “New
Results for the Complexity of Resilience for Binary Conjunctive
Queries with Self-Joins”. In: Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2020, Portland, OR, USA, June 14-19, 2020. 271–284. doi:
10.1145/3375395.3387647. url: https://doi.org/10.1145/3375395.
3387647.

Freire, J., P. Bonnet, and D. Shasha. (2011). “Exploring the coming
repositories of reproducible experiments: Challenges and opportuni-
ties”. Proc. VLDB Endow. 4: 1494–1497.

Freire, J., P. Bonnet, and D. Shasha. (2012). “Computational repro-
ducibility: state-of-the-art, challenges, and database research oppor-
tunities”. In: Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. ACM. 593–596.

Freire, J. and F. Chirigati. (2018). “Provenance and the Different Flavors
of Computational Reproducibility”. Data Engineering: 15.

Freire, J. and C. T. Silva. (2012). “Making Computations and Publi-
cations Reproducible with VisTrails”. Computing in Science and
Engineering. 14(4): 18–25.

Gawlick, D. and V. Radhakrishnan. (2011). “Fine Grain Provenance
Using Temporal Databases”. In: TaPP ’11: 3rd USENIX Workshop
on the Theory and Practice of Provenance.

Geerts, F., G. Karvounarakis, V. Christophides, and I. Fundulaki. (2012).
“Algebraic Structures for Capturing the Provenance of SPARQL
Queries”. In: Proceedings of the 16th International Conference on
Database Theory.

Geerts, F., A. Kementsietsidis, and D. Milano. (2006). “MONDRIAN:
Annotating and querying databases through colors and blocks”.
In: Data Engineering, 2006. ICDE’06. Proceedings of the 22nd
International Conference on. IEEE. 82–82.

Geerts, F. and A. Poggi. (2010). “On database query languages for
K-relations”. Journal of Applied Logic. 8(2): 173–185.

Glavic, B. (2010). “Perm: Efficient Provenance Support for Relational
Databases”. PhD thesis. University of Zurich.

https://doi.org/10.1145/3375395.3387647
https://doi.org/10.1145/3375395.3387647
https://doi.org/10.1145/3375395.3387647


References 217

Glavic, B. and G. Alonso. (2009a). “Perm: Processing Provenance
and Data on the same Data Model through Query Rewriting”. In:
Proceedings of the 25th IEEE International Conference on Data
Engineering. 174–185.

Glavic, B. and G. Alonso. (2009b). “Provenance for Nested Subqueries”.
In: Proceedings of the 12th International Conference on Extending
Database Technology. 982–993.

Glavic, B. and G. Alonso. (2009c). “The Perm Provenance Management
System in Action”. In: Proceedings of the 35th ACM SIGMOD
International Conference on Management of Data (Demonstration
Track). 1055–1058.

Glavic, B., G. Alonso, R. J. Miller, and L. M. Haas. (2010). “TRAMP:
Understanding the Behavior of Schema Mappings through Prove-
nance”. Proceedings of the Very Large Data Bases Endowment. 3(1):
1314–1325.

Glavic, B., J. Du, R. J. Miller, G. Alonso, and L. M. Haas. (2011).
“Debugging Data Exchange with Vagabond”. Proceedings of the
VLDB Endowment (Demonstration Track). 4(12): 1383–1386.

Glavic, B., K. S. Esmaili, P. M. Fischer, and N. Tatbul. (2013a). “Ari-
adne: Managing Fine-Grained Provenance on Data Streams”. In:
Proceedings of the 7th ACM International Conference on Distributed
Event-Based Systems. 291–320.

Glavic, B., S. Köhler, S. Riddle, and B. Ludäscher. (2015). “Towards
Constraint-based Explanations for Answers and Non-Answers”. In:
Proceedings of the 7th USENIX Workshop on the Theory and Practice
of Provenance.

Glavic, B., A. Meliou, and S. Roy. (2021). “Trends in Explanations”.
Foundations and Trends® in Databases: to appear.

Glavic, B., R. J. Miller, and G. Alonso. (2013b). “Using SQL for Efficient
Generation and Querying of Provenance Information”. In search of
elegance in the theory and practice of computation: a Festschrift in
honour of Peter Buneman: 291–320.

Gondran, M. and M. Minoux. (2008). Graphs, dioids and semirings:
new models and algorithms. Vol. 41. Springer Science & Business
Media.



218 References

Grädel, E. and V. Tannen. (2017). “Semiring Provenance for First-Order
Model Checking”. arXiv preprint arXiv:1712.01980.

Grädel, E. and V. Tannen. (2020). “Provenance analysis for logic and
games”. Moscow Journal of Combinatorics and Number Theory.
9(3): 203–228.

Green, T. (2011). “Containment of conjunctive queries on annotated
relations”. Theory of Computing Systems. 49(2): 429–459.

Green, T., G. Karvounarakis, and Z. Tannen. (2010). “Provenance in
ORCHESTRA”.

Green, T. J. and V. Tannen. (2017). “The Semiring Framework for
Database Provenance”. In: PODS. 93–99.

Green, T. J. (2009). “Containment of Conjunctive Queries on Annotated
Relations”. In: ICDT ’09: Proceedings of the 16th International
Conference on Database Theory. 296–309.

Green, T. J., Z. G. Ives, and V. Tannen. (2009). “Reconcilable Differ-
ences”. In: ICDT ’09: Proceedings of the 16th International Confer-
ence on Database Theory. Saint Petersburg, Russia. 212–224.

Green, T. J., G. Karvounarakis, and V. Tannen. (2007a). “Provenance
Semirings”. In: PODS. 31–40.

Green, T. J., G. Karvounarakis, N. E. Taylor, O. Biton, Z. G. Ives,
and V. Tannen. (2007b). “ORCHESTRA: Facilitating Collaborative
Data Sharing”. In: SIGMOD ’07: Proceedings of the 33th SIGMOD
International Conference on Management of Data.

Grust, T., F. Kliebhan, J. Rittinger, and T. Schreiber. (2011). “True
language-level SQL debugging”. In: Proceedings of the 14th Interna-
tional Conference on Extending Database Technology. ACM. 562–
565.

Gulzar, M. A., M. Interlandi, T. Condie, and M. Kim. (2017a). “Debug-
ging Big Data Analytics in Spark with BigDebug”. In: Proceedings
of the 2017 ACM International Conference on Management of Data.
ACM. 1627–1630.



References 219

Gulzar, M. A., M. Interlandi, X. Han, M. Li, T. Condie, and M. Kim.
(2017b). “Automated debugging in data-intensive scalable comput-
ing”. In: Proceedings of the 2017 Symposium on Cloud Computing,
SoCC 2017, Santa Clara, CA, USA, September 24-27, 2017. ACM.
520–534. isbn: 978-1-4503-5028-0. doi: 10.1145/3127479.3131624.
url: https://doi.org/10.1145/3127479.3131624.

Guo, P. J., S. Kandel, J. M. Hellerstein, and J. Heer. (2011). “Proactive
wrangling: Mixed-initiative end-user programming of data transfor-
mation scripts”. In: Proceedings of the 24th annual ACM symposium
on User interface software and technology. ACM. 65–74.

Gupta, A., I. S. Mumick, et al. (1995). “Maintenance of materialized
views: Problems, techniques, and applications”. IEEE Data Eng.
Bull. 18(2): 3–18.

Halpern, J. (2000). “Axiomatizing causal reasoning”. Arxiv preprint
cs/0005030.

Halpern, J. and J. Pearl. (2005). “Causes and explanations: A structural-
model approach. Part I: Causes”. The British journal for the philos-
ophy of science. 56(4): 843. issn: 0007-0882.

Heinis, T. and G. Alonso. (2008). “Efficient Lineage Tracking for Scien-
tific Workflows”. In: SIGMOD ’08: Proceedings of the 34th SIGMOD
International Conference on Management of Data. 1007–1018.

Hellerstein, J. M., V. Sreekanti, J. E. Gonzalez, J. Dalton, A. Dey,
S. Nag, K. Ramachandran, S. Arora, A. Bhattacharyya, S. Das,
M. Donsky, G. Fierro, C. She, C. Steinbach, V. Subramanian, and
E. Sun. (2017). “Ground: A Data Context Service.” In: CIDR.

Herschel, M. and M. Hernandez. (2010). “Explaining Missing Answers
to SPJUA Queries”. PVLDB. 3(1): 185–196.

Herschel, M. (2013). “Wondering why data are missing from query
results?: ask conseil why-not”. In: Proceedings of the 22nd ACM
international conference on Conference on information & knowledge
management. ACM. 2213–2218.

Herschel, M., R. Diestelkämper, and H. B. Lahmar. (2017). “A survey
on provenance: What for? What form? What from?” The VLDB
Journal: 1–26.

https://doi.org/10.1145/3127479.3131624
https://doi.org/10.1145/3127479.3131624


220 References

Herschel, M., M. A. Hernández, and W.-C. Tan. (2009). “Artemis: A
System for Analyzing Missing Answers”. In: VLDB ’09: Proceedings
of the 35th International Conference on Very Large Data Bases
(demonstration). 1550–1553.

Hoekstra, R. and P. Groth. (2014). “PROV-O-Viz - Understanding the
Role of Activities in Provenance”. In: Provenance and Annotation of
Data and Processes - 5th International Provenance and Annotation
Workshop, IPAW 2014, Cologne, Germany, June 9-13, 2014. Revised
Selected Papers. Ed. by B. Ludäscher and B. Plale. Vol. 8628. Lecture
Notes in Computer Science. Springer. 215–220. isbn: 978-3-319-
16461-8. doi: 10 . 1007 / 978 - 3 - 319 - 16462 - 5 \ _18. url: https :
//doi.org/10.1007/978-3-319-16462-5%5C_18.

Huang, J., T. Chen, A. Doan, and J. F. Naughton. (2008). “On the Prove-
nance of Non-answers to Queries over Extracted Data”. PVLDB:
Proceedings of the VLDB Endowment archive. 1(1): 736–747.

Hull, R. and M. Yoshikawa. (1990). “ILOG: Declarative Creation and
Manipulation of Object Identifiers”. In: 16th International Con-
ference on Very Large Data Bases, August 13-16, 1990, Brisbane,
Queensland, Australia, Proceedings. Morgan Kaufmann. 455–468.
isbn: 1-55860-149-X. url: http://www.vldb.org/conf/1990/P455.
PDF.

Ibrahim, K., X. Du, and M. Eltabakh. (2015). “Proactive Annotation
Management in Relational Databases”. In: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data.
ACM. 2017–2030.

Ikeda, R., H. Park, and J. Widom. (2011a). “Provenance for generalized
map and reduce workflows”. In: CIDR. 273–283.

Ikeda, R., S. Salihoglu, and J. Widom. (2011b). “Provenance-based
refresh in data-oriented workflows”. In: Proceedings of the 20th ACM
international conference on Information and knowledge management.
CIKM ’11. Glasgow, Scotland, UK: ACM. 1659–1668. isbn: 978-1-
4503-0717-8.

Ikeda, R. and J. Widom. (2010). “Panda: A System for Provenance and
Data”. In: TaPP ’10. Stanford InfoLab.

https://doi.org/10.1007/978-3-319-16462-5\_18
https://doi.org/10.1007/978-3-319-16462-5%5C_18
https://doi.org/10.1007/978-3-319-16462-5%5C_18
http://www.vldb.org/conf/1990/P455.PDF
http://www.vldb.org/conf/1990/P455.PDF


References 221

Imieliński, T. and W. Lipski Jr. (1984). “Incomplete Information in
Relational Databases”. Journal of the ACM (JACM). 31(4): 761–
791.

Interlandi, M., A. Ekmekji, K. Shah, M. A. Gulzar, S. D. Tetali, M. Kim,
T. D. Millstein, and T. Condie. (2018). “Adding data provenance
support to Apache Spark”. VLDB J. 27(5): 595–615. doi: 10.1007/
s00778-017-0474-5. url: https://doi.org/10.1007/s00778-017-0474-
5.

Interlandi, M., K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim, T.
Millstein, and T. Condie. (2016). “Titian: Data Provenance Support
in Spark”. PVLDB. 9(3).

Ives, Z., A. Haeberlen, T. Feng, and W. Gatterbauer. (2012). “Querying
provenance for ranking and recommending”.

Ives, Z. G., T. J. Green, G. Karvounarakis, N. E. Taylor, V. Tannen, P. P.
Talukdar, M. Jacob, and F. Pereira. (2008). “The ORCHESTRA
Collaborative Data Sharing System”. SIGMOD Record. 37(2): 26–
32.

Ives, Z. G., N. Khandelwal, A. Kapur, and M. Cakir. (2005). “ORCHES-
TRA: Rapid, Collaborative Sharing of Dynamic Data”. In: CIDR
’05: Proceedings of the 2th Conference on Innovative Data Systems
Research.

Jagadish, H. V., F. Bonchi, T. Eliassi-Rad, L. Getoor, K. P. Gummadi,
and J. Stoyanovich. (2019). “The Responsibility Challenge for Data”.
In: Proceedings of the 2019 International Conference on Management
of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019. Ed. by P. A. Boncz, S. Manegold, A. Ailamaki,
A. Deshpande, and T. Kraska. ACM. 412–414. isbn: 978-1-4503-
5643-5. doi: 10.1145/3299869.3314327. url: https://doi.org/10.
1145/3299869.3314327.

https://doi.org/10.1007/s00778-017-0474-5
https://doi.org/10.1007/s00778-017-0474-5
https://doi.org/10.1007/s00778-017-0474-5
https://doi.org/10.1007/s00778-017-0474-5
https://doi.org/10.1145/3299869.3314327
https://doi.org/10.1145/3299869.3314327
https://doi.org/10.1145/3299869.3314327


222 References

Janin, Y., C. Vincent, and R. Duraffort. (2014). “CARE, the com-
prehensive archiver for reproducible execution”. In: Proceedings
of the 1st ACM SIGPLAN Workshop on Reproducible Research
Methodologies and New Publication Models in Computer Engineer-
ing, TRUST 2014, Edinburgh, United Kingdom, June 9-11, 2014.
Ed. by G. Fursin, B. R. Childers, A. K. Jones, and D. Mossé. ACM.
1:1–1:7. isbn: 978-1-4503-2951-4. doi: 10.1145/2618137.2618138.
url: https://doi.org/10.1145/2618137.2618138.

Jensen, C. and R. Snodgrass. (1999). “Temporal Data Management”.
IEEE Transactions on Knowledge and Data Engineering. 11(1): 36–
44.

Joglekar, M., H. Garcia-Molina, and A. G. Parameswaran. (2019).
“Interactive Data Exploration With Smart Drill-Down”. IEEE Trans.
Knowl. Data Eng. 31(1): 46–60. doi: 10.1109/TKDE.2017.2685998.
url: https://doi.org/10.1109/TKDE.2017.2685998.

Kandel, S., A. Paepcke, J. Hellerstein, and J. Heer. (2011). “Wran-
gler: Interactive visual specification of data transformation scripts”.
In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM. 3363–3372.

Karabeg, D. and V. Vianu. (1991). “Simplification Rules and Complete
Axiomatization for Relational Update Transactions”. ACM Trans.
Database Syst. 16(3): 439–475. doi: 10.1145/111197.111208. url:
https://doi.org/10.1145/111197.111208.

Karvounarakis, G. (2009). “Provenance in collaborative data sharing”.
PhD thesis. University of Pennsylvania.

Karvounarakis, G. and T. Green. (2012). “Semiring-Annotated Data:
Queries and Provenance”. SIGMOD Record. 41(3): 5–14.

Karvounarakis, G., Z. Ives, and V. Tannen. (2010). “Querying data
provenance”. In: Proceedings of the 2010 international conference
on Management of data. ACM. 951–962.

Karvounarakis, G., T. J. Green, Z. G. Ives, and V. Tannen. (2013).
“Collaborative data sharing via update exchange and provenance”.
ACM Transactions on Database Systems (TODS). 38(3): 19.

Kaushik, R., Y. Fu, and R. Ramamurthy. (2013). “On scaling up
sensitive data auditing”. In: Proceedings of the 39th international
conference on Very Large Data Bases. VLDB Endowment. 313–324.

https://doi.org/10.1145/2618137.2618138
https://doi.org/10.1145/2618137.2618138
https://doi.org/10.1109/TKDE.2017.2685998
https://doi.org/10.1109/TKDE.2017.2685998
https://doi.org/10.1145/111197.111208
https://doi.org/10.1145/111197.111208


References 223

Kaushik, R. and R. Ramamurthy. (2011). “Efficient auditing for complex
SQL queries”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2011, Athens, Greece,
June 12-16, 2011. 697–708. doi: 10.1145/1989323.1989396. url:
https://doi.org/10.1145/1989323.1989396.

Kemp, D. B., D. Srivastava, and P. J. Stuckey. (1995). “Bottom-Up Eval-
uation and Query Optimization of Well-Founded Models”. Theor.
Comput. Sci. 146(1&2): 145–184. doi: 10.1016/0304-3975(94)00153-
A. url: https://doi.org/10.1016/0304-3975(94)00153-A.

Koh, P. W. and P. Liang. (2017). “Understanding Black-box Predictions
via Influence Functions”. In: Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017. Ed. by D. Precup and Y. W. Teh. Vol. 70.
Proceedings of Machine Learning Research. PMLR. 1885–1894. url:
http://proceedings.mlr.press/v70/koh17a.html.

Köhler, S., B. Ludäscher, and Y. Smaragdakis. (2012). “Declarative
datalog debugging for mere mortals”. Datalog in Academia and
Industry: 111–122.

Köhler, S., B. Ludäscher, and D. Zinn. (2013). “First-Order Provenance
Games”. In: In Search of Elegance in the Theory and Practice of
Computation. Springer. 382–399.

Kolaitis, P. G. and C. H. Papadimitriou. (1988). “Why Not Negation by
Fixpoint?” In: Proceedings of the Seventh ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, March
21-23, 1988, Austin, Texas, USA. Ed. by C. Edmondson-Yurkanan
and M. Yannakakis. ACM. 231–239. isbn: 0-89791-263-2. doi: 10.
1145/308386.308446. url: https://doi.org/10.1145/308386.308446.

Koop, D. (2016). “Versioning Version Trees: The Provenance of Actions
that Affect Multiple Versions”. In: Provenance and Annotation of
Data and Processes - 6th International Provenance and Annotation
Workshop, IPAW 2016, McLean, VA, USA, June 7-8, 2016, Proceed-
ings. Ed. by M. Mattoso and B. Glavic. Vol. 9672. Lecture Notes in
Computer Science. Springer. 109–121. isbn: 978-3-319-40592-6. doi:
10.1007/978-3-319-40593-3\_9. url: https://doi.org/10.1007/978-
3-319-40593-3%5C_9.

https://doi.org/10.1145/1989323.1989396
https://doi.org/10.1145/1989323.1989396
https://doi.org/10.1016/0304-3975(94)00153-A
https://doi.org/10.1016/0304-3975(94)00153-A
https://doi.org/10.1016/0304-3975(94)00153-A
http://proceedings.mlr.press/v70/koh17a.html
https://doi.org/10.1145/308386.308446
https://doi.org/10.1145/308386.308446
https://doi.org/10.1145/308386.308446
https://doi.org/10.1007/978-3-319-40593-3\_9
https://doi.org/10.1007/978-3-319-40593-3%5C_9
https://doi.org/10.1007/978-3-319-40593-3%5C_9


224 References

Kostylev, E. V. and P. Buneman. (2012). “Combining dependent annota-
tions for relational algebra”. In: Proceedings of the 15th International
Conference on Database Theory. ACM. 196–207.

Kostylev, E. V., J. L. Reutter, and A. Z. Salamon. (2013). “Classification
of Annotation Semirings over Containment of Conjunctive Queries”.
TODS.

Kunde, M., H. Bergmeyer, and A. Schreiber. (2008). “Requirements
for a Provenance Visualization Component”. In: Provenance and
Annotation of Data and Processes, Second International Provenance
and Annotation Workshop, IPAW 2008, Salt Lake City, UT, USA,
June 17-18, 2008. Revised Selected Papers. Ed. by J. Freire, D.
Koop, and L. Moreau. Vol. 5272. Lecture Notes in Computer Science.
Springer. 241–252. isbn: 978-3-540-89964-8. doi: 10.1007/978-3-
540-89965-5\_25. url: https://doi.org/10.1007/978-3-540-89965-
5%5C_25.

Lee, S., S. Köhler, B. Ludäscher, and B. Glavic. (2017). “A SQL-
Middleware Unifying Why and Why-Not Provenance for First-Order
Queries”. In: Proceedings of the 33rd IEEE International Conference
on Data Engineering. 485–496.

Lee, S., B. Ludäscher, and B. Glavic. (2018). “PUG: a framework and
practical implementation for why and why-not provenance”. The
VLDB Journal. 28(1): 47–71. issn: 0949-877X. doi: 10.1007/s00778-
018-0518-5.

Lee, S., B. Ludäscher, and B. Glavic. (2020). “Approximate Summaries
for Why and Why-not Provenance”. Proceedings of the VLDB En-
dowment. 13(6): 912–924.

Logothetis, D., S. De, and K. Yocum. (2013). “Scalable lineage capture
for debugging DISC analytics”. In: Proceedings of the 4th annual
Symposium on Cloud Computing. ACM. 17.

Luttenberger, M. and M. Schlund. (2013). “Convergence of Newton’s
Method over Commutative Semirings”. In: Language and Automata
Theory and Applications - 7th International Conference, LATA 2013,
Bilbao, Spain, April 2-5, 2013. Proceedings. 407–418. doi: 10.1007/
978-3-642-37064-9\_36. url: https://doi.org/10.1007/978-3-642-
37064-9%5C_36.

https://doi.org/10.1007/978-3-540-89965-5\_25
https://doi.org/10.1007/978-3-540-89965-5\_25
https://doi.org/10.1007/978-3-540-89965-5%5C_25
https://doi.org/10.1007/978-3-540-89965-5%5C_25
https://doi.org/10.1007/s00778-018-0518-5
https://doi.org/10.1007/s00778-018-0518-5
https://doi.org/10.1007/978-3-642-37064-9\_36
https://doi.org/10.1007/978-3-642-37064-9\_36
https://doi.org/10.1007/978-3-642-37064-9%5C_36
https://doi.org/10.1007/978-3-642-37064-9%5C_36


References 225

Luttenberger, M. and M. Schlund. (2014). “Regular Expressions for
Provenance”. In: TaPP.

Meliou, A., W. Gatterbauer, K. Moore, and D. Suciu. (2010). “The
Complexity of Causality and Responsibility for Query Answers and
non-Answers”. Proceedings of the VLDB Endowment. 4(1): 34–45.

Meliou, A. and D. Suciu. (2012). “Tiresias: The database oracle for
how-to queries”. In: Proceedings of the 2012 international conference
on Management of Data. ACM. 337–348.

Meliou, A., W. Gatterbauer, S. Nath, and D. Suciu. (2011). “Tracing
data errors with view-conditioned causality”. In: SIGMOD Con-
ference. Ed. by T. K. Sellis, R. J. Miller, A. Kementsietsidis, and
Y. Velegrakis. ACM. 505–516. isbn: 978-1-4503-0661-4.

Mohri, M. (2002). “Semiring Frameworks and Algorithms for Shortest-
Distance Problems”. J. Autom. Lang. Comb. 7(3): 321–350.

Moreau, L., B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N.
Kwasnikowskag, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan,
E. Stephan, and J. V. den Bussche. (2011). “The open provenance
model core specification (v1. 1)”. Future Generation Computer
Systems. 27(6): 743–756.

Moreau, L., J. Freire, J. Futrelle, R. E. McGrath, J. Myers, and P.
Paulson. (2008). “The Open Provenance Model: An Overview”. In:
IPAW ’08: International Provenance and Annotation Workshop.
323–326.

Moreau, L., J. Freire, J. Myers, J. Futrelle, and P. Paulson. (2007).
“The Open Provenance Model”.

Moreau, L. and P. Groth. (2013). “Provenance: An introduction to prov”.
Synthesis Lectures on the Semantic Web: Theory and Technology.
3(4): 1–129.

Moreau, L. and P. Missier. (2013a). http://www.w3.org/TR/prov-overview/.
Moreau, L. and P. Missier. (2013b). “Prov-dm: The prov data model”.

http://www.w3.org/TR/2013/REC-prov-dm-20130430/.
Moura, L. M. de and N. Bjørner. (2011). “Satisfiability Modulo Theories:

Introduction and Applications”. Commun. ACM. 54(9): 69–77. doi:
10.1145/1995376.1995394. url: https://doi.org/10.1145/1995376.
1995394.

https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394


226 References

Müller, T., B. Dietrich, and T. Grust. (2018). “You say what, i hear
where and why: (mis-)interpreting SQL to derive fine-grained prove-
nance”. Proceedings of the VLDB Endowment. 11(11): 1536–1549.

Müller, T. and T. Grust. (2015). “Provenance for SQL through Ab-
stract Interpretation: Value-less, but Worthwhile”. Proceedings of
the VLDB Endowment. 8(12).

Nguyen, D., J. Park, and R. Sandhu. (2013). “A provenance-based
access control model for dynamic separation of duties”. In: Privacy,
Security and Trust (PST), 2013 Eleventh Annual International
Conference on. IEEE. 247–256.

Niu, F., C. Zhang, C. Ré, and J. W. Shavlik. (2012). “DeepDive: Web-
scale Knowledge-base Construction using Statistical Learning and
Inference”. In: Proceedings of the Second International Workshop
on Searching and Integrating New Web Data Sources, Istanbul,
Turkey, August 31, 2012. 25–28. url: http://ceur- ws.org/Vol-
884/VLDS2012%5C_p25%5C_Niu.pdf.

Niu, X., B. Glavic, S. Lee, B. Arab, D. Gawlick, Z. H. Liu, V. Krish-
naswamy, S. Feng, and X. Zou. (2017a). “Debugging Transactions
and Tracking their Provenance with Reenactment”. Proceedings of
the VLDB Endowment (Demonstration Track). 10(12): 1857–1860.

Niu, X., R. Kapoor, B. Glavic, D. Gawlick, Z. H. Liu, V. Krishnaswamy,
and V. Radhakrishnan. (2017b). “Provenance-aware Query Opti-
mization”. In: Proceedings of the 33rd IEEE International Conference
on Data Engineering. 473–484.

Niu, X., R. Kapoor, B. Glavic, D. Gawlick, Z. H. Liu, V. Krishnaswamy,
and V. Radhakrishnan. (2018). “Heuristic and Cost-based Optimiza-
tion for Diverse Provenance Tasks”. IEEE Transactions on Knowl-
edge and Data Engineering. doi: 10.1109/TKDE.2018.2827074.

Olston, C. and B. Reed. (2011). “Inspector Gadget: A Framework
for Custom Monitoring and Debugging of Distributed Dataflows”.
PVLDB. 4(12): 1237–1248. url: http://www.vldb.org/pvldb/vol4/
p1237-olston.pdf.

Olteanu, D. and M. Schleich. (2016). “Factorized Databases”. ACM
SIGMOD Record. 45(2): 5–16.

http://ceur-ws.org/Vol-884/VLDS2012%5C_p25%5C_Niu.pdf
http://ceur-ws.org/Vol-884/VLDS2012%5C_p25%5C_Niu.pdf
https://doi.org/10.1109/TKDE.2018.2827074
http://www.vldb.org/pvldb/vol4/p1237-olston.pdf
http://www.vldb.org/pvldb/vol4/p1237-olston.pdf


References 227

Olteanu, D. and J. Závodny. (2011). “On Factorisation of Provenance
Polynomials”. In: TaPP ’11: 3rd USENIX Workshop on the Theory
and Practice of Provenance.

Olteanu, D. and J. Závodný. (2015). “Size Bounds for Factorised Rep-
resentations of Query Results”. ACM Transactions on Database
Systems (TODS). 40(1): 2.

Park, J., D. Nguyen, and R. Sandhu. (2012). “A provenance-based
access control model”. In: Privacy, Security and Trust (PST), 2012
Tenth Annual International Conference on. IEEE. 137–144.

Pasquier, T. F. J., X. Han, M. Goldstein, T. Moyer, D. M. Eyers, M. I.
Seltzer, and J. Bacon. (2017). “Practical whole-system provenance
capture”. In: Proceedings of the 2017 Symposium on Cloud Com-
puting, SoCC 2017, Santa Clara, CA, USA, September 24-27, 2017.
ACM. 405–418. isbn: 978-1-4503-5028-0. doi: 10.1145/3127479.
3129249. url: https://doi.org/10.1145/3127479.3129249.

Pearl, J. (2000). Causality: models, reasoning, and inference. Cambridge
Univ Pr. isbn: 0521773628.

Pereira, L. M. (1986). “Rational Debugging in Logic Programming”.
In: Third International Conference on Logic Programming, Imperial
College of Science and Technology, London, United Kingdom, July
14-18, 1986, Proceedings. 203–210. doi: 10.1007/3-540-16492-8\_76.
url: https://doi.org/10.1007/3-540-16492-8%5C_76.

Perera, R., U. Acar, J. Cheney, and P. Levy. (2012). “Functional pro-
grams that explain their work”. In: Proceedings of the 17th ACM
SIGPLAN international conference on Functional programming.
ACM. 365–376.

Pham, Q., T. Malik, and I. Foster. (2013). “Using provenance for
repeatability”. In: Proceedings of the 5th USENIX conference on
Theory and Practice of Provenance. 2–2.

Pham, Q., T. Malik, B. Glavic, and I. Foster. (2015). “LDV: Light-
weight Database Virtualization”. In: Proceedings of the 31st IEEE
International Conference on Data Engineering. 1179–1190.

https://doi.org/10.1145/3127479.3129249
https://doi.org/10.1145/3127479.3129249
https://doi.org/10.1145/3127479.3129249
https://doi.org/10.1007/3-540-16492-8\_76
https://doi.org/10.1007/3-540-16492-8%5C_76


228 References

Pimentel, J. F., L. Murta, V. Braganholo, and J. Freire. (2019). “A
large-scale study about quality and reproducibility of jupyter note-
books”. In: Proceedings of the 16th International Conference on
Mining Software Repositories, MSR 2019, 26-27 May 2019, Mon-
treal, Canada. Ed. by M. D. Storey, B. Adams, and S. Haiduc. IEEE.
507–517. isbn: 978-1-7281-3412-3. doi: 10.1109/MSR.2019.00077.
url: https://doi.org/10.1109/MSR.2019.00077.

Psallidas, F. and E. Wu. (2018a). “Smoke: Fine-Grained Lineage At
Interactive Speed”. Proc. VLDB Endow. 11(6): 719–732. doi: 10.
14778/3184470.3184475. url: https://doi.org/10.14778/3184470.
3184475.

Psallidas, F. and E. Wu. (2018b). “Smoke: Fine-grained lineage at
interactive speed”. Proceedings of the VLDB Endowment. 11(6):
719–732.

Ramusat, Y., S. Maniu, and P. Senellart. (2018). “Semiring Provenance
over Graph Databases”. In: 10th USENIX Workshop on the Theory
and Practice of Provenance, TaPP 2018, London, UK, July 11-
12, 2018. Ed. by M. Herschel. USENIX Association. url: https:
//www.usenix.org/conference/tapp2018/presentation/ramusat.

Rio, N. D. and P. P. da Silva. (2007). “Probe-It! Visualization Support for
Provenance”. In: Advances in Visual Computing, Third International
Symposium, ISVC 2007, Lake Tahoe, NV, USA, November 26-28,
2007, Proceedings, Part II. Ed. by G. Bebis, R. D. Boyle, B. Parvin,
D. Koracin, N. Paragios, T. F. Syeda-Mahmood, T. Ju, Z. Liu, S.
Coquillart, C. Cruz-Neira, T. Müller, and T. Malzbender. Vol. 4842.
Lecture Notes in Computer Science. Springer. 732–741. isbn: 978-
3-540-76855-5. doi: 10.1007/978-3-540-76856-2\_72. url: https:
//doi.org/10.1007/978-3-540-76856-2%5C_72.

Roy, S. and D. Suciu. (2014). “A formal approach to finding explanations
for database queries”. In: SIGMOD.

Salimi, B., L. Bertossi, D. Suciu, and G. V. den Broeck. (2016). “Quan-
tifying Causal Effects on Query Answering in Databases”. In: 8th
USENIX Workshop on the Theory and Practice of Provenance (TaPP
16). Washington, D.C.: USENIX Association.

https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.14778/3184470.3184475
https://doi.org/10.14778/3184470.3184475
https://doi.org/10.14778/3184470.3184475
https://doi.org/10.14778/3184470.3184475
https://www.usenix.org/conference/tapp2018/presentation/ramusat
https://www.usenix.org/conference/tapp2018/presentation/ramusat
https://doi.org/10.1007/978-3-540-76856-2\_72
https://doi.org/10.1007/978-3-540-76856-2%5C_72
https://doi.org/10.1007/978-3-540-76856-2%5C_72


References 229

Salimi, B., J. Gehrke, and D. Suciu. (2018). “Bias in OLAP Queries:
Detection, Explanation, and Removal”. In: Proceedings of the 2018
International Conference on Management of Data. ACM. 1021–1035.

Scheidegger, C. E., H. Vo, D. Koop, J. Freire, and C. T. Silva. (2008).
“Querying and Re-using Workflows with VisTrails”. In: SIGMOD
’08: Proceedings of the 34th SIGMOD International Conference on
Management of Data. ACM. 1251–1254.

Schwartz, E. J., T. Avgerinos, and D. Brumley. (2010). “All You Ever
Wanted to Know about Dynamic Taint Analysis and Forward Sym-
bolic Execution (but Might Have Been Afraid to Ask)”. In: 31st
IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May
2010, Berleley/Oakland, California, USA. IEEE Computer Society.
317–331. isbn: 978-0-7695-4035-1. doi: 10.1109/SP.2010.26. url:
https://doi.org/10.1109/SP.2010.26.

Senellart, P. (2017). “Provenance and Probabilities in Relational Databases:
From Theory to Practice”. SIGMOD record.

Senellart, P., L. Jachiet, S. Maniu, and Y. Ramusat. (2018). “ProvSQL:
provenance and probability management in postgreSQL”. Proceed-
ings of the VLDB Endowment. 11(12): 2034–2037.

Shu, H. (2000). “Using constraint satisfaction for view update”. Journal
of Intelligent Information Systems. 15(2): 147–173. issn: 0925-9902.

Stonebraker, M., J. Chen, N. Nathan, C. Paxson, and J. Wu. (1993).
“Tioga: Providing Data Management Support for Scientific Visual-
ization Applications”. In: VLDB. 25–38.

Suciu, D. (2020). “Probabilistic Databases for All”. In: Proceedings of
the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2020, Portland, OR, USA, June 14-19,
2020. Ed. by D. Suciu, Y. Tao, and Z. Wei. ACM. 19–31. isbn:
978-1-4503-7108-7. doi: 10 . 1145/3375395 . 3389129. url: https :
//doi.org/10.1145/3375395.3389129.

Suciu, D., D. Olteanu, C. Ré, and C. Koch. (2011). “Probabilistic
databases”. Synthesis Lectures on Data Management. 3(2): 1–180.

Suriarachchi, I., Q. Zhou, and B. Plale. (2015). “Komadu: A Capture
and Visualization System for Scientific Data Provenance”. Journal
of Open Research Software. 3(1).

https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/3375395.3389129
https://doi.org/10.1145/3375395.3389129
https://doi.org/10.1145/3375395.3389129


230 References

Tannen, V. (2017). “Provenance analysis for FOL model checking”.
ACM SIGLOG News. 4(1): 24–36.

That, D. H. T., G. Fils, Z. Yuan, and T. Malik. (2017). “Sciunits:
Reusable Research Objects”. In: 13th IEEE International Conference
on e-Science, e-Science 2017, Auckland, New Zealand, October 24-27,
2017. IEEE Computer Society. 374–383. isbn: 978-1-5386-2686-3.
doi: 10.1109/eScience.2017.51. url: https://doi.org/10.1109/
eScience.2017.51.

Tran, Q. T. and C.-Y. Chan. (2010). “How to ConQueR why-not
questions”. In: SIGMOD ’10: Proceedings of the 2010 international
conference on Management of data. Indianapolis, Indiana, USA:
ACM. 15–26. isbn: 978-1-4503-0032-2.

Van den Broeck, G. and D. Suciu. (2017). “Query Processing on Proba-
bilistic Data: A Survey”.

Van Gelder, A., K. A. Ross, and J. S. Schlipf. (1991). “The well-founded
semantics for general logic programs”. Journal of the ACM (JACM).
38(3): 619–649.

Vansummeren, S. and J. Cheney. (2007). “Recording Provenance for
SQL Queries and Updates”. IEEE Data Engineering Bulletin. 30(4):
29–37.

Vollmer, M., L. Golab, K. Böhm, and D. Srivastava. (2019). “Infor-
mative Summarization of Numeric Data”. In: Proceedings of the
31st International Conference on Scientific and Statistical Database
Management, SSDBM 2019, Santa Cruz, CA, USA, July 23-25,
2019. Ed. by C. Maltzahn and T. Malik. ACM. 97–108. isbn: 978-1-
4503-6216-0. doi: 10.1145/3335783.3335797. url: https://doi.org/
10.1145/3335783.3335797.

Wang, Q., T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J. Byun.
(2007). “On the Correctness Criteria of Fine-Grained Access Control
in Relational Databases”. In: Proceedings of the 33rd International
Conference on Very Large Data Bases, University of Vienna, Austria,
September 23-27, 2007. Ed. by C. Koch, J. Gehrke, M. N. Garofalakis,
D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan,
V. Ganti, C. Kanne, W. Klas, and E. J. Neuhold. ACM. 555–566.
isbn: 978-1-59593-649-3. url: http://www.vldb.org/conf/2007/
papers/research/p555-wang.pdf.

https://doi.org/10.1109/eScience.2017.51
https://doi.org/10.1109/eScience.2017.51
https://doi.org/10.1109/eScience.2017.51
https://doi.org/10.1145/3335783.3335797
https://doi.org/10.1145/3335783.3335797
https://doi.org/10.1145/3335783.3335797
http://www.vldb.org/conf/2007/papers/research/p555-wang.pdf
http://www.vldb.org/conf/2007/papers/research/p555-wang.pdf


References 231

Wang, X., X. L. Dong, and A. Meliou. (2015). “Data X-Ray: A Diag-
nostic Tool for Data Errors”. In: Sigmod.

Weiser, M. (1981). “Program slicing”. Proceedings of the 5th interna-
tional conference on Software engineering: 439–449.

Wu, E., S. Madden, and M. Stonebraker. (2012). “SubZero: A Fine-
Grained Lineage System for Scientific Databases”.

Wu, E. and S. Madden. (2013). “Scorpion: Explaining Away Outliers in
Aggregate Queries”. PVLDB. 6(8): 553–564.

Wu, Y., A. Haeberlen, W. Zhou, and B. T. Loo. (2013). “Answering why-
not queries in software-defined networks with negative provenance”.
In: Proceedings of the Twelfth ACM Workshop on Hot Topics in
Networks. ACM. 3.

Wu, Y., M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo. (2014).
“Diagnosing missing events in distributed systems with negative
provenance”. In: Proceedings of the 2014 ACM conference on SIG-
COMM. ACM. 383–394.

Wu, Y., V. Tannen, and S. B. Davidson. (2020). “PrIU: A Provenance-
Based Approach for Incrementally Updating Regression Models”. In:
Proceedings of the 2020 International Conference on Management
of Data, SIGMOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020. Ed. by D. Maier, R. Pottinger, A.
Doan, W. Tan, A. Alawini, and H. Q. Ngo. ACM. 447–462. isbn:
978-1-4503-6735-6. doi: 10 . 1145/3318464 . 3380571. url: https :
//doi.org/10.1145/3318464.3380571.

Wylot, M., P. Cudré-Mauroux, and P. Groth. (2014). “TripleProv:
Efficient Processing of Lineage Queries in a Native RDF Store”. In:
Proceedings of the 24th international conference on World Wide Web
(WWW).

Xu, J., W. Zhang, A. Alawini, and V. Tannen. (2018). “Provenance Anal-
ysis for Missing Answers and Integrity Repairs”. Data Engineering:
39.

Yan, Z., V. Tannen, and Z. G. Ives. (2016). “Fine-grained Provenance
for Linear Algebra Operators”. In: 8th USENIX Workshop on the
Theory and Practice of Provenance (TaPP 16). Washington, D.C.:
USENIX Association.

https://doi.org/10.1145/3318464.3380571
https://doi.org/10.1145/3318464.3380571
https://doi.org/10.1145/3318464.3380571


232 References

Yang, Y., N. Meneghetti, R. Fehling, Z. H. Liu, and O. Kennedy. (2015).
“Lenses: an on-demand approach to ETL”. Proceedings of the VLDB
Endowment. 8(12): 1578–1589.

Zaharia, M., M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
(2010). “Spark: cluster computing with working sets”. In: Proceedings
of the 2nd USENIX conference on Hot topics in cloud computing.
10–10.

Zhang, J. and H. Jagadish. (2010). “Lost source provenance”. In: Pro-
ceedings of the 13th International Conference on Extending Database
Technology. ACM. 311–322.

Zhang, Z., E. R. Sparks, and M. J. Franklin. (2017). “Diagnosing
machine learning pipelines with fine-grained lineage”. In: Proceedings
of the 26th International Symposium on High-Performance Parallel
and Distributed Computing. ACM. 143–153.

Zheng, N., A. Alawini, and Z. G. Ives. (2019). “Fine-Grained Provenance
for Matching & ETL”. In: 35th IEEE International Conference on
Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019.
IEEE. 184–195. isbn: 978-1-5386-7474-1. doi: 10.1109/ICDE.2019.
00025. url: https://doi.org/10.1109/ICDE.2019.00025.

https://doi.org/10.1109/ICDE.2019.00025
https://doi.org/10.1109/ICDE.2019.00025
https://doi.org/10.1109/ICDE.2019.00025


Index

annotation, 37
applications; view maintenance,

129
applications; view update, 132

causality, 30
actual causes, 32
contingency, 32
counterfactual cause, 31
counterfactual causes, 31
responsibility, 33

computability, 37, 50, 60

data dependency, 24
Datalog

active domain, 99
body, 18
extensional database, 18
goal, 18
grounded rule, 19, 99
head, 18
intensional database, 18

model-theoretic semantics,
19

program, 18
query, 19

deletion propagation, 129

incomplete databases
C-tables, 97

K-relations, 51
absorption, 103
circuits, 103
commutative semiring, 51
formal power series, 102
homomorphism, 58
monoids, 76
monus semirings, 72
natural order, 63, 72
provenance polynomials, 60
query equivalence and

containment, 63
semimodule, 77

233



234 Index

lineage, 41

mapping provenance, 109, 110

necessary, 29

Perm influence contribution
semantics (PI-CS), 67

witness list, 67
possible worlds, 53
program slice, 113
provenance capture, 167
provenance capture;

reenactment, 184
provenance capture;eager, 168
provenance cap-

ture;instrumentation,
175

provenance capture;lazy, 168
provenance games, 85

instantiated game, 87
solved game, 87

provenance trace, 50, 114
trace slice, 114

query containment, 22
query equivalence, 22

syntax independence, 35

transformation dependency, 24
transformation provenance, 109

view maintenance, 130

where-provenance, 47
copy-contribution

semantics, 50
why-not provenance

frontier picky
manipulations, 117

instance-based
explanations, 92

query refinement, 118
query-based explanations,

92, 116
unpicked, 117

successor, 117
why-provenance

minimal why-provenance,
41

set of minimal witnesses, 39
set of witnesses, 39
witness, 39


	Introduction
	What is Data Provenance?
	Why Should I Care?
	Background and Notation
	Organization of this Monograph

	Provenance Models - Formalizing Provenance Semantics
	Requirements for Provenance Semantics
	Provenance as Annotations on Data
	Provenance for Monotone Queries
	Non-monotone Queries, Negation, and Why-not Provenance
	Recursion and Iteration
	Transformation Provenance
	Updates and Transactions
	Summary and Conclusions
	Additional References

	Applications
	View Maintenance, What-if Analysis, and Provisioning
	View Update and How-to Analysis
	Error Diagnosis and Debugging
	Metadata Management, Versioning, and Reproducibility
	Incomplete and Probabilistic Databases
	Security, Privacy, and Auditing
	Explanations for Outcomes
	Additional Applications

	Provenance Capture, Storage, and Querying
	Storage, Compression, and Summarization
	Provenance Summarization
	Provenance Capture
	Querying, Exploring, and Visualizing Provenance
	Provenance Management Systems

	Connection to Other Research Fields
	Dataflow Analysis, Controlflow Analysis, and Program Slicing
	Taint Analysis
	Symbolic Execution
	Applications of Semirings
	Justifications and Debugging for Logic Programming

	Summary and Conclusions
	Acknowledgements
	References

