Sequenced Semantics for Temporal Multiset Relations (Extended Version)

Anton Dignös, Boris Glavic, Xing Niu, Michael Böhlen, Johann Gamper
Free University of Bozen-Bolzano Illinois Institute of Technology University of Zurich
(dignoes,gamper)@inf.unibz.it bglavic@ xniu7@hawk.jit.edu boehlen@ifi.uzh.ch

ABSTRACT

Sequenced semantics is widely used for evaluating queries over temporal data: temporal relations are seen as sequences of snapshot relations, and queries are evaluated at each snapshot. In this work, we demonstrate that current approaches for sequenced semantics over interval-timestamped multiset relations are subject to bugs regarding sequenced aggregation and sequenced bag difference. We introduce a novel temporal data model based on X-relations that overcomes these bugs and prove it to correctly encode temporal semantics. We introduce a novel temporal data model based on X-relations that overcomes these bugs and prove it to correctly encode temporal semantics. Furthermore, we present an efficient implementation of our model as a database middleware and demonstrate experimentally that our approach is competitive with native implementations and significantly outperforms such implementations on queries that involve aggregation.

PVLDB Reference Format:
DOI: https://doi.org/TBD

1. INTRODUCTION

Recently, there is renewed interest in temporal databases fueled by the fact that abundant storage has made long term archival of historical data feasible. This has led to the incorporation of temporal features into the SQL:2011 standard [27] which defines an encoding of temporal data associating each tuple with a validity period. We refer to such relations as SQL period relations. Note that SQL period relations use multiset semantics. Period relations are supported by many DBMSs, e.g., PostgreSQL [14], Teradata [44], Oracle [30], IBM DB2 [35], and MS SQL Server [29]. However, none of these systems, with the partial exception of Teradata, supports sequenced semantics [7], an important class of temporal queries. Given a temporal database, a non-temporal query Q interpreted under sequenced semantics returns a temporal relation that assigns to each point in time the result of evaluating Q over the snapshot of the database at this point in time. This fundamental property of sequenced semantics is known as snapshot-reducibility [28,12].

Example 1.1 (Sequenced Aggregation). Consider the SQL period relation works in Figure 1a that records factory workers, their skills, and when they are on duty. The validity period of each tuple Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Articles from this volume were invited to present examples.

Example 2.1 (Sequenced Bag Difference). Consider again Figure 1 Relation assign records machines (mach) that need to be

Figure 1: Sequenced semantics query evaluation – highlighted tuples are erroneously omitted by approaches that exhibit the aggregation gap (AG) and bag difference (BD) bugs.

is stored in the temporal attribute period. To simplify examples, we restrict the time domain to the hours of 2018-01-01 represented as integers 00 to 23. The company requires that at least one SP worker is in the factory at any given time. This can be checked by evaluating the following query under sequenced semantics.

\(Q_{conduty}: \text{SELECT count(*) AS cnt FROM works WHERE skill = 'SP'}\)

Evaluated under sequenced semantics, a query returns a sequenced (time-varying) result that records when the result is valid, i.e., \(Q_{conduty}\) returns the number of SP workers that are on duty at any given point of time. The result is shown in Figure 1a. For instance, at 08:00am two SP workers (Ann and Joe) are on duty. The query exposes several safety violations, e.g., no SP worker is on duty between 00 and 03.

In the example above, safety violations correspond to gaps, i.e., periods of time where the aggregation’s input is empty. As we will demonstrate, all approaches for sequenced semantics that we are aware of do not return results for gaps (tuples marked in red) and, therefore, violate snapshot-reducibility. Teradata [44, p.149] for instance, realized the importance of reporting results for gaps, but in contrast to snapshot-reducibility provides gaps in the presence of grouping, while omitting them otherwise. As a consequence, in our example these approaches fail to identify safety violations. We refer to this type of error as the aggregation gap bug (AG bug).

Similar to the case of aggregation, we also identify a common error related to sequenced bag difference (EXCEPT ALL).

Example 1.2 (Sequenced Bag Difference). Consider again Figure 1 Relation assign records machines (mach) that need to be
assigned to workers with a specific skill over a specific period of time. For instance, the third tuple records that machine M3 requires a non-specialized (NS) worker for the time period [03, 16]. To determine which skill sets are missing during which time period, we evaluate the following query under sequenced semantics:

\[Q_{skillreq} : \text{SELECT skill FROM assign}\]
\[\text{EXCEPT ALL}\]
\[\text{SELECT skill FROM works}\]

The result in Figure [7] indicates that one more SP worker is required during the periods [06, 08] and [10, 12].

Many approaches treat bag difference as a NOT EXISTS subquery, and therefore do not return a tuple \(t \) from the left input if this tuple exists in the right input (independent of their multiplicity). For instance, the two tuples for the SP workers (highlighted in red) are not returned, since there exists an SP worker at each snapshot in the \text{works} relation. This violates snapshot-reducibility. We refer to this type of error as the bag difference bug (BD bug).

The interval-based representation of temporal relations creates an additional problem: the encoding of a temporal query result is typically not unique. For instance, tuple \((Ann, SP, [03, 10]) \) from the \text{works} relation in Figure [1] can equivalently be represented as two tuples \((Ann, SP, [03, 08]) \) and \((Ann, SP, [08, 10]) \). We refer to a method that determines how temporal data and sequenced query results are grouped into intervals as an interval-based representation system. A unique and predictable representation of temporal data is a desirable property, because equivalent relational algebra expressions should not lead to syntactically different result relations. This problem can be addressed by using a representation system that associates a unique encoding with each temporal database. Furthermore, overlap between multiple periods associated with a tuple and unnecessary splits of periods complicate the interpretation of data and, thus, should be avoided if possible. Given these limitations and the lack of implementations for sequenced semantics queries over bag relations, users currently resort to manually implementing such queries in SQL which is time-consuming and error-prone [39]. We address the above limitations of previous approaches for sequenced semantics and develop a framework based on the following desiderata: (i) support for set and multiset relations, (ii) snapshot-reducibility for all operations, and (iii) a unique interval-based encoding of temporal relations. We address these desiderata using a three-level approach. Note that we focus on data with a single time dimension, but are oblivious to whether this is transaction time or valid time. First, we introduce an abstract model that supports both sets and multisets, and by definition is snapshot-reducible. This model, however, uses a verbose encoding of temporal data and, thus, is not practical. Afterwards, we develop a more compact logical model as a representation system, where the complete temporal history of all equivalent tuples from the abstract model is stored in an annotation attached to one tuple. The abstract and the logical models leverage the theory of K-relations, which are a general class of annotated relations that cover both set and multiset relations. For our implementation, we use SQL over period relations to ensure compatibility with SQL-2011 and existing DBMSs. We prove the equivalence between the three layers (i.e., the abstract model, the logical model and the implementation) and show that the logical model determines a unique interval-encoding for the implementation and a correct rewriting scheme for queries over this encoding.

Our main technical contributions are:

- **Abstract model**: We introduce sequenced K-relations as a generalization of sequenced set and multiset relations. These relations are by definition snapshot-reducible.
- **Logical model**: We define an interval-based representation, termed period K-relations, and prove that these relations are a compact and unique representation system for sequenced semantics over sequenced K-relations. We show this for the full relational algebra plus aggregation (\(RA^+ \)).
- **Temporal Query Languages.** There is a long history of research on temporal query languages [6, 22]. Many temporal query languages including TSQL2 [38, 40], IXSQL [28], ATSQL [9], and SQL/TP [46] support sequenced semantics. In this paper, we provide a general framework that can be used to correctly implement sequenced semantics over period set and multiset relations for any language.

2. RELATED WORK

Interval-based Approaches for Sequenced Semantics. In the following, we discuss interval-based approaches for sequenced semantics. Table [1] shows for each approach whether it supports multisets, whether it is free of the aggregation gap and bag difference bugs, and whether its interval-based encoding of a sequenced query result is unique. An N/A indicates that the approach does not support the operation for which this type of bug can occur or the semantics of this operation is not defined precisely enough to judge its correctness. Note that while temporal query languages may be defined to apply sequenced semantics and, thus, by definition are snapshot-reducible, the specification of their implementation might fail to be snapshot-reducible. In the following discussion of the temporal query languages in Table [1] we refer to their semantics as provided in the referenced publication(s).

Interval preservation (ATSQL) [9, Def. 2.10] is a representation system for SQL period relations (multisets) that tries to preserve the intervals associated with input tuples, i.e., fragments of all intervals (including duplicates) associated with the input tuples “survive” in the output. Interval preservation is snapshot-reducible for multiset semantics for positive relational algebra [36] (selection, projection, join, and union), but exhibits the aggregation gap and bag difference bug. Moreover, the period encoding of a query result is not unique as it depends both on the query and the input representation. Teradata [14] is a commercial DBMS that supports sequenced operators using ATSQL’s statement modifiers. The implementation is based on query rewriting [2] and does not support difference. Teradata’s implementation exhibits the aggregation gap bug. Since the application of coalescing is optional, the encoding of snapshot relations as period relations is not unique. Change preservation [13, Def. 3.4] determines the interval boundaries of a query result tuple \(t \) based on the maximal interval for which there is no change in the input. To track changes, it employs the lineage provenance model in [15] and the PI-CS model in [13]. The approach uses timestamp adjustment in combination with traditional database operators, but does not provide a unique encoding, exhibits the AG bug, and only supports set semantics. Our work addresses these issues and significantly generalizes this approach, in
particular by supporting bag semantics. TSQL2 [38, 40, 42] implicitly applies coalescing [10] to produce a unique representation. Thus, it only supports set semantics, and it does not support aggregation. Snodgrass et al. [41] present a validtime extension of SQL/Temporal and an algebra with sequenced semantics. The algebra supports multisets, but exhibits both the aggregation gap and bag difference bug. Since intervals from the input are preserved where possible, the interval representation of a snapshot relation is not unique. TimeDB [43] is an implementation of ATSQL2 [8]. It uses a semantics for bag difference and intersection that is not snapshot-reducible (see [43, pp. 63]). Our approach is the first that supports set and multiset relations, is resilient against the two bugs, and specifies a unique interval-encoding.

Non-sequenced Temporal Queries. Non-sequenced temporal query languages, such as IXSQL [28] and SQL/TP [46], do not explicitly support sequenced semantics. Nevertheless, we review these languages here since they allow to express queries with sequenced semantics. SQL/TP [46] introduces a point-wise semantics for temporal queries [12, 15], where time is handled as a regular attribute. Intervals are used as an efficient encoding of time points, and a normalization operation is used to split intervals. The language supports multisets and a mechanism to manually produce sequenced semantics. However, sequenced semantics queries are specified as the union of non-temporal queries over snapshots. Even if such subqueries are grouped together for adjacent time points where the non-temporal query’s result is constant this still results in a large number of subqueries to be executed. Even worse, the number of subqueries that are required is data dependent. Also, the interval-based encoding is not unique, since time points are grouped into intervals depending on query syntax and encoding of the input. While this has no effect on the semantics since SQL/TP queries cannot distinguish between different interval-based encodings of a temporal database, it might be confusing to users that observe different query results for equivalent queries/inputs.

Implementations of Temporal Operators. A large body of work has focused on the implementation of individual temporal algebra operators such as joins [11, 17, 32] and aggregation [31, 33]. Some exceptions supporting multiple operators are [13, 18, 25]. These approaches introduce efficient evaluation algorithms for a particular semantics of a temporal algebra operator. Our approach can utilize efficient operator implementations as long as (i) their semantics is compatible with our interval-based encoding of sequenced query results and (ii) they are snapshot-reducible.

Coalescing. Coalescing produces a unique representation of a set semantics temporal database. Böhlen et al. [10] study optimizations for coalescing that eliminate unnecessary coalescing operations. Zhou et al. [47] and [1] use analytical functions to efficiently implement coalescing in SQL. We generalize coalescing to K-relations to define a unique encoding of interval-based temporal relations, including multiset relations. Similar to [10], we remove unnecessary K-coalescing steps and, similar to [47], we use OLAP functions for efficient implementation.

Temporality in Annotated Databases. Kosilety et al. [26] is to the best of our knowledge the only previous approach that uses semiring annotations to express temporality. The authors define a semiring whose elements are sets of time points. This approach is limited to set semantics, and no interval-based encoding was presented. The LIVE system [15] combines provenance and uncertainty annotations with versioning. The system uses interval timestamps, and query semantics is based on snapshot-reducibility [15, Def. 2]. However, computing the intervals associated with a query result requires provenance to be maintained for every query result.

3. SOLUTION OVERVIEW

In this section, we give an overview of our three-level framework, which is illustrated in Figure 2.

Abstract model – Sequenced K-relations. As an abstract model we use sequenced relations which map time points to snapshots. Queries over such relations are evaluated over each snapshot, which trivially satisfies snapshot-reducibility. To support both sets and multisets, we introduce sequenced K-relations [20], which are sequenced relations where each snapshot is a K-relation. In a K-relation, each tuple is annotated with an element from a domain K. For example, relations annotated with elements from the semiring \(\mathbb{N} \) (natural numbers) correspond to multiset semantics. The result of a sequenced query Q over a sequenced K-relation is the result of evaluating Q over the K-relation at each time point.

Example 3.1 (Abstract Model). Figure 2 (bottom) shows the snapshots at times 0, 0, 8, and 18 of an encoding of the running example as sequenced \(\mathbb{N} \)-relations. Each snapshot is an \(\mathbb{N} \)-relation where tuples are annotated with their multiplicity (shown with shaded background). For instance, the snapshot at time 0 has three tuples, each with multiplicity 1. The result of query Q\(_{\text{onduty}}\) is shown on the bottom right. Every snapshot in the result is computed by running Q\(_{\text{onduty}}\) over the corresponding snapshot in the input. For instance, at time 08 there are two SP workers, i.e., cnt = 2.

Logical Model – Period K-relations. We introduce period K-relations as a logical model, which merges equivalent tuples over all snapshots from the abstract model into one tuple. In a period K-relation, every tuple is annotated with a temporal K-element that is a unique interval-based representation for all time points of the merged tuples from the abstract model. We define a class of semirings called period semirings whose elements are temporal K-elements. Specifically, for any semiring K we can construct a period semiring \(K_T \) whose annotations are temporal K-elements. For instance, \(\mathbb{N}_T \) is the period semiring corresponding to semiring \(\mathbb{N} \) (multisets). We define necessary conditions for an interval-based model to correctly encode sequenced K-relations and prove that period K-relations fulfill these conditions. Specifically, we call an interval-based model a representation system if the encoding of every sequenced K-relation R is (i) unique and (ii) snapshot-equivalent to R. Furthermore, (iii) queries over encodings are snapshot-reducible.
4. SEQUENCED K-RELATIONS

We first review background on the semiring annotation framework (K-relations). Afterwards, we define sequenced K-relations as our abstract model and sequenced semantics for this model. Importantly, queries over sequenced K-relations are snapshot-reducible by construction. Finally, we state requirements for a logical model to be a representation system for this abstract model.

4.1 K-relations

In a K-relations [20], every tuple is annotated with an element from a domain K of a commutative semiring. A structure \((K, +, \cdot, 0, 1)\) over a set K with binary operations + and \(\cdot\) is a commutative semiring if (i) addition and multiplication are commutative, associative, and have a neutral element \((0, 1)\), respectively; (ii) multiplication distributes over addition; and (iii) multiplication with zero returns zero. Abusing notation, we will use \(K\) to denote both a semiring structure as well as its domain.

Consider a universal countable domain \(\mathcal{U}\) of values. An n-ary \(K\)-relation \(R\) over \(\mathcal{U}\) is a (total) function that maps tuples (elements from \(\mathcal{U}^n\)) to elements from \(K\) with the convention that tuples mapped to 0\(\mathcal{U}\) are not in the relation. Furthermore, we require that \(R(t) \neq 0\mathcal{U}\) only holds for finitely many \(t\). Two semirings are of particular interest to us: The semiring \((\mathbb{B}, \lor, \land, false, true)\) with elements true and false using \(\lor\) as addition and \(\land\) as multiplication corresponds to set semantics. The semiring \((\mathbb{N}, +, \cdot, 0, 1)\) of natural numbers with standard arithmetics corresponds to multisets.

The operators of the positive relational algebra [36] \((\mathcal{RA}^+)\) over \(K\)-relations are defined by applying the +\(\mathcal{K}\) and \(-\mathcal{K}\) operations of the semiring \(K\) to input annotations. Intuitively, the +\(\mathcal{K}\) and \(-\mathcal{K}\) operations of the semiring correspond to the alternative and conjunctive use of tuples, respectively. For instance, if an output tuple \(t\) is produced by joining two input tuples annotated with \(k\) and \(k'\), then the tuple \(t\) is annotated with \(k +\mathcal{K} k'\). Below we provide the standard definition of \(\mathcal{RA}^+\) over \(K\)-relations [20]. For a tuple \(t\), we use \(t.A\) to denote the projection of \(t\) on a list of projection expressions \(A\) and \(t[R]\) to denote the projection of \(t\) on the attributes of relation \(R\). For a condition \(\theta\) and tuple \(t\), \(\theta(t)\) denotes a function that returns \(1K\) if \(t \models \theta\) and \(0K\) otherwise.

Definition 4.1 \((\mathcal{RA}^+)\) over \(K\)-relations. Let \(K\) be a semiring, \(R\), \(S\) denote \(K\)-relations, \(t, \upsilon\) denote tuples of appropriate arity, and
We use \(R \rightarrow \sigma \) with the semiring operations. Since \(R \rightarrow \sigma \) to access its state (snapshot) at a time point \(t \in T\), we use \(R \rightarrow \sigma \) if they encode the same snapshots, i.e., iff for all \(R \rightarrow \sigma \) snapshots of the input.

Definition 4.4 (Sequenced Semantics). Let \(D\) be a sequenced \(K\)-database and \(Q\) be a query. The result \(Q(D)\) of \(Q\) over \(D\) is a sequenced \(K\)-relation that is defined point-wise as follows:

\[
\forall T \in T : Q(D)(T) = Q(\tau_T(D))
\]

For example, consider the sequenced \(N\)-relation shown at the bottom of Figure 2 and the evaluation of \(Q_{onduty}\) under sequenced semantics as also shown in this figure. Observe how the query result is computed by evaluating \(Q_{onduty}\) over each snapshot individually using multiset (\(\mathcal{N}\)) query semantics. Furthermore, since \(\tau_T(Q(R)) = Q(\tau_T(R))\), per the above definition, the timeslice operator commutes with queries: \(\tau_T(Q(R)) = Q(\tau_T(R))\). This property is snapshot-reducibility.

4.3 Representation Systems

To compactly encode sequenced \(K\)-relations, we study representation systems that consist of a set of representations \(\mathcal{E}\), a function \(\text{ENC} : \mathcal{E} \rightarrow \mathcal{D}\mathcal{B}_{\tau,K}\) which associates an encoding in \(\mathcal{E}\) with the sequenced \(K\)-database it represents, and a timeslice operator \(\tau_T\) which extracts the snapshot at time \(T\) from an encoding. If \(\text{ENC}\) is injective, then we use \(\text{ENC}^{-1}(D)\) to denote the unique encoding associated with \(D\). We use \(\tau\) to denote the timeslice over both sequenced databases and representations. It will be clear from the input which operator \(\tau\) refers to. For such a representation system, we consider two encodings \(D_1\) and \(D_2\) from \(\mathcal{E}\) to be snapshot-equivalent [21] (written as \(D_1 \sim D_2\)) if they encode the same sequenced \(K\)-database. Note that this is the case if they encode the same snapshots, i.e., iff for all \(T \in T\) we have \(\tau_T(D_1) = \tau_T(D_2)\). For a representation system to behave correctly, the following conditions have to be met: 1) **uniqueness**: for each snapshot \(K\)-database \(D\) there exists a unique element from \(\mathcal{E}\) representing \(D\); 2) **snapshot-reducibility**: the timeslice operator commutes with queries; and 3) **snapshot-preservation**: the encoding function \(\text{ENC}\) preserves the snapshots of the input.

Definition 4.5 (Representation System). We call a triple \((\mathcal{E}, \text{ENC}, \tau)\) a representation system for sequenced \(K\)-databases with regard to a class of queries \(\mathcal{C}\) iff for every sequenced database \(D\), encodings \(E, E' \in \mathcal{E}\), time point \(T\), and query \(Q \in \mathcal{C}\) we have

1. \(\text{ENC}(E) = \text{ENC}(E') \Rightarrow E = E'\) (uniqueness)
2. \(\tau_T(Q(E)) = Q(\tau_T(E))\) (snapshot-reducibility)
3. \(\text{ENC}(E) = D \Rightarrow \tau_T(E) = \tau_T(D)\) (snapshot-preservation)

5. TEMPORAL \(K\)-ELEMENTS

We now introduce temporal \(K\)-elements that are the annotations we use to define our logical model (representation system). Temporal \(K\)-elements record, using an interval-based encoding, how the \(K\)-annotation of a tuple in a sequenced \(K\)-relation changes over time. We introduce a unique normal form for temporal \(K\)-elements based on a generalization of coalescing [10].

5.1 Defining Temporal \(K\)-elements

To define temporal \(K\)-elements, we need to introduce some background on intervals. Given the time domain \(T\) and its associated total order \(\leq\), an interval \(I = [T_1, T_2)\) is a pair of time points from \(T\), where \(T_1 < T_2\). Interval \(I\) represents the set of contiguous time points \(\{T \in T | T_1 \leq T < T_2\}\). For an interval \(I = [T_1, T_2)\) we use \(I^{-}\) to denote \(T_1\) and \(I^{+}\) to denote \(T_2\). We use \(I_1, I_1', I_2, \ldots\) to represent intervals. We define a relation \(adj(I_1, I_2)\) that contains all interval pairs that are adjacent: \(adj(I_1, I_2) \Leftarrow (I_1^- = I_2^+) \lor (I_2^- = I_1^+)\). We will
implicitly understand set operations, such as \(t \in I \) or \(I_1 \subseteq I_2 \), to be interpreted over the set of points represented by an interval. Furthermore, \(I \cap I' \) denotes the interval that covers precisely the intersection of the sets of time points defined by \(I \) and \(I' \) and \(I \cup I' \) denotes their union (only well-defined if \(I \cap I' \neq \emptyset \) or \(\text{adj}(I, I') \)). For convenience, we define \(I \cup I' = \emptyset \) if \(I \cap I' = \emptyset \). We use \(I \) to denote the set of all intervals over \(\mathbb{T} \).

Definition 5.1 (Temporal \(K \)-elements). Given a semiring \(K \), a temporal \(K \)-element \(T \) is a function \(1 \rightarrow K \). We use \(\mathbb{T}E_K \) to denote the set of all such temporal elements for \(K \).

We represent temporal \(K \)-elements as sets of input-output pairs. Intervals that are not explicitly mentioned are mapped to \(0_K \).

Example 5.1. Reconsider our running example with \(T = \{0, \ldots, 23\} \). The history of the annotation of tuple \(t = (\text{Ann}_t, \mathcal{S}) \) from the workshop is as shown in Figure 2. For sake of the example, we change the multiplicity of this tuple to 3 during \([03, 09) \) and \([2, 18, 20) \). This information is encoded as the temporal \(N \)-element \(T_1 = \{(03, 09) \rightarrow 3, (18, 20) \rightarrow 2\} \).

Note that a temporal \(K \)-element \(T \) may map overlapping intervals to non-zero elements of \(K \). We assign the following semantics to overlap: the annotation at a time point \(T \) recorded by \(T \) is the sum of the annotations assigned to intervals containing \(T \). For instance, the annotation at time 04 for the \(N \)-element \(T = \{(00, 05) \rightarrow 2, (04, 05) \rightarrow 1\} \) would be \(2 + 1 = 3 \). To extract the annotation valid at time \(T \) from a temporal \(K \)-element \(T \), we define a timeslice operator for temporal \(K \)-elements as follows:

\[
\tau_T(T) = \sum_{I \in T} T(I) \quad \text{(timeslice operator)}
\]

Given two temporal \(K \)-elements \(T_1 \) and \(T_2 \), we would like to know if they represent the same history of annotations. For that, we define snapshot-equivalence \((\sim) \) for temporal \(K \)-elements:

\[
T_1 \sim T_2 \iff \forall T \in \mathbb{T} : \tau_T(T_1) = \tau_T(T_2) \quad \text{(snapshot-equivalence)}
\]

5.2 A Normal Form Based on \(K \)-Coalescing

The encoding of the annotation history of a tuple as a temporal \(K \)-element is typically not unique.

Example 5.2. Reconsider the temporal \(N \)-element \(T_3 \) from Example 5.2. Recall that intervals not shown are mapped to 0. The \(N \)-elements shown below are snapshot-equivalent to \(T_1 \).

\[
T_2 = \{(03, 09) \rightarrow 1, (03, 06) \rightarrow 2, (06, 09) \rightarrow 2, (18, 19) \rightarrow 2\}
\]

\[
T_3 = \{(03, 05) \rightarrow 3, (05, 09) \rightarrow 3, (18, 19) \rightarrow 2\}
\]

To be able to build a representation system based on temporal \(K \)-elements we need a unique way to encode the annotation history of a tuple as a temporal \(K \)-element (condition 1 of Definition 5.1). That is, we need to define a normal form that is unique for snapshot-equivalent temporal \(K \)-elements. To this end, we generalize coalescing, which was defined for temporal databases with set semantics in [10][27]. The generalized form, which we call \(K \)-coalescing, coincides with standard coalescing for semiring \(\mathbb{B} \) (set semantics) and, for any semiring \(K \), yields a unique encoding.

\(K \)-coalescing creates maximal intervals of contiguous time points with the same annotation. The output is a temporal \(K \)-element such that (a) no two intervals mapped to a non-zero element overlap and (b) adjacent intervals assigned to non-zero elements are guaranteed to be mapped to different annotations. To determine such intervals, we define annotation changepoints, time points \(T \) where the annotation of a temporal \(K \)-element differs from the annotation at \(T - 1 \), i.e., \(\tau_T(T) \neq \tau_{T-1}(T) \). It will be convenient to also consider \(T_{\text{min}} \) as an annotation changepoint.

Definition 5.2 (Annotation Changepoint). Given a temporal \(K \)-element \(T \), a time point \(T \) is called a changepoint in \(T \) if one of the following conditions holds:

- \(T = T_{\text{min}} \) (smallest time point)
- \(\tau_{T-1}(T) \neq \tau_T(T) \) (change of annotation)

We use \(CP(T) \) to denote the set of all annotation changepoints for \(T \). Furthermore, we define \(CP(I) \) to be the set of all intervals that consist of consecutive change points:

\[
CP(I) = \{ [T_h, T_e] | T_h < T_e \land T_h \in CP(I) \land (T_e \in CP(T) \lor T_e = T_{\text{max}}) \land \\
\quad \exists T' \in CP(T) : T_h < T' < T_e \}
\]

In Definition 5.2, \(CP(I) \) computes maximal intervals such that the annotation assigned by \(T \) to each point in such an interval is constant. In the coalesced representation of \(T \) only such intervals are mapped to non-zero annotations.

Definition 5.3 (\(K \)-Coalesce). Let \(T \) be a temporal \(K \)-element. We define \(K \)-coalesce \(\mathcal{C}_K \) as a function \(\mathbb{T}E_K \rightarrow \mathbb{T}E_K \):

\[
\mathcal{C}_K(T)(I) = \begin{cases}
\tau_I(T) & \text{if } I \in CP(I) \\
0_K & \text{otherwise}
\end{cases}
\]

We use \(\mathbb{T}E\mathcal{C}_K \) to denote all normalized temporal \(K \)-elements, i.e., elements \(T \) for which \(\mathcal{C}_K(T) = T' \) for some \(T' \).

Example 5.3. Consider the SQL period relation shown in Figure 3. The temporal \(N \)-elements encode the history of tuples (30k), (40k), and (50k). Note that \(T_{50k} \) is not coalesced since the two non-zero intervals of this \(N \)-element overlap. Applying \(K \)-coalesce we get:

\[
\mathcal{C}_N(T_{50k}) = \{ [3, 10) \rightarrow 2, [10, 13) \rightarrow 1 \}
\]

That is, this tuple occurs twice within the time interval \([3, 10) \) and once in \([10, 13) \), i.e., it has annotation changepoints 3, 10, and 14. Interpreting the same relation under set semantics (semiring \(\mathbb{B} \)), the history of (30k) can be encoded as a temporal \(\mathbb{B} \)-element \(T_{50k}' = \{ [3, 10) \rightarrow \text{true}, [13, 14) \rightarrow \text{true} \} \). Applying \(\mathbb{B} \)-coalesce:

\[
\mathcal{C}_B(T_{50k}') = \{ [3, 13) \rightarrow \text{true} \}
\]

That is, this tuple occurs (annotated with \text{true}) within the time interval \([3, 13) \) and its annotation changepoints are 3 and 14.

We now prove several important properties of the \(K \)-coalesce operator establishing that \(\mathbb{T}E\mathcal{C}_K \) (coalesced temporal \(K \)-elements) is a good choice for a normal form of temporal \(K \)-elements.

Lemma 5.1. Let \(K \) be a semiring and \(T, T_1, T_2 \) temporal \(K \)-elements. We have:

\[
\mathcal{C}_K(C_K(T)) = C_K(T) \quad \text{(idempotence)}
\]

\[
T_1 \sim T_2 \Leftrightarrow C_K(T_1) = C_K(T_2) \quad \text{(uniqueness)}
\]

\[
T \sim C_K(T) \quad \text{(equivalence preservation)}
\]
6. PERIOD SEMIRINGS

Having established a unique normal form of temporal K-elements, we now proceed to define period semirings as our logical model. The elements of a period semiring are temporal K-elements in normal form. We prove that these structures are semirings and ultimately that relations annotated with period semirings form a representation system for sequenced K-relations for $\mathcal{R}^{	ext{K}}$. In Section 7, we then prove them to also be a representation system for $\mathcal{R}^{	ext{K'}}$, i.e., queries involving difference and aggregation.

When defining the addition and multiplication operations and their neutral elements in the semiring structure of temporal K-elements, we have to ensure that these definitions are compatible with semiring K on snapshots. Furthermore, we need to ensure that the output of these operations is guaranteed to be K-coalesced. The latter can be ensured by applying K-coalesce to the output of the operation. For addition, snapshot reducibility is achieved by pointwise addition (denoted as $+_{K'}$) of the two functions that constitute the two input temporal K-elements. That is, for each interval I, the function that is the result of the addition of the temporal K-elements T_1 and T_2 assigns to I the value $T_1(I) +_{K} T_2(I)$. For multiplication, the multiplication of two K-elements assigned to an overlapping pair of intervals I_1 and I_2 is valid during the intersection of I_1 and I_2. Since both input temporal K-elements may assign non-zero values to multiple intervals that have the same overlap, the resulting K-value at a point T would be the sum over all pairs of overlapping intervals. We denote this operation as $\cdot_{K'}$. Since $+_{K'}$ and $\cdot_{K'}$ may return a temporal K-element that is not coalesced, we define the operations of our structures to apply C_K to the result of $+_{K'}$ and $\cdot_{K'}$. The zero element of the temporal extension of K is the temporal K-element that maps all intervals to 0 and the 1 element is the temporal element that maps every interval to 0 except for $[T_{\min}, T_{\max}]$ which is mapped to 1.

Definition 6.1 (Period Semiring). For a time domain T with minimum T_{\min} and maximum T_{\max} and a semiring K, the period semiring K_T is defined as:

\[K_T = (\text{T}EC_K, +_{K'}, \cdot_{K'}, 0_{K'}, 1_{K'}) \]

where for $k, k' \in TEC_K$ and:

\[\forall I \in 1: 0_{K_T}(I) = 0_{K} \quad 1_{K_T}(I) = \begin{cases} 1_{K} & \text{if } I = [T_{\min}, T_{\max}] \\ 0_{K} & \text{otherwise} \end{cases} \]

\[k +_{K'} k' = C_K(k +_{K} k') \]

\[\forall I \in 1: (k +_{K} k')(I) = k(I) +_{K} k'(I) \]

\[k \cdot_{K'} k' = C_K(k \cdot_{K} k') \]

\[\forall I \in 1: (k \cdot_{K} k')(I) = \sum (i', i' : i' \in I \cap I') k'(i') \cdot_{K} k'(i') \]

Example 6.1. Consider the N-relation works shown in Figure 2 (middle) and query $\Pi_{\text{duty}}(\text{works})$. Recall that the annotation of a tuple t in the result of a query Q over a K-relation is the sum of all input tuples which are projected onto t. For result tuple (SP) we have input tuples (Ann, SP) and (Sam, SP) with $T_1 = \{03, 10 \rightarrow 1, 18, 20 \rightarrow 1\}$ and $T_2 = \{08, 16 \rightarrow 1\}$ respectively. The tuple (SP) is annotated with the sum of the above annotations, i.e., $\text{T}_1 +_{\text{SP}} \text{T}_2$. Substituting definitions we get:

\[\text{T}_1 +_{\text{SP}} \text{T}_2 = C_K((03, 10) \rightarrow 1, 18, 20 \rightarrow 1, 08, 16 \rightarrow 1) \]

\[= \{03, 08 \rightarrow 1, 08, 10 \rightarrow 2, 10, 16 \rightarrow 1, 18, 20 \rightarrow 1\} \]

Thus, as expected, the result records that, e.g., there are two skilled workers (SP) on duty during time interval $[08, 10]$.

Having defined the family of period semirings, it remains to be shown to be semiring K_T with standard K-relational query semantics is a representation system for sequenced K-relations.

6.1 K_T is a Semiring

As a first step, we prove that for any semiring K, the structure K_T is also a semiring. The following lemma shows that K-coalesce can be redundantly pushed into $+_{K'}$ and $\cdot_{K'}$ operations.

Lemma 6.1. Let K be a semiring and $k, k' \in TEC_K$. Then:

\[C_K(k +_{K'} k') = C_K(C_K(k) +_{K} k') \]

\[C_K(k \cdot_{K'} k') = C_K(C_K(k) \cdot_{K} k') \]

Using this lemma, we now prove that for any semiring K, the structure K_T is also a semiring.

Theorem 6.2. For any semiring K, structure K_T is a semiring.

6.2 Timeslice Operator

We define a timeslice operator for K_T-relations based on the timeslice operator for temporal K-elements. We annotate each tuple in the output of this operator with the result of τ_T applied to the temporal K-element the tuple is annotated with.

Definition 6.2 (Timeslice for K_T-relations). Let R be a K_T-relation and $T \in T$. The timeslice operator $\tau_T(R)$ is defined as:

\[\tau_T(R)(t) = \tau_T(R(t)) \]

We now prove that the τ_T is a homomorphism $K_T \rightarrow K$. Since semiring homomorphisms commute with queries [29], K_T equipped with this timeslice operator does fulfill the snapshot-reducibility condition of representation systems (Definition 4.5).

Theorem 6.3. For any $T \in T$, the timeslice operator τ_T is a semiring homomorphism from K_T to K.

As an example of the application of this homomorphism, consider the period N-relation works from our running example as shown on the left of Figure 2. Applying τ_{08} to this relation yields the snapshot shown on the bottom of this figure (three employees work between 8am and 9am out of whom two are specialized). If we evaluate query Q_{onduty} over this snapshot we get the snapshot shown on the right of this figure (the count is 2). By Theorem 6.3 we get the same result if we evaluate Q_{onduty} over the input period N-relation and then apply τ_{08} to the result.

6.3 Encoding of Sequenced K-relations

We now define a bijective mapping ENC_K from sequenced K-relations to K_T-relations. We then prove that the set of K_T-relations together with the timeslice operator for such relations and the mapping ENC_K^{-1} (the inverse of ENC_K) form a representation system for sequenced K-relations. Intuitively, $\text{ENC}_K(R)$ is constructed by assigning each tuple t a temporal K-element where the annotation of the tuple at time T (i.e., $R(T)(t)$) is assigned to a singleton interval $[T, T + 1]$. This temporal K-element $T_{R,t}$ is then coalesced to create a TEC_K element.

Definition 6.3. Let K be a semiring and R a sequenced K-relation, ENC_K is a mapping from sequenced K-relations to K_T-relations defined as follows.

\[\forall t : \text{ENC}_K(R)(t) = C_K(T_{R,t}) \]

\[\forall t, I : T_{R,t}(I) = \begin{cases} R(T)(t) & \text{if } I = [T, T + 1] \\ 0_K & \text{otherwise} \end{cases} \]
We first prove that this mapping is bijective, i.e., it is invertible, which guarantees that \(\text{ENC}_K^{-1} \) is well-defined and also implies uniqueness (condition 1 of Definition 4.5).

Lemma 6.4. For any semiring \(K \), \(\text{ENC}_K \) is bijective.

Next, we have to show that \(\text{ENC}_K \) preserves snapshots, i.e., the instance at a time point \(T \) represented by \(R \) can be extracted from \(\text{ENC}_K(R) \) using the timeslice operator.

Lemma 6.5. For any semiring \(K \), sequenced \(K \)-relation \(R \), and time point \(T \in T \), we have \(\tau_T(\text{ENC}_K(R)) = \tau_T(R) \).

Based on these properties of \(\text{ENC}_K \) and the fact that the timeslice operator over \(K \)-relations is a homomorphism \(K \rightarrow K \), our main technical result follows immediately. That is, the set of \(K \)-relations equipped with the timeslice operator and \(\text{ENC}_K^{-1} \) is a representation system for positive relational algebra queries (\(\mathcal{RA}^+ \)) over sequenced \(K \)-relations.

Theorem 6.6 (Representation System). Given a semiring \(K \), let \(\text{DB}_K \) be the set of all \(K \)-relations. The triple \((\text{DB}_K, \text{ENC}_K^{-1}, \tau) \) is a representation system for \(\mathcal{RA}^+ \) queries over sequenced \(K \)-relations.

7. COMPLEX QUERIES

Having proven that \(K \)-relations form a representation system for \(\mathcal{RA}^+ \), we now study extensions for difference and aggregation.

7.1 Difference

Extensions of \(K \)-relations for difference have been studied in [8][12]. For instance, the difference operator on \(\mathbb{N} \) relations corresponds to bag difference (SQL’s \texttt{EXCEPT ALL}). Geerts et al. [12] apply an extension of semirings with a monus operation that is defined based on the natural order of a semiring and demonstrated how to define a difference operation for \(K \)-relations based on the monus operation for semirings where this operations is well-defined. Following the terminology introduced in this work, we refer to semirings with a monus operation as m-semirings. We now prove that if a semiring \(K \) has a well-defined monus, then so does \(K \). From this, that for any such \(K \), the difference operation is well-defined for \(K \)-relations. We proceed to show that the timeslice operator is an m-semiring homomorphism, which implies that \(K \)-relations for any m-semiring \(K \) form a representation system for \(\mathcal{RA}^+ \) (full relational algebra). The definition of a monus operator is based on the so-called natural order \(\preceq_K \). For two elements \(k \) and \(k' \) of a semiring \(K \), \(k \preceq_K k' \) if \(k + k' = k' \). If \(\preceq_K \) is a partial order then \(K \) is called naturally ordered. For instance, \(\mathbb{N} \) is naturally ordered (\(\preceq \) corresponds to the order of natural numbers) while \(\mathbb{Z} \) is not (for any \(k', k'' \in \mathbb{Z} \) we have \(k \preceq \mathbb{Z} k' \)). For the monus to be well-defined on \(K \), \(K \) has to be naturally ordered and for any \(k, k' \in K \), the set \(\{ k' | k \preceq_K k' + k \} \) has to have a smallest element. For any semiring fulfilling these two conditions, the monus operation \(-_K \) is defined as \(k -_K k' = k'' \) where \(k'' \) is the smallest element such that \(k \preceq_K k'' + k' \). For instance, the monus for \(\mathbb{N} \) is the truncating min: \(k -_\mathbb{N} k' = \max(0, k - k') \).

Theorem 7.1. For any m-semiring \(K \), semiring \(K \)-relations equipped with the timeslice operator and \(\text{ENC}_K^{-1} \) is a representation system for \(\mathcal{RA}^+ \) queries over sequenced \(K \)-relations. Obviously, computing \(k -_K k' \) using singleton intervals is not effective. In our implementation, we use a more efficient way to compute the monus for \(K \) that is based on normalizing the input temporal \(K \)-elements \(k \) and \(k' \) such that annotations are attached to larger time intervals where \(k -_K k' \) is guaranteed to be constant. Importantly, \(\tau_T \) is a homomorphism for monus-semiring \(K \).

Theorem 7.2. Mapping \(\tau_T \) is an m-semiring homomorphism.

For example, consider \(Q_{\text{skillreq}} \) from Example 12 which can be expressed in relational algebra as \(\Pi_{\text{skill}}(\text{assign}) = \Pi_{\text{skill}}(\text{worker}) \). The \(\mathbb{N} \)-relation corresponding to the period relation \(\text{assign} \) shown in this example annotates each tuple with a singleton temporal \(\mathbb{N} \)-element mapping the period of this tuple to 1, e.g., \((\{\{03, 12\} \rightarrow 1\})\). The annotation of result tuple \((\text{SP})\) is computed as

\[
\{\{03, 12\} \rightarrow 1\} +_{\mathbb{N}} \{\{06, 14\} \rightarrow 1\} = \{\{03, 06\} \rightarrow 1, \{06, 12\} \rightarrow 2, \{12, 14\} \rightarrow 1\}
\]

\[
\{\{03, 08\} \rightarrow 1, \{08, 10\} \rightarrow 2, \{10, 16\} \rightarrow 1, \{18, 20\} \rightarrow 1\} = \{\{06, 08\} \rightarrow 1, \{10, 12\} \rightarrow 1\}
\]

As expected, the result is the same as the one from Example 12.

7.2 Aggregation

The K-relational framework has previously been extended to support aggregation [4]. This required the introduction of attribute domains which are symbolic expressions that pair values with semiring elements to represent aggregated values. Since the construction used in this work to derive the mathematical structures representing these symbolic expressions is applicable to all semirings, it is also applicable to our period semirings. It was shown that semiring homomorphisms can be lifted to these more complex annotation structures and attribute domains. Thus, the timeslice operator, being a semiring homomorphism, commutes with queries including aggregation, and it follows that using the approach from [4], we can define a representation system for sequenced \(K \)-relations under \(\mathcal{RA} \) with aggregation, i.e., \(\mathcal{RA}^{\text{agg}} \).

One drawback of this definition of aggregation over \(K \)-relations with respect to our use case is that there are multiple ways of encoding the same sequenced \(K \)-relation in this model. That is, we would loose uniqueness of our representation system. Recall that one of our major goals is to implement sequenced query semantics on-top of DBMSs using a period multiset encoding of \(\mathbb{N} \)-relations. The symbolic expressions representing aggregation function results are a compact representation which, in case of our interval-temporal semirings, encode how the aggregation function results change over time. However, it is not clear how to effectively encode the symbolic attribute values and comparisons of symbolic expression as multiset semantics relations, and how to efficiently implement our sequenced semantics over this encoding. Nonetheless, for \(\mathbb{N} \), we can apply a simpler definition of aggregation that returns a \(K \)-relation and is also a representation system. For simplicity, we define aggregation \(\gamma_{\text{f}(A)}(R) \) on \(G \) to compute a single aggregation function \(f \) over the values of an attribute \(A \). For convenience, aggregation without group-by, i.e., \(\gamma_{\text{f}(A)}(R) \) is expressed using an empty group-by list.

Definition 7.1 (Aggregation). Let \(R \) be a \(\mathbb{N} \)-relation. Operator \(\gamma_{\text{f}(A)}(R) \) groups the input on a (possibly empty) list of attributes
G = \{g_1, \ldots, g_n\} and computes aggregation function f over the values of attribute A. This operator is defined as follows:

\[
g \gamma_f(A)(I)(t) = C_0(k_{R,t})
\]

\[
k_{R,t}(I) = \begin{cases} 1 & \text{if } \exists T : I = [T, T+1) \land t \in g \gamma_f(A)(t)(I) \\ 0 & \text{otherwise} \end{cases}
\]

In the output of the aggregation operator, each tuple t is annotated with a N-coalesced temporal N-element which is constructed from singleton intervals. A singleton interval I = [T, T+1) is mapped to 1 if evaluating the aggregation over the multiset relation corresponding to the snapshot at T returns tuple t. We now demonstrate that \(\Lambda_T \) using this definition of aggregation is a representation system for snapshot N-relations.

Theorem 7.3. \(\Lambda_T \)-relations form a representation system for sequenced N-relations and RA^q queries using aggregation according to Definition 7.1

8. SQL PERIOD RELATION ENCODING

While provably correct, the annotation structure that we have defined is quite complex in nature raising concerns on how to efficiently implement it. We now demonstrate that \(\Lambda_T \)-relations (multisets) can be encoded as SQL period relations (as shown on the top of Figure 2). Recall that SQL period relations are multiset relations where the validity time interval (period) of a tuple is stored in an interval-valued attribute (or as two attributes storing interval end points). Queries over \(\Lambda_T \) are then translated into non-temporal multiset queries over this encoding. In addition to employing a proven and simple representation of time this enables our approach to run sequenced queries over such relations without requiring any preprocessing and to implement our ideas on top of a classical DBMS. For convenience we represent SQL period relations using non-temporal N-relations in the definitions. SQL period relations can be obtained based on the well-known correspondence between multiset relations and N-relations: we duplicate each tuple based on the multiplicity recorded in its annotation. To encode \(\Lambda_T \)-relations as N-relations we introduce an invertible mapping \(\text{PERIODEnc} \). We rewrite queries with \(\Lambda_T \)-semantics into non-temporal queries with N-semantics over this encoding using a rewriting function \(\text{Rewr} \). This is illustrated in the commutative diagram below.

\[
\begin{array}{ccc}
R & \xrightarrow{\text{PERIODEnc}} & R' \\
Q \xrightarrow{\text{PERIODEnc}^\prime} Q' = \text{Rewr}(Q)
\end{array}
\]

Our encoding represents a tuple t annotated with a temporal element T as a set of tuples, one for each interval I which is assigned a non-zero value by T. For each such interval, the tuple t is annotated with k and \(U \) to denote a universal domain of values. We use \(SCH(R) \) to denote the schema of relation R and \(\text{arity}(R) \) to denote its arity (the number of attributes in the schema).

Definition 8.1 (Encoding as SQL Period Relations). \(\text{PERIODEnc} \) is a function from \(\Lambda_T \)-relations to N-relations. Let R be a \(\Lambda_T \) relation with schema \(\text{SCH}(R) = \{A_1, \ldots, A_n\} \). The schema of \(\text{PERIODEnc}(R) \) is \(\{A_1, \ldots, A_n, A_{\text{begin}}, A_{\text{end}}\} \). Let \(R' \) be \(\text{PERIODEnc}(R) \) for some \(\Lambda_T \)-relation. PERIODEnc and its inverse are defined as follows:

\[
\text{PERIODEnc}(R) = \bigcup_{t \in \text{PERIODEnc}(R) \cup \text{PERIODEnc}^\prime} \{(t, I^+, I^-) \rightarrow R(t)(I)\}
\]

\[
\text{PERIODEnc}^\prime(R') = \bigcup_{t \in \text{PERIODEnc}(R)} \{t \rightarrow T_{R,t}\}
\]

We now demonstrate that \(\text{PERIODEnc} \) is a representation system for snapshot N-relations. For convenience we represent SQL period relations (as shown on the top of Figure 2). Recall that SQL period relations are multiset relations where the validity time interval (period) of a tuple is stored in an interval-valued attribute (or as two attributes storing interval end points). Queries over \(\Lambda_T \)-relations are then translated into non-temporal multiset queries over this encoding. In addition to employing a proven and simple representation of time this enables our approach to run sequenced queries over such relations without requiring any preprocessing and to implement our ideas on top of a classical DBMS. For convenience we represent SQL period relations using non-temporal N-relations in the definitions. SQL period relations can be obtained based on the well-known correspondence between multiset relations and N-relations: we duplicate each tuple based on the multiplicity recorded in its annotation. To encode \(\Lambda_T \)-relations as N-relations we introduce an invertible mapping \(\text{PERIODEnc} \). We rewrite queries with \(\Lambda_T \)-semantics into non-temporal queries with N-semantics over this encoding using a rewriting function \(\text{Rewr} \). This is illustrated in the commutative diagram below.

\[
\begin{array}{ccc}
R & \xrightarrow{\text{PERIODEnc}} & R' \\
Q \xrightarrow{\text{PERIODEnc}^\prime} Q' = \text{Rewr}(Q)
\end{array}
\]

Our encoding represents a tuple t annotated with a temporal element T as a set of tuples, one for each interval I which is assigned a non-zero value by T. For each such interval, the tuple t is annotated with k and \(U \) to denote a universal domain of values. We use \(\text{arity}(R) \) to denote the schema of relation R and \(\text{arity}(R) \) to denote its arity (the number of attributes in the schema).

Definition 8.1 (Encoding as SQL Period Relations). \(\text{PERIODEnc} \) is a function from \(\Lambda_T \)-relations to N-relations. Let R be a \(\Lambda_T \) relation with schema \(\text{SCH}(R) = \{A_1, \ldots, A_n\} \). The schema of \(\text{PERIODEnc}(R) \) is \(\{A_1, \ldots, A_n, A_{\text{begin}}, A_{\text{end}}\} \). Let \(R' \) be \(\text{PERIODEnc}(R) \) for some \(\Lambda_T \)-relation. \(\text{PERIODEnc} \) and its inverse are defined as follows:

\[
\text{PERIODEnc}(R) = \bigcup_{t \in \text{PERIODEnc}(R) \cup \text{PERIODEnc}^\prime} \{(t, I^+, I^-) \rightarrow R(t)(I)\}
\]

\[
\text{PERIODEnc}^\prime(R') = \bigcup_{t \in \text{PERIODEnc}(R)} \{t \rightarrow T_{R,t}\}
\]

Before we define the rewriting \(\text{Rewr} \) that reduces a query Q with \(\Lambda_T \) semantics to a query with N semantics, we introduce two operators that will make use of in the reduction. The N-coalesced operator applies \(C_0 \) to the annotation of each tuple in its input.

Definition 8.2 (Coalesce Operator). Let R be \(\text{PERIODEnc}(R') \) for some \(\Lambda_T \)-relation R’. The coalesce operator \(C(R) \) is defined as:

\[
C(R) = \text{PERIODEnc}(R')
\]

The split operator \(\Lambda_C(R, S) \) splits the intervals in the temporal elements annotating a tuple t based on the union of all interval end points from annotations of tuples t’ which agree with t on attributes G. Inputs R and S have to be union compatible. The effect of this operator is that all pairs of intervals mapped to non-zero elements are either the same or are disjoint. This operator has been applied in [16][18] and in [12][46]. We use it to implement snapshot-reducible aggregation and difference over intervals instead of single snapshots as in Section 7. Recall that in Section 7 the monus (difference) and aggregation were defined in a point-wise manner. The split operator allows us to evaluate these operations over intervals directly by generating tuples with intervals for which the result of these operations is guaranteed to be constant.

Definition 8.3 (Split Operator). The split operator \(\Lambda_C(R_1, R_2) \) takes as input two N-relations R1 and R2 that are encodings of \(\Lambda_T \)-relations. For a tuple t in such an encoding let \(I(t) = [t_{\text{begin}}, t_{\text{end}}] \). The split operator is defined as:

\[
\Lambda_C(R_1, R_2)(t) = \text{split}(t, R_1, EPI_1(R_1 \cup R_2, t), E_1)
\]

\[
split(t, R, E) = \bigcup_{t' \in R \land E \land t' \subset R} R(t')
\]

\[
EPI_1(t, E) = \{(T_b, T_e) : T_b \ll T_e \land T_b, T_e \in E \land T_e \leq T_{\text{max}} \land T_b \leq T_{\text{max}} \land E \cap T_e \neq \emptyset \}
\]

Note that the \(\text{PERIODEnc} \) and \(\text{PERIODEnc}^\prime \) mappings are only used in the definitions of the coalesce and split algebra operators for ease of presentation. These operators can be implemented as SQL queries executed over an \(\text{PERIODEnc} \)-encoded relation.

Definition 8.4 (Query Rewriting). We use \(\text{overlaps}(Q_1, Q_2) \) as a shortcut for \(Q_1.A_{\text{begin}} < Q_2.A_{\text{end}} \land Q_2.A_{\text{begin}} < Q_1.A_{\text{end}} \). The definition of rewriting \(\text{Rewr} \) is shown in Figure 2. Here \{t\} denotes a constant relation with a single tuple t annotated with 1.

Example 8.1. Reconsider query \(Q_{\text{enduty}} \) from Example 27 and its results for the logical model and period relations (Figure 2). In relational algebra, the input query is written as \(Q_{\text{enduty}} = \ldots \)
REWR(R) = R
REWR(σ_{p}(Q)) = C(σ_{p}(REWR(Q)))
REWR(Π_{A}(Q)) = C(Π_{A \cup \text{domain}, A \cup \text{end}}(REWR(Q)))

REWR(Q \bowtie Q) = C(Π_{\text{SCH}(Q_{1} \bowtie Q_{2}), \max(Q_{1}.A_{\text{begin}}, Q_{2}.A_{\text{begin}}), \min(Q_{1}.A_{\text{end}}, Q_{2}.A_{\text{end}})}(REWR(Q_{1}) \bowtie Q_{2}, \text{onoverlaps}(Q_{1}, Q_{2}), \text{REWR}(Q_{2})))
REWR(\gamma_{f}(A)) = C(\gamma_{f}(Q))
REWR(\gamma_{count}(A)) = C(\gamma_{count}(Q))

REWR(Q_{1} \cup Q_{2}) = C(\text{REWR}(Q_{1}) \cup \text{REWR}(Q_{2}))

Figure 4: Rewriting REWR that reduces queries over N_{T} to queries over a multiset encoded by PERIODENC.

\[\gamma_{count}(Q) = \gamma_{count}(A_{\text{begin}}, A_{\text{end}}) \}\. Applying REWR we get:

REWR(Q_{\text{onduty}}) = C(A_{\text{begin}}, A_{\text{end}})(\text{N}_{\ell}(\Pi_{A_{\text{begin}}, A_{\text{end}}}(\text{REWR}(Q_{1}))(\{0, 24\}))
REWR(Q_{1}) = C(\sigma_{\text{skill}=\text{SP}(\text{works})})

Subquery REWR(Q_{1}) filters out the second tuple from the input (see Figure 4). The split operator is then applied to the union of the result of REWR(Q_{1}) and a tuple with the neutral element \(e \) for the aggregation function and period \([T_{\text{min}}, T_{\text{max}}]\), where \(T_{\text{min}} = 0 \) and \(T_{\text{max}} = 24 \) for this example. After the split \(N_{\ell} \), the aggregation is evaluated grouping the input on \(A_{\text{begin}}, A_{\text{end}} \). The count aggregation function then either counts a sequence of \(e \) and a single \(\text{null} \) value producing the number of facts that overlap over the corresponding period \([A_{\text{begin}}, A_{\text{end}}]\), or counts a single \(\text{null} \) value over a "gap" producing 0. For instance, for \([08, 10]\) there are two facts whose intervals cover this period (Ann and Sam) and, thus, \((2, [08, 10])\) is returned by REWR(Q_{\text{onduty}}). While for \([20, 24]\) there are no facts and thus we get \((0, [20, 24])\).

Theorem 8.1. The commutative diagram in Equation (1) holds.

9. IMPLEMENTATION

We have implemented the encoding and rewriting introduced in the previous section in a middleware which supports sequenced multiset semantics through an extension of SQL. To instruct the system to interpret a subquery using sequenced semantics, the user encloses the subquery in a SEQ VT (...) block. We assume that the inputs to a sequenced query are encoded as period multiset relations, i.e., each relation has two temporal attributes that store the begin and end timestamp of their validity interval. For each relation access within a SEQ VT block, the user has to specify which attributes store the period of a tuple.

Our coalescing and split operators can be expressed in SQL. Thus, a straightforward way of incorporating these operators into the compilation process is to devise additional rewrites that produce the relational algebra code for these operators where necessary. However, preliminary experiments demonstrated that a naive implementation of these operators is prohibitively expensive.

We address this problem in two ways. First, we observe that it is sufficient to apply coalesce as a last step in a query instead of applying it as part of every operator rewrite. Applying this optimization, the rewritten version of a query will only contain one coalesce operator. Recall from Lemma 9 that coalescing can be redundantly pushed into the addition and multiplication operations of period semirings, e.g., \(C_{\ell}(k + k', k') \) = \(C_{\ell}(k, k + k') \). We prove that this Lemma also holds for monos in Appendix 5. Interpreting this equivalence from right to left and applying it repeatedly to a semiring expression \(e, e' \) can be rewritten into an equivalent expression of the form \(C_{\ell}(e') \), where \(e' \) is an expression that only uses operations \(+, \cdot, \cdot_{\ell}, \cdot_{\ell}, - \). Since relational algebra over \(K \)-relations is defined by applying multiplication, addition, and monus to input annotations, this implies that it is sufficient to apply coalescing only as a final operation in a query. For an example and additional discussion see Appendix E.

We developed an optimized implementation of multiset coalescing using SQL analytical window functions, similar to set-based coalescing in [47], that counts for value-equivalent attributes the number of open intervals per time point, determines change points based on differences between these counts, and then only output maximal intervals using a filter step. This implementation uses sorting in its window declarations and has time complexity \(O(n \log n) \) for \(n \) tuples. A native implementation would require only one sorting step. The number of sorting steps required by our SQL implementation depends on whether the DBMS is capable of sharing window declaration (we observe 2 and 7 sorting steps for the systems used in our experimental evaluation).

For aggregation we integrate the split operator into the aggregation. It turned out to be most effective to pre-aggregate the input before splitting and then compute the final aggregation results during the split step by further aggregating the results of the pre-aggregation step. We apply a similar optimization for difference.

10. EXPERIMENTS

In our experimental evaluation we focus on two aspects. First, we evaluate the cost of our SQL implementation of \(\mathbb{N} \)-coalescing (multiset coalescing). Then, we evaluate the performance of sequenced queries with our approach over three DBMSs and compare it against native implementations of sequenced semantics that are available in two of these systems (using our implementation of coalescing to produce a coalesced result).

10.1 Workloads and Experimental Setup

Datasets. We use three datasets in our experiments. The MySQL Employees dataset [https://github.com/datacharmer/test_db] which contains \(\approx 4 \) million records and consists of the following six period tables: table employee stores basic information about employees; table departments stores department information; table titles stores the job titles for employees; table salaries stores employee salaries; table dept_manager stores which employee manages which department; and table dept_emp stores which employee is working for which department. TPC-BiH is the bi-temporal version of the TPC-H benchmark dataset as described in [24]. Since our approach supports only one time dimension we only generated the valid time dimension for this dataset. In this configuration a scale factor 1 (SF1) database corresponds to roughly 1GB of data. The Tourism
dataset (835k records) consists of a single table storing hotel reservations in South Tyrol. Each record corresponds to one reservation. The validity end points of the time period associated with a record is the arrival and departure time.

Workloads. We have created a workload consisting of 10 queries to evaluate the efficiency of sequenced queries. Queries join-1 to join-4 are join queries, agg-1 to agg-3 are aggregation-heavy queries, agg-join is a join with an aggregation value, and diff-1 and diff-2 use difference. Furthermore, we use one query template varying the selectivity to evaluate the performance of coalescing. C-Sn denotes the variant of this query that returns approximately \(nK \) rows, e.g., C-S1 returns 1,000 rows. For the Tourism dataset we use the following queries. join: tourist from same country to same destination using a self join of tourismdata table. agg-0: number of tourists per destination together with the average number of tourists for all other destinations. This query first computes the number of tourists per destination and do a self unequal join on it. agg-1: number of enquiries and the number of tourists per destination with more than 1,000 enquiries using two aggregations on tourismdata table. agg-2: maximum number of tourists per destination using an aggregation on tourismdata table. tou-agg-x: the destination with the most number of tourists. This query has no join but two aggregations, one to compute the number of tourists per destination and a second one to compute the maximum one. More detailed descriptions of these queries are provided in Appendix [8]. For the TPC-BiH dataset we took 9 of the 22 standard queries [14] from this benchmark that do not contain nested subqueries or LIMIT (which are not supported by our or any other approach for sequenced queries we are aware of) and evaluated these queries under sequenced semantics. Note that some of these queries use the ORDER BY clause that we do not support for sequenced queries. However, we can evaluate such a query without ORDER BY under sequenced semantics and then sort the result without affecting what rows are returned. The number of rows returned by these queries over the dataset are shown in Table [3].

<table>
<thead>
<tr>
<th>Query</th>
<th>Rows Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>join-1</td>
<td>7.8M</td>
</tr>
<tr>
<td>join-2</td>
<td>20.9M</td>
</tr>
<tr>
<td>join-3</td>
<td>10</td>
</tr>
<tr>
<td>join-4</td>
<td>131</td>
</tr>
<tr>
<td>agg-1</td>
<td>22</td>
</tr>
<tr>
<td>agg-2</td>
<td>132</td>
</tr>
<tr>
<td>agg-3</td>
<td>223</td>
</tr>
<tr>
<td>agg-join</td>
<td>10</td>
</tr>
<tr>
<td>diff-1</td>
<td>270</td>
</tr>
<tr>
<td>diff-2</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2: Number of query result rows

Systems. We ran experiments on three different database management systems: a version of Postgres (PG) with native support for temporal operators as described in [16][18], a commercial DBMS, DBX, with native support for sequenced semantics (only available as a virtual machine); and a commercial DBMS, DBY, without native support for sequenced semantics. We used our approach to translate sequenced queries into standard SQL queries and ran the translated queries on all three systems (denoted as PG-Seq, DBX-Seq, and DBY-Seq). For PG and DBX, we ran the queries also with the native solution for sequenced semantics paired with our implementation of coalescing to produce a coalesced result (referred to as PG-Nat and DBX-Nat). As explained in Section 3, no system correctly implements sequenced multiset semantics for difference and aggregation, and many systems do not support sequenced semantics for these operators at all. DBX-Nat and PG-Nat both support sequenced aggregation, however, their implementations are not snapshot-reducible. DBX-Nat does not support sequenced difference, whereas PG-Nat implements temporal difference with set semantics. Despite such differences, the experimental comparison allows us to understand the performance impact of our provably correct approach.

All experiments were executed on a machine with 2 AMD Opteron 4238 CPUs, 128GB RAM, and a hardware RAID with 4 × 1TB 72.K HDs in RAID 5. For Postgres we set the buffer pool size to 5GB. For the other systems we use values recommended by the automated configuration tools of these systems. We execute queries with warm cache. For short-running queries we show the median runtime across 100 consecutive runs. For long running queries we computed the median over 10 runs. In general we observed low variation in runtimes (a few percent).

10.2 Multiset Coalescing

To evaluate the performance of coalescing, we use a selection query that returns employees that earn more than a specific salary and materialize the result as a table. The selectivity varies from 1K to 3M rows. We then evaluate the query SELECT * FROM ... over the materialized tables under sequenced semantics in order to measure the cost of coalescing in isolation. Figure 5 shows the results of this experiment. The runtime of coalescing is linear in the input size for all three systems. Even though the theoretical worst-case complexity of the sorting step, which is applied by all systems to evaluate the analytics functions that we exploit in our SQL-based implementation of multiset coalescing, is \(O(n \cdot \log(n)) \), an inspection of the execution plans revealed that the sorting step only amounts to 5%–10% of the execution time (for all selectivities) and, hence, is not a dominating factor.

10.3 Sequenced Semantics - Employee

Table 3 provides an overview of the performance results for our sequenced query workloads. For every query we indicate in the rightmost column whether native approaches are subject to the aggregation gap (AG) or bag difference (BD) bugs.

Join Queries. The performance of our approach for join queries is comparable with the native implementation in PG-Nat. For join queries with larger intermediate results (join-2), the native implementation outperforms our approach by \(\approx 73\% \). Running the queries produced by our approach in DBY is slightly faster than both. DBX-Nat uses merge joins for temporal joins, while both PG and DBY use a hash-join on the non-temporal part of the join condition. The result is that DBX-Nat significantly outperforms the other methods for temporal join operations. However, the larger cost for the SQL-based coalescing implementation in this system often outweighs this effect. This demonstrates the potential for improving our approach by making use of native implementations of temporal operators in our rewrites for operators that are compatible with our semantics (note that joins are compatible).

Aggregation Queries. Our approach outperforms the native implementations of sequenced semantics on all systems by several
orders of magnitude for aggregation queries as long as the aggregation input exceeds a certain size (agg-1 and agg-2). Our approach as well as the native approaches split the aggregation input which requires sorting and then apply a standard aggregation operator to compute the temporal aggregation result. The main reason for the large performance difference is that the SQL code we generate for a sequenced aggregation includes several levels of pre-aggregation that are intertwined with the split operator. Thus, for our approach the sorting step for split is applied to a typically much smaller pre-aggregated dataset. This turned out to be quite effective. The only exception is if the aggregation input is very small (agg-3) in which case an efficient implementation of split (as in PG-Nat) outweighs the benefits of pre-aggregation. Query agg-1 did not finish on DBX-Nat as it exceeded the 2GB temporary space restriction (memory allocated for intermediate results) of the freely available version of this DBMS.

Mixed Aggregation and Join. Query agg-join applies an aggregation over the result of several joins. Our approach is more effective, in particular for the aggregation part of this query, compared to PG-Nat. This query did not finish on DBX due to the 2GB temporary space restriction per query imposed by the DBMS.

Difference Queries. For difference queries we could only compare our approach against PG-Nat, since DBX-Nat does not support difference in sequenced queries. Note that, PG-Nat applies set difference while our approach supports multiset difference. While our approach is less effective for diff-1 which contains a single difference operator, we outperform PG-Nat on diff-2.

10.4 Sequenced Semantics - TPC-BiH

The runtimes for TPC-H queries interpreted under sequenced semantics (9 queries are currently supported by the approaches) over the 1GB and 10GB valid time versions of TPC-BiH is also shown in Table 3. For this experiment we skip DBX since the limitation to 2GB of temporary space of the free version we were using made it impossible to run most of these queries. Overall we observe that our approach scales roughly linearly from 1GB to 10GB for these queries. We significantly outperform PG-Nat because all of these queries use aggregation. Additionally, some of these queries use up to 7 joins. For these queries the fact that PG-Nat aligns both inputs with respect to each other [16] introduces unnecessary overhead and limits join reordering. The combined effect of these two drawbacks is quite severe. Our approach is 1 to 3 orders of magnitude faster than PG-Nat. For some queries this is a lower bound on the overhead of PG-Nat since the system timed out for these queries (we stopped queries that did not finish within 2 hours).

10.5 Sequenced Semantics - Tourism

The results for the queries over the Tourism database are shown in the middle of Table 3. We only report our approach for Postgres and DBY, and the native implementation in Postgres. With the exception of query tou-agg-2 our approach outperforms PG-Nat quite significantly since all of these queries contain aggregation. Since query tou-agg-2 does use max we do not apply our sweeping technique (see Appendix E3, PG-Nat’s native implementation of the split operator results in 30% better performance for this query. Query tou-join-agg applies an inequality self-join over an aggregation result (≈ 100k rows under sequenced semantics) and then applies a final aggregation to the join. The large size of this join result is the main reason.

10.6 Summary

Our experiments demonstrate that an SQL-based implementation of multiset coalescing is feasible – exhibiting runtimes linear in the size of the input, albeit with a relatively large constant factor. We expect that it would be possible to significantly reduce this factor by introducing a native implementation of this operator. Using pre-aggregation during splitting, our approach significantly outperforms native implementations for aggregation queries. DBX uses merge joins for temporal joins (interval overlap joins) which is significantly more efficient than hash joins which are employed by Postgres and DBY. This shows the potential of integrating such specialized operators with our approach in the future. For example, we could compile sequenced queries into SQL queries that selectively employ the temporal extensions of a system like DBX.

11. CONCLUSIONS AND FUTURE WORK

We present the first provably correct interval-based representation system for sequenced semantics over multiset relations and its implementation in a database middleware. We achieve this goal by addressing a more general problem: snapshot-reducibility for temporal K-relations. Our solution is a uniform framework for evaluation of queries under sequenced semantics over an interval-based encoding of temporal K-relations for any semiring K. That is, in addition to sets and multisets, the framework supports sequenced temporal extensions of probabilistic databases, databases annotated with provenance, and many more. In future work, we will study how to extend our approach for updates over annotated relations, will study its applicability for combining probabilistic and temporal query processing, investigate implementations of split and K-coalescing inside a database kernel, and study extensions for bi-temporal data.

12. REFERENCES

APPENDIX

A. PROOFS

Proof of Lemma 6.7: Equivalence preservation: Proven by contradiction. Assume that \(\exists T \subset \tau(T) \neq \tau(T) \cap (C_k(T)) \). We have to distinguish two cases. If \(T \in CP(T) \), then by definition of \(K \)-coalesce we have the contradiction: \(\tau(T) \cap (C_k(T)) = \tau(T) \). If \(T \notin CP(T) \), then let \(T' \) be the largest change point that is smaller than \(T \) (this point has to exist). From the definition of change points follows that \(\tau(T) = \tau(T') \). By construction there has to exist exactly one interval overlapping \(T \) that is assigned a non-zero value in \(C_k(T) \) and this interval starts in \(T' \). Hence, we have the contradiction.

Uniqueness: Note that change points are defined using \(\tau(T) \) only and \((\forall T \in T : \tau(T) = \tau(T)) \Rightarrow T_1 \sim T_2 \). Since the result of coalescing is uniquely determined by the change points of a temporal element it follows that \(T_1 \sim T_2 \Rightarrow C_k(T_1) = C_k(T_2) \). Idempotence: Idempotence follows from the other two properties. If we substitute \(T \) and \(C_k(T) \) for \(T_1 \) and \(T_2 \) in the uniqueness condition, we get idempotence: \(C_k(C_k(T)) = C_k(T) \). □

Proof of Lemma 6.7: Push Through Addition: We prove this part by proving that for any \(k'' \) if \(k \sim k' \) then \((k + k_p k'') \sim (k' + k_p k'') \). We have to show that for all \(T \in T \) we have \(\tau(T) \sim (k + k'') \sim \tau(T) \). Substituting definitions we get:

\[
\sum_{T \in T} (k(I) + k''(I)) = (\sum_{T \in T} k(I)) + k (\sum_{T \in T} k''(I))
\]

Using \(k \sim k' \) and substituting the definition of \(~ \), i.e.,

\[
\sum_{T \in T} k(I) = \sum_{T \in T} k'(I)
\]

we get:

\[
(\sum_{T \in T} k'(I)) + k (\sum_{T \in T} k''(I)) = \sum_{T \in T} (k'(I) + k + k''(I))
\]

Push Through Multiplication: Analog to the proof for addition, we prove this part by showing that snapshot equivalence of inputs implies snapshot equivalence of outputs for multiplication.

\[
\tau(T) (k \cdot k_p k'') = \sum_{I, I' \in I \cap I' \cap T \in T} k(I') \cdot k (k''(I))
\]

Based on the fact that timeslice is a homomorphism \(K_T \to K \) which we will prove in Theorem 6.3, time slice commutes with multiplication and addition:

\[
(\sum_{I \cap T \subseteq I} k(I) \cdot k (\sum_{I \cap T \subseteq I} k''(I))) = (\sum_{I \cap T \subseteq I} k(I) \cdot k (\sum_{I \cap T \subseteq I} k''(I))) = \tau(T) (k \cdot k_p k'')
\]

Proof of Theorem 6.2 We have to show that the structure we have defined obeys the laws of commutative semirings. Since the elements of \(K_T \) are functions, it suffices to show \(k(I) = k'(I) \) for every \(I \in T \) to prove that \(k = k' \). For all \(k, k' \in K_T \) and \(I \in T \):

Addition is commutative:

\[
(k + k_p k')(I) = (k(I) + k_k'(I)) = (k + k_p k')(I)
\]

Addition is associative:

\[
((k + k_p k' + k_p k'')(I) = (k(I) + k_k'(I)) + (k + k_p k'')(I))
\]

Zero is neutral element of addition:

\[
(k + k_p 0 k_T)(I) = (k(I) + k 0 k k_T) = k(I) + 0 k_T = C_k k(I) = C_k k(I) = k
\]

Multiplication is commutative:

\[
(k \cdot k_p k')(I) = \sum_{I' \cdot I'' \cdot I = I' \cap I''} k(I') \cdot k (k''(I'))
\]

Multiplication is associative:

\[
((k \cdot k_p k')(k'')(I) = \sum_{I' \cdot I'' \cdot I = I' \cap I''} (k(I') \cdot k(k'(I''))) \cdot k(k''(I''))
\]

One is neutral element of multiplication:
\[
(k \cdot \mathbf{1}_K(k))(I) = \sum_{I' \in I} k(I') \cdot K 1_{K_T}(I')
\]
\[
= k(I) \cdot \mathbf{1}_K 1_{K_T} |l_{min}(I),t_{max}(I)| = k(I) \cdot K
\]
\[
= 1_{K_T} 1_{K_T} = C_K(k) \cdot K = k
\]

Distributivity:
\[
(k \cdot \mathbf{1}_K)(I') \cdot K = \sum_{I' \subseteq I} k(I') \cdot K (I') \cdot K = (k \cdot \mathbf{1}_K(k))(I')
\]
\[
= \sum_{I' \subseteq I} k(I') \cdot K (I') \cdot K
\]
\[
= \sum_{I' \subseteq I} k(I') \cdot K (I') \cdot K
\]
\[
= ((k \cdot \mathbf{1}_K(k')) \cdot \mathbf{1}_K(k'))(I')
\]
\[
= C_K(k \cdot \mathbf{1}_K(k'))
\]

Proof of Theorem 6.3: Proven by substitution of definitions:
Preserves neutral elements:
\[
C_K(\tau_T(0_n)) = \sum_{I \subseteq I} 0_{K_T}(I) = \sum_{I \subseteq I} 0_K = 0_K
\]
\[
\tau_T(1_K) = \sum_{I \subseteq I} 1_{K_T}(I)
\]

Since \(T \in [T_{\min}, T_{\max}) \) for any \(T \in T \) and \(1_{K_T}(I) = 0_K \) for any interval \(I \) except for \([T_{\min}, T_{\max}) \) where \(1_{K_T}([T_{\min}, T_{\max})] = 1_K \) we get \(\sum_{I \subseteq I} 1_{K_T}(I) = 1_K \)

Commutes with addition:
\[
\tau_T(k + k') = \sum_{I \subseteq I} (k + k')(I) = \sum_{I \subseteq I} k(I) + k(I)
\]
\[
= \sum_{I \subseteq I} k(I) + \sum_{I \subseteq I} k'(I) = \tau_T(k) + \tau_T(k')
\]

Commutes with multiplication:
\[
\tau_T(k \cdot k') = \sum_{I \subseteq I} (k \cdot k')(I)
\]
\[
= \sum_{I \subseteq I} \sum_{I' \subseteq I} k(I') \cdot k'(I')
\]
\[
= \sum_{I \subseteq I} k(I') \cdot k'(I')
\]

Let \(n_1, \ldots, n_t \) denote the elements \(k(I) \) for all intervals from the set of intervals with \(T \in I \) and \(k(I) \neq 0 \). Analog, let \(n_1, \ldots, n_v \) set the elements with the same property for \(k' \). Then the sum can be rewritten as:
\[
= \sum_{I \subseteq I} n_i \cdot k_m = \sum_{I \subseteq I} n_i \cdot k = \sum_{I \subseteq I} n_i \cdot k_m = \sum_{I \subseteq I} n_i \cdot k
\]

replacing this again with the interval notation we get:
\[
= \sum_{I \subseteq I} k(I) \cdot k = \sum_{I \subseteq I} k(I) \cdot k = \tau_T(k, k) \tau_T(k)
\]

Proof of Lemma 6.7: injective: We have to show that for any two snapshot \(K \)-relations \(R, R' \), \(\text{ENC}_K(R) = \text{ENC}_K(R') \Rightarrow R = R' \). Since, \(C_K \) preserves snapshot equivalence and is a unique representation of any temporal \(K \)-element \(T \), it is sufficient to show that for all \(t \), we have \(T_{R,t} = T_{R', t} \) instead. For sake of contradiction, assume that there exists a tuple \(t \) such that \(T_{R,t} \neq T_{R', t} \). Then there has to exist in \(T \) such that \(T_{R,t} \neq T_{R', t} \). Then, based on the definition of \(T_{R,t} \), this implies that \(R(T)(t) \neq R'(T)(t) \) which contradicts the assumption.

surjective: Given a \(K_T \)-relation \(R \), we construct a snapshot \(K \)-relation \(R' \) such that \(\text{ENC}_K(R') = R = R' \). \(R'(T)(t) = \sum_{I \subseteq I} R(T)(t) \).

Proof of Lemma 6.8: By virtue of snapshot equivalence between \(C_K(T) \) and \(T \) and based on the singleton interval definition of \(T_{R,t} \) in \(\text{ENC}_K \), we have for any tuple \(t \):
\[
\tau_T(\text{ENC}_K(R))(t) = \tau_T(T_{R,t}) = T_{R,t}(T, T + 1) = R(T)(t)
\]

Proof of Theorem 6.9: We have to show that \((DB_{K_T}, \text{ENC}_K^{-1}, \tau) \) fulfills conditions (1), (2), and (3) of Definition 4.5 to prove that this triple is a representation system for \(K \)-relations. Conditions (1) and (2) have been proven in Lemmas 6.4 and 6.5 respectively. Condition (3) follows from the fact that \(\tau_T \) is a homomorphism (Theorem 6.3) and that semiring homomorphisms commute with \(RA^+ \)-queries (20, Proposition 3.5).

Proof of Theorem 7.1: To prove that \(K_T \) is a well-defined monus, we have to show \(K_T \) is naturally ordered and that for any \(k, k' \), the set \(\{ k'' | k = k'' \land k'' \leq_{K_T} k' \} \) has a unique smallest element according to \(\leq_{K_T} \). A semiring is a naturally ordered if \(\leq_{K_T} \) is a partial order (reflexive, antisymmetric, and transitive), \(k, k' \leq_{K_T} k' \Rightarrow \exists k'' : k + k'' \leq_{K_T} k' \). Substituting the definition of addition, we get \(\exists k'' : C_K(k + k'') = k' \). Since \(C_K(k') = k' \) and coalesces preserves snapshot equivalence, we have \(C_K(k + k'') = k' \Rightarrow \forall T \in T : \tau_T(k + k') = \tau_T(k') \). From \(C_K(k + k'') = k' \Rightarrow \forall T \in T : \tau_T(k + k') = \tau_T(k') \) follows that \(k \leq_{K_T} k' \) \(\forall T \in T : \tau_T(k) \leq_{K_T} \tau_T(k') \).

Note that we only have to prove that \(k \leq_{K_T} k' \) is antisymmetric, since reflexivity and transitivity of the natural order follows from the semiring axioms and, thus, holds for all semirings.

Antisymmetric: We have to show that \(\forall k, k' \in K_T : k \leq_{K_T} k' \land k' \leq_{K_T} k \Rightarrow k = k' \). This holds because, \(k \leq_{K_T} k' \) and \(k' \leq_{K_T} k \) iff for all \(T \in T \) we have \(\tau_T(k) \leq_{K_T} \tau_T(k') \) and \(\tau_T(k') \leq_{K_T} \tau_T(k) \) which implies \(\tau_T(k) = \tau_T(k') \) for all \(T \in T \) which can only be the case if \(k = k' \). Since \(k \) and \(k' \) are coalesced it follows that \(k = k' \).

Unique Smallest Element Exists: It remains to be shown that \(\{ k'' | k = k'' \land k'' \leq_{K_T} k' \} \) has a smallest member for all \(k, k' \in K_T \). We
Let \(A \) be defined, and consider a tuple \(\tau \). For aggregation with group-by, split is \(k \tau \). We prove \(\tau \) by induction on \(k \).

Base case: Assume that \(\tau \) is a singleton interval. Then \(\tau \) is a tuple and let \(k = \tau \). Otherwise, \(\tau \) is a minimal element. For contradiction, assume that \(\tau \) is not a singleton interval. Then \(\tau \) is a tuple and let \(k = \tau \). Thus, \(\tau \) is a singleton interval.

Induction step: Assume that the claim holds for queries with up to \(n \) operators. We have to prove the claim for any query \(Q \) with \(n + 1 \) operators. For unary operators, WLOG let \(Q = \sigma(t_1) \) for an operator \(\sigma \) and query \(Q_0 \) with \(n \) operators and let \(Q = \text{Rewr}(Q) \).

Selection: \(\sigma = \gamma \): A selection is rewritten as \(\gamma = C(\sigma) \).

Projection: \(\pi ; A \): A projection is rewritten as adding the attributes encoding the interval associated to a tuple to the projection expressions. There will be at most one tuple \((t, I^+, I^-)\) in the result for each interval \(I \) assigned a non-zero annotation in \(R(u) \) for any tuple \(u \) projected on tuple \(t \).

Aggregation: \(\gamma \): The rewrite for aggregation without group-by utilizes the split operation \(N \) we have defined. Note that \(N_q \) returns a \(\mathcal{N} \)-relation \(S \) where for any pair of tuples \(t \) and \(t' \) and any pair of intervals \(I_1 \) and \(I_2 \) we have \(I_1 \neq I_2 \land I_1 \cap I_2 \neq \emptyset \Rightarrow S(t')(I_1) = 0 \lor S(t')(I_2) = 0 \). That is, all intervals with non-zero annotations from any pair of temporal elements do not overlap or are the same. From that follows that for any two time points \(t_1, t_2 \in I \) for an interval \(I \) that is mapped to \(n \neq 0 \) in the annotation of at least one tuple \(S \), the value of the result of aggregation is the same for the snapshots at \(t_1 \) and \(t_2 \). Thus, grouping by the interval boundaries yields the expected result with the exception of an empty snapshot.

Join: \(\sigma \land Q \): Consider a tuple \(t \) that is the result of joining tuples \(u \) and \(v \). Let \(T_u \) and \(T_v \) be the temporal elements annotating \(u \) and \(v \) in the input, respectively. Based on the definition of the rewriting, in the result of the rewritten join there will be a tuple \(t, I^+, I^- \) annotated with \(\bigcup_{I \in I_u \land I \cap I_v \neq \emptyset} Q_0(u) \cdot Q_0(v) \) for all intervals \(I_u \) and \(I_v \) such that \(I_u \cap I_v \neq \emptyset \). This corresponds to the definition of multiplication (join) in \(\mathcal{N} \).

Union: \(\sigma \lor Q \): Union is rewritten as a union of the rewritten inputs. For any tuple \(t \), let \(T_1 = Q_0(t) \) and \(T_2 = Q_1(t) \). In the result of the union applied by \(Q \) a tuple \((t, I^+, I^-)\) for each interval \(I \) will be annotated with \(T_1(t) \land T_2(t) \). The result of the union is then coalesced. Applying \(\mathcal{P}^{-1} \) the annotation computed for \(t \) is equivalent to \(C_0(T_1(t) \land T_2(t)) \).

Difference: \(\sigma \land Q \): A difference is rewritten by applying difference to the pairwise normalized inputs. Recall that the monus operator of \(\mathcal{N} \) associates the result of the monus for \(N \) to each snapshot of a temporal \(N \)-element. Since the split operator adjusts intervals such that there is no overlap, the claim holds.
B. QUERY DESCRIPTIONS

B.1 MySQL Employee Dataset

join-1. Return the salary and department for every employee.

```sql
SELECT a.emp_no, dept_no, salary
FROM dept_emp a
JOIN salaries b ON (a.emp_no = b.emp_no)
```

join-2. Return the department, salary, and title for every employee.

```sql
SELECT title, salary, dept_no
FROM dept_emp a
JOIN salaries b ON (a.emp_no = b.emp_no)
JOIN titles c ON (a.emp_no = c.emp_no)
```

join-3. Return employees that manage a particular department and earn more than $70,000.

```sql
SELECT a.emp_no, dept_no
FROM dept_manager a
JOIN salaries b ON (a.emp_no = b.emp_no)
WHERE salary > 70000
```

join-4. Returns information about the manager of each department.

```sql
SELECT a.emp_no, a.dept_no, b.salary, first_name, last_name
FROM dept_manager a, salaries b, employees e
WHERE e.emp_no = s.emp_no
AND s.salary = maxS.max_salary
AND d.dept_no = maxS.dept_no
AND a.emp_no = e.emp_no
```

agg-1. Returns the average salary of employees per department.

```sql
SELECT dept_no, avg(salary) as avg_salary
FROM dept_emp a
JOIN salaries b ON (a.emp_no = b.emp_no)
GROUP BY dept_no
```

agg-2. Returns the average salary of managers.

```sql
SELECT avg(salary) as avg_salary
FROM dept_manager a
JOIN salaries b ON (a.emp_no = b.emp_no)
```

agg-3. Returns the number of departments with more than 21 employees.

```sql
SELECT count(1)
FROM (SELECT count(*) AS c, dept_no
     FROM dept_emp WHERE emp_no < 10282
     GROUP BY dept_no HAVING count(*) > 21) s
```

agg-join. Returns the names of employees with the highest salary in their department. It contains a 4-way join where one of the join inputs is the result of a subquery with aggregation.

```sql
SELECT d.emp_no, e.first_name, e.last_name,
       maxS.max_salary, d.dept_no
FROM (SELECT max(salary) as max_salary, dept_no
      FROM dept_emp a
      JOIN salaries b ON (a.emp_no = b.emp_no)
      GROUP BY dept_no) maxS,
       dept_emp d, employees e
WHERE e.emp_no = s.emp_no
AND s.salary = maxS.max_salary
AND d.dept_no = maxS.dept_no
AND d.emp_no = e.emp_no
```

diff-1. Returns employees that are not managers of any department.

```sql
SELECT emp_no FROM dept_emp
EXCEPT ALL
SELECT emp_no FROM dept_manager
```

diff-2. Returns salaries of employees that are not managers.

```sql
SELECT a.emp_no, salary
FROM (SELECT emp_no FROM dept_emp
     EXCEPT ALL
SELECT emp_no FROM dept_manager) a
JOIN salaries b ON (a.emp_no = b.emp_no)
```

C-Sn. To evaluate the performance of coalescing we use the following query template varying the selection condition on salary to control the size of the output. The query returns employee salaries. We materialize the result of this query for each selectivity and use this as the input to coalescing.

```sql
SELECT a.EMP_NO, salary
FROM employees a
JOIN salaries b ON (a.emp_no = b.emp_no)
WHERE salary > ?
```

B.2 Tourism Dataset

Recall that this dataset stores travel booking inquiries in the South Tyrol area in Italy.

tou-join-agg. This query returns for each destination the sum of the number of persons of all bookings for this destination paired with the average number of this sum for all other destinations.

```sql
WITH numPerDest AS
  (SELECT sum(adults + children) AS numT, destination AS dest
   FROM tourismdata
   GROUP BY destination)

SELECT n.numT, n.dest, avg(o.numT) AS otherAvg
FROM numPerDest n, numPerDest o
WHERE n.dest <> o.dest
GROUP BY n.numT, n.dest
```

tou-agg-1. For destinations with more than 1000 inquiries return the number of inquiries for this destination and the total number of persons for which inquiries were made.

```sql
SELECT destination,
       count(*) AS numEnquiry,
       sum(adults + children) AS numTourists
FROM tourismdata
GROUP BY destination
HAVING count(*) > 1000;
```

tou-agg-3. Find the maximum number of inquiries from the total number of inquiries per destination.

```sql
SELECT destination,
       max(adults + children) AS maxTourists
FROM tourismdata
GROUP BY destination;
```

17
SELECT max(cnt) AS maxInq
FROM (SELECT count(*) AS cnt
 FROM tourismdata
 GROUP BY destination)

agg-join. This query returns the total number of inquiries per continent.

SELECT continent, count(*) AS numEnquiries
FROM tourismdata t, country c
WHERE t.countrycode = c.countrycode
GROUP BY continent

C. PULLING-UP COALESCING

The main overhead of our approach for sequenced temporal queries compared to non-temporal query processing is the extensive use of coalescing, which can be expensive if naively implemented in SQL. Furthermore, the application of coalescing after each operation may prevent the database optimizer from applying standard optimizations such as join reordering. To address this issue, we now investigate how to reduce the number of coalescing steps. In fact, we demonstrate that it is sufficient to apply coalescing as a last step in query processing instead of applying it to intermediate results. Similar optimizations have been proposed by Bowman et al. [12] for their multiset temporal normalization operator and by Böhlen et al. [10] for set-coalescing.

Consider how a R.A^+ query Q is evaluated over an K_T-database. R.A^+ over K-relations computes the annotation of a tuple in the result of a query using the addition and multiplication operations of the semiring. That is, the annotation of any result tuple is computed using an arithmetic expression over the annotations of tuples from the input of the query. In the case of a semiring K_T, addition and multiplication are defined as coalescing a temporal element that is computed based on point-wise application of the addition (multiplication) operations of semiring K (denoted as +_K_P and -_K_P). Recall from Lemma 6.1 that coalescing can be redundantly pushed into the addition and multiplication operations of interval-temporal semirings, e.g., C_K(k +_K_P K') = C_K(C_K(k) +_K_P C_K(K')). Interpreting this equivalence from right to left and applying it repeatedly to an arithmetic expression e using +_K_P and -_K_P, the expression can be rewritten into an equivalent arithmetic expression of the form C_K(e'), where e' is an expression that only uses operations +_K_P and -_K_P. Now consider expressions that also include applications of the monus operator -_K_T. This operator is defined as C_K(k -_K_P K'). The -_K_T operator computes the time-lapse of the inputs at every point in time and then applies -_K_T to each time-lapse. According to Lemma 5.1, \tau_T(k) \sim \tau_T(C_K(k')). Thus, the result of -_K_P is independent of whether the input is coalesced or not.

Lemma C.1. Any arithmetic expression e using operations and elements from an interval temporal K_T is equivalent to an expression of the form C_K(e'), where e' only contains operations +_K_P, -_K_P, and -_K_T.

Lemma C.1 implies that it is sufficient to apply coalescing as a last step in a rewritten query \textsc{Rewr}(Q) instead of after each operator.

Corollary C.2 (Coalesce Pullup). For any R.A query Q, \textsc{Rewr}(Q) is equivalent to a query Q' which is derived from \textsc{Rewr}(Q) by removing all but the outermost coalescing operator.

Proof. Operations +_K_T, -_K_T, and -_K_T are defined as applying C_K to the result of operations +_K_P, -_K_P, and -_K_P, respectively. Thus, expression e is equivalent to an expression that interleaves the C_K as well as +_K_P, -_K_P, and -_K_T operations. To prove this, we first prove that the following equivalence holds: C_K(k -_K_P K') \Leftrightarrow C_K(C_K(k) -_K_P C_K(K')). Consider the definition of -_K_P. Every interval I = [T, T + 1) is assigned the annotation \tau_T(k) -_K_T \tau_T(k'). Applying Lemma 5.1 we get \tau_T(k) = \tau_T(C_K(k)) and \tau_T(k') = \tau_T(C_K(K')). Thus, the equivalence holds. By repeatedly applying this equivalence and the equivalences proven in Lemma 6.1, all except the outermost K-coalesce operations can be removed resulting in an expression of the form C_K(e') where e' does not contain any coalesce operations.

Example C.1. Consider the following query Q = S - \Pi_{sal < sal}(\tau_{\beta_{sal < sal}(S \times \beta_{sal < sal}(S))} \text{ra}) for the largest salary from relation S as shown in Figure 3. Consider the corresponding N_T-relation using the annotation shown on the right in this figure coalesced as shown in Example 5.7. Consider how the annotation of tuple r = (50k) in the result of Q is computed. Applying the definitions of difference, projection, and join over K-relations and denoting the database instance of S as D, we obtain:

\[Q(D)(t) = C_0((S(v) \cdot K_P S(w)) \cdot K_P (sal < sal')(u))) \]
Pulling up coalesce we get:

\[Q(D)(t) = C_0((S(v) \cdot K_P S(w)) \cdot K_P sal < sal')(u))) \]

D. INTERACTION OF OUR APPROACH WITH QUERY OPTIMIZATION

In this section we briefly discuss the impact of our rewrite-based approach for implementing sequenced semantics on query optimization. Importantly, the combination of uniqueness and snapshot reducibility guarantees that queries are equivalent wrt. our logical model precisely when they are equivalent under regular K-relational semantics. As a special case of this result, queries over N_T relations are equivalent iff they are equivalent under bag semantics (N-relations). That is, any query equivalence that is applied by classical database optimizers, e.g., join reordering, can be applied to optimize sequenced queries.

That being said, we pass a rewritten query to the DBMS optimizer which is not aware of the fact that this query implements sequenced semantics. The preservation of bag semantics query equivalences does not necessarily imply that these rewritten queries can be successfully optimized by a general purpose query optimizer. However, as we will explain in the following, our approach is designed to aid the database optimizer in finding a successful plan. First off, note that our writes essentially keep the structure of the input query intact with the exception of the introduction of split before aggregation and difference, and coalescing which is applied as a final step for every sequenced query. Every other operator is preserved in the rewritten query, e.g., joins, are rewritten into joins.

Example D.1. Consider the following query Q = \Pi_{name, city}(person \bowtie_{name = pName} livesAt \bowtie_{address = aid address}) over relations

\begin{align*}
\text{person(name, age, A\text{begin}, A\text{end})} \\
\text{livesAt(pName, address, A\text{begin}, A\text{end})} \\
\text{address(aid, city, zip, street, A\text{begin}, A\text{end})}
\end{align*}

This query returns for each person the city(ies) they live in. Applying \textsc{Rewr} we get the query shown in Figure 6. Note how the
structure of the input query was preserved. The exception are the
coalescing operator at the end and the introduction of new projec-
tions. However, typically database optimizers will at least consider
a transformation called subquery pull-up (called view merging in
Oracle) which would pull-up and merge these projections. Thus,
these projections do not hinder join reordering.

E. SQL IMPLEMENTATIONS OF BAG CO-
ALESCING AND SPLIT

In the following, we explain our implementation of bag coalesc-
ing in SQL using a step by step example. Afterwards, we present
the implementation of the split operator integrated with aggregation
and (bag) difference.

E.1 Bag Coalesce

Figure 8 shows the SQL code for computing bag coalescing for
a table recording the activity of production machines. Figure 9
shows an example instance of this table and the intermediate and
final results produced by the query for this instance. Here we as-
sume that periods are stored as two timestamp attributes t_start and
t_end recording the start and the end of the period. The input table
active with the schema (mach, t_start, t_end) is shown on the top-
left of Figure 9. Each row in the table records a time interval (from
t_start to t_end) during which a machine (mach) is running. For
convenience we show a timeline with the intervals encoded by this
table.

Before explaining the steps of the SQL implementation, we re-
view bag coalescing. To coalesce an input we have to determine
for each tuple t its annotation change points, i.e., the end points
of maximum intervals during which the multiplicity of the tuple
does not change. Then for each adjacent pair of change points we
output a number of duplicates of tuple t that is equal to the num-
ber of duplicates of tuple t in the input whose intervals cover the
two change points. This could be implemented as a native operator
which splits each tuples associated with a period into two tuples
with the intervals end points where each generated tuple is marked
to indicate whether it represents an interval start or end point. Then
any aggregation algorithm can be applied to calculate the number
of intervals associated with a tuple that open and close at a par-
ticular time point. The output of this step is then sorted on the
non-temporal attributes and secondary on the timestamp attribute.
The final result is produced by scanning through the sorted output
once outputting for each tuple and adjacent pair of change points
a number of duplicates determined based on the number of inter-
vals covering these change points which is determined based on the
counts of opening and closing intervals. We leave a native im-
plementation and further optimizations (e.g., we could partition the
input on the non-temporal attributes and then process multiple such
partitions in parallel) to future work and now explain how our SQL
implementation realizes the computational steps outlined above.

Determine the Number of Opening and Closing Intervals Per Change Point. In lines 3 - 24 of Figure 9, we compute the annota-
tion change points for each tuple and the number of intervals that
are opening and closing for each such change point. This is done
by counting for each tuple and one of its change points the number
of opening and closing intervals separately and then for each such
pair merge the number of opening and closing counts into a single
output tuple. Note that strictly speaking not all of the time points
returned by this query are guaranteed to be annotation change points.
The actual change points are computed in one of the following steps
as explained below. For the example instance there is only one pair
(M1, 5) where time point T (attribute t) is both the start and end
point of an interval associated with tuple (M1). As another example
consider time point 6 which is the end point of two intervals
associated with tuple (M2) corresponding to the last tuple in the
result of subquery change_points. The pre-aggregation before
the union is merely a performance tweak. It turns a single aggre-
gation over 2 · [active] tuples into two aggregations over [active]
tuples.

Counting Open Intervals. Line 26 - 35 of the query create
the common table expression num_intervals which returns the
number of open intervals for a tuple per time point T. This is
achieved by subtracting the number of intervals for this tuple with
an end point that is less than or equal to T (attribute t) from the
number of intervals with a start point that is less than or equal to T.
Intuitively, the number of open intervals for a tuple is the number
of duplicates of the tuple that exist in the time interval between T
and the adjacent following change point. We compute these run-
ing sums using SQL’s window functions partitioning the input on
the non-temporal attributes (mach in this example) and within each
partition order the tuple based on the timestamp t computing the
aggregate over a window including all tuples with a timestamp less
than or equal to t. For example, consider the first tuples in the
instance of num_intervals as shown in Figure 9. This tuple
records that there two duplicates of tuple (M1) exist at time point
1.

Removing Spurious Change Points. Recall that bag coalescing
determines maximal intervals during which the annotation (mul-
tiplicity in the case of bag semantics) of a tuple is constant. As
shown in the example, num_intervals may contain adjacent
time points with the same number of open intervals which, accord-
ing to the definition of K-coalescing, are not annotation change
points. Subquery diff_previous (Lines 38-47) computes the
difference between the number of open intervals at a time point and
the previous time point. Subquery changed_intervals (Lines
49-53) removes tuples where this difference is zero (the number of
duplicates has not changed).

Reconstructing Intervals. At this point in the computation we
have calculated the set of annotation changepoints for each tuple
and the number of duplicates of the tuple that exist during the time
interval between each two adjacent annotation change points. Sub-
query pair_points (Lines 55-65) computes pairs of adjacent an-
notation change points. For instance, the first tuple in the result for
the example records that there exists two duplicates of tuple (M1)
during time interval [1, 7]. The subquery of pair_points also
returns tuples with t_start equal to the last change point of teach
tuple. These tuples are filtered in the WHERE clause of the outer query.
For example, the tuples marked in red in the result of the subquery
as shown in Figure 9 are such tuples.

Generating Duplicates. In the last step, we generate duplicates
of tuples based on the counts stored in attribute #open. One way
to realize this would be to use a set-returning function that takes
as input a tuple t and a count c, and returns c duplicates of t.
While perfectly viable, to avoid the overhead of calling a user-
defined function for every distinct output tuple, we use subquery
max_seq (Lines 67-72) to generate a table storing a sequence of
numbers \{1, ..., m\} where m is the maximum number of du-
plicates of any tuple in the query result. We then join this table
with pair_points (lines 74-76). For the example database
the maximum number of duplicates for any tuple and time point is 2.
Hence, subquery max_seq returns \{1, 2\}. The final join with
pair_points then returns the appropriate number of duplicates for
each tuple using the counts stored in #open, e.g., there are 2
duplicates of tuple (M2) during time interval [3, 6].
E.2 Split Operator Implementation

We first introduce our implementation of the split operator and then afterwards discuss the optimized versions of the aggregation and difference which incorporate split. We show the SQL code for \(N_{mach}(active, active) \), i.e., splitting the intervals of relation active based on its own interval boundaries for attribute mach (the only attribute of this relation). Figure 10 shows the SQL code generated by our system and Figure 11 shows an example database the intermediate results of produced by the SQL implementation for this example. In lines 2-9 we assign aliases to the left and right input. For this particular example, both inputs are table active.

![Diagram](Figure 10: Rewriting REWR(Q) for SPJ query Q from Example [D.1])

Computing Interval End Points

The first of the computation (lines 10-23) generates the set of all interval end points for both inputs. Note that for this example where a relation is split wrt. itself the four-way union is not necessary and can be replaced with a two-way union. In our implementation we apply this optimization, but for sake for the example we show the four-way union to illustrate how the approach would work when a relation is split wrt. to another relation.

Creating Unique Identifiers for Intervals

Next we assign a unique identifier to each tuple from the left input (lines 25-32). For instance, there are three such tuples in the example shown in Figure 11.

Pair Intervals with End Points

We now join the left input with all endpoints we have computed beforehand (lines 34-46) such that each interval from the left input is paired with all end points it contains with the exception of the maximum point in the interval. Intuitively the purpose of this step is to creating sufficiently many duplicates of each input tuples to be able to generate the split versions of the interval for this tuple. Furthermore, the end points we have paired with an interval will be the starting points of the split intervals. In Figure 11 we highlight tuples with colors to indicate which tuples correspond to the same input interval. For example, the first two tuples in the result of split points correspond to the tuple with id 1 and the starting points of the two intervals this interval will be split into (end point 4 is contained in the interval [1, 7]).

Generating Split Intervals

Finally, we adjust the start \(t_{start} \) and end points \(t_{end} \) of each interval produced in the previous step (lines 48-52). The start point is set to the time point \(t \) (the time point from the set of interval end points we have paired with the interval) and the end point is the next larger time point associated with the same interval identifier (or the end point of the interval is no such time point exists). For example, for the first tuple from the result of subquery split points we output tuple \((M1, 1, 4) \). As can be seen in the timeline representation of the result shown on the bottom right of Figure 11, in the result of split any two intervals associated with the same values of the non-temporal attributes are either equal or disjoint.

E.3 Combining Split with Temporal Aggregation

There is synergy in combining the split operator with temporal aggregation. The resulting implementation is similar to temporal aggregation algorithms which utilize end point indexes (e.g., aggregation over a timeline index [25]). These approaches calculate the result of an aggregation function over time using “sweeping” by sorting the endpoints of intervals on time and then scan over the data in sort order adding the values of tuples whose intervals start at the current point in time to the current aggregation result and subtract the values of tuples whose intervals end at this point in time. Note that this only can be applied to aggregation functions like sum and count where it is possible to retract a value (the underlying function, e.g., addition in the case of sum, has an inverse). For aggregation functions min and max it is necessary to maintain a list of previously seen values (although it is not necessary to keep all previous values [31]). We do not use the sweeping technique for min and max, but still apply the pre-aggregation optimization described below. We explain how to combine split with aggregation using the example query shown in Figure 13 which computes the average consumption (\(consum \)) of machines.

Pre-aggregation

For aggregation functions like sum and count that are commutative, associative, and where the underlying operation has an inverse, we can compute pre-aggregate the input data before computing split points. For that we group on the input query’s group-by attribute plus the attributes \(t_{start} \) and \(t_{end} \) which store the end points of a tuple’s period. The pre-aggregation step return partial aggregation results for each list of group-by attribute values and period that occurs with this group. During split these periods may be further subdivided and the final aggregation results will be computed by accumulating results for these subdivisions. For aggregation functions like average that do not fulfill the conditions required for pre-aggregation, but which can be computed by
evaluating an arithmetic expression over the result of other aggregation functions that do, we can still apply this trick to calculate the other aggregation functions and delay the computation of the aggregation we are actually interested in until the end. For example, the query shown in Figure [13] computes an average that can be computed as \textit{sum}/\textit{count}. Thus, as shown in lines 2-12 of Figure [12] we compute two aggregation functions grouping on mach, t\textsubscript{start}, and t\textsubscript{end}. The example instance of table active contains two tuples belonging to the same group which also have the same period: (M1,10,1,5) and (M1,20,1,5). Based on these two tuples we compute the pre-aggregated result (M1,30,1,5). Note that no matter what aggregation function we are computing, we always will also compute count since it is needed later in the implementation to determine intervals without results for aggregation with group-by.

Calculate Increase and Decrease of Aggregation Values. Our approach for computing aggregation functions sum and count uses a sweeping technique which scans over the set of all interval end points paired with in time order. We keep a partial aggregation result and for each time point adds the values of the aggregation input attributes for tuples with intervals that open at this time point and “retracts” the values of aggregation input attributes for tuples with intervals that close at this time point. For this purpose, we aggregate to total increase (opening intervals) and retraction (closing intervals) for each time point and group. Consider lines 14-38 in Figure [12] Since we are computing aggregation functions sum and count, we store for each time point the increase/decrease for both functions. For that, we use attributes \texttt{addc} and \texttt{dec}_count (count) and \texttt{adds} and \texttt{dec}_sum (sum). For interval start points we set attributes recording decrease to 0 while for end points we points we set the \texttt{add}_count attributes to 0. Afterwards, we compute the total increase and decrease per time point using aggregation. For instance, consider time point 5 in the example shown in Figure [4] Two intervals with a total consumption of 30 close at this time point and one new interval opens with a consumption of 40. This is encoded in the third tuple (M1,1,40,2,30,5) in the result of subquery increase_decrease.

Compute Accumulative Totals. We then calculate the aggregation function result for each group and each point in time where at least one interval for this group starts or ends as the sum of the increases up to and including this point in time and subtract from that the sum of decreases. For example, the third tuple in the result of subquery accumulation shows that at time 5 there are 2 open intervals with their \texttt{consum} values summing up to 80.

Generate Output Intervals. Finally, we pair each split point and its count and sum with the following split point to produce output intervals and compute the average as the sum divided by the count. This is realized by defining the subquery accumulation in Figure [12] Note that it may be the case that no periods start at a given split point. In this case the count would be 0 (no intervals open during between this time point and the next split point). This is dealt with by the \texttt{WHERE} clause of the outer query which filters out tuples where the count is 0.

Aggregation Without Group-by. Recall that for aggregation without group-by we have to return results for time periods where the relation is empty. This is easily achieved in our implementation by adding a dummy interval \([T_{\text{min}}, T_{\text{max}}]\) associated with the neutral value of the aggregation function to the result of subquery \texttt{pre}_agg (0 for count and \texttt{null} otherwise). For time periods where the input relation is empty the split operator creates an interval covering the “gap” and will return the value we did associate with the dummy interval which is chosen to correspond to the result of an aggregation over an input relation as defined in the SQL standard. For periods where the input is non-empty the result is not affected since the dummy interval is associated with the neutral value of an aggregation function. An additional change that is required is that the final \texttt{WHERE} clause (Figure [12] line 68) has to be changed to \texttt{t\textunderscore{end}} \texttt{IS NOT NULL} to (i) return results for gaps (where the count is 0) and not return a tuple where \texttt{t\textunderscore{start}} is the last split point (equal to \texttt{T}_{\text{max}} for the case of aggregation without group-by).

E.4 Combining Split with Difference

To explain the combined implementation of split with bag difference we evaluate the example query shown in Figure [16] under sequenced semantics. The query returns all machines and their consumption removing consumptions of machines which have been incorrectly recorded (table faulty). The SQL implementation for the sequenced version of this query which uses combined split and difference is shown in Figure [15] We show an example instance and intermediate results for the query in Figure [17] We combine the split operator with bag difference by reducing bag difference to the problem of count aggregation. Consider a snapshot at time \texttt{T} and tuple \texttt{t} and assume that \texttt{t} appears in the left input with multiplicity \texttt{n} and in the right input with multiplicity \texttt{m} at \texttt{T}. Then we have to return \texttt{max(0, n - m)} duplicates of tuple \texttt{t} for this snapshot. This can be achieved by computing counts for each interval end point in the left and in the right input and then subtracting the counts of the right hand side from the counts of the left hand side. The combination of counting and split essentially uses the approach described in Appendix E.5

Computing Changes in Multiplicities. Subquery end_point_counts (Figure [15] lines 15-36) computes the number of opening and closing intervals for both inputs. We count the end points from the right input negatively. For instance, in the example the second tuple in the result of this subquery records that there are two opening intervals for tuple (M1, 40) at time 1.

Aggregate Multiplicities. Next, we use subquery acc_counts aggregate the multiplicities to get a single count of opening and closing intervals per time point (lines 49-63). Note that in the result of this subquery both \texttt{#open} and \texttt{#close} may be negative. This has to be interpreted as that there is a larger number of opening/closing intervals from the right input than the left input.

Generating Intervals. We now pair adjacent time points (lines 49-63) to create intervals and compute the final multiplicity for each tuple.

Final Result. To compute the final result of the difference operator we have to create the right amount of duplicates for each tuple. The method we apply here is exactly the same as the one applied for aggregation: we join the result of subquery intervals with a table contain numbers 1 to \texttt{n} where \texttt{n} is the maximum multiplicity across all tuples and time points.

E.5 Coalesce after Split

We can also apply coalesce (introduced in Section E.1) after split (introduced in Section E.2), for example, we apply split the table active with the schema (mach, t\textsubscript{start}, t\textsubscript{end}) and apply coalesce afterwards. Figure [7] shows this workflow.
Figure 7: Coalesce after split
-- Count opening/closing intervals per change point
WITH change_points (mach, #start, #end, t) AS
(
 SELECT mach,
 sum(#start) AS #start,
 sum(#end) AS #end,
 t
 FROM
 SELECT mach,
 count(*) AS #start,
 0 AS #end,
 t AS t
 FROM active
 GROUP BY t, mach
 UNION ALL
 SELECT mach,
 0 AS #start,
 count(*) AS #end,
 t AS t
 FROM active
 GROUP BY t, mach
) GROUP BY t, mach,

-- Count the open intervals per tuple and time point
num_intervals (mach, #open, t) AS
(
 SELECT DISTINCT mach,
 sum(#start) OVER w
 - sum(#end) OVER w AS #open,
 t
 FROM change_points
 WINDOW w AS (PARTITION BY mach ORDER BY t
 RANGE UNBOUNDED PRECEDING)
)

-- Compute the difference between the number of open
-- intervals at t and at the previous change point
-- diff_previous (mach, #open, diffPrevious, t) AS
(
 SELECT mach,
 #open,
 COALESCE(#open - (lag(#open, 1) OVER w, -1), diffPrevious, 0) AS diffPrevious,
 t
 FROM num_intervals
 WINDOW w AS (PARTITION BY mach ORDER BY t)
)

-- Remove unchanged intervals
changed_intervals (mach, t, #open, diffPrevious) AS
(
 SELECT * FROM diff_previous
 WHERE diffPrevious != 0
)

-- Pair each change point with the following change point
pair_points (mach, #open, tstart, tend) AS
(
 SELECT mach, #open, tstart, tend
 FROM (SELECT mach, mopen, t AS tstart, last_value(t) OVER w AS tend
 FROM changed_intervals)
 WHERE tend IS NOT NULL
 WINDOW w AS (PARTITION BY mach
 ORDER BY t
 RANGE BETWEEN 1 FOLLOWING AND 1 FOLLOWING)
 ORDER BY t
)

-- Create a sequence (1, ..., max(#open))
max_seq (n) AS
(
 SELECT n
 FROM (SELECT max(#open) AS mopen FROM pair_points) x,
 generate_sequence(1,mopen) AS y(n)
)

-- Create the right number of duplicates for each tuple
SELECT mach, tstart, tend
FROM pair_points p, max_seq s
WHERE p.#open >> s.n

--- Create the right number of duplicates for each tuple

Figure 8: Applying the SQL implementation of bag coalescing to the example table active.
-- name left and right inputs

WITH
left AS (SELECT * FROM active),
right AS (SELECT * FROM active),

-- Gather change points
end_points AS
(SELECT mach, t AS start FROM left
UNION
SELECT mach, t AS end FROM left
UNION
SELECT mach, t AS start FROM right
UNION
SELECT mach, t AS end FROM right),

-- Gather intervals of LEFTY with a unique ID
interval_id AS
(SELECT row_number() OVER (ORDER BY 1) AS id, mach, t AS start, t AS end FROM left
UNION
SELECT mach, t AS start FROM right
UNION
SELECT mach, t AS end FROM right),

-- Join intervals with change points
split_points AS
(SELECT l.id, l.mach, l.t AS start, l.t AS end, c.t
FROM interval_id l
JOIN end_points c
WHERE c.mach = l.mach
AND c.t >= l.t
AND c.t < l.t
)

-- Produce output by input on change points
SELECT mach,
 COALESCE(lead(t) OVER (PARTITION BY id ORDER BY t), 0) AS t
FROM split_points
WINDOW w AS (PARTITION BY id ORDER BY t);

Figure 10: SQL implementation of the split operator applied to example table active.
Figure 12: Example SQL implementation of split + aggregation (average) applied to example table active

```sql
-- Pre-aggregate before splitting
WITH
pre_agg (mach, c, s, t_start, t_end) AS
(
  SELECT mach,
  count(*) AS c,
  sum(consum) AS s,
  t_start,
  t_end
  FROM active
  GROUP BY mach, t_start, t_end
),
-- Compute amount of increase/decrease at each time point
increase_decrease (mach, add_c, add_s, dec_c, dec_s, t) AS
(
  SELECT mach,
  sum(add_c) AS add_c,
  sum(add_s) AS add_s,
  sum(dec_c) AS dec_c,
  sum(dec_s) AS dec_s,
  t
  FROM (SELECT mach,
  c AS add_c,
  s AS add_s,
  0 AS dec_c,
  0 AS dec_s,
  t_start AS t
  FROM pre_agg
  UNION ALL
  SELECT mach,
  0 AS add_c,
  0 AS add_s,
  c AS dec_c,
  s AS dec_s,
  t_end AS t
  FROM pre_agg)
  GROUP BY mach, t
)
-- Calculate accumulative total for interval start
-- points up to and including time point t and
-- subtract the total for "closing" intervals
accumulation (mach, c, s, t) AS
(
  SELECT mach,
  sum(add_c) OVER (w
    - sum(dec_c) OVER (w AS c,
    sum(add_s) OVER (w AS s,
    - sum(dec_s) OVER (w AS s,
    t
  FROM increase_decrease
  WINDOW w AS (PARTITION BY mach
  ORDER BY t
  RANGE UNBOUNDED PRECEDING)
),
-- output results for adjacent "split" points
SELECT mach, avg_con, t_start, t_end
FROM (SELECT mach,
  c
  CASE WHEN (c = 0) THEN NULL
  ELSE s / c END AS avg_con,
  t AS t_start,
  last_value(t) OVER (w AS t_end
  FROM accumulation
  WINDOW w AS (PARTITION BY mach
  ORDER BY t
  ROWS BETWEEN 1 FOLLOWING AND 1 FOLLOWING)
) AS pre_agg
),

<table>
<thead>
<tr>
<th>mach</th>
<th>c</th>
<th>s</th>
<th>t_start</th>
<th>t_end</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>2</td>
<td>30</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M1</td>
<td>1</td>
<td>40</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>M1</td>
<td>1</td>
<td>40</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>M1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>M1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>M1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>80</td>
</tr>
</tbody>
</table>

Figure 13: Example aggregation query

```sql
SELECT mach, avg(consum) as avg_con
FROM active
GROUP BY mach;
```
Figure 15: SQL implementation of split + bag difference applied to example table active.

```
WITH
left (mach, consum, t_start, t_end) AS
(SELECT mach, consum, t_start, t_end
FROM active)
right (mach, consum, t_start, t_end) AS
(SELECT mach, consum, t_start, t_end
FROM faulty)

-- Count opening and closing intervals for each interval
-- end point. Intervals from the right input are
-- counted negatively.
END_Points (mach, consum, #open, #close, t) AS

(SELECT mach, consum, t_start AS t,
count(*) AS #open, 0 AS #close
FROM left
GROUP BY t_start, mach, consum)
UNION ALL

(SELECT mach, consum, t_end AS t,
0 AS #open, count(*) AS #close
FROM right
GROUP BY t_end, mach, consum)

-- Accumulate counts to get multiplicities
ACC_COUNTS (mach, consum, t, #open, #close) AS

(SELECT mach,
consum,
sum(#open) AS #open,
sum(#close) AS #close,
t
FROM END_POINTS
GROUP BY t, mach, consum)

), Produce intervals with the corresponding multiplicities
intervals (mach, consum, t_start, t_end, multiplicity) AS

(SELECT mach,
consum,
t AS t_start,
lead(t) OVER w1 AS t_end,
sum(#open) OVER w2
- sum(#close) OVER w2
FROM ACC_COUNTS
WINDOW w1 AS (PARTITION BY mach, consum
ORDER BY t),
w2 AS (PARTITION BY mach, consum
ORDER BY t
RANGE UNBOUNDED PRECEDING)

), Compute max multiplicity
max_seq (n) AS

(SELECT n
FROM (SELECT max(numOpen) AS max_open FROM intervals) x,
generate_sequence(1, max_open) AS y(n)
)

-- Produce duplicates based on multiplicities
SELECT mach, consum, t_start, t_end
FROM intervals i, max_seq m
WHERE multiplicity > 0 AND i.multiplicity >= m.n;
```

Figure 16: Example query using bag difference.

```
SELECT mach, consum, t_start, t_end
FROM active
EXCEPT ALL
SELECT mach, consum, t_start, t_end
FROM faulty;
```

```
WITH
active (left input) AS

<table>
<thead>
<tr>
<th>mach</th>
<th>consum</th>
<th>t_start</th>
<th>t_end</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>40</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

faulty (right) AS

<table>
<thead>
<tr>
<th>mach</th>
<th>consum</th>
<th>t_start</th>
<th>t_end</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>40</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

END_POINTS AS

<table>
<thead>
<tr>
<th>mach</th>
<th>consum</th>
<th>#open</th>
<th>#close</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>20</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

ACC_COUNTS AS

<table>
<thead>
<tr>
<th>mach</th>
<th>consum</th>
<th>t</th>
<th>#open</th>
<th>#close</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MI</td>
<td>20</td>
<td>2</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>MI</td>
<td>20</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

INTERVALS AS

<table>
<thead>
<tr>
<th>mach</th>
<th>consum</th>
<th>t_start</th>
<th>t_end</th>
<th>multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MI</td>
<td>20</td>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>MI</td>
<td>20</td>
<td>5</td>
<td>6</td>
<td>-1</td>
</tr>
<tr>
<td>MI</td>
<td>20</td>
<td>6</td>
<td>3</td>
<td>NULL</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>3</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>9</td>
<td>NULL</td>
<td>0</td>
</tr>
</tbody>
</table>

MAX_SEQ AS

<table>
<thead>
<tr>
<th>mach</th>
<th>consum</th>
<th>t_start</th>
<th>t_end</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>20</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>MI</td>
<td>40</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Figure 17: Example instance of table active and intermediate results of the query implementing split + bag difference for the query from Figure 16.
```