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ABSTRACT
Database provenance is essential for auditing, data debug-
ging, understanding transformations, and many additional
use cases. While these applications do benefit from state-of-
the-art provenance tracking for queries, most use cases also
require provenance for transactional updates. We present
the first provenance model for concurrent database transac-
tions. Our model extends the well-known semiring prove-
nance framework with version annotations and update op-
erations. Based on this model, we present the first solution
for computing the provenance of database transactions. Our
approach can retroactively trace transaction provenance as
long as an audit log and time travel functionality are avail-
able (both are supported by most DBMS) and without stor-
ing any additional information. For a given transaction, our
approach constructs a reenactment query that simulates the
effect of the transaction. This query is guaranteed to pro-
duce the updated versions of tables produced by the trans-
action and has the same provenance as the original trans-
action, i.e., it is annotation-equivalent. Using time travel
and by adopting well-known techniques for computing the
provenance of queries, we can use reenactment to retroac-
tively compute the provenance of transactions. Currently,
we support two widely applied concurrency control mech-
anisms: snapshot isolation and read committed snapshot
isolation. We have implemented a prototype on-top of a
commercial database system and our experiments confirm
that 1) the runtime and storage overhead required to sup-
port time-travel and the audit log is tolerable and 2) by
applying novel optimizations we can efficiently compute the
provenance of large transactions over large data sets.

1. INTRODUCTION
Provenance, information about the creation process and

origin of data, is critical for many applications including au-
diting, debugging data by tracing erroneous results back to
errors in input data, understanding complex data transfor-
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mations, and as a supporting technology for data integration
and probabilistic databases. How to model and compute
the provenance of database queries is relatively well under-
stood. Most approaches model provenance as annotations
on data (e.g., tuples) and propagate annotations to compute
the annotation (provenance) of a query result. These tech-
niques have been pioneered by systems such as Perm [18],
DBNotes [7], Orchestra [25], and others to compute the
provenance of queries. While provenance for queries is im-
portant, many use cases (e.g., auditing) would benefit from
provenance for update operations. In relational databases,
updates are executed as part of transactions and DBMS ap-
ply concurrency control techniques to guarantee ACID prop-
erties for transactions. Provenance tracking for database
updates needs to take into account the transactional seman-
tics and idiosyncrasies of concurrency control mechanisms
to correctly describe the origin of tuple versions.

While there are existing solutions for computing the prov-
enance of update operations [25, 35, 8], no solution exist for
tracking the provenance of transactions. Developing a prov-
enance model for transactional updates is challenging, be-
cause such a model needs to correctly represent the complex
interdependencies between tuple versions that are the result
of concurrent transactions. Provenance can easily outgrow
the data it is describing and computing provenance can re-
sult in significant overhead. Ideally, it should be possible
to compute the provenance of any past transaction without
having to eagerly materialize provenance information dur-
ing transaction execution. This would have the advantage
of avoiding the runtime and storage overhead of provenance
computation for every transaction executed by the system.

In this work we present a provenance model for transac-
tional updates using the snapshot isolation (SI ) and read
committed snapshot isolation (RC-SI ) concurrency control
protocols (these protocols are applied by many commercial
and open-source systems including PostgreSQL, Oracle, and
MSSQL). Our model is an extension of the semiring anno-
tation framework and inherits the advantages of this model.
Specifically, it generalizes several extensions of the relational
model including set-semantics, bag-semantics, and various
less informative types of provenance. Based on this prove-
nance model we introduce the novel concept of reenactment
queries. Reenactment queries are queries that simulate the
effect of an update or transaction. Importantly, reenactment
queries are annotation equivalent to the operation they are
simulating, i.e., they have the same provenance. Reenact-
ment is the main enabler of our approach for retroactively



Bus
company number price fromCity toCity

b1 Whitedog 13 210 New York Chicago
b2 Whitedog 15 140 Seattle Chicago
b3 Picobus 2 65 Chicago Schaumburg

Schedule
company bnum departureTime

s1 Whitedog 13 08:15
s2 Whitedog 15 16:00
s3 Picobus 2 10:30
s4 Picobus 2 12:30

Figure 1: Database Instance For Running Example

computing the provenance of transactions. We demonstrate
how our provenance model can be encoded as standard re-
lations and how to implement provenance computation for
transactions by translating reenactment queries into SQL
queries using time travel to access past database states.
Such queries can be executed over any DBMS that supports
time travel (e.g., Oracle [30] and MSSQL [28]). Time travel
essentially requires a transaction time history [22, 33] for
each relation in the database. For systems that do not sup-
port this feature, there exist standard approaches for keep-
ing a transaction time history by creating a history table
and using triggers to backup old versions of updated rows
to the history table.

Example 1 (Running Example). Consider the exam-
ple bus schedule database shown in Figure 1. The database
has two relations Bus and Schedule which store bus routes
of traveling companies and the scheduled departure times for
each route. Two transactions were executed (Figure 2) over
this database. Transaction T1 inserts a new bus route into
relation Bus. Transaction T2 deletes all scheduled departures
for the Whitebus route 13, then inserts a new departure time
( 20:15) for all Greyhound bus routes, and then updates the
departure times for all Picobus 2 departures to 10:30. The
instances for relations Bus and Schedule after the execution
of these transactions are shown in Figure 3. The prove-
nance of the tuples in the updated instances should encode
their whole derivation history - from which data was that tu-
ple derived and by which operations. For example, the new
departure time for the Greyhound 5 route (tuple s′3) was in-
serted by transaction T2 based on a the corresponding bus
route tuple (b′4) inserted by T1. The UPDATE of transaction
T2 has modified tuples s3 and s4 by updating their depar-
ture time to 10:30. The provenance of the updated tuples
(s′2) should model from which original tuples these updates
tuples were derived from (s3 and s4) and which operation
did create these tuples (the update of transaction T2). When
tracing the provenance of concurrent transactions, it is crit-
ical to take the concurrency control protocol into account.
The provenance depends on which tuples were visible to an
operation of a transaction at a certain point in time.

The main contributions of this work are:

• We introduce the multi-version provenance model,
a provenance model for database transactions that ex-
tends the well-established semiring annotation frame-
work. This model gives full account of the provenance
of tuple versions produced by concurrent transactional
updates. In particular, we extend the semiring an-

Bus after Transaction 1
company number price fromCity toCity

b′1 Whitedog 13 210 New York Chicago
b′2 Whitedog 15 140 Seattle Chicago
b′3 Picobus 2 65 Chicago Schaumburg
b′4 Greyhound 5 96 Chicago New York

Schedule after Transaction 2
company bnum departureTime

s′1 Whitedog 15 16:00
s′2 Picobus 2 10:30
s′3 Greyhound 5 20:15

Figure 3: Instance After Executing Example Transactions

notation model with update operations and version-
ing annotations that keep track of how a tuple was
updated. Furthermore, we study SI and RC-SI as
concurrency control protocols for multi-version anno-
tated databases. Provenance polynomials extended
with version annotations are the most general instance
of this model. Thus, similar to how K-relations gen-
eralize extensions of the relational model and several
provenance models, our model generalizes these exten-
sions under transactional updates.

• We introduce reenactment queries, queries that reen-
act the modifications of an update, transaction, or
complete history. Reenactment queries are annotation-
equivalent to the operation they are reenacting, i.e.,
they produce the same result (updated relations) and
have the same provenance. Thus, reenactment queries
can be used to track the provenance of updates and
transactions.

• We present an relational encoding of the multi-
version annotation model and demonstrate how reen-
actment queries can be implemented as standard rela-
tional queries using time travel to access past data-
base versions and an audit log to construct such reen-
actment queries. Since most database systems support
these features, we can apply this approach to retroac-
tively compute transaction provenance over multiple
database backends without having to explicitly store
any provenance information. One important advan-
tage of this approach is that rewrite based annotation-
propagation techniques that were originally introduced
to compute the provenance of queries can easily be ex-
tended for reenactment queries and, thus, can be lifted
to compute the provenance of transactions.

• We present an implementation within our GProM
system running as a middleware on-top of commer-
cial DBMS X. GProM extends SQL with constructs
for computing the provenance of queries and transac-
tions that are compiled into SQL queries expressed in
the dialect of the backend DBMS. These provenance
language constructs are seamlessly integrated within
the SQL language, e.g., provenance requests can be
used as subqueries.

• We discuss several optimization techniques that make
the relational encoding of reenactment queries digest-
ible by standard optimizers. Specifically, we introduce
heuristic rewrites that simplify the translated reenact-
ment queries, discuss alternatives for encoding reen-



Transaction 1 Transaction 2 Time
INSERT INTO Bus 10

(company, number, price, fromCity, toCity)

VALUES

(Greyhound,5,96,Chicago,New York);

COMMIT; 11

DELETE FROM Schedule WHERE company=’Whitedog’ 12
and bnum=13 ;

INSERT INTO Schedule 13
(company, bnum, departureTime)

SELECT company, number,’20:15’FROM Bus

WHERE company=’Greyhound’;

UPDATE Schedule SET departureTime=’10:30’ 14
WHERE company=’Picobus’and bnum=2;

COMMIT; 15
Figure 2: Transactions Example

actment queries as standard relational queries, and
present techniques for filtering unrelated information
from the provenance early on.

• Our extensive experimental evaluation demonstrates
that 1) reenactment is efficient and scales to large
databases, complex transactions, and large number of
updates; 2) the storage and runtime overhead paid to
support time travel and audit logging is tolerable.

The remainder of this paper is organized as follows. In
Section 2 we review related work and then introduce nec-
essary background on provenance and concurrency control
in Section 3. In Section 4 we introduce the multi-version
provenance model. We then introduce reenactment queries
in Section 5 and demonstrate how to encode our provenance
model as standard relation and how to implement reenact-
ment queries as standard relational queries in Section 6. In
Section 7 we discuss our prototype implementation of trans-
actional provenance in the GProM system. Section 8 intro-
duces several novel optimization techniques for reenactment
queries. We present experimental results in Section 9 and
conclude in Section 10.

2. RELATED WORK
Provenance of relational queries has been studied exten-

sively in the recent years. Buneman et al. [9] where the first
to distinguish Why-provenance (which tuples were used to
compute a result) and Where-provenance (which inputs is a
value in the result copied from). This work has addressed
this problem for a hierarchical data model. See [12] for a
relational version. Cui et al. [13] introduced the Lineage
provenance model and presented an implementation based
on tracing queries that iteratively trace the provenance of
an output though a relational query. The seminal paper
from Green et al. [20] introduced the K-relational model,
an extension of the relation model with annotations from
a commutative semiring and has shown how such annota-
tions propagate through positive relational algebra (RA+)
queries. In this model, the semiring of provenance polynomi-
als is the most general form of semiring annotations. Prov-
enance polynomials generalize the relational datamodel (set
and bag semantics), several extensions (e.g., incomplete da-
tabases and trust), and several less informative provenance

models including Lineage, Why-provenance, and minimal
Why-provenance. See [24] for an overview of this model and
its extensions beyond positive relational algebra (e.g., set
difference [14, 2, 19] and aggregation [3, 32]). Kostylev et
al. [27] study data annotated with annotations from multiple
semirings. Buneman et al. [10] relax the semiring model for a
hierarchical data model where the distinction between data
and annotation is flexible - allowing queries to treat part of
a hierarchy as annotations and others as data. Oltenau et
al. [29] discuss factorization of provenance polynomials and
Amsterdamer et al. [1] rewrite queries into equivalent queries
with minimal provenance. It has been proven that prov-
enance polynomials can be extracted from the PI-CS [18]
and Provenance Games [26] models. Our approach extends
the semiring annotation framework with update operations
and transactional semantics. The idea of annotating parts
of a provenance polynomial with functional symbols was,
to the best of our knowledge, first applied in the context
of the Orchestra system to record applications of schema
mappings [23]. The version annotations in our model were
inspired by this idea.

Systems such as DBNotes [7], Orchestra [25], and Perm [18]
encode provenance annotations as standard relations and
use query rewrite techniques to propagate these annotations
during query processing. We also implement provenance
computation for transactions by propagating a relational
encoding of provenance annotations. Similar to the Perm
system, we refrain from eagerly computing provenance for
all transactions, but instead reconstruct provenance when
requested. Zhang et al. [36] demonstrated that an audit
log and time travel functionality is sufficient for comput-
ing the provenance of past queries. This approach only re-
quires minor modifications to the standard query rewrite
rules for provenance computation using annotation propa-
gation to trace a past query’s provenance. In this work, we
prove that audit logging and time travel are also sufficient
for computing the provenance of transactions. This idea of
using a log of operations (and changes to data) and recon-
structing provenance by replaying such operations has also
been applied in the DistTape system [37] in the context of
distributed datalog processing and the Ariadne system [17]
in the context of stream processing.

The provenance of updates has been studied in related
work [25, 8, 35, 5], but none of these approaches addresses



the complications that arise when updates are run as parts of
concurrent transactions.1 Buneman et al. [8] have studied a
copy-based provenance type for the nested update language
and nested relational calculus. Vansummeren et al. [35] de-
fine provenance for SQL DML statements. This approach
modifies the updates to store provenance. Our approach dif-
fers in that we reconstruct provenance on demand instead of
computing and storing provenance for all operations. Fur-
thermore, we are the first to compute provenance for trans-
actions.

In terms of defining the semantics of concurrent trans-
actions, we rely on standard concurrency control protocols
that are widely applied in commercial and open-source data-
base systems. In particular, we focus on the snapshot isola-
tion (SI) [6] and read committed snapshot isolation (RC-SI)
multi-versioning concurrency control protocols correspond-
ing to isolation levels SERIALIZE and READ COMMITTED in sys-
tems such as Oracle and PostgreSQL.2

3. BACKGROUND

3.1 Snapshot Isolation
Snapshot isolation (SI) [21, 6] is a widely applied multi-

versioning concurrency control protocol. Under SI each trans-
action T sees a private snapshot of the database contain-
ing changes of transactions that have committed before T
started and T ’s own changes. Using SI, reads do never block
concurrent reads and writes, because each transaction sees
a consistent version of the database as of its start (and, as
mentioned before, its own changes). To support such snap-
shots, old versions of tuples cannot be removed until all
transactions that may need them have finished. Typically,
this is implemented by storing multiple timestamped ver-
sions of each tuple and assigning a timestamp to every trans-
action when it begins that determines which version of the
database this transaction will see (its snapshot). Whether a
certain version of a tuple is visible to a transaction can be
checked by comparing its timestamp (if it is a committed
tuple version) with the transaction’s timestamp.

Concurrent writes are allowed under SI. However, if sev-
eral concurrent transactions have written the same data
item, only one of them will be allowed to commit. There
are several ways how to enforce this constraint. One op-
tion is to check at commit time for transaction T whether
any concurrent transaction has an overlapping write set (has
modified a data item written by transaction T ). If this is
the case, all but one of the transactions writing data item
d have to be aborted. Under the First Committer Wins
(FCW ) rule, the transaction writing data item d which first
tries to commit would be allowed to commit and all other
transactions writing data item d would be aborted. Under
the First Updater Wins (FUW ) rule, the first transaction
updating d is allowed to commit. No matter which of the
two rules is applied, checking the rule requires maintaining
of a write set for each transaction in the system. Implemen-
tations of SI (e.g., Oracle or PostgreSQL) do not apply these

1Note that the “transactions” studied by Archer et al. [5] are
sequences of update operations and not concurrent database
transactions.
2Newer versions of PostgreSQL implement a serializable
variant of snapshot isolation called serializable snapshot iso-
lation (SSI). See Section 3.1.

Semiring Corresponding Model
(B,∨,∧, false, true) Set semantics

(N,+,×, 0, 1) Bag semantics
(P(X) ∪ {⊥},∪+,∪×,⊥, ∅) Lineage

(N[X],+,×, 0, 1) Provenance polynomials
Figure 4: Example Semiring

checks directly, but instead use write locks that are held un-
til transaction commit. A transaction T waiting for a write
lock is aborted if the transaction T ′ holding the write lock
commits (and is allowed to continue if T ′ aborts).

SI does not guarantee serializability.3. However, there
exist serializable extensions of SI that have been recently
implemented in database engines [31, 34, 11]. Under serial-
izable snapshot isolation (SSI), transactions are aborted if
their execution may lead to concurrency anomalies. Since SI
and SSI only differ in the fact that SSI aborts some transac-
tions that would be allowed to commit under SI, our tech-
niques for computing the provenance of SI transactions can
be readily applied to databases which use SSI.

3.2 Read Committed Snapshot Isolation
Database systems implementing SI as a concurrency con-

trol protocol typically use a variant of SI with statement-
level snapshots as a substitute for the standard READ COM-

MITTED isolation level. We refer to this protocol as read
committed snapshot isolation (RC-SI ). Under RC-SI each
statement of a transaction sees changes of transaction that
committed before the statement was executed. In contrast
to SI, transactions waiting for a write lock are allowed to
resume their operation once the lock is released no mat-
ter whether the transaction holding this lock committed or
aborted. The exact details of the implementation differ from
system to system. For instance, Oracle restarts an update
that had to wait for a write lock to guarantee that the up-
dates sees a consistant snapshot of the database. In con-
trast, in PostgreSQL the update is resumed after the lock it
is waiting for is released. In this paper we assume the RC-SI
semantics implemented by Oracle.

3.3 The Semiring-Annotation Framework
Green et al. have introduced the semiring annotation in

their seminal paper [20]. In this framework [24] relations
are annotated with elements from a commutative semiring
K. Such relations are called K-relations. Formally, a K-
relation R is a (complete) function that maps tuples to el-
ements from K with the convention that tuples mapped to
the 0K, the 0 element of the semiring, are not in the rela-
tion. The operators of the positive relational algebra (RA+)
over Krelations are defined by applying the +K and ×K op-
erations of the semiring to input annotations. Green et al.
have demonstrated that K-relations generalize extensions of
the relational model including bag semantics, incomplete
databases, and various provenance models (e.g., Lineage).
Intuitively, the +K and ×K operations of the semiring cor-
respond to alternative and conjunctive use of tuples. For
instance, if an output tuple t of a join was produced from
two input tuples annotated with k and k′, then the result
tuple t would be annotated with k ×K k′.

The semiring of provenance polynomials(N[X]) is the most

3Note that isolation level SERIALIZABLE corresponds to SI
for Oracle and older versions of PostgreSQL.



general form of semiring annotation. The elements of this
semiring are polynomials over a set of variables X which
represent base tuples in the database. Usually, the assump-
tion is that every tuple in a database instance is annotated
by a unique variable x ∈ X. The provenance polynomial
semiring has the important property that for any semiring
K the annotation of a query result t in K can be derived from
the provenance polynomial for t by mapping each variable
x ∈ X to an element from K and interpreting the abstract
+ and × operations in N[X] as the corresponding opera-
tions in K. Figure 4 shows some example semirings and the
extensions of the relational model encoded by these semir-
ings. For example, the semiring B consisting of the elements
true and false using ∨ as addition ∧ as multiplication cor-
responds to standard relational set semantics. The semiring
N of the set of natural numbers with standard arithmeti-
cal operators corresponds to bag semantics. In the Lineage
provenance model, the provenance of a result tuple t of a
query is a set of tuples from the input were used to derive t.
The semiring over the powerset of tuples in an database in-
stance (represented as variables X) using set union for both
addition and multiplication corresponds to Lineage [12].4

Example 2. Consider the N[X]-relation R shown below
and the result of evaluating the query Q = ΠA(R)× ΠB(R)
over this relation. For instance, the provenance polynomial
for the first result tuple records that this tuple has been pro-
duced by joining x1 with itself (x1 × x1) and by joining x1
with x2 (x1 × x2). By mapping x1 and x2 to true and in-
terpreting + as ∨ and × as ∧ we get an B-annotation true
indicating that this tuple is in the result under set semantics.
By mapping x1 and x2 to 1 ∈ N and evaluating the result-
ing expression we get 1 × 1 + 1 × 1 = 2, the multiplicity of
the tuple if Q would have been evaluated under bag seman-
tics. Finally, by mapping x1 to {x1} and x2 to {x2} and
interpreting the expression using the lineage semiring we get
{x1, x2}, the Lineage of the first result tuple.

R

A B
x1 1 1
x2 2 1

Result

A B
x1 × x1 + x1 × x2 1 1
x2 × x1 + x2 × x2 2 1

Provenance polynomials are considered the most general
form of annotation in the semiring framework, because any
valuation ν : X → K of variables in X to elements from
a semiring K can be lifted to a semiring homomorphism
Evalν : N[X] → K. Semiring homomorphisms commute
with queries. This means that any type of semiring anno-
tation can be computed from the provenance polynomial of
a query result. For instance, given a query result relation
with N[X] annotations we can compute the Lineage of the
query results or bag semantics multiplicities as illustrated in
the example above.

4. MULTI-VERSION PROVENANCE MODEL
We extendK-relations with multi-version annotations (func-

tions from K → K) that enable us to annotate parts of the

4Here ⊥ means not in the database and ∅ means no prov-
enance. union+ and ∪× are both standard set union ex-
cept for ⊥ where these operations are defined as k∪+ ⊥=⊥
∪+k = k and k∪× ⊥=⊥ ∪×k =⊥.

provenance to indicate how it was derived by an update op-
eration. We then define update operations and a snapshot
isolation compatible transactional semantics for these multi-
version K-relations.

Definition 1 (Multi-version Semirings). Let K =
(K,+K ,×K , 0K , 1K) be a commutative semiring. The set
AK of version annotations for K is a set of abstract function
symbols defined as follows. Let T be a transaction and ν be
a version. Then AK includes the following functions:

T
I τν ,

T
Uτν ,

T
Dτν

The multiversion semiring (MV-semiring) Kν for a semir-
ing K = (K,+K,×K, 0K, 1K) is the structure

(Kν ,+K,×K, 0K, 1K,AK)

of expressions over K and version annotations from AK
of the following form. If k ∈ K then k is in Kν . If k and k′

are expressions in Kν and τ ∈ AK is a version annotation,
then the following expressions are also elements of Kν :

k +K k′ | k ×K k′ | τ (k)

The version annotations we have introduced represent the
application of update operations. For example, if a tuple is
annotated with T

Uτν(k), then this tuple was produced by an
update (U) executed by transaction T at database version
ν and was derived from a tuple annotated with k. Similarly,

Iτ and Dτ represent insert and delete operations.

Definition 2 (Kν-relation). Let D be a universal do-
main of values and K a semiring. An n-nary Kν-relation
R is a function: Dn → Kν that maps each tuple t ∈ Dn
to an annotation from Kν . A Kν-database is a set of Kν-
relations. Similar to K-relations we require that the support
of a Kν-relation (tuples mapped to elements other than 0K)
is finite.5

The unversioning operator Unv transforms a Kν-relation
into a corresponding K-relation by interpreting the version
annotations as functions K → K. Insert and update anno-
tations are mapped to identity functions on elements from
K. The deletion annotation maps all elements k to the 0K,
the 0-element of K.

Definition 3 (Unversioning). Let R be a Kν-relation.
The unversioning operation Unv(R): Kν-relation→ K-rela-
tion maps R onto a corresponding K-relation by interpreting
the abstract versioning functions as follows.

T
I/Uτν(k) = k

T
Dτν(k) = 0K

If the unversion operator is applied to a Kν-database D,
then the result is defined as applying the operator to each
relation in D.

Example 3. Reconsider our running example. Assume
that the original state of the database was produced by a
transaction T0 that inserted all data simultaneously at time
1. Figure 7 shows how, under this assumption, the initial
state of the relations before the executions of transactions
T1 and T2 would be represented as an N[X]ν-database (the

5That means relations are finite.



multiversion version of provenance polynomials). In this
N[X]ν-database all tuples are annotated with a single vari-
able enclosed in a version annotation representing the fact
that the tuple got inserted by transaction T at time 1. To
derive the bag semantics version of these relations we would
replace each variable with an element from N and then ap-
ply the unversioning operator to get back an N-relation (the
semiring encoding bag semantics relations). In the running
example, each tuple appears exactly once. Thus, each vari-
able would be replace by 1 and, after unversioning, each tuple
is annotated with 1.

4.1 Queries
The positive relational algebra over Kν-relations is defined

in the same ways as for K-relations. For sake of complete-
ness, we repeat these definitions here. We use t.A to denote
the projection of a tuple t on a list of projection expressions
A and t[R] to denote the projection of a tuple t on the at-
tributes of relation R. For an condition θ and tuple t, θ(t)
denotes a functions that returns 1K if t |= θ and 0K other-
wise. We add one additional operator {t→ k} that creates
a singleton relation containing a the tuple t annotated with
k. Note that this a generalization of the empty relation
operator introduced in the original work on K-relations [24].

Definition 4 (RA+ on Kν-relations). Let R, S de-
note relations and t, u denote tuples, and k be an element
from Kν . We use t.A to denote the projection of tuple t on
expressions A and t[R] to denote the projection of tuple t on
the attributes from relation R. The operators of the positive
relational algebra on Kν-relations are defined as follows:

ΠA(R)(t) =
∑

u:u.A=t

R(u)

σθ(R)(t) = R(t)× θ(t)
(R ./ S)(t) = R(t[R])× S(t[S])

(R ∪ S)(t) = R(t) + S(t)

{t′ → k}(t) =

{
k if t = t′

0K else

We use ∅ as a short cut for the empty Kν-relation, i.e.,
∅(t) = 0K for all t.

An important property of our model is that queries can
be executed over the multi-version annotation model and
the result of the query can be interpreted as a standard K-
relation. That is the unversioning operator commutes with
queries. The fundamental property of the semiring frame-
work still hold for Kν-relations. That is the Kν version
of provenance polynomials generalizes all other Kν semir-
ings and translating from provenance polynomials to an-
other semiring K using an assignment of elements for K to
each variable in N[X]-relation is a semiring homomorphism
and commutes with queries. Practically, this means that
from the N[X]ν-provenance of query results one can derive
the query results in any other Kν-semiring.

Theorem 1 (Unv Commutes With Queries). Let D
be a Kν-database and Q(D) a query.

Q(Unv(D)) = Unv(Q(D))

Proof. Trivial induction over the structure of Kν expres-
sions and algebra operators using the fact that Unv maps

version annotations to identify functions and functions that
return 0 for all inputs.

4.2 Update Operations
We now define an update language for Kν-relations. The

annotation of a tuple t in a Kν-relation records the differ-
ent ways of how tuple t has been produced. For example,
consider that a tuple t was inserted into a relation R by
transaction T at version ν. Afterwards, transaction T ex-
ecuted an update operation at time ν′ that modified the
values of a tuple t′ to match t. Then in the updated version
of R, t would be annotated with T

I τν(1K) + T
Uτν′(k

′) where
k′ denotes the original annotation of t′.

In the following it will be helpful to think of an element
k ∈ Kν as a sum k1 + . . . + kn and introduce notations for
accessing particular elements from such a sum. We use n(k)
to denote the number summands in this representation of
an Kν element k and k[i] to denote the ith element in the
sum representation of k.

We introduce three update operations for our model. For
each update operation we consider it to be executed at a
time ν as part of a transaction T . Each update operations
takes as input a Kν-relation R and returns the updated ver-
sion of this Kν-relation.

An insertion I[Q,T, ν](R) inserts the result of query Q
into relation R. Note that this operation can be used to
express both SQL style INSERT INTO R VALUE (...) (by using
the singleton operator inQ) and INSERT INTO R (SELECT ...)

statements. Newly inserted tuples are wrapped in version
annotations. An update operation U [θ,A, T, ν](R) modifies
each tuple in R that matches condition θ by applying the
projection expressions in A. These tuples will be wrapped
in version annotations. A deletion D[θ, T, ν](R) wraps all
tuples matching the condition θ in a delete version annota-
tion. Recall that the interpretation of a delete annotation
maps all inputs to 0K . Thus, deleted tuples are removed
when R is mapped to the corresponding K-relation.

Definition 5 (Update Operations). Let R be an Kν-
relation. We define three types of update operations (insert,
delete, update) and a commit operation. We use ν(u) to
denote the version at which an update was executed.

U [θ,A, T, ν](R)(t) = R(t)× ¬θ(t)

+
∑

u:u.A=t

n(R(u))∑
i=0

T
Uτν+1(R(u)[i])× θ(u)

I[Q,T, ν](R) = R(t) + T
I τν+1(Q(D)(t))

D[θ, T, ν](R) = R(t)× ¬θ(t)

+

n(R(t))∑
i=0

T
Dτν+1(R(t)[i])× θ(t)

Example 4. Consider an update operation running over
a relation from our running example at time 2 as part of an
transaction T ′. Assume that the initial state of relations is
as shown in Figure 7.

UPDATE Schedule SET departureTime=’8:00’
WHERE company=’Whitedog ’ AND bnum =13;



For brevity we use c, b, and d to represent the company,
bnum, and departureTime attributes, respectively. This up-
date operation can be expressed in our model as:

U [c =′ Whitedog′ ∧ b = 13, d→ 8:00 , T ′, 2](Schedule)

The first tuple in relation Schedule matches condition of the
update and, thus, would be updated. The annotation of re-
sulting tuple t =(Whitedog,13,8:00) contains multiple sum-
mands. The first summand R(t) × ¬θ(t) would evaluate to
0, because R(t) in the input is 0 (i.e., t was not present in
the input). The second part of the annotation of t is a sum
over all tuples u that would get updated to t by the update
operation. These are all tuples (Whitebus, 13, X) for any
X. Except for the first tuple in the input relation, all these
tuples are annotated with 0 in the input. Thus, R(u)[0] = 0
for all summands except for X = 8 : 15 which is annotated
with T0

I τ1(s1) in the input. This summand would be wrapped
in a version annotation. Ignoring summands that evaluate

to zero the final annotation for t is T ′
U τ2(T0

I τ1(s1)). From
this annotation we can determine that t was produced by
updating a tuple that was inserted by transaction T0. The
annotation for a tuple which was not updated is the same
as in the input. For example, the annotation for the second
tuple t′ from the input is T0

I τ1(s2)× 1 +
∑
∅ = T0

I τ0(s2), be-
cause tuple t′ does not fulfill the update’s condition and there
exist no tuple u such that result of applying the update to u
would be t′ (the update sets departure time to 8:00 and the
departure time of t′ is 16:00).

Having defined the semantics of updates, we now demon-
strate that N[X]ν the multi-version semiring is the most
general Kν-semiring and, thus, the best choice to represent
update provenance. Furthermore, we need to check that Nν
and Bν correspond to standard relation updates under set
and bag semantics. That is, our model is a strict general-
ization of set and bag semantics.

Proposition 4.1 (Fundamental Property). Let ν
be a valuation from variables X to elements of a MV-semiring
Kν . Then Evalν and Unv commute with updates.

4.3 Transactions and Histories
We now build upon the update operations to define se-

mantics for transactional histories for Kν-databases. We
consider two concurrency control protocols: SI and RC-SI.
For simplicity we will limit the discussion to histories that
start from an empty database. However, the results nat-
urally extend to histories that are applied to an existing
Kν-database (with an associated history). One important
property of such histories is that they completely determine
what we refer to as a historic database. A historic database
D(H,CC) for a history H and concurrency control protocol
CC encodes the versions of D seen at each point in time by
the transactions in the history H. Here it will be useful to
model transactions as a sequence of relational update oper-
ations instead of read and write operations on data items.
Note that we do not consider transaction failures and par-
tially executed transactions. Theoretically, aborts could be
included in the model, but to simplify the discussion, we
will refrain from modelling aborted transactions and partial
transactions in histories. This is not a real drawback, be-
cause the mechanisms introduced in this paper are used to

retroactively reconstruct provenance and, thus,only apply to
finished transactions.

Definition 6 (History). A transaction T = {u1, . . . ,
un, c} is a sequence of update operations followed by a com-
mit operation (c). We require that the order relation <ν :
{(ui, uj) | ν(ui) < ν(uj)} is a total order for the state-
ments of T . Transactions implicitly start with their first
update operation. We use Start(T ) to denote ν(u) where
u is the first update in T . Similarly, End(T ) denotes the
commit time of transaction T . A history H = {T1, . . . , Tn}
over a database D is a set of transactions over D so that
no two operations in H were executed at the same time
(∀u, u′ ∈ H : ν(u) = ν(u′)→ u = u′).

Note that in our model updates are explicitly part of a
transaction and we record at which point in time (ν) an up-
date has been executed. This will allow us to determine the
state of the database seen by each update of a transaction.
Recall that we assume that the initial state of the database
contains only ∅ relations.

Example 5. Reconsider the running example from the
introduction. Again, we abbreviate attributes as c, b, d for
relation Schedule and c, n, p, f, t for relation Bus. The his-
tory for this example is:

T1 = {I[{(Greyhound, 5, 96, Chicago,NY ) → b4}, T1, 10](Bus)}
T2 = {D[c =′ Whitedog′ ∧ b = 13, T2, 12](Schedule),

I[Πc,n,′20:15′ (σc=′Greyhound′ (Bus)), T2, 13](Schedule),

U [c =′ Picobus′ ∧ b = 2, d→ 10:30 , T2, 14](Schedule)}

4.4 Historic Database
If we fix a concurrency control protocol CC, then a his-

tory H uniquely defines a multi-versioned Kν-database D
that models the annotated database seen within the context
of each transaction T ∈ H at a certain version ν. We call
the collection of states of D for all T and ν pairs a historic
database. The exact content of such a history database de-
pends on the concurrency control protocol. In the following
we define historic databases for SI and RC-SI.

4.4.1 Snapshot Isolation
We first define the historic database for the snapshot iso-

lation protocol based on the update operations defined for
our model.

Definition 7 (SI Historic Database). Let H be a
history over a database D. The historic database D(H,SI)
of D based on H is a set of historic relations. An n-nary
historic relation Rν is a function Dn × T × V → Kν . We
use R[T, ν] to denote the restriction of Rν generated by fix-
ing the last two parameters to T and ν and apply the same
notation also for databases. Furthermore, we use H(D) as
a shortcut for D[End(T )] where T is the transaction from
H that committed last. Rν is defined in Figure 5.

Figure 5a shows the recursive definition of R[T, ν]. Per
convention we define R[T, ν] = ∅ if ν < Start(T ). For
ν = Start(T ), relation R contains all changes of transac-
tions that committed before Start(T ) as required by snap-
shot isolation. We use R[ν] to denote this version of R and
will discuss its definition below. If T does contain an update



(a) Historic Relation

R[T, ν] =


∅ if ν < Start(T )

R[ν] if Start(T ) = ν

R[T, ν − 1] if Start(T ) < ν ∧ ¬∃u ∈ T : ν(u) = ν − 1

u(R[T, ν − 1]) if ∃u ∈ T : ν(u) = ν − 1

(b) Committed Tuple Versions at ν

R[ν](t) =
∑

T∈H∧End(T )≤ν

n(R[T,ν](t))∑
i=0

R[T, ν](t)[i]× validAt(T, t, R[T, ν](t)[i], ν)

(c) Valid Tuple Versions from Transaction T at ν

validAt(T, t, k, ν) =

{
1K if k = T

I/U/Dτν′(k
′) ∧ (¬∃T 6= T ′ : End(T ′) ≤ ν ∧ updated(T ′, t, k))

0K else

(d) Tuple Versions Updated By Transaction T

updated(T, t, k)⇔ ∃u ∈ T, t′, i, j : R[T, ν(u)](t)[i] = k ∧R[T, ν(u) + 1](t′)[j] = T
U/Dτν(u)+1(k)

Figure 5: SI Historic Database Definition

(a) Historic Relation

R[T, ν] =


∅ if ν < Start(T )

R[T, ν − 1] if Start(T ) ≤ ν < End(T ) ∧ ¬∃u ∈ T : ν(u) = ν − 1

u(RT [ν − 1]) if ∃u ∈ T : ν(u) = ν − 1

RT [ν] if ν = End(T ) ∧ ¬∃u ∈ T : ν(u) = ν − 1

(b) Committed Tuple Versions and Updates of T

RT [ν](t) =
∑

T ′∈H∧(End(T ′)≤ν∨T ′=T )

n(R[T ′,ν](t))∑
i=0

R[T ′, ν](t)[i]× validAt(T, T ′, t, R[T ′, ν](t)[i], ν)

(c) Valid Tuple Versions from T ′ at ν with Respect to T

validAt(T, T ′, t, k, ν) =


1K if k = T ′

I/Uτν′(k
′) ∧ (¬∃T ′′ : End(T ′′) ≤ ν ∧ updated(T ′′, t, k, ν) ∧ T ′ 6= T ′′)

∧¬updated(T, t, k, ν)

1K if k = T
I/Uτν′(k

′) ∧ ¬updated(T, t, k, ν)

0K else

(d) Tuple Versions Updated by Transaction T before ν

updated(T, t, k)⇔ ∃u ∈ T, t′, i, j : R[T, ν(u)](t)[i] = k ∧R[T, ν(u) + 1](t′)[j] = T
U/Dτν(u)+1(k)

Figure 6: RC-SI Historic Database Definition



that was executed at version ν − 1 then R[T, ν] is the result
of applying the update to R[T, ν− 1]. In case transaction T
did not execute an update at ν − 1, R[T, ν] is the same as
R[T, ν − 1].

Relation R[ν], the version of Rν that contains all commit-
ted changes of transactions executed before T is define as
follow. Each tuple is annotated with the sum of all annota-
tions on t produced by transaction that committed before or
at ν. However, some summands in such annotations may not
be valid at version ν anymore, because they have been over-
written by other transactions. We use validAt(T, t, k, ν) to
denote a function that returns 1 if annotation k on tuple t
is valid at version ν within transaction T and 0 otherwise.
A summand k is valid within an annotation for tuple t at
transaction T and version ν if 1) it has not been overwritten
by another transaction that committed before ν and 2) was
produced by T before ν (is wrapped in a version annotation
corresponding to an update of transaction T ). For the first
condition we define a predicate updated(T, t, k) which is
true if transaction T has overwritten summand (tuple ver-
sion) k on tuple t.

A transaction T has overwritten a summand k in an an-
notation of a tuple t if there exist an update u (update or
delete) within the transaction that has updated tuple t into
tuple t′. Thus, there has to exist i and j so that a summand
R[T, ν(u)][i] = k is in the annotation on t before the update
and after the update the annotation on tuple t′ contains a
summand R[T, ν(u) + 1][j] = T

I/Uτν(u)+1(k).

Example 6. Figure 7 shows the annotations on the ex-
ample database before and after the execution of transactions
T1 and T2. Consider the first statement in transaction T2

is a delete executed at version 12. According to the defi-
nition of a historic database the state of relation schedule
after the deletion (Schedule[T2, 13]) is the result of apply-
ing the deletion to Schedule[T2, 12]. Since Start(T ) = 2
this version of schedule contains all updates of transaction
committed before version 12. Thus, Schedule[T2, 12] is the
version shown on the top of Figure 7. Now consider the
first tuple t = (Whitedog,13,8:15) in Schedule[T2, 12] which

is annotated with T0
I τ1(s1) indicating that this tuple was pro-

duced by an insertion of transaction T0. After applying the
deletion the annotation on this tuple is:

T0
I τ1(s1)× 0 + T2

D τ13(T0
I τ1(s1))× 1 = T2

D τ13(T0
I τ1(s1))

The original annotation is multiplied by 0 and an additional
summand has been added modelling that this tuple was deleted
by transaction T2. For illustrative purposes we will keep the
summand wrapped in a deletion annotation even though it
evaluates to 0 if this annotation in interpreted.

The next update from transaction T2 is an insert. When
evaluating the insertion query

Πc,n,′20:15′(σc=′Greyhound′(Bus))

over Bus[T2, 13] (which is equal to the version shown on
the top of Figure 7) the annotation on t is 0. Thus, the

insertion adds an additional summand T2
I τ14(0) to the an-

notation of t resulting in:

T2
D τ13(T0

I τ1(s1)) + T2
I τ14(0) = T2

D τ13(T0
I τ1(s1))

The last operation in transaction T2 is an update. Since
the condition of the update evaluates to false for t and there

exist no tuple u so that the result of applying the update to
would be t (this update sets the departure time to 10:30), the
resulting annotation is:

Schedule[T2, 14]× ¬θ(t)

+
∑

u:u.A=t

n(Schedule[T2,14](u))∑
i=0

Schedule[T2, 14](u)[i]× θ(u)

=T2
D τ13(T0

I τ1(s1))× 1 +
∑
∅

=T2
D τ13(T0

I τ1(s1))

The second tuple in the schedule relation has not changed by
any transaction so its annotation is same as the input.

The third tuple and fourth tuple do not fulfill the condition
of the deletion and are annotated with 0 in the result of the
insertion query. Thus, if we remove summands that evaluate
to 0 the annotations on these tuples before execution of the
final update of transaction T2 are the same as before this
transaction started. Let us use t3 and t4 to denote these
tuples. Tuple t3 fulfills the condition of the update and, thus,
is annotated with:

T0
I τ1(s3)× 0

+
∑

u:u.A=t3

n(Schedule[T2,14](u))∑
i=0

Schedule[T2, 14](u)[i]× θ(u)

The sum ranges over all tuples u which after applying the
update are equal to t3. These are all u : (Picobus, 2, X) for
any valid time X. Any such u fulfills the condition of the
update (c =′ Picobus′ ∧ b = 2), i.e., θ(u) = 1. With the
exception of t3 and t4 all such tuples are annotated with 0
in the input. Thus, effectively the sum ranges only over the
input annotations for t3 and t4 which each are annotated
with one summand. The resulting annotation is:

T2
U τ15(T0

I τ1(s3))× 1 + T2
U τ15(T0

I τ1(s4))× 1

=T2
U τ15(T0

I τ1(s3)) + T2
U τ15(T0

I τ1(s4))

As discussed above tuple t4 fulfills the condition of the
update, but there exist no u such that u.A = t4. Thus, the
resulting annotation for t4 is:

T0
I τ0(s3)× 0 +

∑
∅

= 0

4.4.2 Read Committed Snapshot Isolation
Under read committed snapshot isolation (RC-SI) 6 each

update u within a transaction sees changes made by previ-
ous updates of the same transaction and changes of trans-
actions that have committed before u was executed. Recall
that under RC-SI each update of a transaction sees changes
of transactions which committed before the update was ex-
ecuted. Thus, we have to adapt the definitions of R[T, ν] to
include changes of concurrent transactions. We define RT [ν]
which denotes the version of relation R seen by transaction
T at version ν and thus version includes both past changes
of T and annotations created by transactions that commit-
ted before ν. Consider the range of the outer sum in the
definition of RT [ν]. This sum ranges over all transactions
that have committed before ν and T itself.

6Recall that this corresponds to isolation level
READ COMMITTED in databases such as Oracle or Postgres



Bus

company number price fromCity toCity
T0
I τ1(b1) Whitedog 13 210 New York Chicago
T0
I τ1(b2) Whitedog 15 140 Seattle Chicago
T0
I τ1(b3) Picobus 2 65 Chicago Schaumburg

Schedule

company bnum departureTime
T0
I τ1(s1) Whitedog 13 08:15
T0
I τ1(s2) Whitedog 15 16:00
T0
I τ1(s3) Picobus 2 10:30
T0
I τ1(s4) Picobus 2 12:30

Bus after Transaction 1

company number price fromCity toCity
T0
I τ1(b1) Whitedog 13 210 New York Chicago
T0
I τ1(b2) Whitedog 15 140 Seattle Chicago
T0
I τ1(b3) Picobus 2 65 Chicago Schaumburg
T1
I τ11(b4) Greyhound 5 96 Chicago New York

Schedule after Transaction 2

company bnum departureTime
T2
D τ13(T0

I τ1(s1)) Whitedog 13 8:15
T0
I τ1(s2) Whitedog 15 16:00
T2
U τ15(T0

I τ1(s3)) + T2
U τ15(T0

I τ1(s4)) Picobus 2 10:30
T2
I τ14(T1

I τ11(b4)) Greyhound 5 20:15

Figure 7: Historical Database for the Running Example Transactions (H = {T1, T2})

Again, we define a relation validAt which determines
whether a summand in an annotation is valid at time ν.
However, now this validity is specific to a transaction T .
A summand is valid if it was produced by T itself (second
row in the case distinction). In addition, it is also valid if
it was produced by transaction T ′ and no other transaction
that has committed or is equal to T has overwritten this
summand. The definition of updated is the same as under
SI.

Definition 8 (RC-SI Historic Database). Let H be
a history over a database D. The history database D(H,RC−
SI) of D based on H is a set of historic relations. Rν for R
in D is defined in Figure 6.

Similar to how Eval and Unv commute with queries and
updates, the same also holds for transactions.

Proposition 4.2 (Eval commutes with histories).
Let ν be a valuation from variables X to elements of a MV-
semiring Kν . Then Evalν and Unv commute with histories.

This theorem shows that we can evaluate histories using
the N[X]ν MV-semiring and derive the result of applying a
history in any MV-semiring from H(D) evaluated in N[X]ν .
However, this does not necessarily imply that our approach
correctly generalizes SI and RC-SI for set and bag semantics.
It remains to show that H(D) if evaluated under Bν and Nν ,
respectively, corresponds to standard set and bag semantics
evaluation of SI and RC-SI histories.

Theorem 2 (SI and SI-RC Correctness). Let DB
and DN be the result of evaluating a history H under stan-
dard bag semantics and set semantics using SI, receptively.
Then DB = H(D) if evaluated in B and DN = H(D) if
evaluated in B. The same holds for RC-SI.

Proof. We have already shown that updates executed
under Kν semantics correspond to set and bag semantics if
Kν = B and Kν = N, respectively. Thus, it remains to show
that our definition of H(D) obeys the visibility rules of SI
and RC-SI, respectively.
SI: Under SI each update of a transaction T sees changes
by transaction that committed before T started and updates
of previous statements of T . For a sequence of statements
within T the correctness follows from the correctness for sin-
gle updates. It remains to show that R[ν] is correct. R[ν]
has to contains all changes to relation R of transactions that
committed before ν. Obviously, this set contains all tuple
versions created by transactions that have committed before
ν and that have not been overwritten by preceding trans-
actions which also committed before ν. We prove that this
set corresponds to R[ν] by induction over the number of
transaction that have committed before ν.

Induction Start: Per convention the initial state of the
database is empty and, thus, the conjecture trivially holds.
If only a single transaction T ′ committed before ν then R[ν]
is the result of a single sequence update operations (the op-
erations of transaction T ′) and the correctness follows from



the correctness for simple updates.
Induction Step: Assume that the conjecture holds for i

transaction that committed before ν. We need to show that
the same applied if i+ 1 transaction have committed before
ν. WLOG assume that the new transaction Ti+1 was the
last to commit. Given that Ti+1 committed last, all sum-
mands created by this transaction should be in R[ν]. This
is the case, because End(Ti+1) ≤ ν and, thus, Ti+1 is con-
sidered in the outer sum of R[ν]. However, we need to show
that validAt(Ti+1, t, k, ν) evaluates to 1 for any t and k.
For any summand created by Ti+1 we know from the def-
inition of R[ν] that this summand was not visible to any
other transaction that committed before ν. This follows
from the fact that Ti+1 was the last transaction to com-
mit. For any other transaction Tj that committed before
Tj , R[Start(T )] the outer sum does not range over Ti+1,
because End(Ti+1) > Start(T ). Furthermore, we need to
show that any summand created by a transaction Tj that
was overwritten by Ti+1 is not present in R[ν]. Let k be
such an summand in an annotation for a tuple t created by
transaction Tj with End(Tj) < Start(T ). Note that we do
not need to consider case End(Tj) > Start(T ), because an-
notations created by such a transaction are not visible to
Ti+1. WLOG assume that transaction Ti+1 did overwrite k
using an update operation executed at ν′ < ν. No matter
what type of update is applied (update or delete), the result
will include a summand wrapping k into a version annota-
tion (this follows from the definition of update operations).
Hence, in validAt(Tj , t, k, ν) the not exists condition eval-
uates to false for T ′ = Ti+1, because End(Ti+1) < ν and
updated(Ti+1, t, k) is true. This proves the induction step.
RC-SI: The proof for RC-SI is similar in nature with the
exception that we needs to range over operations of trans-
actions and the visibility rules are slightly different.

4.4.3 Kν Database Size
We have introduced a representation system for the prov-

enance of transactional histories and proven several impor-
tant properties. However, so far we have not discussed how
the size (combined size of non zero annotations) of a his-
toric database is related to the size of the history. Here we
are only interested in parts of an annotation that does not
evaluate to 0.

Inspecting the definition of update operations, it should
be immediately clear that with the exception of the insert
statement, all updates do not generate additional summands
in the annotation. Even though an update U [θ,A, T, ν](R)
may combine summands from more than one input tuple,
this does not increase the number of summands, because
these summands will be effectively removed from these in-
put tuples (will evaluate to 0 in the result of the update). If
we limit insertion queries to singleton relations, then each in-
sertion adds at most one summand to one annotation in the
database. The total number of summands in the database
is then bound by the number of insert statements in the
history. Update and delete statements wrap a subset of the
existing summands in version annotations and, thus, may
increase the size of the annotation by at most the current
number of summands in all annotations. We can deduce
that the total annotation size in the final version of a his-
toric database produced under this restriction of inserts has
to be less than the square of the number of updates. Com-
pared to the maximum number of tuples created by set and

bag semantics for the same history the size may be increased
by a factor equal to the number of updates. This is not sur-
prising, because each summand (corresponding to at least
one tuple under bag semantics) may be wrapped in up to
number of update version annotations.

This result is important because it suggests that it may
be possible to efficiently compute such a representation. In
fact, we will demonstrate in Section 6 how an relational
encoding of an MV-database and reenactment queries can
be used to efficiently implement this approach.

If we lift the restriction on inserts then there exists no
bound on the size of the resulting historic database, because
an insert query may arbitrarily increase the size of the anno-
tated database. For example, consider a query of the form
R × . . . × R. Such a query will produce a number of sum-
mands that is exponential in the number of crossproducts in
the query. However, note that also under bag semantics the
number of result tuples of this query will also be exponential
in the number of crossproducts.

Theorem 3 (Historic Database Size). Let H be a
history where insert statements only use the constant rela-
tion operator in their query Q. Let the size of an historic
database be defined as the total number of non zero elements
in annotations in the latest version of this database. Let
#U(H) denote the number of updates in history H. The
size of D(H,CC) is O(#U(H))×#U(H))).

Proof. Since we require that every history starts from a
empty database, the initial database has size 0. New sum-
mands can only be added by insert operations. Each insert
adds exactly one summand wrapped in a version annota-
tion. Thus, for a history H with n = #U(H) updates, there
may exist no more than n summands in all annotations com-
bined. An update operation wraps input annotations in ver-
sion annotations. However, the total number of summands
stays constant, because any summand that is added to an
annotation of a tuple t would be removed from its original
tuple t′. In the worst case an update affects all summands
and, thus, increase the total database size by the total num-
ber of summands in its input. Since the total number of
summands in the database at any point of the history is
bound by n, it follows that each update can not possible
increase the size by more than n. Thus, the total database
size is bound by n× n.

4.5 Partial Provenance
For databases with large histories the provenance anno-

tation of a tuple stores its complete derivation history since
the origin of the database. This amount of information can
be overwhelming to a user and expensive to compute. Thus,
it is important to provide a mechanism for limiting prove-
nance information to one update operation, transaction, or a
set of transactions. In the Kν model this can be achieved in
a natural way by filtering parts of the annotations (to only
track the effect of a certain set of statements) and by replac-
ing subexpressions in annotations that represent parts of the
history the user is not interested in with fresh variables.

Example 7. Assume that a user is only interested the
provenance of transaction T2 from the running example. The
historic database for the example history also encodes the
changes applied by transaction T1. Partial provenance for
T2 can be derived by 1) replacing subexpressions within ver-
sion annotations for updates that were executed before T2



started with fresh variables, 2) remove summands created
by updates that were not visible to updates within T2, and
3) remove summands that were not affected by any update
in T2. In the resulting instance, only tuples affected by
T2 will be part of this partial provenance (i.e., annotated
with non-zero annotations). For example, consider the an-

notation T2
I τ13(T1

I τ10(b4)) on tuple (Greyhound,5,20:15) in
Schedule[T2, End(T2)]. To limit this annotation to prove-

nance related to T2 we would replace T1
I τ10(b4) with a fresh

variable, say x.

Definition 9 (Partial Provenance). Let T be a
transaction in a history H. The partial provenance D[T ] of
T is a Kν-database derived from D[T,End(T )] by applying
the following substitution rules to each summand k in an an-
notation in D[T,End(T )]. Let xnew denote a fresh variable
that does not occur in any annotation in D[T,End(T )].

k  

{
T
I/U/Dτν(sub(k′)) if k = T

I/U/Dτν(k′)

0 else

sub(k) =



k′ + k′′ if k = k′ + k′′

k′ × k′′ if k = k′ × k′′

k if k = 0 ∨ k = 1
T
I/U/Dτν(sub(k′)) if k = T

I/U/Dτν(k′)

xnew if k = T ′

I/U/Dτν(k′) ∧ T ′ 6= T

Partial provenance for sets of updates and transactions
can be defined in a similar fashion. For reasons of space
we omit these definitions here. Partial provenance preserves
the beneficial properties of the Kν-model as long as in an
evaluation the new variables introduced by the substitution
are replaced with the result of evaluating the original subex-
pression.

5. REENACTMENT QUERIES
It is well-known that updates can be expressed as rela-

tional algebra expressions that are evaluated over the ver-
sion of a relation before the update and return the updated
relation. For example an update

UPDATE R SET a = a + 5 WHERE b = 16;

can be expressed as

ΠA+5→A,B(σb=16(R)) ∪ σ¬(b=16)(R)

Based on the same idea, we now present a technique called
reenactment queries, that enables us to reconstruct the prov-
enance of an update u or whole transaction T in a history
by executing a reenactment query Q(u) respective Q(T )
which is annotation equivalent to u respective T . To be
precise u ≡N[X]ν Q(u), the original update and its reen-
actment produce the same annotated relation, i.e., have
the same result and provenance. As Green demonstrated
Q ≡N[X] Q

′ ⇒ Q ≡N Q′ (this result translates to MV-
semirings). Thus, if we disregard provenance, then reenact-
ment queries have the important property that they produce
the same updated relation as the original update.

We need to extend our query algebra with an annotation
operator that adds version annotations, because the oper-
ators of RA+ are not capable of introducing new version
annotations which is required for reenacting updates.

Definition 10 (Version Annotation Operator).
The version annotation operator T

I/U/DAν(R) takes as in-
put a Kν-relation R and returns a Kν-relation where each
summand in an annotation k is wrapped in T

I/U/Dτν .

T
I/U/DAν(R)(t) =

n(R(t))∑
i=0

T
I/U/Dτν(R(t)[i])

5.1 Update Reenactment
We first define reenactment for a single update operation

u. Such a reenactment query is executed over the historic
database seen by u’s transaction at the time of the update
u (R[T, ν(u)]).

Definition 11 (Update Reenactment). Let H be a
history over a database D and u and update operation in H.
The reenactment query Q(u) of u is defined as follows:

Q(U [θ,A, T, ν](R)) = T
UAν+1(ΠA(σθ(R[T, ν]))) ∪ σ¬θ(R[T, ν])

Q(I[Q,T, ν](R)) = R[T, ν] ∪ TI Aν+1(Q(D[T, ν]))

Q(D[θ, T, ν](R)) = T
DAν+1(σθ(R[T, ν])) ∪ σ¬θ(R[T, ν])

An update modifies a relation by applying the expression
from A to all tuples that match the update condition θ. All
other tuples are kept as is. Thus, we can compute the result
of an update as the union between these two sets. An insert
statement adds the result of a query to the affected relation.
It can be reenacted as the union of the relation before the
update and the result of the insertion query. A deletion
removes tuples matching the deletion condition (wraps them
in deletion annotations). Thus, it can also be expressed as
a union between the original tuples that do not match the
condition and the deleted versions of tuples that match the
condition.

Example 8. Consider the insert and update operations
(let us refer to these operations as u1 and u2) from trans-
action T2 of the running example shown in Example 5. The
reenactment query Q(u1) for the insert u1 is:

Schedule[T2, 13]

∪T2
I A14(Πc,b,′20:15′(σc=′Greyhound′(Bus[T2, 13])))

The reenactment query Q(u2) is:

T2
U A15(Πc,b,10:30→d(σc=′Picobus′∧b=2(Schedule[T2, 14])))

∪σ¬θ(Schedule[T2, 14])

Theorem 4 (Annotation Equivalence). Let u be an
update statement and Q(u) its reenactment query. Then u
and Q(u) are annotation equivalent:

u ≡N[X]ν Q(u)

Proof. Proven by substitution of the definitions of the
update operations and query and annotation operators. As
an example we show the proof for an update u = U [θ,A, T, ν](R).
The reenactment query Qu for u is:

T
UAν+1(ΠA(σθ(R[T, ν]))) ∪ σ¬θ(R[T, ν])

We have to show that u(t) = Qu(t) for any tuple t ∈ R. Let
Q′ = ΠA(σθ(R[T, ν]))



R[T, ν] 

{
QR(Last(R, T, ν)) if ∃u ∈ T : u(R) ∧ ν(u) < ν

R[Start(T )] else

Figure 8: SI Transaction Reenactment Substitution Rules

Applying the definitions of RA+ we get:

Qu(t) =

n(Q′(u))∑
i=0

T
Uτν(Q′(u)) + (R(t)× ¬θ(t))

= R(t)× ¬θ(t) +

n(Q′(t))∑
i=0

T
Uτν(Q′(t)[i])

Now we substitute Q′(t) =
∑
u:u.A=t(R(u)× θ(u)) to get

= R(t)× ¬θ(t) +

n(Q′(t))∑
i=0

T
Uτν((

∑
u:u.A=t

R(u)× θ(u))[i])

Since the annotation operator applies the version annotation
to each summand in an annotation we can pull out the inner
sum:

= R(t)× ¬θ(t) +
∑

u:u.A=t

n(R(u)×θ(u))∑
i=0

T
Uτν((R(u)× θ(u))[i])

Applying the distributivity laws for semirings, we get:

= R(t)× ¬θ(t) +
∑

u:u.A=t

n(R(u))∑
i=0

T
Uτν(R(u)[i]× θ(u))

Since T
Uτν is interpreted as identify we can pull out the mul-

tiplication θ(u) to get:

= R(t)× ¬θ(t) +
∑

u:u.A=t

n(R(u))∑
i=0

T
Uτν(R(u)[i])× θ(u)

= U [θ,A, T, ν](R)(t)

This proves the theorem for updates. The proof for inserts
and deletes in analog.

Based on this theorem, a reenactment query can be used
to simulate the effect of any update expressible in our model.

Collary 5.1. Eval commutes with updates and query pro-
cessing and the same holds for unversioning. Thus, for any
MV-semiring Kν we get:

u ≡Kν Q(u)

Unv(u) ≡K Unv(Q(u))

5.2 Transaction Reenactment
To reenact a transaction we merge the reenactment queries

for the updates of the transaction in a way the respects the
visibility rules enforced by the concurrency control protocol.
Interestingly, the resulting query only accesses committed
tuple versions (there is no access to R[T, ν] if ν 6= End(T )).
This will become important in the next section, where we
demonstrate how to retroactively compute the provenance
of transactions based on reenactment queries, because we
want to run such provenance computations over a regular
database with time travel support and all system we are
aware of only support accessing committed tuple versions.

5.2.1 SI Reenactment
Under snapshot isolation, each update ui of a transac-

tions sees the version of the database at transaction start
plus local modifications of updates uj of transaction T with
j < i. Thus, effectively, each update ui updating a table R
is evaluated over the annotated database produced by the
most recent update uj with j < i that updated R. Since
we have already proven that u ≡N[X]ν Q(u), each reference
to a relation R[T, ν] produced by update uj can be replaced
with Q(uj). Applying this substitution recursively results
in a single query QR(T ) per relation R effected by trans-
action T . Each such query only references versions of R
valid when the transaction started (R[Start(T )]). Techni-
cally, the reenactment of a transaction is a set of queries.
However, abusing terminology we will refer to this set of
queries as the reenactment query of the transaction.

Definition 12 (Transaction SI Reenactment).
Let T = u1, . . . un, c be a transaction in a SI history H. We
use R(T ) to denote all relations effected by transaction T
(updated by at least one update in T ) and Last(R, T, ν) to
denote the last update executed before ν in T that updated
table R. The reenactment query Q(T ) for T is defined as
follows:

Q(T ) = {QR(T ) | R ∈ R(T )}

QR(T ) = QR(Last(T,R,End(T )))

where transaction update reenactment query QR(u) is de-
fined as the result of exhaustively applying the substitution
rule shown in Figure 8 to Q(u).

Example 9. Consider the transaction T2 from the run-
ning example presented in Example 5. Let us refer to the
update operations of this transaction as u1, u2, and u3. We
use S as a shorthand for relation Schedule and B for re-
lation Bus. We abbreviate attribute names as in previous
examples. The reenactment query for T2 is:

QS(T2) = QS(u3)

QS(u3) = T2
U A15(Πc,b,10:30→d(σc=′Picobus′∧b=2(QS(u2))))

∪ σ¬(c=′Picobus′∧b=2)(Q
S(u2))

QS(u2) = QS(u1)

∪ T2
I A14(Πc,b,′20:15′(σc=′Greyhound′(B[12])))

QS(u1) = T2
D A13(σc=′Whitedog′∧b=13(S[12]))

∪ σ¬(c=′Whitedog′∧b=13)(S[12])

For example, in QS(u2) the access to relation Bus is kept,
because there is no update operation in transaction T2 that
updated this relation before u2 was executed. The same ap-
plies to the accesses to relation Schedule in QS(u1). In con-
trast S[T2, 14] in QS(u3) is replaced with QS(u2), the query
for u2, the last update before u3 that updated relation Sched-
ule.



R[νb, νe](t) =
∑

T∈H∧End(T )≤νe

n(R[T,ν])∑
i=0

endV(t, R[T, ν])× validAt(T, t, k, νb, νe)

endV(t, TI/U/Dτν(k′)) = T
I/U/Dτ

νe
ν (k′) with νe = max({ν′ | validAt(T, t, k, ν′)})

validAt(T, t, k, νb, νe) = ∃νb ≤ ν ≤ νe : validAt(T, t, k, ν)

Figure 9: Extended Version Annotations for RC-SI

Having defined reenactment queries for SI transactions
we now proceed to prove that these reenactment queries are
equivalent to the transaction they are reenacting.

Theorem 5 (Annotation Equivalence). Let T be a
SI transaction and Q(T ) its reenactment query. Then T and
Q(T ) are annotation equivalent:

T ≡N[X]ν Q(T )

Proof. We prove the theorem by induction over the num-
ber of updates in transaction T . For simplicity, we assume
that transaction T updates a single relation R. The proof
can easily be extended for transactions that update multiple
relations.

Induction Start: For a transaction with a single update
u1, the theorem follows from the annotation equivalence for
update operations.

Induction Step: Assume that we proven that reenactment
is annotation equivalent for transactions with up to i up-
date operations. We have to show that the same holds for
any T = u1, . . . , ui, ui+1, c and Ti = u1, . . . , ui, c. WLOG
assume End(T ) = End(Ti). We know that Q(Ti) ≡N[X]ν

Ti = R[Ti, End(Ti)] = R[Ti, ν(ui) + 1]. Since Ti and T
have executed the same updates over the same input it fol-
lows that R[Ti, ν(ui) + 1] = R[T, ν(ui) + 1]. From the def-
inition of historic databases we know that R[T,End(T )] =
R[T, ν(ui+1) + 1] = ui+1(R[T, ν(ui+1)]). From the equiva-
lences stated above we can deduce ui+1(R[T, ν(ui+1)]) ≡N[X]ν

ui+1(QR(ui))). We know that Q(ui+1) ≡N[X]ν ui+1 and,

thus, it follows that R[T,End(T )] ≡N[X]ν Q
R(ui+1). Since

QR(ui+1) is the reenactment query for T , this concludes the
proof.

5.2.2 RC-SI Reenactment
Under RC-SI each update u in a transaction T sees tuple

versions created by previous updates of the same transaction
and tuple versions committed before ν(u).

We would like reenactment queries for RC-SI to be de-
fined recursively without requiring to recalculate the right
mix tuple versions from transaction T and from concurrent
transactions after each update. To be able to fulfill this re-
quirement we need to 1) enhance our annotation model to
record the version when a summand ceased to be valid in
version annotations and 2) introduce an extended version
of the selection operator that allows conditions which ac-
cess the start and end time of version annotations using a
pseudo attributes Vb and Ve. We use this operator to filter
summands from annotations based on the version annota-
tions they are wrapped in.

We first extend version annotations and based on this ex-
tension define R[νb, νe], a version of relation R that is an-
notated with all summands that were valid at some time
between νb and νe.

Definition 13 (Extended Version Annotations).
Let H be a history. Extended version annotations are ver-
sion annotations enhanced with an end time. A summand
that ends at version νe and was produced by an update of
transaction T at version νb is denoted by T

I/U/Dτ
νe
νb . If such

a summand was never overwritten we set νe =∞. The ver-
sion slice R[νb, νe] of relation R between versions νb and νe
according to a history H contains is defined in Figure 9.

In the above definition we consider a summand k to be
valid in a range of versions νb and νe if there exists a version
in the interval [νb, νe] for which k is valid. This definition is
analog to R[ν] with the exception that it is defined for an
interval and that each version annotation is extended with
an end version (when a summand was overwritten). Note
that the validity check we use here is the one we have defined
for SI.

We now introduce the version selection operator, an ex-
tended version of the selection operator that is used to fil-
ter summands based on the version annotations they are
wrapped in.

Definition 14 (Version Selection Operator). Let
θ be a condition over attributes from a relation R and pseudo
attributes Vb, Ve, and X representing parameters of version
annotations. Given a summand k = T

U/D/Iτ
νe
νb (k′) such a

condition is evaluated by replacing Vb with νb, Ve with νe,
and X with T . The version filter operator using such a con-
dition θ is defined as:

γθ(R) =

n(R(t))∑
i=0

R(t)[i]× θ(R(t)[i])

For example, we could use γVb<11(R) to filter out parts
of annotations from a relation R that were created by an
update executed before 11. Note that in contrast to regular
selection, a version selection operator’s condition is evalu-
ated over the individual summands in an annotation which is
necessary to filter individual summands. To correctly reen-
act an RC-SI transaction T , we need to provide each reen-
actment query for an update u ∈ T with the right mix of
summands created by previous updates of transaction T and
transactions that have committed before or at ν(u). We first
show that R[Start(T ), End(T ) − 1] contains all summands
(not created by T ) that are needed to evaluate any update
in T and how to filter out the input for update ui from this
version of relation R (except for tuple versions created by
T itself). Then we modify reenactment queries for updates
to directly operate over the result of the previous update
and let the modified reenactment query for the first update
modifying relation R read from R[Start(T ), End(T )− 1].

Consider RT [ν(ui) − 1] for an update ui from transac-
tion T . The summands in an annotation on a tuple t in
RT [ν(ui) − 1] can be split into two sets. Summands that



Insertions

R[T, ν] 

{
γVb≤ν∧Ve>ν(QR(Last(R, T, ν))) if ∃u ∈ T : u(R) ∧ ν(u) < ν

γVb≤ν∧Ve>ν(R[Start(T ), End(T )− 1]) else
(I1)

R[T, ν] 

{
QR(Last(R, T, ν)) if ∃u ∈ T : u(R) ∧ ν(u) < ν

R[Start(T ), End(T )− 1] else
(I2)

Deletions and Updates

σθ(R[T, ν]) γVb≤ν∧Ve>ν(R[T, ν]) (UD1)

σ¬θ(R[T, ν]) γ¬θ∨Vb>ν∨Ve≤ν(R[T, ν]) (UD2)

R[T, ν] 

{
QR(Last(R, T, ν)) if ∃u ∈ T : u(R) ∧ ν(u) < ν

R[Start(T ), End(T )− 1] else
(UD3)

Figure 10: RC-SI Transaction Reenactment Substitution Rules

have been updated previous updates of transaction T and
summands created by other transactions. The second set is
equal to R[ν(ui) − 1] as defined for SI historic databases.
Consider a summand k in the annotation of a tuple t in
R[ν(ui)− 1] that would get updated by ui. This summand
will obviously also exist in R[Start(T ), End(T )−1], because
this version of relation R contains all summands that were
valid at any time during the interval [Start(T ), End(T )−1].

We modify update reenactment queries so that if the first
reenactment query is run over R[Start(T ), End(T ) − 1], 1)
each such query Qui updates the correct set of summands
and 2) the query propagates every summand k that is af-
fected by an update uj with j > i or is not affected by
any update in T . This is achieved as follows. For updates
we replace the selection which filters out tuples that would
get updated (σθ) with γθ∧Vb≤ν∧Ve>ν , i.e., we also check
whether each summand should be visible to ui. Further-
more, in the other branch of the union we replace σ¬θ with
γ¬θ∨Vb>ν∨Ve≤ν (this is the negation of θ ∧ Vb ≤ ν ∧ Ve > ν)
to ensure that summands not visible to ui are pushed to
the reenactment queries for the following updates. For dele-
tions we also replace σθ and σ¬θ in the same fashion. For an
insertion ui we replace accesses to each relation Rj in the
query Q of the insertion with γVb≤ν(ui)∧Ve>ν(ui)(Rj).

Definition 15 (Transaction RC-SI Reenactment).
Let T = u1, . . . un, c be a transaction in a RC-SI history H.
The reenactment query Q(T ) for T is defined as follows:

Q(T ) = {QR(T ) | R ∈ R(T )}

QR(T ) = γνb≤ν(Last(T,R,End(T )))∧νe>End(T )−1(

QR(Last(T,R,End(T ))))

The reenactment query QR(u) is defined as the result of
exhaustively applying the substitution rules shown in Fig-
ure 10. If u is an insertion, then we apply rule (I1) to the
left input of the union in Q(u) and (I2) to the right input
of the union. For deletions and updates we exhaustively ap-
ply the following substitution rules (UD1) to (UD3) shown
Figure 10 in that order.

Reenactment queries for RC-SI transactions are equiva-
lent to the transaction they are reenacting.

Theorem 6 (Annotation Equivalence). Let T be a
RC-SI transaction and Q(T ) its reenactment query. Then
T and Q(T ) are annotation equivalent:

T ≡N[X]ν Q(T )

Proof. Assume that transaction T = u1, . . . , un, c is up-
dating a single relation R. The proof can easily be extended
for transactions updating multiple relations. We have to
prove that for any potential summand k in an annotation
on a tuple t, k appears in R[T,End(T )](t) iff k appears in
γνe>End(xid)−1(QR(un)(t)). We prove this fact by induction
over the number of updates in T .

Induction Start: Let T = u1, c. We distinguish two cases.
The first case applies if u1 is an update or delete. In this
case, the selection condition Vb ≤ ν(u1) ∧ Ve > ν(u1) in
the modified reenactment query for u1 returns R[ν(u1)].
The other input of the union is filtered using Vb > ν(u1) ∧
Ve ≤ ν(u1). This input may include additional summands
k created by transactions which have committed between
ν(u1) + 1 and End(T ). However, such summands will be
filtered out by final version selection on condition
γνb≤ν(Last(T,R,End(T )))∧νe>End(T )−1.
If u1 is an insert, then the version selection in the modified

reenactment query for u1 ensures that the insertion query Q
is evaluated over the correct input. The right input of the
union simply returns R[Start(T ), End(T )−1] and again the
final version selection filters out summands as required.

Induction Step: Assume that any transaction of length
up to i is equivalent to its reenactment query. Let T =
u1, . . . , ui, ui+1, c be a RC-SI transaction of length i+1. We
know that the induction hypothesis holds for Ti = u1, . . . , ui,
c. We have to prove that for any summand k in an anno-
tation of a tuple t in the input of ui+1, 1) iff k was up-
dated by ui+1 then it will be updated by the corresponding
reenactment query and 2) iff k was not updated then it
will be unmodified in the result of the reenactment query.
That k is present in the input of the modified reenact-
ment query for ui+1 follows from the induction hypothe-
sis. If k was updated then k would have to fulfill the ver-
sion selection condition Vb < ν(ui) ∧ Ve > ν(ui) and, thus,
will be updated by the modified reenactment for ui+1. If
k was not updated then it either 1) fulfills the condition
Vb < ν(ui) ∧ Ve > ν(ui), but does not fulfill the condition
of the update (query in case of an insert or selection con-
dition in case of an update or delete) or 2) does not fulfill



Vb < ν(ui) ∧ Ve > ν(ui). In the first case, k will be in the
result which follows from the correctness of update reenact-
ment. In the second case, the modified reenactment query
will ensure that k is in the result. In case of an update or
delete, k will fulfill Vb < ν(ui) ∧ Ve > ν(ui) in the version
selection on ¬θ ∨ Vb > ν(ui+1) ∨ Ve ≤ ν(ui+1). In case of
an insert the result of the modified reenactment for ui is in-
cluded unmodified (union). Since k was in the result of this
query, it follows that k is in the result of QR(ui+1) which
concludes the proof.

6. RELATIONAL REENACTMENT USING
TIME TRAVEL AND AUDIT LOGS

In this section, we introduce the necessary techniques for
retrieving the provenance of transactions for standard rela-
tional databases through an relational encoding of reenact-
ment queries based on audit logging and time travel. We
first define an relational encoding of Kν-relations. After-
wards we discuss what type of audit logging and time travel
is required by our approach - audit logs are used to deter-
mine which SQL statement was executed by which trans-
action and at which version. Finally, we demonstrate how
reenactment queries can be translated into standard rela-
tional algebra statements that produce such the relational
encoding of the partial provenance of a transaction by ex-
tending query rewrite techniques for computing the prove-
nance of queries.

6.1 Relational Encoding of Kν-Relations
We extend the relational encoding of provenance polyno-

mials introduced for the Perm [15, 18] project with addi-
tional columns that encode version annotations to be able
to encode N[X]ν relations. The basic idea behind this en-
coding is to normalize provenance polynomials according to
the query that produced them and then represent variables
by actual tuple values from the inputs of the query. In par-
ticular, the provenance polynomial is normalized to a sum
of products where in each product the variables are ordered
according to the relation they belong too. Given the rela-
tional algebra tree for a query Q, variables in products are
ordered according to the leafs of the algebra tree. We add
additional attributes to be able to encode such a product
and represent each summand in a provenance polynomial as
a separate tuple.

Definition 16 (Normalized N[X]). Let Q(R1, . . . , Rn)
be a query and Q(D) the N[X]-result of evaluating Q over an
instance D for relations R1 to Rn. A provenance polynomial
Q(D)(t) is normalized iff it is of the form:

n(Q(D)(t))∑
i=1

n∏
j=1

kij

where kij = 1 or kij = xij for some variable xij so that
Rj(t

′) = xij for some t′. We call Q(D) normalized if for
every t the annotation Q(D)(t) is normalized.

Based on this normal form, it is possible to define a rela-
tional encoding of the result of a query Q with N[X] seman-
tics and generate a relational algebra expression Q+ from Q
that produces this relational encoding [18].

Definition 17 (Query Encoding Schema). Let
Q(R1, . . . , Rn) be a query and Q(D) the normalized N[X]-
result of evaluating Q over an instance D for relations R1 to
Rn. Let Null(R) denote a list of null values with the same
arity as relation R. We use t.t′ to denote the concatenation
of two lists t and t′ and t(x) to denote the tuple annotated
with variable x in the input of Q. The relational encoding
Rel(Q(D)) is defined as:

Rel(Q(D)) =
⋃

t:Q(D)(t)6=0

n(Q(D)(t))⋃
i=1

{t . k̂i1 . . . . k̂in}

k̂ij =

{
t(kij) if kij = xij

Null(Rj) else

The schema Rel(Q(D)) is defined using a renaming func-
tion P that maps a relation and attribute name to a prov-
enance attribute name. In the following we use P (Ri) to
denote the list of attribute names containing P (Ri, A) for
each A ∈ Ri. Furthermore, let IDP denote a function that
takes a list of attribute names and adds unique identifiers
to attribute names that occur more than once in the list.

Definition 18 (Query Encoding Schema). The
schema Sch(Rel(Q(D))) for Rel(Q(R1, . . . , Rn)) is defined
as:

Sch(Rel(Q(D))) = IDP(Sch(Q) . P (R1) . . . . . P (Rn))

Example 10. Consider a query ΠA(R ./ S) over rela-
tions R(A,B) and S(B,C) with instances R = {(1, 2) →
r1, (1, 3) → r2} and S = {(2, 4) → s1, (3, 5) → s2}. This
query has a single result tuple (1)→ r1 × s1 + r2 × s2. The
annotation of this result tuple is already normalized, because
1) it is a sum of products and 2) in each product a variable
representing a tuple from relation R is in the first position
and a variable representing a tuple from relation S is in
the second position. The schema for the relational encod-
ing of provenance polynomials will be A, P (R,A), P (R,B),
P (S,B), P (S,C). The full relational encoding of the result
of Q is shown below. We show the corresponding part of the
provenance polynomial at the left of each tuple.

A P(R,A) P(R,B) P(S,B) P(S,C)
r1 × s1 1 1 2 2 4
r2 × s2 1 1 3 3 5

Our relational encoding of the partial provenance R[T ]
of a transaction T is based on the same principles: 1) nor-
malize Kν-expressions according to the operations that were
applied to the data and 2) use additional attributes to repre-
sent a normalize Kν-polynomial. We use a boolean attribute
to represent a potential version annotations for a particular
update operation in a transaction T . This attribute is set
to true for a tuple in the encoding if this tuple represents
a summand that has the version annotation. Note that a
boolean attribute is sufficient, because the nesting order of
version annotations from a transaction T is fixed (based on
the order of update operations in the transaction). An ex-
ception are inserts where the query Q of the insert accesses
a relation updated by the transaction. In this case, the el-
ements in a normalized provenance polynomial for a query
result t may carry version annotations from previous up-
dates of the transaction. Thus, we need to add additional



Schedule

Schedule Schedule Provenance u1 u2 u3

c b d P(S,c) P(S,b) P(S,d) A1 P(B,c) P(B,n) P(B,p) P(B,f) P(B,t) A2 A3

T2
D
τ12(s′1) Whitedog 13 8:15 Whitedog 13 8:15 T F F

T2
U
τ14(s′3) Picobus 2 10:30 Picobus 2 10:30 F F T

T2
U
τ14(s′4) Picobus 2 10:30 Picobus 2 12:15 F F T

T2
I
τ13(b′4) Greyhound 5 20:15 F Greyhound 5 96 Chicago New York T F

Figure 11: Relational Encoding of Partial Provenance for Example Transaction T2

Sch(R[T ]) = IDP(Sch(Rn)) Sch(R0) = Sch(R) . P (R) Sch(Ri+1) = Sch(Ri) . P(ui+1)

P(ui) =

{
P(R1, i) . . . .P(Rn, i) .Ai if ui = I[Q(R1, . . . , Rn), T, ν](R)

Ai else
P(Rj , i) =

{
P (Rj) if Rj 6= R

Sch(Ri) else

Figure 12: Schema of the Relational Encoding of R[T ]

attributes to represent such version annotations. This leads
to a hierarchical definition of a schema to accomodate cases
such as an insert that queries R over the result of another
insert querying R.

Consider R[T ](t)[i] = ki, a summand in an annotation on
a tuple t in the instance of relation R produced by transac-
tion T = (u1, . . . , un). This annotation will be of the form
τ i1(. . . (τ ni(k

′
i)) . . .) where each ij is in {1, . . . , n} (a ver-

sion annotation from one of the updates of T ) and k′i is either
a simple variable x (if k′i is an annotation of a existing tuple
from R updated by the transaction) or a query result anno-

tation
∑n(k′i)
j=1

∏mj
l=1 kijl (if k′i was produced by the query of

an insert within transaction T ). In the second case, each kijl
will again be of one of the above two forms. This insights
about the structure of annotations in R[T ] will help us to
define a normal form which in turn is used to come up with
an relational encoding of R[T ].

Addition operations are all pulled up to the top level of
an annotation in this normal form. To be able to transform
annotations into that normal form, we need the following
equivalence

τ (k + k′) = τ (k) + τ (k′) (1)

for any Kν-elements k and k′ and version annotation τ .
This equivalence follows from the interpretation of version
annotations as identity functions (update and insert) and
functions that map all inputs to the 0 element of the semiring
(delete). Consider again an annotation R[T ](t)[i]. In the
first case, the inner element k′i is already normalized. In the
second case, we can pull out the inner sum produced by the
insert query as follows:

τ i1(. . . (τ ni(

n(k′i)∑
j=1

mj∏
l=1

kijl)) . . .)

=

n(k′i)∑
j=1

τ i1(. . . (τ ni(

mj∏
l=1

kijl)) . . .)

Each kijl will again be of either form (1) or (2). In the
first case, the resulting expression is already normalized. In
the second case, we can use distributivity of addition and
multiplication to pull out additions.

Definition 19 (Normalized N[X]ν). Let T be a trans-
action updating relation R. An N[X]ν annotation R[T ](t) is
normalized if it is of the form:

∑m
i=0 ki where each ki is

a mix of multiplications and version annotations resulting
from applying equivalence (1) and distributivity of addition
over multiplication. Furthermore, summands that evaluate
to 0 and are not wrapped in a deletion annotation are re-
moved in the normalized representation.

By repeatedly applying equivalence (1) and distributiv-
ity of sum over multiplication any annotation R[T ](t) can
be translated into the above normal form. Our relational
encoding of R[T ] is based on this normal form. For simplic-
ity, we state the definition for transactions that only update
a single relation R. The extension to multiple relations is
straightforward. We first define the schema of this encoding
and then the actual instance.

Definition 20 (Transaction Encoding Schema).
Given the partial provenance R[T ] for a transaction T =
u1, . . . , un, the schema of the relational encoding Rel(R[T ])
of R[T ] is defined as follows. First let A1, . . . ,An denote
a list of boolean attributes used to represent version anno-
tations (Ai represents the annotation produced by update
ui). Let P be defined as in Definition 18. The schema
Sch(Rel(R[T ])) is defined in Figure 12.

Note that in Sch(R0) we add provenance attributes for
relation R to represent the variable x if a summand in an
annotation R[T ](t) is of the form (1). The hierarchical defi-
nition is necessary, because for an insertion where the query
Q of the insert accesses the updated relation R, the input
tuples of the query from relation R may already have been
annotated by previous updates and inserts of the same trans-
action. To be able to represent such annotations, we need to
add additional version attributes and attributes of relations
accessed by previous inserts.

In our implementation, we use a renaming function P that
creates attribute names with a prefix prov to distinguish
provenance from non-provenance attributes. P includes the
input relation and attribute name in its output. If necessary
a sequential number if a relation is referenced more than
once (corresponding to application of function IDP). For
example, P (R,A) =prov R A if this is the first reference to
R.A in the provenance. As another example, consider Q =
R ./ R. The provenance attribute names for the relational



Rel(R[T ]) =
⋃
t∈R

n(R[T ](t))⋃
i=0

t .Reln(R[T ](t)[i]) Rel0(k) =

{
t(x) if k = τ i1(. . . (τ ni(x)) . . .)

Null(P (R)) else

Reli+1(k) = Reli(k) . EncUi+1(k)

EncUi(k) =


True if k = τ j1(. . . (τ nj (x)) . . .) ∧ i ∈ {j1, . . . , nj}
False if k = τ j1(. . . (τ nj (x)) . . .) ∧ i 6∈ {j1, . . . , nj}
EncR(R1, k1, i), . . . ,EncR(Rm, k1, i) if k = τ j1(. . . (τ nj (k1 × . . .× km)) . . .) ∧ ui is an insert

Null(ui) else

EncR(Rj , k, i) =

{
t(x) if Rj 6= R ∧ k = x

Reli(k) else

Figure 13: Relational Encoding of an R[T ] Instance

encoding of the provenance of Q are prov R A, prov R B,
prov R A 1, and prov R B 1.

The instance of the relational encoding Rel(R[T ]) is cre-
ated by representing each summand in a normalized anno-
tation R[T ](t) as a separate tuple.

Definition 21 (Transaction Encoding Instance).
Let t be a tuple in R and R[T ](t) =

∑m
1 km be the normal-

ized annotation of t. The annotation of t is encoded as m
tuples t1 to tm each representing one summand in the prov-
enance. Let Null(ui) denote a list of null values for each
attribute from P(ui). Furthermore, let t(x) denote the tu-
ple corresponding to a variable x. The relational encoding
Rel(R[T ]) is defined as shown in Figure 13.

The relational encoding is constructed by generating one
tuple for each summand in an normalized N[X]ν-annotation
of a tuple in R[T ]. This tuple is constructed by concatenat-
ing the relational representations for parts of the annotation
corresponding to the individual updates statements of the
transaction. The original tuple (to be precise the single vari-
able annotating this tuple) in case of a sequence of updates
and deletes is encoded in Rel0(k). The part Reli(k) repre-
sents the version annotation of ui if ui is an update or delete
or the relational encoding of a query result in case ui is an
insert. Note that this encoding may encode summands that
evaluate to 0 (e.g., in case of a deleted tuple).

Example 11. Figure 11 shows the relational encoding of
Schedule[T2] for transaction T2 from the running example.
We use abbreviations S and B for relations Schedule and
Bus, respectively. Attribute names are abbreviated as in pre-
vious examples. This transaction contains a single insert
which uses a query Πc,s,′20:15′(σc=′Greyhound′(Bus)). Thus,
the provenance attribute schema contains attributes for re-
lation bus. Consider the second and third tuple in this rela-
tion. These tuples represent the two summands in the anno-
tation of tuple (Picobus,2,10:30). Both summands contain a

single version annotation T2
U τ14. Thus, only the attribute A3

corresponding to this version annotation is true and all other
attributes encoding version annotations are set to false. The
summand encoded by the second tuple references variable s′3
which is the annotation of tuple (Picobus,2,10:30) in the par-
tial provenance (recall that for the partial provenance subex-
pressions wrapped in version annotations of earlier trans-
actions are replaced with fresh variables). The last tuple is
the result of inserting the result of a query with a single tu-
ple in (b′4) in its provenance. Thus, the version annotation

xid pos version SQL
T1 0 10 INSERT INTO ...

T1 1 11 COMMIT

T2 0 12 DELETE FROM ...

T2 1 13 INSERT INTO ...

T2 2 14 UPDATE Schedule ...

T2 3 15 COMMIT

Figure 14: Audit Log Example

attribute corresponding to the insertion is set to true and
the values of the tuple annotated with b4 are stored in prov-
enance attributes representing the inputs (bus relation) of
this query.

6.2 Audit Log
We assume that the underlying database system on which

we want to execute provenance computations keeps an au-
dit log that can be queried. An audit log has to provide at
least the following information for each update statement
executed on the database: 1) The SQL code for the up-
date statement, 2) the version (time) when the update was
executed, 3) an identifier (xid) for the transaction the up-
date was part of, and 4) the position of the update within
its transaction. We require that the commit operation of a
transaction T is stored as a separate entry in the audit log
to be able determine End(T ).

Given a transaction identifier T , we use the audit log to
determine the operations of a transaction and the database
version they have accessed during provenance computation.

Example 12. Figure 14 shows an audit log for our run-
ning example. For instance, the update of transaction T2

was the third statement in the transaction ( pos is 2) and
was executed at time 14.

6.3 Time Travel
We assume a standard snapshot isolation based imple-

mentation of time travel as supported in similar fashion by
multiple commercial database systems. Each tuple is anno-
tated with a system time interval (transaction time) that
encodes when this tuple version is valid in the database.
Update operations create new tuple versions and invalidate
tuple versions that get updated by setting their end time
to the current time. These tuple version modifications are
only visible to the updating transaction. When a transac-
tion commits, then new tuple versions are created for all



tuples modified by the transaction. The new tuple versions
start time is set to the transaction commit time. The end
time of the previous tuple version is also set to the commit
time of the transaction.

Definition 22 (Snapshots and Time Slices). A
snapshot Rν of relation R contains all committed tuple ver-
sions valid at ν. A time slice R[νb,νe] of a relation R contains
all tuple versions that were valid at any time in the interval
[νb, νe]. Snapshots and time slices have two additional at-
tributes TTb and TTe storing the validity time interval of a
tuple version.

Example 13. Consider the transaction T (committed at
time 7) and the instance of relation R shown below. For
convenience, we show the validity interval of each tuple. The
snapshot R7 of relation R at time 7 contains two tuple ver-
sions. The first version was created by the two updates of
the transaction and, thus, its begin time is set to 7. The sec-
ond tuple version was already present when the transaction
started and was not affected by the transaction.

R

A B
[1,∞] 1 2
[1,∞] 2 3

R7

A B TTb TTe
0 6 7 ∞
2 3 1 ∞

T = U [A = 1, B → 6, T, 3](R),U [B = 6, A→ 0, T, 5](R)

6.4 Relational Implementation of Reenactment
We now discuss how reenactment queries overKν-relations

can be implemented as relational algebra queries with bag
semantics which produce the relational encoding of R[T ] for
a transaction T introduced in the last section. This rewriting
of queries with Kν-semantics into standard bag semantics
queries (expressible in SQL) significantly extends previous
results for rewriting queries with K-relational semantics into
bag semantics [18, 15, 16].

The rewriting is done by recursively applying rewrite rules
for single relational operators in a top-down fashion. These
rewrite rules are context-free in the sense that the only infor-
mation needed to rewrite an algebra operator is knowledge
about which attributes from its rewritten inputs encode an-
notations. We apply a selection on the boolean version an-
notation attributes to retrieve only tuple versions that were
affected by the transaction to compute the partial prove-
nance from the translated reenactment query.

Definition 23 (SI Rewrite Rules). Let T = u1, . . . ,
un, c be a transaction and let τi denote the version annota-
tion created by the ith update in T . The relational transla-
tion of the reenactment query Rel(Q(T )) restricted to par-
tial provenance is derived from Q(T ) as shown below. Here
Rew is the rewrite operator defined in Figure 15 where Null
(P(q)) denotes a singleton relation with null values for all
annotation attributes of q except for attributes for version
annotations which are set to false.

Rel(Q(T )) = σA1∨...∨An(Rew(Q(T )))

The query produced by the rewrite rules of Figure 15
creates unnecessary duplicates of annotation attributes. In
praxis, we therefore share provenance attributes for updated
relations in union operators where possible. Furthermore,
we have ignored the renaming of provenance attributes that
occur more than once (IDP).

Example 14 (Relational Reenactment). Consider
the reenactment query for transaction T2 from our running
example. The rewritten version of this query is shown in
Example 9. The accesses to relations Schedule and Bus at
version 12 have been rewritten into snapshots and by du-
plicating their attributes as initial provenance annotation.
Recall that we represent variables in annotations on rela-
tions in the database as the tuples they are annotating. The
part of the reenactment query corresponding to update u1

(QS(u1)) has been rewritten by replacing the accesses to re-
lation Schedule with their rewritten counterpart. The ver-
sion annotation operator has been replaced with a projection
adding a constant true as the value for version annotation
attribute A1. Here we have shared common annotation at-
tributes among the two inputs of the union. For the only
attribute not in the right input (A1) we generate Null(q2)
which is {(false)}. Update u2 is an insert with a query
that accesses relation Bus. The provenance of this query
has provenance in relation Bus whereas the provenance of
u1 has provenance in relation Schedule. The rewritten ver-
sion of QS(u2) applies crossproducts with constant relations
to make the two inputs of the union in the reenactment query
union compatible. The annotation operator has again been
rewritten into a projection. Finally, the part of the reenact-
ment query corresponding to the last update of transaction
T2 is rewritten by translating the version annotation opera-
tor into a projection and by adding a constant false to each
tuple from the right input to make the inputs union com-
patible. Note that, for sake of brevity, we have omitted the
relation in annotation attributes, e.g., we write P(n) instead
of P(B,n).

Reenactment queries for RC-SI transactions apply the ver-
sion selection operator and use the construct R[νb, νe] to
access a range of database versions. Recall that snapshots
and time slices have two additional attributes TTb and TTe
which encode the time during which a tuple version was
valid. The version selection operator can be implemented
as a simple selection over these attributes by replace pseudo
attributes Vb and Ve with TTb and TTe, respectively (see
rewrite rule for γθ in Figure 15. We add TTb and TTe to the
annotation attributes of a relation to make them available
to all version selections in the rewritten reenactment query.
These additional attributes have to be removed in the end.

Definition 24 (RC-SI Rewrite Rules). Let T be a
RC-SI transaction. The relational translation of the reenact-
ment query Q(T ) restricted to partial provenance is derived
from Q(T ) using the rules for SI rewrite with the exception
that we add the TTb and TTe attributes to P(R) and remove
these attributes in the end.

Rel(Q(T )) = σA1∨...∨An(ΠSch(R),P(Q(T ))(Rew(Q(T ))))

Having defined the relational translation of reenactment
queries it remains to be shown that this translation is in
fact correct, i.e., for any transaction T , the query that is the
result of this translation produces the relational encoding of
the partial provenance of transaction T .

Theorem 7 (Correctness). Let T be a transaction
updating relation R. The relational implementation of the
reenactment query for T produces the relational encoding of
the partial provenance for T :

Rel(Q(T )) = Rel(R[T ])



Structural Rewrite

Rew(R[ν]) = ΠSch(R),Sch(R)→P(R)(Rν)

Rew(R[νb, νe]) = ΠSch(R),Sch(R)→P(R)(R[νb,νe,)]

Rew(σθ(q)) = σθ(Rew(q))

Rew(γθ(q)) = σθ[Vb←TTb,Ve←TTe](Rew(q))

Rew(ΠA(q)) = ΠA,P(q)(Rew(q))

Rew(q1 ∪ q2) = (Rew(q1)×Null(P(q2))) ∪ (ΠSch(q1),P(q)(Rew(q2)×Null(P(q1))))

Rew(q1 ./θ q2) = ΠSch(q1),Sch(q2),P(q1),P(q2)(Rew(q1) ./θ Rew(q2))

Rew(Ai(q)) = ΠSch(Rew(q)),true→Ai(Rew(q))

Annotation Attributes

P(R[ν]) = P(R)

P(R[νb, νe]) = P(R), TTb, TTe

P(σC(q)) = P(q)

P(ΠA(q)) = P(q)

P(q1 ∪ q2) = P(q1) . P(q2)

P(q1 ./ q2) = P(q1) . P(q2)

P(Ai(q)) = P(q) .Ai

Figure 15: Rewrite Rules for Translating Kν-semantics Reenactment Queries into Standard Relational Semantics (Bag)

Rew(Q(T )) = σA1∨A2∨A3(Rew(QS(u3)))

Rew(QS(u3)) = Πc,b,10:30→d,P(c),P(b),P(d),A1,P(c),P(n),P(p),P(f),P(t),A2,true→A3
(σc=′Picobus′∧b=2(Rew(QS(u2))))

∪ σ¬(c=′Picobus′∧b=2)(Rew(QS(u2)))× {(false)}

Rew(QS(u2)) = (Rew(QS(u1))× {(null, null, null, null, null, false)})
∪ (Πc,b,′20:15′,P(c),P(b),P(d),A1,P(c),P(n),P(p),P(f),P(t),true→A2

(σc=′Greyhound′(Rew(B[12]))

× {(null, null, null, false)}))

Rew(QS(u1)) = Πc,b,d,P(c),P(b),P(d),true→A1
(σc=′Whitedog′∧b=13(Rew(S[12])))

∪Πc,b,d,P(c),P(b),P(d),A1
(σ¬(c=′Whitedog′∧b=13)(Rew(S[12]))× {(false)})

Rew(S[12]) = Πc,b,d,c→P(c),b→P(b),d→P(d)(S12)

Rew(B[12]) = Πc,n,p,f,t,c→P(c),n→P(n),p→P(p),f→P(f),t→P(t)(B12)

Figure 16: Relational Translation of the Reenactment Query for Transaction T2 from the Running Example
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Figure 17: GProM Architecture

Proof. Note that the rewrite rules are compositional.
We can prove the correctness of the rewrites Rew by an
induction over the number of operators in an reenactment
query. The theorem then follows from the fact that σA1∨...∨An
filters out tuples affected by the transaction.

7. IMPLEMENTATION

We have implemented reenactment-based provenance com-
putation in our Generic Provenance Middleware (GProM)
system. GProM is a middleware system that runs over
standard relational database systems and adds provenance
support to these systems. The system is implemented in
C and uses the standard C client-library of the backend
database to execute database operations. SQL statements
with provenance requests are first transformed into an in-
ternal representation that is similar to relational algebra
graphs (we use graphs instead of trees to explicitly encode
reuse of subqueries). We refer to this model as the alge-
bra graph model (AGM ). If the input SQL statement con-
tains requests for transaction provenance, then the transac-
tion reenactor module accesses the audit log of the backend
database to gather information about the involved trans-
action(s) and constructs a reenactment query. This reen-
actment query is then passed to the provenance rewriter
that rewrites the reenactment query to compute its prove-
nance. Afterwards, the optimizer of GProM simplifies and
optimizes the AGM graph using a set of heuristic rules. The
resulting AGM graph is then translated into executable SQL
code by the SQL Code Generator module. For a more thor-
ough overview of our vision for this system and its unique
features (provenance storage policies, database-independence,
heuristic and cost-based optimizations, . . . ) see [4].

Figure 17 shows an overview of the system. The user in-
teracts with the system through an extension of the underly-
ing database system’s SQL dialect. SQL is augmented with
language constructs for retrieving provenance. For instance,

PROVENANCE WITH TABLE R OF TRANSACTION T

would compute the relational encoding of the partial prov-



enance R[T ] of transaction T for relation R. Provenance re-
quests are considered queries and can be used in any place
of an SQL statement where a query can occur. For exam-
ple, provenance requests can be nested inside queries, used
in view definitions, and their result can be stored. For ex-
ample:

INSERT INTO X (PROVENANCE OF ...)

8. OPTIMIZATIONS

8.1 Reenacting With CASE
One disadvantage of the reenactment queries produced by

our approach is that each UPDATE is translated into a union
between two accesses to the input relation. For a sequence
of updates in a transaction this leads to a queries where the
left and right input of each such union is again a union op-
eration. Unless intermediate results are reused, this leads
to exponentially many union operations in the number of
updates in the transaction. We could force the backend
DBMS to reuse intermediate results by materializing them,
but this will lead to unnecessary overhead. A more efficient
approach, that we choose in our implementation, is to use
a different technique for reenacting UPDATE statements. As-
sume we have a conditional expression construct

if (θ) then e1 else e2

available that returns e1 if condition θ evaluates to true
and e2 else. In SQL such a construct can be implement
as CASE WHEN θ THEN e1 ELSE e2 END. Using this construct,
we can implement the relational reenactment of an update
U [θ,A, T, ν](R) using a projection over relation R on con-
ditional expressions derived from A and an additional con-
ditional expression to determine the value of the boolean
version annotation attribute for this update. Let A′ denote
a list of expressions that is derived from A as follows. For
each attribute a not updated by A we add a to A′. For each
update expressions a → e we add if (θ) then a else e to A′.
For the version annotation attribute for the update, we add
if (θ) then true else false. The resulting reenactment query
for an update is:

ΠA′(R[T, ν])

The same technique can also be applied to delete state-
ments by using a condition if (θ) then false else true for
the version annotation attribute. This rewriting technique
results in reenactment queries that reference their inputs
exactly once and, thus, avoids the potential exponential
blowup in query size.

Example 15. Consider an update U [b = 10, a → a +
5, T, ν](R) over a relation R(a, b) being the ith update in
transaction T . The rewritten reenactment query for this up-
date using the new conditional construct is

Πif (b=10) then a+5 else a,b,if (b=10) then true else false→Ai(

Rew(R[T, ν]))

Theorem 8. Let U [θ,A, T, ν](R) be an update statement.
Let Q denote the rewritten update reenactment query as de-
fined in Section 6.4 and Q′ denote the rewritten reenactment
query as defined above. Then

Q ≡ Q′

Proof. Consider the an input tuple t of the union in
the rewritten reenactment query Q. If t fulfills theta then
it will appear in the left input of the union and, thus, be
updated using projection A and by adding true as the value
of the version annotation attribute. In Q′ the conditions
of the conditional constructs if (θ) then e1 else e2 evaluate
to true returning t.A and adding true as the value for the
version annotation attribute. If t does not fulfill theta then
t will only appear in the right input of the union, its values
will not be updated, and false will be added as the value
of the version annotation attribute. The same applied for
Q′, because the condition of the conditional constructs will
evaluate to false and the original values of t’s attribute values
will be returned (and the version annotation attribute will
be set to false).

For RC-SI transactions we can apply the same technique
to encode the version selection operator. For example, θ ∧
Vb < 13 can be expressed through conditional constructs
if (θ ∧ TTb < 13) then e1 else e2.

8.2 Prefiltering Partial Provenance
The relational encoding of reenactment queries introduced

in Section 6.4 filters out tuples from the provenance of a
transaction T that were not affected by xid by applying a
selection to the result of the provenance computation that
removes tuples where all version annotation are false, i.e.,
that are tuples that were not effected by any update of the
transaction. This has the drawback the reenactment query is
evaluated over all tuples from RStart(T ). We now discuss two
optimizations that filter out tuples that were not updated
early on during reenactment.

8.2.1 Prefiltering using Update Conditions
The performance of the naive method can be improved

if we can determine upfront which tuples will be affected
by a transaction. Consider a transaction T = (u1, . . . , un)
and a tuple t valid at transaction start. Tuple t may be
modified by a subset (potentially empty) of the updates of
xid. If t is affected at all, then there has to exist a first
update in T that modified tuple t. Let ut denote this update.
This first update will see the version of t that was valid at
transaction start, because all update ui with i < t have not
updated t. Thus, t has to fulfill the condition of ut. This
observation can be used to characterize the set of tuples
affected by the transaction. In particular, the set of tuples
fulfilling the condition θ1 ∨ . . .∨ θn where θi is the condition
of the ith update operation in transaction T are exactly the
tuples that where updated by T . Note that this approach
is not applicable to a relation R if there exists an insert in
the transaction with a query that accesses relation R. For
such relations we have to fall back to the previous approach
presented in Section 6.4.

Theorem 9 (Prefiltering). Let T be an SI transac-
tion and R a relation affected by T that is not accessed by
any insertion query in T . The rewritten reenactment query
Rew(QR(T )) which applies the selection A1 ∨ . . . ∨ An is
equivalent to the query derived from Rew(QR(T )) by apply-
ing a selection on θ1 ∨ . . . ∨ θn to RStart(T ).

Proof. This equivalence holds as long as σθ1∨...∨θn(R) is
equal to the set of tuples that were updated. Consider that
there exist a tuple t that fulfils condition θpre = θ1∨ . . .∨θn.



Then there has to exist at least one θi that is fulfilled by t.
Let θj denote the condition from the earlest update such
that t |= θj . Then t was not updated by any ui with i <
j and would be updated uj . Thus, we have the required
contradiction. Now consider that there exists a tuple t that
was updated, but does not fulfill θpre. This directly leads to
a contradiction, because if t does not fulfill any θi it cannot
possibly be affected by any update from T .

For RC-SI transactions we can apply a similar technique
to filter tuples from a time slice R[νb,νe] using the condition
shown below.

(θ1 ∧ TTB ≤ ν(u1) ∧ TTe > ν(u1)) ∨ . . .
∨ (θn ∧ TTB ≤ ν(un) ∧ TTe > ν(un))

8.2.2 Prefiltering Using Committed Tuple Versions
Note that the version of the database at commit of trans-

action T will contain all tuple versions created by the trans-
action. Let us require that in a snapshot each tuple ver-
sion has a column xid that stores which transactions created
that tuple version. Thus, we can determine which tuple ver-
sions got created by a transaction T by running a query
σxid=T (REnd(T )). To retrieve the versions of these tuples
valid at transaction start (for an SI transaction), we can
join the result of this query with RStart(T ) to filter out tuple
version that were updated by T . Here we assume that the
database system uses some unique internal identifier for tu-
ples that do not change between versions. This assumption
holds for many DBMS. Assume that the DBMS stores these
identifiers in a column tid. We can use this tid attribute
to join the committed tuple versions with their counterpart
at transaction start. Like the technique presented in the
previous subsection this approach is only applicable to re-
lations that are not accessed by any insertion query in the
transaction.

Theorem 10 (History Join). Let T be an SI transac-
tion and R a relation affected by T . Consider reenactment
query QR(T ). The query Rew(QR(T )) is equivalent to the
query derived from Rew(QR(T )) by replacing RStart(T ) with

ΠR(RStart(T ) ./tid=tid′ Πtid→tid′(σxid=T (REnd(T ))))

Proof. Recall that our assumption is that a tid attribute
is not affected by any update. We know that the value of this
attribute will be the same in the original version of a tuple
at transaction start and at commit time. Thus, the join will
return all tuples that will get updated by transaction T .

We can adapt this technique for RC-SI transactions by
using a time slice instead of a snapshot.

9. EXPERIMENTS
We have evaluated our system using a synthetic workload

to test how the approach scales in the size of the database,
the size of historical data, the number of updates per trans-
actions, and the number of affected tuples per update. We
also measure the storage and runtime overhead of audit log-
ging and history maintenance. All experiments were exe-
cuted on a machine with 2 x AMD Opteron(tm) Processor
4238 CPUs (12 cores in total), 128 GB RAM, and 4 x 1TB
7.2K HDs in a hardware RAID 5 configuration.

Tables #Rows History Size
R10K, H0 10,000 0%
R100K, H0 100,000 0%
R1000K, H0 1000,000 0%
R1000K, H10 1,000,000 10%
R1000K, H100 1,000,000 100%
R1000K, H1000 1,000,000 1,000%

Figure 18: Tables Definitions

9.1 Dataset Description
In this experiment we use a single table with five numeric

columns. Values of these attributes are chosen randomly
using a uniform distribution with the exception of the pri-
mary key attribute which is automatically generated. We
create several versions of this table by varying the following
parameters:

• Table Size: R is the size of the table in number of
tuples.

• History Size: H is the size of the history in percent
relative to the table size.

The different configuration we have used are shown in Fig-
ure 18. We created variants R10K (10,000 rows), R100K
(100,000 rows) and R1000K (1000,000 rows) with no signif-
icant history (H0), i.e., the history only contains old ver-
sions of rows modified by our workload described next. Ad-
ditionally, we generated three tables with 1,000,000 rows
(R1000K) and different history sizes: R1000K,H10 with
10% history (100,000 rows in the history), R100K,H100
has 100% history (1,000,000 rows), and R1000K,H1000 has
1,000% history (10,000,000 rows).

9.2 Workload Description
The first workload we are considering consists of trans-

actions that consists solely of update statements. Updated
rows are randomly chosen. We vary the following parame-
ters:

• Number of Updates: U is the number of update
statements in the transaction. For example, U10 is a
transaction with 10 updates.

• Isolation Level: SI and RC represent the isolation
levels SERIALIZABLE and READ COMMITTED.

• Tuples Affected: T is the number tuples affected by
each update.

In our experiments each transaction was executed under
isolation levels READ COMMITTED (RC) and SERIALIZABLE

(SI). The default mode for experiments is SI. Unless stated
otherwise, each update in a transaction will affect one row
from the updated table (T1). The row to be updated is se-
lected using a selection condition on the primary key column
of the table.

9.3 Compared Methods
We compare different configurations for computing the

provenance of transactions in the workload. Each of these
configurations activates/deactivates a subset of the opti-
mizations we have described in Section 6.



• NoOpt (N): Computes the provenance of all rows in
a table, even rows that were not affected by the trans-
action. That is we do not apply the filter condition on
the version annotation attributes.

• Prefilter (P): Only computes the provenance of rows
updated by the transaction. These rows are filtered in
a first step using a selection condition which is a dis-
junction of all conditions for the updates of the trans-
action as described in Section 8.2.1. The database sys-
tem was instructed to materialize the intermediate re-
sult for each update in a transaction using temporary
tables.

• Prefilter+Merge (PM): Provenance is computed in
the same way as for the Prefilter configuration. How-
ever, where possible we merge operators (particularly,
projections) to reduce the number of query blocks in-
stead of materializing each intermediate result.

• HistJoin (H): This configuration also computes only
the provenance of rows updated by the transaction.
These rows are filtered in a first step by retrieving
ROWIDs for all rows updated by the transaction from
the history at commit time (database system X records
which transaction has created a tuple version in a
pseudo-column VERSION XID) and joining the result
with the version at transaction start to get the initial
version of the affected rows seen by the transaction’s
updates. Similar to the PM method we also collapse
query blocks in this configuration.

Each experiment was repeated 100 times and we report
the average runtime.

9.4 Table Size and Updates per Transaction
In this experiment we compute the provenance of trans-

actions varying the number of update operations per trans-
action (U1, U10, U100, and U1000) and the size of the
database (R10K, R100K, and R1000K). We use the table
without significant history and compute the NoOpt and Pre-
filter+Merge configurations. Figure 19 shows the runtime
of these provenance computations. The approach scales lin-
early in the database size and number of updates per trans-
action. By reducing the amount of data to be processed by
the rewritten reenactment query and by reducing the num-
ber of query blocks, the PM approach is up to three orders
of magnitude faster then the naive NoOpt configuration.

9.5 History Size
Figure 20 shows the effect of history size on provenance

computation performance. We have computed the prove-
nance of a transaction with 10 updates (U10) over tables
with 1M rows (R1000K) and different history sizes: H0,
H10, H100, and H1000. The NoOpt configuration exhibits
almost constant performance. The runtime is dominated by
evaluating the rewritten reenactment query over 1M input
rows (all the rows present in one version of the table) hiding
the impact of scanning the history. Since, we have not cre-
ated any indexes on the history tables, the Prefilter+Merge
approach only has the advantage of processing less tuples
in the actual provenance computation, but still has to scan
most of the history to filter out the rows that were updated
by the transaction.
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9.6 Isolation Levels
Figure 21 presents the result of an experiment over ta-

ble R1000K,H1000. We have executed transactions with
different number of update operations (U1 to U1000) un-
der isolation levels SI and RC. The runtime of NoOpt is
not affected by the choice of isolation level, because as ex-
plained in Section 6 the only difference between SI and RC
reenactment is that a different version of the database is ac-
cessed and that we need to check for each row and update
whether this row version is visibile to an update. This check
results in more complex expressions in the conditional pro-
jections that reenact an update. However, the impact of this
additional expressions is negligible compared to the cost of
scanning the whole table and large parts of its history as
well as producing 1M output rows. For the more efficient
Prefilter+Merge configuration this effect is more noticeable,
especially for larger number of updates per transaction. Fur-
thermore, the condition for the initial selection that filters
out rows that were updated by the transaction (compare
Section 8.2.1) is more complex for RC. Note that theNoOpt
method did not finish within the allocated time budget for
1000 updates per transaction.

9.7 Comparing Optimization Techniques
In the next experiment we compare the performance of

our approach using different optimization techniques. Fig-
ure 22 shows the result for transactions with different num-
ber update operations (U1, U10, and U100) using table
R1000K,H1000. In addition to NoOpt and Prefilter+Merge
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we now also consider the HistJoin and Prefilter configura-
tions. Compared with Prefiler, the Prefilter+Merge config-
uration benefits from the applied query simplifications and
avoids materialization. This optimization is more effective
for transactions with more update, because the reenactment
queries for such transactions are increasingly complex and
contain more query blocks. While resulting in roughly 20%
improvement for U100, it improves the runtime by a fac-
tor of roughly 10 for U1000. The cost of Prefilter+Merge
is affected by the first selection that has to be applied to
1M rows (recall that no index was created for the history
table). This condition is linear in size of the number of up-
dates in the transaction. The runtime of HistJoin is almost
not affected by the U parameter, because it is dominated by
the join between two historical versions of the table. Pre-
filter+Merge outperforms HistJoin by a factor of roughly 3
to 4.

9.8 Number of Effected Rows Per Update
So far we have only considered updates that affect a single

row each. Figure 23 shows the runtime of provenance com-
putations for transactions with 10 update operations (U10)
where each update modifies 100, 1000 or 10000 rows. We
have used the table R1000K,H1000 in this experiment. As
evident from Figure 23, the runtime is not significantly ef-
fected when increasing the number of effected rows per up-
date; the runtime is dominated by scanning the history and
filtering out updated rows (Prefilter+Merge) or the self-join
between historic versions of the table (HistJoin). Increasing
the T parameter by 3 orders of magnitude increase the run-
time by about 150% (Prefilter+Merge) and 20% (HistJoin).

9.9 Index vs. No Index
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We now study how the performance of provenance com-
putation can be improved if indexes are created on the his-
tory tables. We have replicated the indexes defined for the
regular table to its corresponding history table. Figure 24
shows a comparison of the results with and without using
indexes. We have used the R1000K−H1000 table in this ex-
periment and have varied the number of update operations
per transaction (U1 to U1000). In this experiment we omit
the NoOpt (this method does not benefit from indexes) and
Prefilter (this method is consistently outperformed by Pre-
filter+Merge) configurations. Using indexes improves exe-
cution time of queries that apply Prefilter+Merging consid-
erably.

9.10 Inserts and Deletes
The next experiment measures the performance of prove-

nance computation for transactions that include inserts and
deletes in addition to updates. We have used the R1000K
table in this experiment. Each operation in a transaction is
chosen randomly from the following operations:

• 25% probability: An update as used in the previous
experiments (T1)

• 25% probability: An insert that inserts one new tu-
ple

• 25% probability: An insert that inserts the result of
a query over a different table (1 tuple inserted)

• 25% probability: A delete that removes 1 randomly
chosen tuple

Figure 25 shows the results for transactions with 20 state-
ments each (U20) and varying history size (H10 to H1000).
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Affected Tup. / Update R1000K R1000K,H1000
T10 0.001968 0.007516
T100 0.002622 0.009495
T1000 0.010371 0.027494
T10000 0.083445 0.628319

Figure 26: Runtime Overhead (Seconds)

As evident from this Figure, the performance is comparable
to the performance for only update statements.

9.11 History and Audit Logging Overhead
Our approach relies on audit logging and time travel to

reconstruct provenance of past transactions using reenact-
ment. While certainly not as heavy weight as directly com-
puting and storing provenance for all transactions run in a
database, logging SQL statements and inserting outdated
tuple versions into the history table to enable time-travel
does not come for free.

To measure the overhead of audit logging and history
maintenance we have created two versions of the workload
table - one with audit logging and history maintenance acti-
vated (R1000K,H1000) and one where these features where
deactivated R1000K. We have measured the execution time
of several U10 transactions varying the number of tuples af-
fected by each update (parameter T ).

Figure 26 shows the runtime and Figure 27 shows storage
overhead incurred by these features. When creating the ini-
tial history of our workload table, the runtime is increased
at least by 165%.

The storage size for the table without history is 21 byte
per row. If time travel is activated, this results in an over-
head of 37 bytes/row for tuples that are currently valid.
On average the storage size of outdated row versions is 65
bytes/row. An size of an entry in the audit log is on average
443 bytes. Note that the audit log overhead has to be paid
per executed statement independent of the number tuples
affected by a statement.

9.12 Summary
Our experimental evaluation confirms the efficiency and

scalability of our approach - the presented techniques easily
scale to tables with millions of rows, large transactions (1000
update statements), large number of updated tuples, and
large histories. Replicating the indexes defined for a table
to the corresponding history table can improve performance
significantly, because our reenactment approach effectively
exploits available indexes. The proposed optimizations in-
crease performance by several orders of magnitude.

AverageRowSize(Bytes)
Regular Row Size 21

Overhead for Current Rows 37
Overhead for Historical Rows 65
Audit Log (per Statement) 378

Figure 27: Storage Overhead

10. CONCLUSIONS
We have presented the first solution for computing the

provenance of transactions run under SI and RC-SI. Our ap-
proach is based on the novel concept of reenactment queries,
i.e., queries that simulate the effect of updates and transac-
tions. We have extended the semiring annotation framework
with update operations and transactional semantics using
version annotations. The resulting MV-semirings provide
full account of the derivation history of tuples that were
produced by concurrent transactions. We present an rela-
tional encoding of MV-semiring relations and demonstrate
how reenactment queries in the MV-semiring model can be
constructed using an audit log and be reduced to standard
relational queries using time travel. Thus, our approach
can retroactively compute the provenance of transactions
using a standard DBMS and without incurring any runtime
or storage overhead apart from auditing logging and main-
taining historical relations for time travel. Our experimen-
tal evaluation demonstrates that our implementation in the
GProM system running over a commercial DBMS can effi-
ciently compute the provenance of transactions and scales
to large databases, histories, and complex transactions.

Extending reenactment queries for additional concurrency
control protocols and to more expressive provenance models
(e.g., the tensor-product extension of the semiring annota-
tion framework [3] used to model aggregation or extensions
of this framework for set difference [14, 2]) are promising av-
enues of future work. Reenactment is an elegant mechanism
that has many potential applications including determin-
ing complete sets of dependent transactions for transaction-
backout and computing historic What-If scenarios by reen-
acting modified transactions (e.g., “What would have hap-
pened if we would have updated accounts using 10% instead
of 5% interest?”).
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