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Abstract

Information Extraction methods can be used to au-
tomatically “fill-in” database forms from unstructured
data such as Web documents or email. State-of-the-art
methods have achieved low error rates but invariably
make a number of errors. The goal of aninteractive
information extractionsystem is to assist the user in fill-
ing in database fields while giving the user confidence
in the integrity of the data. The user is presented with
an interactive interface that allows both the rapid verifi-
cation of automatic field assignments and the correction
of errors. In cases where there are multiple errors, our
system takes into account user corrections, and immedi-
ately propagates these constraints such that other fields
are often corrected automatically.
Linear-chain conditional random fields (CRFs) have
been shown to perform well for information extraction
and other language modelling tasks due to their ability
to capture arbitrary, overlapping features of the input in
a Markov model. We apply this framework with two ex-
tensions: a constrained Viterbi decoding which finds the
optimal field assignments consistent with the fields ex-
plicitly specified or corrected by the user; and a mech-
anism for estimating the confidence of each extracted
field, so that low-confidence extractions can be high-
lighted. Both of these mechanisms are incorporated in a
novel user interface for form filling that is intuitive and
speeds the entry of data—providing a 23% reduction in
error due to automated corrections.

Introduction
A recent study showed that as part of the process of gather-
ing and managing information, currently 70 million workers,
or 59% of working adults in the U.S., complete forms on a
regular basis. Filling in forms is tedious, error-prone and
time-consuming. In many cases, the data that is used to pop-
ulate the fields of the form is already available in computer
readable form.

The goal of this work is to reduce the burden on the user
to the largest extent possible, while ensuring the integrity
of the data entered into the system. One typical example
is the entry of contact addresses from on-line sources such
as email messages or Web pages. There are more than 20
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fields in a contact database, including last name, first name,
address, city, state, phone, etc. As we will show, it is pos-
sible to create automatic systems which will extract over
90% of these fields correctly from a diverse set of complex
sources. Given this low error rate, the first goal of a good
user interface is to display the extracted fields so that they
can be verified rapidly. The second goal is to allow for the
rapid correction of incorrect fields. It is important to realize
that the fields are extracted as an interdependent set. Given
the name “Charles Stanley” it is likely that the first name is
Charles and the last name is “Stanley.” But, the opposite is
possible as well. Given the error that the two names have
been switched, naive correction systems require two correc-
tive actions. In theinteractive information extractionsystem
described below, when the user corrects the first name field
to be “Stanley,” the system then automatically changes the
last name field to be “Charles.” We call this capabilitycor-
rection propagation.

From the perspective of user interface design, there are
a number of goals, including reducing cognitive load, re-
ducing the number of user actions (clicks and keystrokes),
and speeding up the data acquisition process. An impor-
tant element that is often overlooked is the confidence the
user has in the integrity of the data. This is crucial to the
usability of the application, as users are not tolerant of (sur-
prising) errors, and will discontinue the use of an automatic
semi-intelligent application if it has corrupted or misclassi-
fied information. Unfortunately such factors are often hard
to quantify.

An interactive form filling system is quite different from
the batch processing of data, such as for warehouse data
cleaning (Borkar, Deshmukh, & Sarawagi 2000). In batch
processing the set of fields extracted are determined directly
and are optimized for low error rates. In contrast interactive
information extraction (IIE) puts additional requirements on
the information extraction system. To facilitate a natural
user experience, the information extraction system must dis-
play low confidence fields and make optimal use of any cor-
rections that the user has made.

There are a number of statistical approaches for infor-
mation extraction (IE) that are more or less suited to this
paradigm. The most common engineering approach is to
build a set of regular expressions that extract the fields in
question. Regular expressions are a poor match for interac-



tive information extraction since they cannot estimate confi-
dence, nor can they naturally incorporate user labels and cor-
rections. Maximum Entropy Classifiers are potentially quite
powerful, since they allow for the introduction of arbitrary,
potentially dependent, features. Maximum entropy classi-
fier can also estimate the confidence in decisions. However,
each field extracted using a maximum entropy model is es-
timated independently. For this reason the potential for cor-
rection propagation is minimal. Conditional Random Fields,
a generalization both of maximum entropy models and hid-
den Markov models, allow for the introduction of arbitrary
non-local features and capture the dependencies between la-
bels. CRFs have been shown to perform well on information
extraction tasks (McCallum & Li 2003; Pintoet al. 2003;
McCallum 2003; Sha & Pereira 2003), and are well-suited
for interactive information extraction since the confidence of
the labels can be estimated and there is a natural scheme for
optimally propagating user corrections.

There are two contributions of this paper. The first con-
tribution is the introduction of the interactive information
extraction framework. This includes a user interface that
highlights the label assigned to each field in the unstruc-
tured document visually while flagging low confidence la-
bels. The interface also allows for rapid correction using
“drag and drop.” Finally, the interface supports the propa-
gation of field corrections, so that one correction will often
correct many errors.

The second contribution is a pair of new algorithms for
the estimation of field confidences in CRFs and for the in-
corporation of constraints into the Viterbi decoding process.
In this case the constraints come from corrections to incor-
rect fields or from the new field labels added by the user.

The remainder of this paper describes each contribution
in turn. We then describe a set of experiments in the domain
of contact address entry. In these experiments we compare
the performance of several well known algorithms against
CRFs. We then investigate the effectiveness of constrained
Viterbi decoding after correcting the least confident error.

User Interaction Models
The idea explored in this paper is that of populating the fields
of a contact database, sometimes called a Digital Address
Book. With the increase of personal digital devices such as
personal digital assistants (PDAs), and cell phones, thereis
increasing demand for better tools for contact entry.

User Interfaces for Information Extraction
Figure 1 shows a user interface that facilitates interactive in-
formation extraction. The fields to be populated are on the
left side, and the source text was pasted by the user into the
right side. The information extraction system extracts text
segments from the unstructured text and populates the cor-
responding fields in the contact record. This user interfaceis
designed with the strengths and weaknesses of the informa-
tion extraction technology in mind. Some important aspects
are:

• The UI displays visual aids that allow the user to quickly
verify the correctness of the extracted fields. In this

Figure 1: A user interface for entry of contact information.
The user interface relies on interactive information extrac-
tion. If a user makes a correction, the interactive parser can
update other fields. Notice that there are 3 possible names
associated with the address. The user is alerted to the ambi-
guity by the color coding.

case color-coded correspondence is used (e.g. blue for
all phone information, and yellow for email addresses).
Other options include arrows or floating overlayed tags.

• The UI allows for rapid correction. For example, text seg-
ments can easily be grouped into blocks to allow for a
single click-drag-drop. In the contact record at the left,
fields have drop down menus with other candidates for
the field. Alternatively the interface could include “try
again” buttons next to the fields that cycle through pos-
sible alternative extractions for the field until the correct
value is found.

• The UI immediately propagates all corrections and addi-
tions by the “constrained Viterbi” procedure described be-
low.

• The UI visually alerts the user to fields that have low con-
fidence. Furthermore, in the unstructured text box, possi-
ble alternatives may be highlighted (e.g. alternate names
are indicated in orange)

Using a well-defined probabilistic model, such as CRF’s,
we can correctly calculate confidence estimates for each
field assignment. Estimation of confidence scores is dis-
cussed in the section “Confidence Estimation.”

Confidence scores can be utilized in a UI in a number
of ways. Field assignments with relatively low confidence
can be visually marked. If a field assignment has very low
confidence, and is likely to be incorrect; we may choose not
to fill in the field at all. The text that is most likely to be
assigned to the field can then be highlighted in the textbox
(e.g. in orange).

Another related case is when there are multiple text seg-
ments that are all equally likely to be classified as e.g. a
name, then this could also be visually indicated (as is done
in Figure 1).



User Interaction Models
For the purposes of quantitative evaluation we will simulate
the behavior of a user during contact record entry, verifica-
tion, and correction. This allows for a simpler experimental
paradigm that can more clearly distinguish the values of the
various technical components. A set of user studies will be
reported elsewhere.

A large number of user interaction models are possible
given the particulars of the interface and information extrac-
tion engine. Here we outline the basic models that will be
evaluated in the experimental section.

UIM1: The simplest case. The user is presented with the
results of automatic field assignment and has to correct
all errors (i.e. no correction-propagation).

UIM2: Under this model, we assume an initial auto-
matic field assignment, followed by a single randomly-
chosen manual correction by the user. We then perform
correction-propagation, and the user has to correct all re-
maining errors manually.

UIM3: This model is similar to UIM2. We assume an initial
automatic field assignment. Next the user is asked to cor-
rect theleast confident incorrect field. The user is visually
alerted to the fields in order of confidence, until an error
is found. We then perform correction-propagation and the
user then has to correct all remaining errors manually.

UIMm: The user has to fill in all fields manually.

Performance Evaluation
The goal in designing a new application technology is that
users see an immediate benefit in using the technology. As-
suming that perfect accuracy is required, benefit is realized
if the technology increases the time efficiency of users, or
if it reduces the cognitive load, or both. Here we introduce
an efficiency measure, called the Expected Number of User
Actions, which will be used in addition to standard IE per-
formance measures.

The Expected Number of User Actions: The Expected
Number of User Actions(ENUA) measure is defined as the
number of user actions (e.g. clicks) required to correctly
enter all fields of a record. The Expected Number of User
Actions will depend on the user interaction model. To ex-
press the Expected Number of User Actions we introduce
the following notation:Pi(j) is the probability distribution
over the number of errorsj afteri manual corrections. This
distribution is represented by the histogram in Figure 2.

Under UIM1, which does not involve correction propaga-
tion, the Expected Number of User Actions is:

ENUA =

∞
∑

n=0

nP0(n) (1)

whereP0(n) is the distribution over the number of incorrect
fields (see Figure 2).

In models UIM2 and UIM3 the Expected Number of User
Actions is

ENUA1 = (1 − P0(0)) +
∑

n

nP1(n). (2)

whereP0(0) is the probability that all fields are correctly
assigned initially andP1(n) is the distribution over number
of incorrect fields in a record after one field has been cor-
rected. The distributionP1 will depend on which incorrect
field is corrected, e.g. a random incorrect field is corrected
under UIM2 whereas the least confident incorrect field is
corrected under UIM3. The subscript1 on ENUA1 indi-
cates that correction-propagation is performed once.
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Figure 2: Histogram, where records fall into bins depending
on how many fields in a record are in error. Solid bars are for
CRF before any corrections. The shaded bars show the dis-
tribution after one random incorrect field has been corrected.
These can be used to estimateP0(n) andP1(n) respectively.

Constrained Conditional Random Fields
Conditional random fields (Lafferty, McCallum, & Pereira
2001) are undirected graphical models used to calculate the
conditional probability of values on designated output nodes
given values on designated input nodes. In the special case
in which the designated output nodes of the graphical model
are linked by edges in alinear chain, CRFs make a first-order
Markov independence assumption among output nodes, and
thus correspond to finite state machines (FSMs). In this case
CRFs can be roughly understood as conditionally-trained
hidden Markov models, with additional flexibility to effec-
tively take advantage of complex overlapping features.

Let o = 〈o1, o2, ...oT 〉 be some observed input data se-
quence, such as a sequence of words in a document, (the
values onT input nodes of the graphical model). LetS be
a set of FSM states, each of which is associated with a la-
bel, (such as a label LASTNAME). Let s = 〈s1, s2, ...sT 〉
be some sequence of states, (the values onT output nodes).
CRFs define the conditional probability of a state sequence
given an input sequence as

pΛ(s|o) =
1

Zo

exp

(

T
∑

t=1

∑

k

λkfk(st−1, st,o, t)

)

, (3)



whereZo is a normalization factor over all state sequences,
fk(st−1, st,o, t) is an arbitrary feature function over its ar-
guments, andλk is a learned weight for each feature func-
tion. The normalization factor,Zo, involves a sum over
an exponential number of different possible state sequences,
but because these nodes with unknown values are connected
in a graph without cycles (a linear chain in this case), it
can be efficiently calculated via belief propagation using dy-
namic programming. Inference to find the most likely state
sequence (very much like Viterbi algorithm in this case) is
also a simple matter of dynamic programming.

Maximum aposteriori training of these models is effi-
ciently performed by hill-climbing methods such as conju-
gate gradient, or its improved second-order cousin, limited-
memory BFGS (Sha & Pereira 2003).

In order to facilitate the user interaction model, we need to
clamp some of the hidden variables to particular values. Do-
ing so results in the constrained Viterbi algorithm for CRFs,
described below.

For HMMs, the Viterbi algorithm (Rabiner 1989) is an
efficient dynamic programming solution to the problem of
finding the state sequence most likely to have generated
the observation sequence. Because CRFs are conditionally
trained, the CRF Viterbi algorithm instead finds the most
likely state sequence given an observation sequence,

s
∗ = argmax

s

pΛ(s|o).

To avoid an exponential-time search over all possible set-
tings of s, Viterbi stores the probability of the most likely
path at timet which accounts for the firstt observations and
ends in statesi. Following the notation of (Rabiner 1989),
we define this probability to beδt(si), whereδ0(si) is the
probability of starting in each statesi, and the induction step
is given by:

δt+1(si) = max
s′

[

δt(s
′) exp

(

∑

k

λkfk(s′, si,o, t)
)]

.

(4)
The recursion terminates in

p∗ = argmax
i

[δT (si)]

We can backtrack through the dynamic programming table
to recovers∗.

Constrained Viterbi alters Eq. 4 such thats∗ is con-
strained to pass through some subpathC = 〈st, st+1 . . .〉.
These constraintsC now define the new induction is
δt+1(si) =






max
s′

[

δt(s
′) exp

(

∑

k

λkfk(s′, si,o, t)
)]

if si = st+1

0 otherwise
(5)

for all st+1 ∈ C. For time steps not constrained byC, Eq. 4
is used instead.

In the context of interactive form filling, the constraintsC
correspond to a set of observations (an address field) manu-
ally corrected by the user. Upon correction, the system runs
Constrained Viterbi to find the best path that conforms to the

corrected field. In addition to correcting the field the user in-
dicates, this process may also change the predicted states for
observationsoutsideof the corrected field. This is because
the recursive formulation in Eq. 5 can affect optimal paths
before and after the time steps specified inC.

Confidence Estimation
To estimate the confidence the CRF has in an extracted
field, we employ a technique we termConstrained Forward-
Backward (Culotta & McCallum 2004). The Forward-
Backward algorithm is similar to the Viterbi algorithm: in-
stead of choosing the maximum state sequence, Forward-
Backward evaluates all possible state sequences given the
observation sequence.

The “forward values”αt+1(si) are recursively defined
similarly to Eq. 4, except themax is replaced by a sum-
mation. Thus we have

αt+1(si) =
∑

s′

[

αt(s
′) exp

(

∑

k

λkfk(s′, si,o, t)
)]

. (6)

Furthermore, the recursion terminates to defineZo in Eq. 3:

Zo =
∑

i

αT (si) (7)

The Constrained Forward-Backward algorithm calculates
the probability of any sequence passing through a set of con-
straintsC = 〈sq . . . sr〉, where nowsq ∈ C can be either a
positive constraint or anegativeconstraint. A negative con-
straint constrains the forward value calculationnot to pass
through statesq.

The calculations of the forward values can be made to
conform toC in a manner similar to the Constrained Viterbi
algorithm. Ifα′

t+1(si) is the constrained forward value, then
Z ′

o
=
∑

i α′

T (si) is the value of theconstrained lattice. Our
confidence estimate is equal to the normalized value of the
constrained lattice:Z ′

o
/Zo.

In the context of interactive form filling, the constraints
C correspond to an automatically extracted field. The pos-
itive constraints specify the observation tokens labelledin-
side the field, and the negative constraints specify the bound-
ary of the field. For example, if we use states names B-
TITLE and I-JOBTITLE to label tokens that begin and con-
tinue a JOBTITLE field, and the system labels observation
sequence〈o2, . . . , o5〉 as a JOBTITLE field, thenC = 〈s2 =
B-JOBTITLE, s3 = . . . = s5 = I-JOBTITLE, s6 6= I-
JOBTITLE〉.

Experiments
For training and testing we collected 2187 contact records
(27,560 words) from web pages and emails and hand-labeled
25 classes of data fields.1 Some data came from pages con-
taining lists of addresses, and about half came from disparate

1The 25 fields are: FIRSTNAME , M IDDLENAME , LAST-
NAME , NICKNAME , SUFFIX, TITLE , JOBTITLE , COMPANY-
NAME , DEPARTMENT, ADDRESSL INE, CITY 1, CITY 2, STATE,
COUNTRY, POSTALCODE, HOMEPHONE, FAX , COMPANY-
PHONE, DIRECTCOMPANYPHONE, MOBILE, PAGER, VOICE-
MAIL , URL, EMAIL , INSTANTMESSAGE



Token Acc. F1 Prec Rec
CRF 89.73 87.23 88.24 86.24
MAX ENT 88.43 84.84 85.09 84.95

Table 1: Token accuracy and field performance for the Con-
ditional Random Field based field extractor, and the Maxi-
mum Entropy based field extractor.

web pages found by searching for valid pairs of city name
and zip code.

The features consisted of capitalization features, 24 reg-
ular expressions over the token text (e.g. CONSTAINSHY-
PHEN, CONTAINSDIGITS, etc.), character n-grams of length
2-4, and offsets of these features within a window of size 5.
We also used 19 lexicons, including “US Last Names,” “US
First Names,” “State names,” “Titles/Suffixes,” “Job titles,”
and “Road endings.” Feature induction was not used in these
experiments.

We implemented five machine learning methods to au-
tomatically annotate the contact records. All models were
trained on a random subset of 70% of the data and tested on
the remaining 30%. Table 1 shows the performance for the
two baseline methods. Column 1 lists the token accuracy
(the proportion of tokens labeled correctly), and columns 2-
4 list the segmentation performance at the field level, where
F1 is the harmonic mean of recall and precision. CRF is the
conditional random field classifier described earlier. MAX -
ENT is a conditional maximum entropy classifier. The ex-
periments do not include any user feedback. Notice that the
token error rate of the CRF system is about 11% lower than
that of the MaxEnt system.

In the following sections, we start by discussing results in
terms of the Expected Number of User Actions. Then we
discuss results that highlight the effectiveness of correction-
propagation and utilization of confidence scores respec-
tively.

User Interaction Evaluation
The standard information retrieval metrics do not adequately
capture the performance of an Interactive Information Ex-
traction system. In this paper we have proposed a metric
called the Expected Number of User Actions.

Table 2 shows the Expected Number of User Actions for
the different algorithms and User Interaction Models. In ad-
dition to the CRF and MAX ENT algorithms, Table 2 shows
results for CCRF, which is the constrained conditional ran-
dom field classifier presented in this paper.

The baseline user interaction model (UIM1) where IE is
used to populate the fields and the user corrects all remaining
errors is expected to require 0.73 user actions per record.
Notice that manual entry of records is expected to require
on average 6.31 user actions to enter all fields. This is about
8.6 times more user actions.

We see the advantages of correction-propagation in
CCRMs when an arbitrary incorrect field is corrected
(UIM2), over the baseline (i.e. not using correction prop-
agation (UIM1)) in the second row of Table 2. The ENUA
drops to 0.63, which is a relative drop in ENUA of 13.9%. In

ENUA Change
CRF – (UIM1) 0.73 baseline
CCRF – (UIM2) 0.63 -13.9%
CCRF – (UIM3) 0.64 -11.3%
MAX ENT – (UIM1) 0.94 +29.0%
Manual – (UIMm) 6.31 +770.0%

Table 2: The Expected Number of User Actions (ENUA) to
completely enter a contact record. Notice that Constrained
CRF with a random corrected field reduces the Expected
Number of User Actions by 13.9%.

comparison, manual entry requires over 10 times more user
actions.

Confidence estimation is used in UIM3. Recall that in this
user interaction model the system assigns confidence scores
to the fields, and the user is asked to correct the least confi-
dentincorrectfield.

Interestingly, correcting a random field (ENUA = 0.63)
seems to be slightly more informative for correction-
propagation than correcting the least confident erroneous
field (ENUA = 0.64).

While this may seem surprising, recall that a field will
have low confidence if the posterior probability of the com-
peting classes is close to the score for the chosen class.
Hence, it only requires a small amount of extra informa-
tion to boost the posterior for one of the other classes and
“flip” the classification. We can imagine a contrived exam-
ple where there are two adjacent incorrect fields. In this case,
we should correct themoreconfident of the two to maximize
correction propagation. This is because the field with lower
confidence requires a smaller amount of extra information to
correct its classification.

Under UIM3, the user may be required to verify a number
of correct fields before an incorrect field is found, since the
model may have least confidence in correct fields.

Another way of assessing the effectiveness of the confi-
dence measure is to ask how effective is it at directing the
user to an incorrect token. In our experiments with CCRFs,
the number of records that contained one or more errors was
276. The least confident field was truly incorrect in 226 out
of those 276 records. Hence, confidence estimation correctly
predicts an erroneous fields 81.9% of the time. If we instead
choose a token at random, then we will choose an incorrect
token in 80 out of the 276 records, or 29.0%. In practice, the
user does not initially know where the errors are, so confi-
dence estimates can be used effectively to direct the user to
incorrect fields.

The ENUA metric does not take into account the time it
takes the user to scan the record and find incorrect fields. It is
difficult to assess this without extensive user studies, where
different strategies and visual cues are compared.

Correction Propagation
To examine the effectiveness of correction propagation, Ta-
ble 3 shows the token accuracy of CCRF on contact records
containing errors in at least two fields. One field is corrected
by the user, with the hope that correction propagation will



total accuracy before correction 72.02
total accuracy after correction 87.12
uncorrected accuracy before correction79.50
uncorrected accuracy after correction 84.30

Table 3: Correction propagation results for CCRF on se-
quences with errors in at least two fields. Error reduction
is 23% for uncorrected tokens.

automatically fix errors in other fields. Here, total accuracy
is the token accuracy for the entire contact record, and un-
corrected accuracy is the token accuracy of tokens not cor-
rected by the user. Note that these accuracies are naturally
lower than in Table 2 because we are only examining records
with multiple errors.

These results show that having the user correct one field
results in a 23% reduction in error in the remaining fields.
This additional error reduction is a boon to users since they
do not have to perform these corrections manually.

Confidence Estimation
In the preceding discussion, the goal of IIE has been to cor-
rectly fill in all fields of each record. A different scenario
arises if we wish to reduce the labelling error rate of a large
amount of data but we do not need the labelling to be er-
ror free. If we have limited man-power, we would like to
maximize the efficiency or information gain from the human
labeller.

This user interaction model assumes that we allow the hu-
man labeller to verify or correct a single field in each record,
before going on to the next record.

As before the constrained conditional random field model
is used, where Constrained Forward-Backward is used to
predict the least confident extracted field. If this field isin-
correct, then CCRF is supplied with the correct labelling,
and correction propagation is performed using Constrained
Viterbi. If this field is correct, then no changes are made,
and we go on to the next record.

The experiments compare the effectiveness of verifying or
correcting the least confident field i.e. CCRF - (L.CONF),
to verifying or correcting an arbitrary field i.e. CCRF -
(RANDOM).

Finally, CMAX ENT is a Maximum Entropy classifier that
estimates the confidence of each field by averaging the pos-
terior probabilities of the labels assigned to each token inthe
field. As in CCRF, the least confident field is corrected if
necessary.

Table 4 show results after a single field has been verified
or corrected. Notice that if a random field is chosen to be
verified or corrected, then the token accuracy goes to 91.7%,
which is only a 19.2% reduction in error rate. If however, we
verify or correct only the least confident field, the error rate
is reduced by 56.18%.

This difference illustrates that reliable confidence predic-
tion can increase the effectiveness of a human labeller. Also
note that the 56% error reduction CCRF achieves over CRF
is substantially greater than the 27% error reduction between
CMAX ENT and MAX ENT.

Error Reduction F1 Prec Rec
CCRF - (L. CONF.) 56.2% 94.45 94.84 94.06
CCRF - (RANDOM) 19.2% 89.72 90.72 88.75
CMAX ENT 27.2% 89.4 90.34 88.48

Table 4: Token accuracy and field performance for interac-
tive field labeling. CCRF - (L. CONF.) obtains a 56%
reduction in error over CRF, and a 46% reduction in error
over CCRF - (RANDOM).

Pearson’s r Avg. Precision
Constrained FB 0.531 98.0
Random -0.02 87.99
WorstCase - 71.48

Table 5: Constrained Forward-Backward confidence estima-
tion performs substantially better than baseline approaches.

To explicitly measure the effectiveness of the Constrained
Forward-Backward algorithm for confidence estimation, Ta-
ble 5 displays two evaluation measures: Pearson’sr and av-
erage precision. Pearson’sr is a correlation coefficient rang-
ing from−1 to 1 which measures the correlation between a
confidence score of a field and whether or not it is correct.

Given a list of extracted fields ordered by their confidence
scores, average precision measures the quality of this order-
ing. We calculate the precision at each point in the ranked
list where a correct field is found and then average these
values. WORSTCASE is the average precision obtained by
ranking all incorrect fields above all correct fields. Both
Pearson’sr and average precision results demonstrate the
effectiveness of Constrained Forward-Backward for estimat-
ing the confidence of extracted fields.

Related Work
This paper is the first of which we are aware that uses in-
teractive information extraction with constraint propagation
and confidence prediction to reduce human effort in form-
filling. Several other efforts have studied efficient ways
to interactively train an extraction system, which would
later run without human interaction, for example (Cardie &
Pierce 1998; Caruana, Hodor, & Rosenberg 2000).

Methods to visually link related components in a user in-
terface have been explored, for example (Becker & Cleve-
land 1987; Swayne, Cook, & Buja 1991). The XGobi sys-
tem uses color coding and “brushing” to indicate associa-
tions in various types of high dimensional data.

Many common word processors use visual cues to direct
the users attention to possible errors in spelling and gram-
mar. In (Miller & Myers 2001) the authors use a similar
strategy, based on outlier detection.

Others have implemented systems for information extrac-
tion from free-text address blocks, however none using an
interactive method. Borkar, Deshmukh, & Sarawagi (2000)
obtains high accuracy using a HMM on a simpler and more
limited set of fields (HouseNum, PO Box, Road, City, State,
ZIP) ,which usually appear in very regular form. Similarly,



Bouckaert (2002) extracts the components of author affilia-
tions from articles of a pharmaceutical journal.

Confidence prediction itself is also an under-studied as-
pect of information extraction—although it has been inves-
tigated in document classification (Bennett 2000), speech
recognition (Gunawardana, Hon, & Jiang 1998), and ma-
chine translation (Gandrabur & Foster 2003). Much of the
previous work in confidence estimation for information ex-
traction comes from the active learning literature. For ex-
ample, Scheffer, Decomain, & Wrobel (2001) derive con-
fidence estimates using hidden Markov models in an infor-
mation extraction system, however, they do not estimate the
confidence of entire fields, only singleton tokens. The token
confidence is estimated by the difference between the prob-
abilities of its first and second most likely labels, whereas
our Constrained Forward-Backward (Culotta & McCallum
2004) considers multi-token fields, and the full distribu-
tion of all suboptimal paths. Scheffer, Decomain, & Wro-
bel also explore an idea similar to Constrained Forward-
Backward to perform Baum-Welch training with partially
labelled data, wherein a limited number of labels provide
constraints. However, these constraints are again for sin-
gleton tokens only. Constrained Viterbi has been used pre-
viously in bioinformatics to find sub-optimal alignments of
RNA sequences (Zuker 1991).

Conclusion and Future Work
We have introduced a new system for assisting users when
entering database records from unstructured data. We ex-
ploit CRFs to pre-populate the database fields and allow nat-
ural user interaction where the system takes into account
any corrections by the user. This is done by correction-
propagation using the Constrained Viterbi algorithm in
CRFs. Note that correction-propagation can be applied to
any relational model. By calculating confidence estimates
and highlighting low confidence field assignments, we help
the user spot any incorrect fields. We have shown that both
of these methods are quite useful. Using the system, the Ex-
pected Number of User Actions per record has been dramat-
ically reduced, from 6.31 for manual entry to 0.63 or more
than 10-fold.
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