CS 595 - Hot topics in database systems: **Data Provenance** L Database Provenance

I.1 Provenance Models and Systems

Boris Glavic

October 31, 2012

Introduction

Outline

1 Provenance Storage

- Introduction
- Compression Methods for Provenance
- Index Structures for Provenance
- Recap

Introduction

Storing Provenance

Why and When to Store Provenance

- During transformation execution
 - Temporarily materialize provenance
- Store provenance to preserve it
 - Main consideration: storage size
- To support queries
 - Main consideration: effective access

Introduction

Challenges for Storing Provenance

- Size of provenance information
 - Can outgrow original + result data
- Datamodel mismatch between data + its provenance
 - E.g., provenance could be formula, relationship, tree
 - For data that is set of tuples
- Queries over provenance
 - Need efficient access
 - Access patterns provenance \neq access patterns data

Introduction

Size of Provenance Information

Determined by

- Provenance model
 - Set of witnesses: $O(2^N)$ subsets of instance
 - Many models $O(n^2)$ (relation)
- Data granularity
 - Tuples
 - Attribute values
- Transformation granularity
 - Transaction
 - Query
 - methods below access intermediate results
 - SQL-Block
 - Algebra Operators

϶Y

Introduction

Provenance Model

Model Independent View

- Transformation has *n* inputs and *m* outputs
- Provenance models which inputs are responsible for an output in result of transformation
- \Rightarrow Size of provenance in $O(n \times m)$

Model Specific

- Additional Storage Requirements
 - Irrelevance
 - Set of witnesses: include data not in input
 - Lineage: set difference
 - Modelling Alternatives
 - Inputs replicated in multiple alternatives
 - Data Independent Parts of Model
 - Provenance Polynomials: + and × operators

Slide 4 of 50

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

λŶ

Introduction

Model Independent Storage Requirements

- Each of the *m* outputs
- depends on up to all of the *n* inputs

Introduction

Irrelevance

- Two types of irrelevance
 - Data not in input
 - E.g., set of witnesses: witness for $R \cup S$ can include tuples from T
 - Non-contributing input data
 - E.g., why-provenance of $\pi_{A,B}(R \Join_{a=a'} \pi_{a \to a'}(R))$: r_1 joins with itself and r_2 .

Introduction

Alternatives in Provenance

- Output tuples may have alterative derivations
- ... alternatives may repeat same tuple
- \Rightarrow a fixed limit based on query

Example

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Introduction

Alternatives in Provenance

- Output tuples may have alterative derivations
- ... alternatives may repeat same tuple
- \Rightarrow a fixed limit based on query

Example

λY

Introduction

Alternatives in Provenance

- Output tuples may have alterative derivations
- ... alternatives may repeat same tuple
- ⇒a fixed limit based on query

Example Each tuple may appear up to three times in provenance! R b а 1 $\mathbb{N}[X](q, t_1) = 3 \times r_1 + 2 \times r_3$ t1 r_1 2 t₂ 2 r2 3 t₃ rz 5 ILLINOIS INSTITUTE V OF TECHNOLOGY

Boris Glavic

Introduction

Alternatives in Provenance

- Output tuples may have alterative derivations
- ... alternatives may repeat same tuple
- \Rightarrow a fixed limit based on query

Introduction

Alternatives in Provenance

- Output tuples may have alterative derivations
- ... alternatives may repeat same tuple
- \Rightarrow a fixed limit based on query

Example

$$reachable(a, b) : -edge(a, c) \land reachable(c, b)$$

 $reachable(a, b) : -edge(a, b)$

ILLINOIS INSTITUTE

Boris Glavic

Introduction

Alternatives in Provenance

- Output tuples may have alterative derivations
- ... alternatives may repeat same tuple
- ⇒not for recursive queries!

Example

No fixed limit for query, but for query and data

$$reachable(a, b) : -edge(a, c) \land reachable(c, b)$$

 $reachable(a, b) : -edge(a, b)$

ILLINOIS INSTITUTE V OF TECHNOLOGY

Boris Glavic

Introduction

Data Granularity

Tuples

- Output tuples T_A
- Instance tuples T_{DB}
- Input tuples T_I
- \Rightarrow depends on model $T_A \times T_I$ or $T_A \times T_{DB}$
- \Rightarrow + factor of alternatives

Introduction

Data Granularity

Tuples

- Output tuples T_A
- Instance tuples T_{DB}
- Input tuples T_I
- \Rightarrow depends on model $T_A \times T_I$ or $T_A \times T_{DB}$
- ⇒+ factor of alternatives

Attribute Values

- E.g., A_O output attributes
- A₁ total input attributes
- Additional growth factor is $A_O \times A_I$

϶Y

Introduction

Transaction Granularity

For SQL queries

- Track provenance for
 - Transactions
 - Queries
 - SQL query blocks
 - Single operators
 - Individual expressions

```
BEGIN TRANSACTION

INSERT INTO persons (SELECT name, salary

FROM employee, pay

WHERE (SSN = employee));

UPDATE persons SET salary = salary + 1000

WHERE job = 'consultant';

COMMIT

Slide 9 of 50 Boris Glavic CS 595 - Hot topics in database systems: Data Provenance
```

Introduction

Transaction Granularity

Example

```
Transaction: provenance is tuples in database state before
transaction execution
BEGIN TRANSACTION
INSERT INTO persons (SELECT name, salary
FROM employee, pay
WHERE (SSN = employee));
UPDATE persons SET salary = salary + 1000
WHERE job = 'consultant';
COMMIT
```

Introduction

Transaction Granularity

Example

Queries/Statements: E.g., provenance of tuple in persons relation after INSERT BEGIN TRANSACTION INSERT INTO persons (SELECT name, salary FROM employee, pay WHERE (SSN = employee)); UPDATE persons SET salary = salary + 1000 WHERE job = 'consultant'; COMMIT

Introduction

Transaction Granularity

Example

SQL query block: Track for each individual SELECT-FROM-WHERE-... block BEGIN TRANSACTION INSERT INTO persons (SELECT name, salary FROM employee, pay WHERE (SSN = employee)); UPDATE persons SET salary = salary + 1000 WHERE job = 'consultant'; COMMIT

Introduction

Transaction Granularity

```
Single operators: E.g., join and projection in INSERT

BEGIN TRANSACTION

INSERT INTO persons (SELECT name, salary

FROM employee, pay

WHERE (SSN = employee));

UPDATE persons SET salary = salary + 1000

WHERE job = 'consultant';

COMMIT
```


Introduction

Transaction Granularity

Example

```
Individual expressions: E.g., provenance a = b in where condition

a = b \land c > 5

BEGIN TRANSACTION

INSERT INTO persons (SELECT name, salary

FROM employee, pay

WHERE (SSN = employee));

UPDATE persons SET salary = salary + 1000

WHERE job = 'consultant';

COMMIT
```

Introduction

Example Transformation Granularity

```
CREATE VIEW SalesTotal AS
SELECT Location AS Shop, Month, SSN AS Employee,
Price * Amount AS Totalprice
FROM Employee E, Shop H, Item I, Sales S
WHERE E.WorksFor = H.Location
AND E.SSN = S.Employee
AND I.Id = S.Item
```


Introduction

Example Transformation Granularity

```
CREATE VIEW MonthlyRevenue
SELECT Shop, Month, sum(Totalprice) AS Revenue
FROM SalesTotal
GROUP BY Shop, Month
```


Introduction

Example Transformation Granularity

```
CREATE VIEW RevenueFirstQ
SELECT Shop, sum(Revenue) AS Revenue
FROM MonthlyRevenue
WHERE Month < 5
GROUP BY Shop
```


Introduction

Example Transformation Granularity

Example

Boris Glavic

Introduction

Example Transformation Granularity

Introduction

Example Transformation Granularity

Slide 10 of 50

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Introduction

Example Transformation Granularity

Example

Boris Glavic

Introduction

Datamodel Mismatch

Rationale

- Provenance datamodel often \neq data model of transformation
 - Lineage is list or relations
 - Provenance Polynomials are formulas over tuple variables
 - Causality is set of tuples (but from different relations)
 - ...

÷Υ

Introduction

Datamodel Mismatch

Rationale

- Provenance datamodel often \neq data model of transformation
 - Lineage is list or relations
 - Provenance Polynomials are formulas over tuple variables
 - Causality is set of tuples (but from different relations)
 - ...
- ⇒Map it to transformation data model
 - That what Perm does
 - That is what DBNotes does

şγ

Introduction

Datamodel Mismatch

Rationale

- Provenance datamodel often \neq data model of transformation
 - Lineage is list or relations
 - Provenance Polynomials are formulas over tuple variables
 - Causality is set of tuples (but from different relations)
 - ...
- ⇒Map it to transformation data model
 - That what Perm does
 - That is what *DBNotes* does
- ⇒Live with different data models
 - Store provenance separately
 - ⇒Querying becomes a problem
 - Use datamodel expressive enough to store both data and provenance

λY

Introduction

Example Map Provenance to Transformation Data Model

- E.g., Perm Provenance Relational Representation
- Provenance is Set of List of Tuples
- Relational Representation: For each result tuple t and witness list w
 - Create one tuple that combines
 - t with all tuples from w

Introduction

Example Map Provenance to Transformation Data Model

- E.g., Perm Provenance Relational Representation
- Provenance is Set of List of Tuples
- Relational Representation: For each result tuple t and witness list w
 - Create one tuple that combines
 - t with all tuples from w

Introduction

Example Map Provenance to Transformation Data Model

- E.g., Perm Provenance Relational Representation
- Provenance is Set of List of Tuples
- Relational Representation: For each result tuple t and witness list w
 - Create one tuple that combines
 - t with all tuples from w

Introduction

Example Use more expressive data model

- Causality is set of tuples from different relation (causes)
- \Rightarrow e.g., XML can express such sets
- map data and provenance into XML

Introduction

Example Use more expressive data model

Example

- Causality is set of tuples from different relation (causes)
- \Rightarrow e.g., XML can express such sets
- map data and provenance into XML

```
<DB>
  <Person>
    <Tuple id="1"><Attr>Peter</Attr><Attr>1</Attr></Tuple>
    <Tuple id="2"><Attr>Heinz</Attr><Attr>1</Attr></Tuple>
  </Person>
  <Address>
    <Tuple id="1"><Attr>1</Attr><Attr>Toronto</Attr>
                  <Attr>52 Bloor Street</Attr></Tuple>
  </Address>
  <QueryResult query="q">
    <Tuple id="1"><Attr>Peter</Attr></Tuple>
    <Tuple id="2"><Attr>Heinz</Attr></Tuple>
  </QueryResult>
  <Provenance tuple="1" guery="g">
    <TupleRef relation="Person" tuple="1"/>
    <TupleRef relation="Address" tuple="1"/>
  </Provenance>
</DB>
```

Compression Methods for Provenance

Outline

1 Provenance Storage

- Introduction
- Compression Methods for Provenance
- Index Structures for Provenance
- Recap

Compression Methods for Provenance

Overview

- Given that provenance is large
- How to safe storage space?

Approaches

1 Choose coarser granularity

- ⇒loose information
- ⇒sometime positive: Information overload

Compression Methods for Provenance

Overview

- Given that provenance is large
- How to safe storage space?

Approaches

- 1 Choose coarser granularity
 - ⇒loose information
 - ⇒sometime positive: Information overload
- 2 Choose compact provenance model
 - ⇒may loose information
 - ⇒restrict to important information

3V

Compression Methods for Provenance

Overview

- Given that provenance is large
- How to safe storage space?

Approaches

- 1 Choose coarser granularity
 - ⇒loose information
 - ⇒sometime positive: Information overload
- 2 Choose compact provenance model
 - ⇒may loose information
 - ⇒restrict to important information

 $3 \Rightarrow$ Compression!

3V

Compression Methods for Provenance

Compression for Provenance

Goals for Compressing Provenance

- 1 Reduce storage size
 - That is why we are doing that at all
- 2 Efficient compression/decompression
 - E.g., Compression useless if it takes days to compress
- 3 Lossless
 - or only loose unimportant information
- 4 Show Compressed representation to user
 - Compressed provenance as a summary
 - Reduce information overload
- **5** Execute queries over compressed representation (partially?)
 - Save cost of compression/decompression
 - Best possible outcome: query performance increase

θŶ

Compression Methods for Provenance

Choose Compression Techniques

1 Generic Compression Techniques

• E.g., Dictionary compression (LZ77)

Compression Methods for Provenance

Choose Compression Techniques

1 Generic Compression Techniques

- E.g., Dictionary compression (LZ77)
- 2 Exploiting structure of provenance
 - Repeating part in the provenance
 - ⇒Specialized dictionary compression
 - Structure in provenance imposed by transformation
 - E.g., provenance of *R* ⋈ *S* always has tuples form *R* combined with tuples from *S*

Compression Methods for Provenance

Generic Compression

Properties

- Good compression rates
- No need to adapt to provenance
- Output incomprehensible for human
- Compression/decompression quite expensive
- Queries over compressed provenance unlikely
 - Unclear how to extract parts of provenance

Example

```
try:
echo "(r1 x s1) + t1" | gzip -cf
result:
?m|P?(2T?P(6?T?V(1???o?
```

Slide 17 of 50

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

λY

Compression Methods for Provenance

Factoring out Common Parts from Provenance

Overlap in provenance

- Recall alternatives
- Reuse of subquery results

OF TECHNOLOGY

Compression Methods for Provenance

Factoring out Common Parts from Provenance

Overlap in provenance

- Recall alternatives
- Reuse of subquery results

Example

$$q = \pi_a(R \bowtie_{a=d} S) \times U$$

Provenance Polynomials $\mathbb{N}[I](q, t_1) = (r_1 \times s_1) \times u_1$ $\mathbb{N}[I](q, t_2) = (r_1 \times s_1) \times u_2$

Slide 18 of 50

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Compression Methods for Provenance

Factoring out Common Parts from Provenance

Overlap in provenance

- Recall alternatives
- Reuse of subquery results

Example

$$q = \pi_a(R \bowtie_{a=d} S) \times U$$

Why-provenance $Why(q, t_1) = \{\{r_1, s_1, u_1\}\}$ $Why(q, t_2) = \{\{r_1, s_1, u_2\}\}$

Slide 18 of 50

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Compression Methods for Provenance

Factoring out Common Parts from Provenance

Overlap in provenance

- Recall alternatives
- Reuse of subquery results

Example

$$q = \pi_a(R \bowtie_{a=d} S) \times U$$

Perm Influence

$$\mathcal{PI}(q, t_1) = \{ < r_1, s_1, u_1 > \}$$

 $\mathcal{PI}(q, t_2) = \{ < r_1, s_1, u_2 > \}$

Slide 18 of 50

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Compression Methods for Provenance

How to Detect Common Elements?

Brute force

- Use binary or text representation of provenance
- Find common substrings (bit-patterns)
- Simple approach quadratic in size of provenance (of two results)

Improvements

- Take equivalences on provenance into account
 - E.g., Why-provenance witnesses are sets ⇒{*a*, *b*} = {*b*, *a*}
 - E.g., Equivalences on polynomials $r_1 \times (s_1 + s_2) = (r_1 \times s_1) + (r_1 \times s_2)$

• Use knowledge about query to improve matching performance

• E.g., $(R \bowtie S) \times U$: the provenance of each result tuple from $R \bowtie S$ will be repeated for each tuple in U

Compression Methods for Provenance

Factorization of Provenance

Properties

- Compression rate depends on query
- No need to adapt to provenance
 - compress provenance as text
 - without adaptation we may loose opportunities
- human readable: e.g., graph representation
- Queries over provenance: only small changes
- General approach of structural matching to detect to expensive
- Unclear how to integrate with provenance computation on demand

Compression Methods for Provenance

Factoring out Structural Provenance Parts

Rationale

- Analyze query to predetermine structure of provenance
- Factor out the structural parts from the representation

Example

•
$$q = \pi_a(R \bowtie_{b=d} S)$$

- Provenance of a result tuple (Set semantics is sum of multiplications of tuple from *R* and tuple from *S*)
- ⇒No need to store addition and multiplication operations if we know query

$$\mathbb{N}[I](q,t) = r_1 \times s_1 + r_1 \times s_2 + r_3 \times s_5 \implies r_1 s_1 r_1 s_2 r_3 s_5$$

şγ

Compression Methods for Provenance

Factoring out Structural Provenance Parts

How to store?

- Compressed representation only interpretable with query!
- ⇒Store query with compressed representation
 - Easy: $\pi_a(R \bowtie_{b=d} S), r_1s_1r_1s_2r_3s_5)$
- Alternatively store instructions for decompression
 - May be more compact
 - E.g., pattern $(\sum e_i \times e_{i+1})$

Compression Methods for Provenance

Factoring out Structural Provenance Parts

Properties

- Compression rate depends on query, usually low constant factor
- Need query to interpret it
- Need representation for alternative patterns
- Not really human readable
- Queries over provenance: some adaptations
- After static analysis of query its simple
- More or less clear how to integrate with on-demand provenance tracking

Symbolic and Declarative Representations of Provenance

- So far: explicitly listing tuples (input data) in provenance
- The amount of input data in provenance may be huge
- ⇒Find more compact representations

Example

- The provenance of each result tuple t
- contains all tuples from S with b < a
- Assume |S| = 1,000,000

```
SELECT *
FROM R
WHERE EXISTS (SELECT * FROM S WHERE S.b < R.a)
```

şγ

Compression Methods for Provenance

Symbolic and Declarative Representations of Provenance

Rationale

- Queries are concise representations of large number of tuples
- ⇒Replace part of the provenance with an expression to compute it

Example

•
$$\mathcal{PI}(q, t) = \{ < r_1, s_2 >, < r_1, s_5 >, \ldots \}$$

• contains all tuples from S with b < a

•
$$\Rightarrow \mathcal{PI}(q, t) = \{ < r_1, \sigma_{R.a < b}(S) > \}$$

```
SELECT *
FROM R
WHERE EXISTS (SELECT * FROM S WHERE S.b < R.a)
```

Slide 25 of 50

λŶ

Compression Methods for Provenance

Symbolic and Declarative Representations of Provenance

Use case: Queries over Provenance

- Assume user runs query over Perm provenance to retrieve provenance of specific tuple *t*
- Provenance is stored as queries
- ⇒We can delay the generation of actual provenance to when its needed
- ⇒Improve performance of queries

Challenges

- How to decide when to use queries vs. actual data?
- Dynamically interpreting and executing query require significant changes to system

θŶ

Compression Methods for Provenance

Symbolic and Declarative Representations of Provenance

Properties

- Compression Rates can be significant
- Human readable: depends on user background
- Advantage for query processing over provenance
- Integrate with query engines is hard
- How to determine when to use symbolic representation?

Compression Methods for Provenance

Provenance Model Specific Methods

Factorization of Provenance Polynomials

- Factorization of Polynomials $r_1 \times r_2 + r_1 \times r_3 = r_1(r_2 + r_3)$
- Equivalent polynomials can sometimes differ exponentially in size!
- Find different factorization to save space

Compression Methods for Provenance

Provenance Model Specific Methods

Factorization of Provenance Polynomials

- Factorization of Polynomials $r_1 \times r_2 + r_1 \times r_3 = r_1(r_2 + r_3)$
- Equivalent polynomials can sometimes differ exponentially in size!
- Find different factorization to save space

Example

- E.g., $\pi_1(R_1 \times R_2 \times ... \times R_n)$
- provenance is $(r_{11} \times r_{21} \times .. \times r_{n1}) + (r_{12} \times r_{21} \times .. \times r_{n1}) + ...$
- Size of provenance polynomial: $|R_1| \times |R_2| \times \ldots \times |R_n|$

÷Υ

Compression Methods for Provenance

Provenance Model Specific Methods

Factorization of Provenance Polynomials

- Factorization of Polynomials $r_1 \times r_2 + r_1 \times r_3 = r_1(r_2 + r_3)$
- Equivalent polynomials can sometimes differ exponentially in size!
- Find different factorization to save space

Example

- E.g., $\pi_1(R_1 \times R_2 \times ... \times R_n)$
- provenance is $(r_{11} \times r_{21} \times .. \times r_{n1}) + (r_{12} \times r_{21} \times .. \times r_{n1}) + ...$
- Size of provenance polynomial: $|R_1| \times |R_2| \times \ldots \times |R_n|$
- Equivalent polynomials:

$$(r_{11}+r_{12}+\ldots r_{1m_1}) \times (r_{21}+r_{22}+\ldots) \times \ldots$$

• Size:
$$|R_1| + \ldots + |R_n|$$

λY

Index Structures for Provenance

Outline

1 Provenance Storage

- Introduction
- Compression Methods for Provenance
- Index Structures for Provenance
- Recap

Index Structures for Provenance

Overview

Why Index Structures for Provenance?

- Improve performance of specific access patterns
- Specialized index structures needed if access patterns differ from regular data
 - E.g., path queries on provenance

Index Structures for Provenance

Overview

Why Index Structures for Provenance?

- Improve performance of specific access patterns
- Specialized index structures needed if access patterns differ from regular data
 - E.g., path queries on provenance

Access Patterns

- Forward queries:
 - Give me all output data items that are derived from input data item x
- Backward queries:
 - Give me all input data items that are in the provenance of output data item x
- For sets?

Slide 29 of 50

λY

Index Structures for Provenance

Overview

Why Index Structures for Provenance?

- Improve performance of specific access patterns
- Specialized index structures needed if access patterns differ from regular data
 - E.g., path queries on provenance

Note

Use generic data processing model:

- Atomic unit of input and output data: data item
- Transformations: DAG (directed acyclic graph)

OF TECHNOLOGY

Index Structures for Provenance

Forward queries

- Given an input data item d
- Determine all outputs influenced by *d*
- $\Rightarrow d$ is in provenance
- Single Data Item vs. Sets
- Result:
 - Data Items (Intermediate?)
 - Transformations

Example (Forward Query d_3)

Index Structures for Provenance

Backward Query

- Given an output data item d
- Determine all inputs in provenance of *d*
- Single Data Item vs. Sets
- Result:
 - Data Items (Intermediate?)
 - Transformations

Example (Backward Query d_7)

Index Structures for Provenance

Interval Encoding of Provenance

Provenance Model

- Tree (directed acyclic graph (DAG))
 - Nodes are data items and transformations
- Stored in relational DB

Queries

- Forward find all ancestors of node
- Backward find all decentness of node

Index Structures for Provenance

Interval Encoding of Provenance

How to store data?

θŶ

Index Structures for Provenance

Interval Encoding of Provenance

How to store data?

1 Edge relation (*node*₁, *node*₂)

- Storage cost is small
- Queries are recursive!

Index Structures for Provenance

Interval Encoding of Provenance

How to store data?

- **1** Edge relation (*node*₁, *node*₂)
 - Storage cost is small
 - Queries are recursive!
- 2 Transitive closure of edge relation
 - Storage costs are high!
 - Queries are simple

Index Structures for Provenance

Interval Encoding of Provenance

How to store data?

- **1** Edge relation (*node*₁, *node*₂)
 - Storage cost is small
 - Queries are recursive!
- 2 Transitive closure of edge relation
 - Storage costs are high!
 - Queries are simple
- 8 Path relation
 - Give each path an identifier
 - Store triples
 - (path_id, position, node)
 - ⇒Storage costs are high, queries cheaper
Index Structures for Provenance

Example Provenance DAG Storage

Example (Edge Relation)

Boris Glavic

Index Structures for Provenance

Example Provenance DAG Storage

Example (Edge Relation)

```
Backward query for d_7
```

```
WITH RECURSIVE reachable(from,to)
AS (
    SELECT * FROM edges
    UNION ALL
    SELECT 1.from, r.to
    FROM reachable 1,
        reachable r
    WHERE 1.to = r.from
)
SELECT from
FROM reachable
WHERE to = d7;
```

şγ

Index Structures for Provenance

Example Provenance DAG Storage

Example (Transitive Edge Relation)

Index Structures for Provenance

Example Provenance DAG Storage

Example (Transitive Edge Relation)

Backward query for d₇

```
SELECT from
FROM edge
WHERE to = d_7
```


Index Structures for Provenance

Example Provenance DAG Storage

Example (Path Relation)

path_id	order	node
1	1	d_1
1	2	<i>T</i> ₂
1	3	<i>d</i> ₄
1	4	T_1
1	5	d7
2	1	<i>d</i> ₂
2	2	<i>T</i> ₂

Index Structures for Provenance

Example Provenance DAG Storage

Example (Path Relation)

Backward query for d₇

```
SELECT from
FROM path 1, path r
WHERE 1.path_id = r.path_id
AND r.node = d7
AND 1.position < r.position</pre>
```


Index Structures for Provenance

Discussion of Storage Alternatives

- Both presented alternatives are unsatisfactory
- Number of nodes in graph: n
- Edge Relation
 - Storage Size: n
 - Recursive querying
- Transitive Closure
 - Storage size: n²
 - No recursive querying
 - Query table of size n^2
- Paths
 - Storage size: $O(f^h)$ with h = height and f is fan-out
 - No recursive querying
 - Query table of exponential size

şγ

Index Structures for Provenance

Interval Encoding of Trees

Rationale

- Represent nodes as numeric intervals (*I*, *r*)
- Interval inclusion determines parent child relationship
 - If c is child of p then
 - $p.l \leq c.l$ and $c.r \leq p.r$
 - ⇒Reverse condition for reverse check
 - \Rightarrow Same condition for descendent instead of child

Index Structures for Provenance

Interval Encoding of Trees

Rationale

- Represent nodes as numeric intervals (1, r)
- Interval inclusion determines parent child relationship
 - If c is child of p then
 - $p.l \leq c.l$ and $c.r \leq p.r$
 - ⇒Reverse condition for reverse check
 - \Rightarrow Same condition for descendent instead of child

Index Structures for Provenance

Interval Encoding of Trees

Rationale

- Represent nodes as numeric intervals (*I*, *r*)
- Interval inclusion determines parent child relationship
 - If c is child of p then
 - $p.l \leq c.l$ and $c.r \leq p.r$
 - ⇒Reverse condition for reverse check
 - ⇒Same condition for descendent instead of child

Example

Index Structures for Provenance

Interval Encoding of Trees

Example

node	I	r
A	1	10
В	1	5
С	5	10
D	1	2
Ε	5	7
F	8	10

Index Structures for Provenance

Interval Encoding of Trees

Example

Backward query for d₇

```
SELECT from
FROM nodes a, nodes d
WHERE a.l < d.l AND d.r < a.r
a.node = d_7
```


Index Structures for Provenance

Interval Encoding of Trees

Example

Direct parent query for d_7

```
SELECT from
FROM nodes a, nodes d
WHERE a.l < d.l AND d.r < a.r
    a.node = d7
    AND NOT EXISTS (
        SELECT *
        FROM nodes m
        WHERE a.l < m.l AND m.r < a.r
            AND m.l < d.l AND d.r < m.r
)</pre>
```

Index Structures for Provenance

Properties of Interval Encoding for Trees

- Storage size: n
- Ancestor/Decedent Queries: $O(n^2)$ (no index)
- Parent/Child Queries: $O(n^3)$ (no index)

Index Structures for Provenance

Properties of Interval Encoding for Trees

Comparison

- Storage
 - O(n) (edge, interval), $O(n^2)$ (edge transitive), $O(f^h)$ (paths)

Index Structures for Provenance

Properties of Interval Encoding for Trees

Comparison

- Storage
 - O(n) (edge, interval), $O(n^2)$ (edge transitive), $O(f^h)$ (paths)
- Ancestor/Decedent Queries
 - O(n * h) (edge), O(n²) (interval, edge transitive), O(f^{2h}) (paths)
 - edge recursive!
 - "interval" has inequality condition while "edge transitive" has equality

şγ

Index Structures for Provenance

Properties of Interval Encoding for Trees

Comparison

- Storage
 - O(n) (edge, interval), $O(n^2)$ (edge transitive), $O(f^h)$ (paths)
- Ancestor/Decedent Queries
 - O(n * h) (edge), O(n²) (interval, edge transitive), O(f^{2h}) (paths)
 - edge recursive!
 - "interval" has inequality condition while "edge transitive" has equality
- Parent/Child Queries
 - O(n) (edge), O(f^h) (paths), O(n²) (edge transitive), O(n³) (interval)

λŶ

Index Structures for Provenance

Interval Encoding for Provenance DAGs

Rationale

- Interval encoding is advantageous
- Only works for trees
 - One-dimensional intervals not enough!
- ... but provenance is DAG
- \Rightarrow need extension that deals with DAGs

Index Structures for Provenance

Interval Encoding for Provenance DAGs

Rationale

- Interval encoding is advantageous
- Only works for trees
 - One-dimensional intervals not enough!
- ... but provenance is DAG
- ⇒need extension that deals with DAGs

N-dimensional Encoding

- Number of dimensions determined by graph structure
- Sometimes even DAGs can be encoded using just one dimension

λŶ

Index Structures for Provenance

Turning Graphs into Trees

Idea

- Replicate nodes with more than one parent
- A node with *n* parents
 - Create *n* nodes with one parent
- ⇒Parent/child relationships are the same
- ⇒Can use interval encoding

Index Structures for Provenance

Example Transform To Tree

Boris Glavic

Index Structures for Provenance

Example Transform To Tree

Slide 39 of 50 Boris Glavic

Index Structures for Provenance

Example Transform To Tree

Index Structures for Provenance

Discussion Transformation to Tree

- Result can be interval encoded
- Size may be much larger
- Not all transformations necessary (overlapping)
- ⇒Need method to test whether subgraph is interval encodable
- ⇒Avoid "tree-ifying" subgraphs under replicated nodes

Index Structures for Provenance

When is a DAG Interval Encodable?

Incomparability Graph I_G

- Model which nodes in a graph are incomparable
 - ⇒have no parent/child relationship
- Can be used to determine whether DAG is interval encodable
- Same node as original graph
- Edge between two node ⇒nodes are incomparable

Transitive orientable

- *I_G* is transitively orientable if edges can be directed ...
 - Edges (*u*, *v*) and (*v*, *w*)
 - \Rightarrow there exists edge (u, w)
- If I_G is transitively orientable \Rightarrow interval-encodable

÷Υ

Index Structures for Provenance

Example I_G

Index Structures for Provenance

Example I_G

Index Structures for Provenance

Example I_G

Index Structures for Provenance

Derive an Interval Encoding from I_G

Approach

- Create two total orders L and L'
 - Order L is created by traversing the nodes
 - From sources to sinks
 - Never visit a node before visiting its parents
 - If multiple nodes are ok \Rightarrow traverse in order of orientation
 - Order L' is created by using reversed orientation
- Assign each node *n* an interval based on its position in the orders
 - Let $P_L(n)$ be the position in the order L
 - Assign node *n* the interval $[-P_L(n), P'_L(n)]$

OF TECHNOLOGY

Index Structures for Provenance

Example Derive an Interval Encoding

Boris Glavic

Index Structures for Provenance

Example Derive an Interval Encoding

Example

Index Structures for Provenance

Complete Approach for Interval Encoding

- **1** Detect maximal interval-encodable subgraphs (using I_G 's)
- 2 Replace these subgraphs with new nodes
- 3 Transform into tree
- **4** Substitute new nodes with original sub-graphs
- **5** Recompute I_G and create interval-encoding

Index Structures for Provenance

Conclusions Interval Encoding

Advantages

- Index structure for provenance DAGs
- Supports efficient backward and forward queries
- Lower storage costs than alternatives

Broader Perspective

- One provenance-specific access pattern
- ⇒Improves performance and storage for this pattern
- E.g., provenance for relational queries
 - Non-typical access pattern for normal data access

Index Structures for Provenance

Outlook Additional Indexing Approaches for Provenance

Information retrieval index structures for provenance

- Important information retrieval problem
 - Answer query that returns all documents that contain a keyword
 - ⇒Efficient access of binary relation (document, object)
 - Optimized index structures for this kind of access
- ⇒The transitive closure of graphs is a binary relation
- \Rightarrow Can use these index structures to store provenance graphs
- ⇒Efficient backward and (possibly forward) lookup
- Most indices are not meant to be incrementally maintained!

OF TECHNOLOGY

Index Structures for Provenance

Open Problems for Indexing Provenance

- Integrate indices with automatic provenance generation
 - Construct index during provenance generation
 - Use index during provenance generation
- Incremental maintenance of indices
 - Most provenance index type are not incrementally maintainable
- Indices for both data and its provenance
- Combine indexing with compression

Recap

Outline

1 Provenance Storage

- Introduction
- Compression Methods for Provenance
- Index Structures for Provenance
- Recap

Recap

Provenance Storage Challenges

- Size
 - Can exceed input + output size
 - Even for compact representations
- Data model mismatch
 - Different model than transformation input and output data
 - 1 use more expressive data model
 - 2 use different data models for provenance and data
 - 3 map provenance data model to transformation data model

• Queries

- Need efficient access to data
- Access patterns provenance not necessarily = access pattern data

θŶ

Provenance Storage

Recap

Recap

Provenance Compression

- Goals:
 - Reduce Size ;-)
 - Lossless?
 - Use as summary
 - Efficient compression/decompression (queries)
 - Integrate with generation and querying
- Approaches:
 - Generic Compression
 - Good compression
 - Expensive
 - Hard to evaluate queries over
 - Not human readable

θŶ

Recap

Recap

Provenance Compression

- Goals:
 - Reduce Size ;-)
 - Lossless?
 - Use as summary
 - Efficient compression/decompression (queries)
 - Integrate with generation and querying
- Approaches:
 - Store common parts only once
 - · Compression depends on query
 - Relatively cheap
 - Good for user presentation or querying
 - Unclear how to effectively apply during provenance computation

Recap

Provenance Compression

- Goals:
 - Reduce Size ;-)
 - Lossless?
 - Use as summary
 - Efficient compression/decompression (queries)
 - Integrate with generation and querying
- Approaches:
 - Use knowledge about transformation to reduce storage costs
 - Compression reasonable
 - Cost mostly payed upfront
 - Needs transformation to interpret it
 - Not human readable
 - Good for querying

θŶ

Provenance Storage

Recap

Recap

Provenance Compression

- Goals:
 - Reduce Size ;-)
 - Lossless?
 - Use as summary
 - Efficient compression/decompression (queries)
 - Integrate with generation and querying
- Approaches:
 - Store expressions instead of actual provenance
 - Good compression if provenance follows pattern
 - Unclear how to determine expressions that represent provenance
 - Query processing needs run-time interpretation and execution of expressions to reconstruct provenance
 - Expressions can be good summaries if user understands expression language well

λŶ

Recap

Provenance Indexing

- What kind of access to support
 - Path-queries
 - Forward queries (which data items are derived from x)
 - Backward queries (which data items are in provenance of x)
 - For single data item x or sets?
- Approaches
 - Interval encoding of paths
 - For backward and forward queries
 - Less storage than storing all paths
 - · Better performance than recursive queries
 - Adapted Information Retrieval Index Structure
 - Efficient forward and backward lookup for single items

Provenance Storage

Recap

Literature I

P. Buneman, A. Chapman, J. Cheney, and S. Vansummeren.

A Provenance Model for Manually Curated Data.

In IPAW '06: International Provenance and Annotation Workshop, 162-170, 2006.

A. Chapman, H. V. Jagadish, and P. Ramanan.

Efficient Provenance Storage.

In SIGMOD '08: Proceedings of the 35th SIGMOD International Conference on Management of Data, 993–1006, 2008.

T. Heinis and G. Alonso.

Efficient Lineage Tracking for Scientific Workflows.

In SIGMOD '08: Proceedings of the 34th SIGMOD International Conference on Management of Data, 1007–1018, 2008.

A. Chapman and H. V. Jagadish.

Provenance and the Price of Identity.

In IPAW '08: International Provenance and Annotation Workshop, 106-119, 2008.

A. Kementsietsidis and M. Wang.

On the Efficiency of Provenance Queries.

In Proceedings of the 2009 IEEE International Conference on Data Engineering, 1223–1226, IEEE Computer Society Washington, DC, USA, 2009. OF TECHNOLOGY

Literature II

A. Kementsietsidis and M. Wang.

Provenance Query Evaluation: What's so Special about it?.

In CIKM '09: Proceeding of the 18th Conference on Information and Knowledge Management, 681–690, 2009.

D. Olteanu and J. Zvodn.

On factorisation of provenance polynomials.

In TaPP '11: 3rd USENIX Workshop on the Theory and Practice of Provenance, 2011.

Y. Amsterdamer, D. Deutch, T. Milo, and V. Tannen.

On provenance minimization.

In Proceedings of the 30th Symposium on Principles of Database Systems (PODS), 141-152, 2011.

