
CS 595 - Hot topics in database systems:
Data Provenance
I. Database Provenance

I.1 Provenance Models and Systems

Boris Glavic

September 26, 2012



Causality

Causality and Responsibility

Outline

1 The Causality and Responsibility Model
Causality and Responsibility
Computing Causaility based on Provenance
Recap



Causality

Causality and Responsibility

Causality and Responsibility

Causality

• Models which tuples were necessary to produce output tuple

• Necessary here is context dependent
• Tuple is necessary assuming that other tuple do not exist

Responsibility

• Model how important a tuple was in deriving an output tuple

• Numeric value
• 1: Absolutely necessary in deriving the tuple
• → 1/∞: Very marginal necessity
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Causality

Causality and Responsibility

Counterfactual Cause

• A tuple t ′ ∈ I is counterfactual cause for a tuple t in result of
query q
• If removing it from the database causes t to disappear from

the result of q
• ⇒t ′ is strictly necessary to derive t

Definition (Counterfactual Cause)

t ′ ∈ I is counterfactual cause for t ∈ Q(I ) iff

• t 6∈ Q(I − {t ′})
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Causality and Responsibility

Actual Cause

• Tuples influence result without being strictly necessary
• E.g., three tuples are projected on one result tuple t
• None of these tuples is a counterfactual cause
• However, these tuples clearly caused t to be in result

• ⇒Model that tuples are only necessary under certain
conditions
• E.g., removing two tuples from the example before ⇒the

remaining tuple to be a cause

Example

q = πa(R)

R
a b

r1 1 7
r2 1 6
r3 1 5

Q
a

t1 1
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Causality and Responsibility

Actual Cause

Definition (Actual Cause)

t ′ ∈ I is actual cause for t ∈ Q(I ) iff

• exists Γ ⊂ (I − {t ′}) (call contingency)

• t ∈ Q(I − Γ) and t 6∈ Q(I − Γ− {t ′})
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Causality

Causality and Responsibility

Actual Cause Example

Example

• Is r1 a counterfactual cause?
• Q(I − {r1}) = {t1} ⇒NO

• Is r1 an actual cause?
• Chose contingency Γ = {r2, r3}
• Q(I − Γ) = {t1}
• Q(I − Γ− {r1}) = ∅
• ⇒YES

q = πa(R)

R
a b

r1 1 7
r2 1 6
r3 1 5

Q
a

t1 1
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Causality and Responsibility

Exogenous vs. Endogenous Tuple

Rationale

• Let user choose which tuples are considered as causes
• Exclude trusted relation from reasoning

• User divides instance into
• Potential causes I n (endogenous)
• Tuples which are not considered as causes I x (exogenous)

Adapted Definitions

• Counterfactual Cause t ′ for t: t ′ ∈ Dn ∧ t 6∈ Q(I − {t ′})
• Actual Cause t ′ for t:

t ′ ∈ Dn ∧ ∃Γ ⊂ Dn : t ′ ∈ Q(I − Γ) ∧ t ′ 6∈ Q(I − Γ− {t ′})
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Causality and Responsibility

Responsibility

Rationale

• Not all causes are equal

• Some causes are more important than others

• ⇒Create model that quantifies the importance of causes

• Tuples with large contingency are less important

Definition (Responsibility)

The responsibility ρt of a cause t is computed as

• ρt = 1
1+minΓ‖Γ‖

• Γ ranges over all contingencies for t
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Causality and Responsibility

Responsibility Example

Example

• Compute responsibility ρr1 for t1

• Find smalles contingency, test subsets of I − {r1}

• {r2} NO
• {r3} NO
• {r2, r3} YES

• ρr1 = 1
1+‖{r2,r3}‖ = 1

3

q = πa(R)

R
a b

r1 1 7
r2 1 6
r3 1 5

Q
a

t1 1
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Causality and Responsibility

Insensitivity to Query Rewrite

Causality is insensitive!

• The definition is purely declarative

• ⇒has to be insensitive

• E.g, q ≡ q′ and t ∈ Q/Q ′(I )

• If t ′ is cause for t in q then ∃Γ so that
• t ∈ Q(I − Γ) = Q ′(I − Γ)
• t 6∈ Q(I − Γ− {t ′}) = Q ′(I − Γ− {t ′})

• ⇒t ′ is cause for t in q′
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Causality and Responsibility

Notation

Causality

• Cau(q, t) is set of all actual causes for t
• Cau(q, t) = {t ′ | t ′ is actual cause for t}

Responsibility

• ρq,t(t
′) is function mapping each cause t ′ its responsibility

value
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Causality and Responsibility

Computing Causes and Responsibility - Brute Force

Causes

• For each tuple t ′ in I
• Enumerate all subsets Γ
• For each such subset test

• Q(I − Γ) and Q(I − Γ− {t′})
• If test is successful then t ′ is actual cause

Complexity

• ‖I‖ number of iterations

• In each iteration in worst case we have 2‖I‖−1 subsets to
consider

• For each subset we have to execute two queries

• O(‖I‖ × 2‖I‖ × 2× cost(Q(I ))) = O(2‖I‖)
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Computing Causes and Responsibility - Brute Force

Responsibility

• For each tuple t ′ in I init minCont =∞
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Causality

Computing Causaility based on Provenance

Using Provenance for Cause Computation

Rationale

• Provenance contains all tuples that effect a tuple

• ⇒Limit search for contingency to provenance

• Relationship with view update (delete tuple t from view)
• View Update: Find set of tuples from the input that cause t to

disappear
• 6= Find set of tuples so that after removal additional tuples

cause t
• Exogenous tuples!
• Queries are assumed to be CQ’s
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Computing Causaility based on Provenance

Excursion: Datalog

Datalog

• Relational query language (set-semantics)

• Similar to Prolog: Queries are expressed as logical implications

• Declarative:
• Query specifies what result is rather than how to compute it

• Expressive Power:
• Supports recursion
• Without recursion + with negation it is equivalent to relational

algebra (no aggregation)
• Without negation and recursion is equivalent to SPJ queries

(using equality predicates only) - called Conjunctive Queries
(CQ)
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Computing Causaility based on Provenance

Excursion: Datalog rules

Queries

• Set of datalog rules

Datalog rule

• q(~X ) : −R1( ~X1), . . . ,Rn( ~Xn)

• Ri ’s are relations

• ~X and ~Xi are lists of variables and/or constants

• The variables in ~X have to appear in at least one ~Xi

• Head: q(~X ) is called the head

• Body: R1( ~X1), . . . ,Rn( ~Xn) is called the body of the rule

• Single rule (conjunctive query) = SPJ query
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Computing Causaility based on Provenance

Excursion: Evaluating CQ’s

Valuation θ

• a replacement of variables in body (⇒also in head) with
constants

• such that every atom Ri (θ( ~Xi )) is a tuple in the instance I

Result of Conjunctive Query

• For each valuation θ

• add θ(~X ) to the result of query
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Computing Causaility based on Provenance

Excursion: Example CQ

Example

q(b) : −E (a, b),A(c , a),P(c , ”CS”)
Q

Name
t1 Peter
t2 Gertrud

Employee
Id Name

e1 1 Peter
e2 2 Gertrud
e2 3 Michael

Assigned
PName Id

a1 Server 1
a2 Server 2
a3 Webpage 2
a4 Fire CS 3

Project
PName Dep

p1 Server CS
p2 Webpage CS
p3 Fire CS HR
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Example
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Excursion: Example CQ

Example

q(b) : −E (a, b),A(c , a),P(c , ”CS”)
θ′t2

= {a = 2, b = ”Gertrud”, c = ”Webpage”}
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Computing Causaility based on Provenance

Excursion: Boolean queries

Boolean query

• Conjunctive query with empty head

• Evaluates to {true, false}

Example

• Department(Name,Headcount,Budget)

• q() : −Dep(”CS”, b, c)

• Evaluates to true if there is an “CS” department
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Computing Causaility based on Provenance

Excursion: Union of Conjunctive Queries

Union of Conjunctive Queries

• Set of datalog rules with same name and arity in head

• Evaluation: union the evaluation results for all rules

Example

q(a) : −R(a)

q(b) : −R(b), S(b)

is the same as R ∪ (R >< S) (natural join)
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Causality

Computing Causaility based on Provenance

Excursion: Recursive Datalog and Negation

Recursive Datalog

• Set of datalog rules with same name and arity in head

• + rules can reference themselves or other rules in the body

• Evaluation:
• I ′ = I
• Evaluate one rule and add result to I ′

• Repeat until no more new data can be added

Example

ancestor(a, b) : −parent(a, c), ancestor(c , b)

ancestor(a, b) : −parent(a, b)
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Computing Causaility based on Provenance

Excursion: Recursive Datalog and Negation

Datalog with Negation

• Allow negated atoms in the body

• Evaluation:
• Find valuations so that for every negated atom ¬Ri ( ~Xi )
• Ri (θ( ~Xi )) is not in the instance

Example

Civil(a) : −Person(a),¬WorksInArmy(a)
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Computing Causaility based on Provenance

The B[I ] Semiring for conjunctive queries

Recall

• B[I ] is boolean expressions over variables presenting the tuples
in I

• E.g., (t1 ∧ t2) ∨ t3

• Here always formulas in DNF (disjunctive normal form)

Provenance for conjunctive queries

• CQ: q : −a1, . . . , am

• Valuation θ with θ(ai ) = ti

• Xt is boolean variable for tuple t

• Formula cθ = X1 ∧ . . . ∧ Xm

• Provenance Φ(q, t) =
∨

θ:q→I

cθ
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Causality

Computing Causaility based on Provenance

Example Provenance for CQ

Example

q(b) : −E (a, b),A(c , a),P(c , ”CS”)
θt2 = {a = 2, b = ”Gertrud”, c = ”Server”}
θ′t2

= {a = 2, b = ”Gertrud”, c = ”Webpage”}
cθt2 = (e2 ∧ a2 ∧ p1) cθ

′
t2 = (e2 ∧ a3 ∧ p2)

Φ(q, t2) = (e2 ∧ a2 ∧ p1) ∨ (e2 ∧ a3 ∧ p2)

Employee
Id Name

e1 1 Peter
e2 2 Gertrud
e2 3 Michael

Assigned
PName Id

a1 Server 1
a2 Server 2
a3 Webpage 2
a4 Fire CS 3

Project
PName Dep

p1 Server CS
p2 Webpage CS
p3 Fire CS HR

Q
Name

t1 Peter
t2 Gertrud
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Computing Causaility based on Provenance

Determine Causes based on Provenance

• Testing whether t is in the result of removing some tuples

• ⇒Deletion propagation

• ⇒Set variables for deleted tuples S to false

• For set S of tuples: Φ[S = false] sets all variables
corresponding to tuples in S to false
• If Φ(q, t)[S = false] = true: tuple t in result of Q(I − S)
• If Φ(q, t)[S = false] = false: tuple t not in result of Q(I − S)

• ⇒We can test whether t ′ is cause by
• Testing for every subset Γ of the provenance whether

Φ(q, t)[Γ = false] = true
• . . . and Φ(q, t)[(Γ ∪ {t ′}) = false]

• ⇒still exponential, but in size of provenance
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• If Φ(q, t)[S = false] = false: tuple t not in result of Q(I − S)

• ⇒We can test whether t ′ is cause by
• Testing for every subset Γ of the provenance whether

Φ(q, t)[Γ = false] = true
• . . . and Φ(q, t)[(Γ ∪ {t ′}) = false]

• ⇒still exponential, but in size of provenance
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Causality

Computing Causaility based on Provenance

Determine Causes based on Provenance cont.

• Exploit structure of the formula for more efficient computation

• Φ(Q, t) evaluates to false, if every conjunct evaluates to false

• A conjunct evaluates to false if any of its variables it set to
false

• ⇒To make t ′ a cause
• Let C(t ′) be the set of conjuncts that contain t ′

• Set one variable form every conjunct not in C(t ′) to false
(contingency)
• Use variable that is not in a conjunct in C(t′)!

• ⇒the resulting formula is true
• Setting Xt′ to false will make all conjuncts in C(t ′) false
• ⇒t ′ is cause
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Computing Causaility based on Provenance

Determine Causes based on Provenance cont.

Caveat

• There may not be variables that are only in conjuncts not in
C(t ′)!
• Example: Xt2 ∨ Xt2Xt1 .

• This is the case for redundant conjuncts

• ⇒apply absorption a ∧ b ∨ a = a

• ⇒All tuples corresponding to variables in this formula are
actual causes

• ⇒Polynomial complexity!
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Computing Causaility based on Provenance

Determine Causes based on Provenance cont.

Example

• q(b) : −E (a, b),A(c , a),P(c , ”CS”)

• Φ(q, t2) = (e2 ∧ a2 ∧ p1) ∨ (e2 ∧ a3 ∧ p2)

• No redundant conjuncts

• ⇒Cau(q, t2) = {e2, a2, a3, p1, p2}

Employee
Id Name

e1 1 Peter
e2 2 Gertrud
e2 3 Michael

Assigned
PName Id

a1 Server 1
a2 Server 2
a3 Webpage 2
a4 Fire CS 3

Project
PName Dep

p1 Server CS
p2 Webpage CS
p3 Fire CS HR

Q
Name

t1 Peter
t2 Gertrud
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Causality

Computing Causaility based on Provenance

Endogenous Provenance

• Exogenous tuples cannot be used

• Set all exogenous tuple variables to true ⇒Φn(q, t)

• ⇒Compute non-redundant conjuncts based on Φn(q, t)
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Computing Causaility based on Provenance

Endogenous Provenance

Example

• q(b) : −E (a, b),A(c , a),P(c , ”CS”)

• Φ(q, t2) = (e2 ∧ a2 ∧ p1) ∨ (e2 ∧ a3 ∧ p2)

• I x = {p1} ∪ A

• ⇒Φn(q, t2) = (e2 ∧ true ∧ true) ∨ (e2 ∧ true ∧ p2) =
e2 ∨ (e2 ∧ p2) = e2

Employee
Id Name

e1 1 Peter
e2 2 Gertrud
e2 3 Michael

Assigned
PName Id

a1 Server 1
a2 Server 2
a3 Webpage 2
a4 Fire CS 3

Project
PName Dep

p1 Server CS
p2 Webpage CS
p3 Fire CS HR

Q
Name

t1 Peter
t2 Gertrud
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Outline

1 The Causality and Responsibility Model
Causality and Responsibility
Computing Causaility based on Provenance
Recap



Causality

Recap

Recap

Causality based Provenance

• Rationale: Models necessity negatively
• Cause not there ⇒Tuple not there

• Representation: Set of tuples (Cause) / numeric value
(Responsibility)
• Contingency Γ

• Declarative Definition:
• For any queries

• Provenance Based Definition:
• SPJ queries
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Recap

Responsibility

• Quantifies responsibility of cause

• Defined over size of smallest contingency
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Provenance Model Comparison

Property
Why Lin PI-CS Where How Causality

Representation Set of Set of
Tuples

List of Set of
Tuples

Set/Bag of
List of Tuples

Sets of At-
tribute Value
Positions

Values of
provenance
semiring

Set of causes
+ numeric
responsibility
value

Granularity Tuple Tuple Tuple Attribute
Value

Tuple Tuple

Language Support USPJ ASPJ-Set ASPJ-Set
+ Nested
subqueries

U-SPJ A∗SPJ-UD∗ SPJ

Semantics Set Set + Bag∗ Bag Set Set + Bag Set
Variants Wit, Why,

IWhy
Set/Bag Influence +

Copy
SPJ + In-
sensitive +
Insensitive
Union

semirings For multiple
tuples

Definition Decl. - Synt.
- Decl./Synt.

Decl. + Synt. Decl. + Synt. Synt. Synt. Decl.

Design Principles Sufficiency -
No false pos-
itives

Sufficiency +
No false neg-
atives + no
false positives

Sufficiency +
No false neg-
atives + No
false positives

Copying Equivalent to
query evalua-
tion

Contextual
Necessity

Systems - WHIPS Perm DBNotes ORCHESTRA Thesias∗

Insensitivity Yes - No - Yes No No No - Yes - Yes Yes Yes
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