CS 595 - Hot topics in database systems: Data Provenance

I. Database Provenance I.1 Provenance Models and Systems

Boris Glavic

September 24, 2012

Introduction

Outline

1 How-Provenance, Semirings, and Orchestra

- Introduction
- Semiring Semantics for Relational Algebra
- How-Provenance or Provenance Polynomials
- Relationship to other Provenance Models
- ORCHESTRA
- Recap

Introduction

How-Provenance

Rationale

- In addition to model which tuples influenced a tuple
- ... model how tuples where combined in the computation
 - Alternative use: need one of the tuples (e.g., union)
 - Conjunctive use: need all tuples together (e.g., join)

Representation

- Formulas over operators and variables
 - Operators define how tuples where combined
 - Variables represent tuples (one variable per tuple)

ILLINOIS INSTITUTE V OF TECHNOLOGY

Introduction

Approach

Alternative Semantics for the Relational Model

- Tuples are annotated with elements from a semiring
- Define relational algebra operators using the operators of the semiring
- Prove it coincides with set- or bag-semantics for certain semirings

How-Provenance

- Use special semiring that generalizes all semirings
- Elements are symbolic computations

OF TECHNOLOGY

Introduction

Approach

ORCHESTRA

- Collaborative Data Sharing System
- Independent peers with their own database schema and instance
- Schema mappings between peers schemata
- Peers periodically exchange updates
- Provenance to compute trust in update and deletion propagation

Introduction

Excursion: Semirings

Commutative Monoids

- (*K*,+,0)
- A set K
- An operation $K \to K$ (say +) with neutral element 0:
 - (a+b)+c = a+(b+c) (associativity)
 - 0 + a = 0 + a = a (neutral element)
 - a + b = b + a (associativity)

Example

- $(\mathbb{N}, +, 0)$ Natural numbers addition
- $(\mathbb{N}, \times, 1)$ Natural numbers multiplication
- $(\mathbb{B}, \wedge, true)$: $\mathbb{B} = \{true, false\}$ Conjunction over boolean constants
- ($\mathbb{B}, \lor, false$) Disjunction over boolean constants

Slide 3 of 36

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

DGY

Introduction

Excursion: Semirings

Commutative Semiring

- $(K, +, \times, 0, 1)$
- Set K with operations + and \times (neutral elements 0 and 1)
- (K, +, 0) and K, \times , 1) are commutative monoids
- $a \times (b + c) = (a \times b) + (a \times c)$ (Distributivity)
- $(a+b) \times c = (a \times c) + (b \times c)$ (Distributivity)
- $a \times 0 = 0 \times a = 0$ (multiplication with 0)

Example

- $(\mathbb{N}, +, \times, 0, 1)$ Natural numbers with addition and multiplication
- (𝔅, ∨, ∧, false, true) Conjunctions and disjunctions over boolean constants

Introduction

Homomorphism

Definition

Homomorphism

- Given two semirings K and K'
- A function from K to K' is a homomorphism h iff:

•
$$h(a+b) = h(a) + h(b)$$

•
$$h(a \times b) = h(a) \times h(b)$$

•
$$h(0) = 0$$

• h(1) = 1

• Homomorphism from K to $K' \Rightarrow K$ is more general then K'

ILLINOIS INSTITUTE

Introduction

Free Objects

- Given an algebraic structure a free object is one with an homomorphism into all other objects of this type
 - E.g., the free commutative semiring is an structure with homomorphism into all other commutative semirings

Introduction

Free Objects

- Given an algebraic structure a free object is one with an homomorphism into all other objects of this type
 - E.g., the free commutative semiring is an structure with homomorphism into all other commutative semirings
- \Rightarrow The free semiring is the most general semiring

Introduction

Free Objects

- Given an algebraic structure a free object is one with an homomorphism into all other objects of this type
 - E.g., the free commutative semiring is an structure with homomorphism into all other commutative semirings
- \Rightarrow The free semiring is the most general semiring
- ⇒Only equivalences enforced by the structure being semiring can hold
 - For any additional equivalence: Find semiring where equivalence does not hold ⇒No homomorphism! contradiction

Introduction

Free Objects

- Given an algebraic structure a free object is one with an homomorphism into all other objects of this type
 - E.g., the free commutative semiring is an structure with homomorphism into all other commutative semirings
- \Rightarrow The free semiring is the most general semiring
- ⇒Only equivalences enforced by the structure being semiring can hold
 - For any additional equivalence: Find semiring where equivalence does not hold ⇒No homomorphism! contradiction
- ⇒Elements of free semiring are uninterpreted expressions
 - Placeholders for semiring elements
 - Do not interpret semiring operation

Introduction

Example

• $(a+b) \times c$ is an element

•
$$k_1 = (a + b)$$
 and $k_2 = (c \times d)$: $k_1 + k_2 = (a + b) + (c \times d)$

Semiring Semantics for Relational Algebra

Outline

1 How-Provenance, Semirings, and Orchestra

- Introduction
- Semiring Semantics for Relational Algebra
- How-Provenance or Provenance Polynomials
- Relationship to other Provenance Models
- ORCHESTRA
- Recap

Semiring Semantics for Relational Algebra

Semiring Annotated Relations

K-Relations

- U-tuple: tuples over set of attributes U
 - U Tup = set of all U-tuples
- Semiring K
- A K-relation R over a set of attributes U is
 - function $U Tup \rightarrow K$
 - $support(R) = \{t \mid R(t) \neq 0\}$ is finite

Notation

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Semiring Semantics for Relational Algebra

Interpretations of Semirings

Semiring Interpretations

(ℕ, +, ×, 0, 1): Tuples annotated with integers
 ⇒Bag-semantics

Semiring Semantics for Relational Algebra

Interpretations of Semirings

Semiring Interpretations

(𝔅, ∨, ∧, false, true): 𝔅 = {false, true}: Tuples with true/false annotations ⇒Set-semantics

Semiring Semantics for Relational Algebra

Interpretations of Semirings

Semiring Interpretations

(PosBool(X), ∨, ∧, false, true): PosBool(X) = set of variables: Tuples annotated with boolean expressions ⇒c-tables (probabilistic databases)

Boris Glavic

Semiring Semantics for Relational Algebra

Relational Algebra for K-relations

Rationale

- Express relational algebra operators as semiring operations
- Sanity checks:
 - For $K = \mathbb{B} \Rightarrow$ same results (equivalences) as set-semantics
 - For $K = \mathbb{N} \Rightarrow$ same results (equivalences) as bag-semantics

Semiring Semantics for Relational Algebra

Operator Definitions

Selection

•
$$(\sigma_C(R))(t) = R(t) \times C(t)$$

- Selection predicate C is function $U Tup \rightarrow \{0, 1\}$
 - Recall $a \times 0 = 0$ and $a \times 1 = a$

Projection

•
$$(\pi_A(R))(t) = \sum_{t=t'.A} R(t')$$

• $A \subseteq U$

Union

•
$$(R_1 \cup R_2)(t) = R_1(t) + R_2(t)$$

)GY

Semiring Semantics for Relational Algebra

Operator Definitions

Natural Join

•
$$(R_1 \bowtie R_2)(t) = R_1(t_1) \times R_2(t_2)$$

• $t_1 = t.U_1$
• $t_2 = t.U_2$

Renaming

•
$$(\rho_{\beta}(R))(t) = R(t \circ \beta)$$

• $\beta: U \rightarrow U'$ attribute renaming

Boris Glavic

Semiring Semantics for Relational Algebra

Evaluation Example

Example

• Semiring is $\mathbb N$

•
$$q = \sigma_{a=1}(\pi_a(R))$$

•
$$q(t) = \sum_{t'.a=t} R(t') \times (a=1)(t)$$

OF TECHNOLOGY

Semiring Semantics for Relational Algebra

Equivalence Examples

- Union:
 - Associative: $R \cup (S \cup T) = (R \cup S) \cup T$
 - Commutative: $R \cup S = S \cup R$
 - Identity \emptyset : $R \cup \emptyset = R$
- Join
 - Associative: $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$
 - Commutative: $R \bowtie S = S \bowtie R$
- Selection
 - $\sigma_{false}(R) = \emptyset$
 - $\sigma_{true}(R) = R$

ILLINOIS INSTITUTE

Semiring Semantics for Relational Algebra

Homomorphisms in Query Evaluation

Homomorphisms commute with Query Evaluation

- Q(h(I)) = h(Q(I))
- ⇒We can apply *h* either before or after evaluating the query without affecting the result

Example

• Homomorphism from \mathbb{N} (bag-semantics) to \mathbb{B} (set-semantics): h(n) = true except h(0) = false

true

true

• E.g., $\sigma_{a>1}(R)$

How-Provenance or Provenance Polynomials

Outline

1 How-Provenance, Semirings, and Orchestra

- Introduction
- Semiring Semantics for Relational Algebra
- How-Provenance or Provenance Polynomials
- Relationship to other Provenance Models
- ORCHESTRA
- Recap

How-Provenance or Provenance Polynomials

Provenance Polynomials

Rationale

- Use semiring annotations to model provenance
- Annotate a query result tuple with the semiring expression that was used to compute it
- ⇒need free semiring

Provenance Polynomials Semiring

- ($\mathbb{N}[I], +, \times, 0, 1$)
- $\mathbb{N}[I]$ Polynomials with natural number exponents
 - Variables: One per tuple in I
- Convention: annotate each instance tuple with a variable named after its tuple *id*

How-Provenance or Provenance Polynomials

Provenance Polynomials Example

Slide 14 of 36 Boris Glavic

How-Provenance or Provenance Polynomials

Provenance Polynomials Example II

Example

How-Provenance or Provenance Polynomials

Provenance Polynomials Example II

Example

Boris Glavic

How-Provenance or Provenance Polynomials

The Fundamental Property

- The semiring of provenance polynomials is the free commutative semiring
- ⇒there exists a homomorphism from N[I] into any commutative semiring
- $Eval_{K} : \mathbb{N}[I] \to K$ is this unique homomorphism defined as
 - Replace each tuple variable *t* with the element of *K* assigned to the tuple represented by *t*
 - Interpret the abstract operations from ℕ[I] as operations from K

How-Provenance or Provenance Polynomials

Example Application of the Fundamental Property

Slide 17 of 36 Boris Glavic

How-Provenance or Provenance Polynomials

Example Application of the Fundamental Property

Slide 17 of 36 Boris Glavic

How-Provenance or Provenance Polynomials

Example Application of the Fundamental Property

Slide 17 of 36 Boris Glavic

How-Provenance or Provenance Polynomials

The "How" Part

Interpretation of + and \times

- +: Alternative use of tuples
 - Operators: Union, Projection
 - Check set-semantics: only one tuples is need ⇒V as + operation
 - Check bag-semantics: multiplicities are additive ⇒natural number addition as +
- ×: Conjunctive use of tuples
 - Operations: Join
 - Check set-semantics: both tuples are needed ⇒ ∧ as × operation
 - Check bag-semantics: multiplicities of matching tuples are multiplied ⇒natural number multiplication as ×

How-Provenance or Provenance Polynomials

Insensitivity to Query Rewrite

Bag-semantics

- Modelling relational algebra as commutative semiring operations
 - Possible, because same equivalences
- $\mathbb{N}[I]$ is free commutative semiring
- ⇒Equivalences for N[*I*] and bag-semantics are the same!
- $\Rightarrow \mathbb{N}[I]$ is insensitive

How-Provenance or Provenance Polynomials

Insensitivity to Query Rewrite

Set-semantics

- N[/] no longer insensitive
 - E.g., $R \not\equiv R \bowtie R$
- B[I]: polynomials with boolean coefficients and exponents has same equivalences as set semantics
- There exists an homomorphism from N[I] to B[I] (N[I] is free object!)
- ⇒apply equivalences of B[/] to N[/] then insensitive for set-semantics

How-Provenance or Provenance Polynomials

How-provenance

Notation

- We write $\mathbb{N}[I](q, t)$ for
- (q)(t) evaluated in $\mathbb{N}[I]$
- also use this for other semirings K

How-Provenance or Provenance Polynomials

Beyond Positive Relational Algebra

Set Difference

- Need additional operator —
- \Rightarrow from semiring to structures $(S, +, \times, -, 1, 0)$
 - Different equivalences hold!
- Provenance use (more complex) free object for such structures

Aggregation

Annotate attribute values with combinations of

- tuple semiring provenance
- annotation for values for computations on values (representing aggregation)

Relationship to other Provenance Models

Outline

1 How-Provenance, Semirings, and Orchestra

- Introduction
- Semiring Semantics for Relational Algebra
- How-Provenance or Provenance Polynomials
- Relationship to other Provenance Models
- ORCHESTRA
- Recap

Relationship to other Provenance Models

Relationship of Provenance Polynomials and other Provenance Models

Rationale

- How is the provenance polynomials model related to other provenance models?
- Can we find semirings that models, e.g., Why-Provenance?

Relationship to other Provenance Models

Why-Provenance

Semiring

- $K_{Why} = (\mathcal{P}(\mathcal{P}(I)), \cup, \cup, \emptyset, \{\emptyset\})$
- $\mathcal{P} = \mathsf{powerset}$
- $\Rightarrow \mathcal{P}(\mathcal{P}(I))$ is all sets containing subsets of the instance I
- ⇒all potential sets of witnesses
- + is normal set union
- \times is $S_1 \sqcup S_2 = \{(a \cup b) \mid a \in S_1 \land b \in S_2\}$
 - ⇒pairwise union
 - ⇒combining witnesses

ILLINOIS INSTITUTE

Relationship to other Provenance Models

Why-Provenance

Example

Relationship to other Provenance Models

Insensitive Why-Provenance

Semiring

- $K_{IWhy} = (min(\mathcal{P}(\mathcal{P}(I))), \cup_{min}, \bigcup_{min}, \emptyset, \{\emptyset\})$
- $\Rightarrow \mathcal{P}(\mathcal{P}(I))$ is all sets containing subsets of the instance I
- $min(S) = \{a \mid a \in S \land \not \exists b \in S : b \subseteq a\}$

•
$$S_1 \cup_{min} S_2 = min(S_1 \cup S_2)$$

•
$$S_1 \cup _{min} S_2 = min(S_1 \cup S_2)$$

● ⇒Same operations, compute minimal elements

Relationship to other Provenance Models

Insensitive Why-Provenance

Example

Relationship to other Provenance Models

Insensitive Why-Provenance

Semiring

- $K_{IWhy} = (min(\mathcal{P}(\mathcal{P}(I))), \cup_{min}, \bigcup_{min}, \emptyset, \{\emptyset\})$
- $\Rightarrow \mathcal{P}(\mathcal{P}(I))$ is all sets containing subsets of the instance I
- $min(S) = \{a \mid a \in S \land \not \exists b \in S : b \subseteq a\}$

•
$$S_1 \cup_{min} S_2 = min(S_1 \cup S_2)$$

•
$$S_1 \cup _{min} S_2 = min(S_1 \cup S_2)$$

● ⇒Same operations, compute minimal elements

Relationship to other Provenance Models

Insensitive Why-Provenance

Example

Relationship to other Provenance Models

Lineage

Different Model

- The inventors of provenance polynomials consider a slightly different Lineage model
- Provenance is a set of tuples instead of a list of sets of tuples

Semiring

- $K_{Lin} = (\mathcal{P}(I), \cup_{\perp}, \cup_{\perp}^*, \perp, \emptyset)$
- $\Rightarrow \mathcal{P}(I)$ is all subsets of the instance I
- \perp is a not defined element
- $\bullet ~ \cup_{\perp}$ and \cup_{\perp}^* are union with different behaviour on \perp

•
$$\perp \cup_{\perp} S = S \cup_{\perp} \bot = S$$

• $\bot \cup_{\bot}^* S = S \cup_{\bot}^* \bot = \emptyset$

Relationship to other Provenance Models

Lineage

Example

Boris Glavic

Relationship to other Provenance Models

Lineage

"Real" Lineage

• Can we also model the list of sets of tuples lineage as a semiring?

Relationship to other Provenance Models

Lineage

"Real" Lineage

• Can we also model the list of sets of tuples lineage as a semiring?

• NO!:

- Assume existence of semiring K_{RLin} that models lineage
- Equivalent queries $q = R \cup S$ and $q' = S \cup R$
- Assume tuple t is in the result of q/q' and was derived from r₁ and s₁
- Lineage: $Lin(q, t) = \langle \{r_1\}, \{s_1\} \rangle \neq \langle \{s_1\}, \{r_1\} \rangle = Lin(q', t)$
- Evaluation in K_{RLin} : $(q)(t) = r_1 + s_1 = s_1 + r_1 = (q')(t)$
- ⇒no assumptions except that K_{RLin} is semiring
- $\Rightarrow K_{RLin}$ cannot exists

Relationship to other Provenance Models

Perm Influence Contribution Semantics

Semiring

Cannot exists for the same reason as Lineage

- Assume existence of semiring K_{PI} that models PI-CS
- Equivalent queries $q = R \cup S$ and $q' = S \cup R$
- Assume tuple t is in the result of q/q' and was derived from r_1 and s_1
- Lineage: $\mathcal{PI}(q, t) = \{ < r_1, s_1 > \} \neq \{ < s_1, r_1 > \} = \mathcal{PI}(q', t)$
- Evaluation in K_{PI} : $(q)(t) = r_1 + s_1 = s_1 + r_1 = (q')(t)$
- $\Rightarrow K_{PI}$ cannot exists

Relationship to other Provenance Models

Perm Influence Contribution Semantics

Discussion

- Lineage and PI-CS consider the order of leaves in the algebra tree
- However, equivalent queries can have different orders
- If we abstract from the order, is the result expressible in the semiring model?
- **Rationale**: Define mapping *H* from *PI* to ℕ[*I*] that gets rid of the order

Relationship to other Provenance Models

Perm Influence Contribution Semantics

From \mathcal{PI} to $\mathbb{N}[I]$

- Witness-lists are basically \times
- The set of witness-lists is basically +

$$egin{aligned} \mathcal{H}(\mathcal{PI}(q,t)) &= \sum_{w \in \mathcal{PI}(q,t)} \prod_{i \in \{1,...,n\}} w'[i] \ w'[i] &= egin{cases} w[i] & ext{if } w[i]
eq egin{aligned} &= w[i] & ext{if } w[i]
eq egin{aligned} &= egin{aligned} & w[i] & ext{if } w[i]
eq egin{aligned} & w[i]
ext{if } w[i$$

ILLINOIS INSTITUTE

Relationship to other Provenance Models

Perm Influence Contribution Semantics

Example

Slide 27 of 36

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Relationship to other Provenance Models

Relationships between Provenance Semirings

ORCHESTRA

Outline

1 How-Provenance, Semirings, and Orchestra

- Introduction
- Semiring Semantics for Relational Algebra
- How-Provenance or Provenance Polynomials
- Relationship to other Provenance Models
- ORCHESTRA
- Recap

ORCHESTRA

ORCHESTRA

Overview

- Collaborative Data Sharing System
- Network of peers
- Each peer has independent schema and instance
- Peers update their instances without restrictions
- Schema mappings define relationships between schemata
 - Can be partial
- Periodically peers trigger exchange of updates based on mappings

ILLINOIS INSTITUTE V OF TECHNOLOGY

ORCHESTRA

Schema mappings

- Schema mapping: Logical constraints that define the relationship between two schemata
- Different schema may store the same information in different structure
- Schema mappings model these structures in the schema relate
- With some extra mechanism can be use to translate data from one schema into the other

Example

- Schema S₁: Person(Name, AddrId), Address(Id, City, Street)
- Schema S₂: LivesAt(Name, City)

ORCHESTRA

Update Exchange

- Each peer updates its instance as he pleases
- A log of update operations is kept
- Peers can trigger an update exchange

Update Exchange

- Determine updates since last exchange
- Translate updates from peers according to schema mappings
- Eagerly compute provenance during update exchange

ORCHESTRA

Provenance in ORCHESTRA

- Use ℕ[/]
- Add functions m_1, \ldots, m_n to represent mappings
- E.g., $m_1(x + yz) + m_2(u)$ means that tuple was derived by
 - applying mapping m_1 to x, y, z
 - applying mapping m_2 to u

ORCHESTRA

Provenance Use in ORCHESTRA

Trust

- Instead of applying all update: only apply "trusted" updates
- Peers decide on a per mapping/peer basis whether they trust data.
 - Use Trust semiring: (*R*^{inf}, *min*, +, inf, 0)
 - Evaluate provence in the trust semiring using the trust value for peers and mappings

ORCHESTRA

Provenance Use in ORCHESTRA

Deletion Propagation

- Deletion in semiring model ⇒annotating with 0 element of semiring
- We have provenance for query result
- Assume set *D* of tuples got deleted
- Set every occurrence of *D* in the provenance of some tuple *t* to 0
- Compute whether t is still derivable
- Here even without index on provenance useful, because repeating whole update exchange is unfeasible

OF TECHNOLOGY

Recap

Outline

1 How-Provenance, Semirings, and Orchestra

- Introduction
- Semiring Semantics for Relational Algebra
- How-Provenance or Provenance Polynomials
- Relationship to other Provenance Models
- ORCHESTRA
- Recap

Recap

Recap

Semiring Semantics for the Relational Model

- Alternative semantics for relational algebra
- Given a semiring $(K, +, \times, 0, 1)$
 - *K*-relations are functions from tuples of an arity *U* to semiring elements
 - Operators take functions (relations) as input and produce an output function (relation)
- Using different semirings we get standard semantics or extensions of the relational model
 - (𝔅, ∨, ∧, *false*, *true*): Set semantics
 - (N, +, ×, 0, 1): Bag semantics
 - (*PosBool*(X), ∨, ∧, *false*, *true*): *c*-tables

Recap

Recap

How-Provenance (Provenance semiring)

- **Rationale**: Provenance for *t* is expression that represent the semiring computation that lead to creation of tuple *t*.
- **Representation**: Polynomial over tuple variables (= element of Provenance Semiring)
- Syntactic Definition:
 - For USPJ queries + extensions for A and D
- The Fundamental Property: Given an query result in ℕ[I], we can compute the query result for any semiring K from that
- Relation to other Provenance Types:
 - Semirings that model other provenance models
 - Why-Provenance: $(\mathcal{P}(\mathcal{P}(I)), \cup, \bigcup, \emptyset, \{\emptyset\})$
 - IWhy-Provenance: $(min(\mathcal{P}(I)), \cup_{min}, \times_{min}, \emptyset, \{\emptyset\})$
 - Lineage*: $(\mathcal{P}(I) \cup \{\bot\}, +, \times, \bot, \emptyset)$

Recap

Recap

ORCHESTRA

- Peer-to-Peer update exchange system
- Schema mappings between peers
- Updates are exchanged between periodically based on mappings
- Provenance used for
 - Trust
 - Deletion propagation

Recap

Provenance Model Comparison

Property	Why	Lin	PI-CS	Where	How
Representation	Set of Set of Tu- ples	List of Set of Tuples	Set/Bag of List of Tuples	Sets of At- tribute Value Positions	Values of prove- nance semiring
Granularity	Tuple	Tuple	Tuple	Attribute Value	Tuple
Language Support	USPJ	ASPJ-Set	ASPJ-Set + Nested sub- queries	U-SPJ	A*SPJ-UD*
Semantics	Set	Set + Bag*	Bag	Set	Set + Bag
Variants	Wit, Why, IWhy	Set/Bag	Influence + Copy	SPJ + Insensi- tive + Insensi- tive Union	semirings
Definition	Decl Synt Decl./Synt.	Decl. + Synt.	Decl. + Synt.	Synt.	Synt.
Design Principles	Sufficiency - No false positives	Sufficiency + No false nega- tives + no false positives	Sufficiency + No false nega- tives + No false positives	Copying	Equivalent to query evalua- tion
Systems	-	WHIPS	Perm	DBNotes	ORCHESTRA
Insensitivity	Yes - No - Yes	No	No	No - Yes - Yes	Yes

Recap

Literature I

Querying data provenance. ILLINOIS INSTITUTE VI In Proceedings of the 2010 international conference on management of data, 951–962, ACM, OPITECHNOLOGY

Recap

Literature II

F. Geerts and A. Poggi.

On database query languages for K-relations. Journal of Applied Logic, 8(2):173–185, 2010.

Todd J. Green.

Containment of Conjunctive Queries on Annotated Relations. In ICDT '09: Proceedings of the 16th International Conference on Database Theory, 296–309, 2009.

Todd J. Green.

Collaborative data sharing with mappings and provenance. PhD thesis, University of Pennsylvania, 2009.

Todd J. Green, Zachary G. Ives, and Val Tannen.

Reconcilable differences.

In ICDT '09: Proceedings of the 16th International Conference on Database Theory, 212–224, Saint Petersburg, Russia, March 2009. , .

Zachary G. Ives, Todd J. Green, Grigoris Karvounarakis, Nicholas E. Taylor, Val Tannen, Partha Pratim Talukdar, Marie Jacob, and Fernando Pereira. The ORCHESTRA Collaborative Data Sharing System. SIGMOD Record, 37(2):26–32, 2008.

J. Nathan Foster, Todd J. Green, and Val Tannen.

Annotated XML: Queries and Provenance.

In PODS '08: Proceedings of the 27th Symposium on Principles of Database Systems, 2008.

i.

Recap

Literature III

ILLINOIS INSTITUTE OF TECHNOLOGY