CS 595 - Hot topics in database systems: Data Provenance

1. Introduction to Data Provenance

Boris Glavic

August 29, 2012

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Outline

1 Origin of Term

2 Relational Algebra Primer

3 What is Provenance?

4 Types of Provenance Information

5 Use Cases and Application Domains

6 Provenance Generation, Storage, and Querying

Origin
•OOAlgebraProvenance?TypesUse casesGenerate, store, queryRecap•OO•OO•OO•OO•OO•OO•OO•OO

Data Provenance

Data Provenance

Information about the creation process and origin of data

Slide 1 of 69

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Why do we call it Provenance?

Origin of the Term

• From art dealing

Alternative Terms

- Lineage
- Data Pedigree

Why do we call it Provenance?

Origin of the Term

From art dealing

Alternative Terms

- Lineage for kings
- Data Pedigree

Why do we call it Provenance?

Origin of the Term

From art dealing

Alternative Terms

- Lineage for kings
- Data Pedigree for dogs

Slide 2 of 69

Why do we call it Provenance?

Origin of the Term

• From art dealing for pieces of art

Alternative Terms

- Lineage for kings
- Data Pedigree for dogs

Provenance in Art

Given a piece of art

- How do we know . . .
 - if it is authentic?
 - who created it?
 - if it has been altered?

Example

Jan Van Eyck - Arnolfini Portrait

Slide 3 of 69

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

)GY

Provenance in Art

Provenance

- French provenir, "to come from"
- Chronology of the ownership or location of an historical object

Example

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Outline

- 1 Origin of Term
- 2 Relational Algebra Primer
- **3** What is Provenance?
- 4 Types of Provenance Information
- 5 Use Cases and Application Domains
- 6 Provenance Generation, Storage, and Querying

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	•0000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Relational Algebra

- Formalizes queries over relational data
- Is an algebra over relations
 - Types of operators
 - An operator produces a **single** output relation from **one or more** input relations.
- Relations
 - A relation is a set of tuples with the same schema
 - Tuple is a list of values
- Composable
 - Output of an operator can be used as input to another operator!
 - \Rightarrow Can build complex queries by combining simple operators

OF TECHNOLOGY

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Types of Operators

- Selection σ_C
- Projection π_A
- Joins
 - Theta-join ⋈_C
 - Cross-product \times
 - Outer joins $\neg \neg \neg$, $\neg \neg \neg$
- Aggregation with group-by $\alpha_{\textit{agg},\textit{G}}$
- Set Operations
 - Union \cup
 - Intersection \cap
 - Set difference –
- Relation access R

ILLINOIS INSTITUTE 样 OF TECHNOLOGY

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Selection

- $\sigma_C(R)$
- *R* is the input relation
- C is a logical condition (selection condition)
 - Logical operators: AND (\land), OR (\lor), and NOT (\neg)
 - Comparison operators:
 - E.g., equality (=) or smaller equals (\leq)
 - Refer to constants and attributes
 - Calls to functions?
 - E.g., name =' Peter' \land salary ≤ 1000

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Selection

Definition

$$[[\sigma_C(R)]] = \{t \mid t \in R \land t \models C\}$$

Slide 6 of 69

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	0000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Selection

Example

$$Employee = \{(Peter, 100), (Heinz, 4000)\}$$
$$[[\sigma_{name='Peter'}(Employee)]] = \{(Peter, 100)\}$$

Slide 6 of 69

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Projection

- $\pi_A(R)$
- *R* is the input relation
- A is a list of **projection expressions**
 - Attributes form R
 - Functions calls and operators
 - E.g., *a* + *b*
 - Renaming, $a \rightarrow b$

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Projection

Definition

$$[[\pi_A(R)]] = \{t \mid \exists u \in R \land u.A = t\}$$

Slide 7 of 69

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Projection

Example

 $Employee = \{(Peter, 100), (Heinz, 4000)\} \\ [[\pi_{salary}(Employee)]] = \{(100), (4000)\} \\$

Slide 7 of 69

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Origin 000	Algebra ○○○○●○○○○○○○○○○○	Provenance?	Types	Use cases	Generate, store, query	Recap 00
Join						

- $R \bowtie_C S$
- R, S are the input relations
- *C* is a logical condition (**join condition**)
 - Same as selection condition
 - Only equality conditions and $\land \Rightarrow Equi-join$

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap
Join						

Definition

$$[[R \bowtie_C S]] = \{t \blacktriangleright t' \mid t \in R \land t' \in S \land t \blacktriangleright t' \models C\}$$

Slide 8 of 69

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap 00
Joi	in					

Example

 $Employee = \{(Peter, 1), (Heinz, 2)\}$ $Department = \{(1, CS), (2, HR)\}$ $[[Employee \Join_{depld=ld} Department]] = \{(Peter, 1, 1, CS), (Heinz, 2, 2, HR)\}$

Outer Joins: Left-outer Join

- $R \supset G S$
- R, S are the input relations
- C is a logical condition (join condition)

Outer Joins: Left-outer Join

Definition

$$\begin{bmatrix} [R \supset C S] \end{bmatrix} = \{(t \triangleright t') \mid t \in R \land t' \in S\} \\ \cup \{(t_1 \triangleright null(S)) \mid t \in R \land (\not\exists t' \in S : (t \triangleright t') \models C) \}$$

CS 595 - Hot topics in database systems: Data Provenance

Slide 9 of 69 E

Boris Glavic

Origin Algebra Provenance? Types Use cases Generate, store, query Recap 000 0000 0000 00000 00000 0000000000 000

Outer Joins: Left-outer Join

Example

$$\label{eq:eq:energy} \begin{split} & \textit{Employee} = \{(\textit{Peter},1),(\textit{Heinz},\textit{null})\} \\ & \textit{Department} = \{(1,\textit{CS}),(2,\textit{HR})\} \\ & [[\textit{Employee} \supset \bigtriangledown_{\textit{depld}=\textit{Id}} \textit{Department}]] = \{(\textit{Peter},1,1,\textit{CS}), \\ & (\textit{Heinz},\textit{null},\textit{null},\textit{null})\} \end{split}$$

CS 595 - Hot topics in database systems: Data Provenance

Origin Al	lgebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000 00	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Aggregation

- $\alpha_{\mathsf{agg},\mathsf{G}}(\mathsf{R})$
- *R* is the input relation
- agg list of aggregation functions
 - E.g., *sum*(*a*) if *a* attribute of *R*
- G is a list of group-by expressions
 - Attributes
 - Operators and function expressions

Aggregation

Definition

$$\begin{split} \llbracket \alpha_{G, \mathsf{agg}}(R) \rrbracket = & \{ (t.G, \mathit{res}_1, \dots, \mathit{res}_m) \mid t \in R \\ & \land \forall i \in \{1, m\} : \mathit{res}_i = \mathit{agg}_i(\pi_{b_i}(\sigma_{G=t.G}(R))) \end{split}$$

- *b_i* expression used as aggregation function input
 - E.g., a for sum(a)
- *res_i* is result of computing aggregation function for a tuple

Aggregation

Example

$$Employee = \{(Peter, 1, 3000), (Heinz, 2, 4000), (Jule, 1, 2000)\}$$
$$[[\alpha_{sum(salary), depld}]] = \{(5000, 1), (4000, 2)\}$$

Origin 000	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap 00
Unic	on					

- *R* ∪ *S*
- R and S are the input relations
- R and S have to have same schema

Origin 000	Algebra ○○○○○○○●○○○○○○○○	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap 00

Union

Definition

$$[[R \cup S]] = \{t \mid t \in R \lor t \in S\}$$

Slide 11 of 69

Origin 000	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap 00
Unic	on					

Example

$$\begin{split} \textit{Employee} &= \{(\textit{Peter}), (\textit{Heinz}), (\textit{Jule})\} \\ \textit{Manager} &= \{(\textit{Peter}), (\textit{Gertrud})\} \\ [\textit{Employee} \cup \textit{Manager}]] &= \{(\textit{Peter}), (\textit{Heinz}), (\textit{Jule}), (\textit{Getrud})\} \end{split}$$

Origin Alge	ebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000 000	00000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Intersection

- *R* ∩ *S*
- R and S are the input relations
- R and S have to have same schema

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Intersection

Definition

$$[[R \cap S]] = \{t \mid t \in R \land t \in S\}$$

Slide 12 of 69

Origin Alg	ebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000 000	000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Intersection

Example

 $Employee = \{(Peter), (Heinz), (Jule)\}$ $Manager = \{(Peter), (Gertrud)\}$ $[[Employee \cap Manager]] = \{(Peter)\}$

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Set Difference

- *R S*
- R and S are the input relations
- R and S have to have same schema

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Set Difference

Definition

$$[[R-S]] = \{t \mid t \in R \land t \notin S\}$$

Slide 13 of 69

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Set Difference

Example

 $Employee = \{(Peter), (Heinz), (Jule)\}$ $Manager = \{(Peter), (Gertrud)\}$ $[[Employee - Manager]] = \{(Heinz), (Jule)\}$

- So far: Relations are sets (Set semantics)
 - \Rightarrow A tuple appears at most one time

- So far: Relations are sets (Set semantics)
 - ⇒A tuple appears at most one time
- This is different from SQL and database implementations
 - Tuple can appear more then once

- So far: Relations are sets (Set semantics)
 - \Rightarrow A tuple appears at most one time
- This is different from SQL and database implementations
 - Tuple can appear more then once
 - In relation in DB only if no Primary key

- So far: Relations are sets (Set semantics)
 - ⇒A tuple appears at most one time
- This is different from SQL and database implementations
 - Tuple can appear more then once
 - In relation in DB only if no Primary key
 - This is called Bag semantics

- So far: Relations are sets (Set semantics)
 - \Rightarrow A tuple appears at most one time
- This is different from SQL and database implementations
 - Tuple can appear more then once
 - In relation in DB only if no Primary key
 - This is called Bag semantics
- Bag semantics
 - Formally: assign a multiplicity ≥ 1 to each tuple in a relation

Origin
OcoAlgebra
OcoProvenance?Types
OcoUse casesGenerate, store, queryRecap
OcoOcoOcoOcoOcoOcoOcoOcoOco

Bag vs. Set semantics cont.

- Why set semantics?
 - Cleaner formalism

Slide 15 of 69

Origin
OcoAlgebra
OcoProvenance?
OcoTypes
OcoUse cases
OcoGenerate, store, query
OcoRecap
Oco

- Why set semantics?
 - Cleaner formalism
- Why bag semantics?

Origin
OcoAlgebra
OcoProvenance?
OcoTypes
OcoUse cases
OcoGenerate, store, query
OcoRecap
Oco

- Why set semantics?
 - Cleaner formalism
- Why bag semantics?
 - Correctness

Origin
OccorrectionAlgebra
OccorrectionProvenance?
OccorrectionTypes
OccorrectionUse cases
OccorrectionGenerate, store, query
OccorrectionRecap
Occorrection

- Why set semantics?
 - Cleaner formalism
- Why bag semantics?
 - Correctness
 - (e.g., projecting on non-unique attribute, then aggregate)

Origin
OccorrectionAlgebra
OccorrectionProvenance?
OccorrectionTypes
OccorrectionUse cases
OccorrectionGenerate, store, query
OccorrectionRecap
Occorrection

- Why set semantics?
 - Cleaner formalism
- Why bag semantics?
 - Correctness
 - (e.g., projecting on non-unique attribute, then aggregate)
 - Performance

Origin
OccorrectionAlgebra
OccorrectionProvenance?
OccorrectionTypes
OccorrectionUse cases
OccorrectionGenerate, store, query
OccorrectionRecap
Occorrection

- Why set semantics?
 - Cleaner formalism
- Why bag semantics?
 - Correctness
 - (e.g., projecting on non-unique attribute, then aggregate)
 - Performance
 - Some operators require costly duplicate removal under set semantics

Bag semantics: Notation

How to write multiplicities

- Use power notation to express the multiplicity of a tuple
 - $t^n \in R$ denotes tuple t exists with multiplicity n in relation R

Bag semantics: Operators

Duplicate Removal

- $\delta(R)$
- Returns a copy of R with all multiplicities set to one

Slide 17 of 69

Bag semantics: Other operators

Definitions

$$\begin{split} \left[\left[\pi_{A}(R) \right] \right] &= \{t^{n} \mid n = \sum_{u^{m} \in R \land u.A = t} m\} \\ \left[\left[\sigma_{C}(R) \right] \right] &= \{t^{n} \mid t^{n} \in R \land t \models C\} \\ \left[\left[\alpha_{G,agg}(R) \right] \right] &= \{(t.G, res_{1}, \dots, res_{m})^{1} \mid t^{n} \in R \\ \land \forall i \in \{1, m\} : res_{i} = agg_{i}(\pi_{B_{i}}(\sigma_{G=t.G}(R)))\} \\ \left[\left[R \bowtie_{C} S \right] \right] &= \{(t_{1} \blacktriangleright t_{2})^{n \times m} \mid t_{1}^{n} \in R \land t_{2}^{m} \in S \\ \land (t_{1} \triangleright t_{2}) \models C\} \\ \left[\left[R \bowtie_{C} S \right] \right] &= \{(t_{1} \triangleright t_{2})^{n \times m} \mid t_{1}^{n} \in R \land t_{2}^{m} \in S\} \\ \cup \{(t_{1} \triangleright null(S))^{n} \mid t_{1}^{n} \in R \\ \land (\exists t_{2} \in S : (t_{1} \triangleright t_{2}) \models C)\} \end{split}$$

Slide 18 of 69

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Bag semantics: Other operators

Definitions

$$\begin{split} & [[R \cup S]] = \{t^{n+m} \mid t^n \in R \land t^m \in S\} \\ & [[R \cap S]] = \{t^{min(n,m)} \mid t^n \in R \land t^m \in S\} \\ & [[R - S]] = \{t^{n-m} \mid t^n \in R \land t^m \in S\} \end{split}$$

CS 595 - Hot topics in database systems: Data Provenance

Slide 19 of 69 Boris Glavic

Outline

1 Origin of Term

2 Relational Algebra Primer

3 What is Provenance?

- Provenance in Data Processing
- An Abstract View on Provenance
- Running Example

4 Types of Provenance Information

5 Use Cases and Application Domains

6 Provenance Generation, Storage, and Querying

Origin	Algebra	Provenance? ●○○○○○○○○	Types 0000000	Use cases	Generate, store, query	Recap
Provena	nce in Data Processing					
Dat	a Provenanc	е				

Data Provenance

Information about the creation process and origin of data

Provenance in Data Processing

Algebra

Origin

Provenance in Data Processing

Given a piece of data

. . .

- How do we know . . .
 - which data it is derived from?

Provenance?

000000000

Types

Use cases

- which transformations (SQL) where used to create it?
- who created it?

Generate, store, query

Recap

Algebra Provenance in Data Processing

Origin

Provenance in Data Processing

Given a piece of data

- How do we know
 - which data it is derived from?

Provenance?

Types

Use cases

- which transformations (SQL) where used to create it?
- who created it?

. . .

Example

Compute the revenue for each shop as sum of prices of items sold

Generate, store, query

Recap

Slide 21 of 69

Boris Glavic

Provenance in Data Processing

Algebra

Origin

Provenance in Data Processing

Given a piece of data

- How do we know . . .
 - which data it is derived from?

Provenance?

Types

Use cases

- which transformations (SQL) where used to create it?
- who created it?

• . . .

Definition (Data Provenance)

Information about the origin and creation process of data.

Generate, store, query

Recap

Boris Glavic

Origin 000	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap 00
An Abst	ract View on Provenance					
Abs	tract View					

Data

- Structured? Schemata?
- Atomic units? (Data items)

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap
An Abst	ract View on Provenance					
Abs	tract View					

Data

- Structured? Schemata?
- Atomic units? (Data items)

Transformations

- Consume input data
- Produce output data
- Hierarchical composition?
- Fixed set of atomic operations?

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap
An Abst	ract View on Provenance					
Abs	tract View					

Data

- Structured? Schemata?
- Atomic units? (Data items)

Transformations

- Consume input data
- Produce output data
- Hierarchical composition?
- Fixed set of atomic operations?

Provenance

Information about the creation process and origin of data

Slide 22 of 69

GY

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00
An Abst	ract View on Provenance					
Abs	tract View					

ILLINOIS INSTITUTE

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap 00
An Abst	tract View on Provenance					
Abs	tract View					

Boris Glavic

Origin 000	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap 00
An Abst	tract View on Provenance					
Abs	tract View					

Boris Glavic

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap 00
Running	Example					
Sce	nario					

- You are an analyst for a garden supply shop
- You have to compute the first quater revenue for each shop location
- Datawarehouse with sales data
- Use SQL to compute the required information from the warehouse

Running Example

Example (Input Data)

Employee

SSN	Name	WorksFor
123	Peter Peterson	New York
342	Jane Janeson	New York
555	Heinz Heinzmann	Wuppertal

L

Shop

Location	Budget
New York	1.000.000
Wuppertal	4.000

Sales

	item		Employee	ltom	Amount	Month
ld	Description	Price	123	1		
1	Lawnmower	199	_	1	1	1
2	Fertilizer	32	342	2	64	1
-	Rake	0	342	3	2	3
	INdike	9	555	3	1	5

OF TECHNOLOGY

Running Example

Example (SalesTotal Query)

```
CREATE VIEW SalesTotal AS
SELECT Location AS Shop, Month, SSN AS Employee,
Price * Amount AS Totalprice
FROM Employee E, Shop H, Item I, Sales S
WHERE E.WorksFor = H.Location
AND E.SSN = S.Employee
AND I.Id = S.Item
```

Example (Results	5)					
SalesTotal						
	Shop	Month	Employee	Totalprice		
Ne	ew York	1	123	199		
Ne	ew York	1	342	2048		
Ne	ew York	3	342	18		
W	uppertal	5	555	9		

Slide 25 of 69

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

 Origin
 Algebra
 Provenance?
 Types
 Use cases
 Generate, store, query
 Recap

 Running Example
 Example
 Second Se

Example (MonthlyRevenue Query)

```
CREATE VIEW MonthlyRevenue
SELECT Shop, Month, sum(Totalprice) AS Revenue
FROM SalesTotal
GROUP BY Shop, Month
```

Example (Results)				
	MonthlyRevenue			
	Shop	Month	Revenue	
	New York	1	2247	
	New York	3	18	
	Wuppertal	5	9	

Running Example

Example (RevenueFirstQ Query)

```
CREATE VIEW RevenueFirstQ
SELECT Shop, sum(Revenue) AS Revenue
FROM MonthlyRevenue
WHERE Month < 5
GROUP BY Shop
```

Revenue	eFirstQ	
Shop	Revenue	
New York	2265	
	Shop	

.....

Problem

- One result tuple of your query looks suspicious
- You expect the input data to be the culprit
- How to know which input data affected which output data

Problem

- One result tuple of your query looks suspicious
- You expect the input data to be the culprit
- How to know which input data affected which output data

This is Data Provenance

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Slide 27 of 69

CS 595 - Hot topics in database systems: Data Provenance

OF TECHNOLOGY

Origin 000	Algebra	Provenance? ○○○○○○●○	Types 0000000	Use cases	Generate, store, query	Recap 00		
Running Example								
Exa	mple Data							

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap	
000	00000000000000000	00000000	0000000	00000000000	000000000000000000000000000000000000000	00	
Running Example							

ILLINOIS INSTITUTE

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	00000000	0000000	00000000000	000000000000000000000000000000000000000	00
Running	Example					

• Which inputs belong to provenance of outputs?

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00
Running	Example					

- Which inputs belong to provenance of outputs?
 - hard

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	00000000	0000000	00000000000	000000000000000000000000000000000000000	00
Running	Example					

- Which inputs belong to provenance of outputs?
 - hard
- Even if we know: How to get it?

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00
Running	Example					

- Which inputs belong to provenance of outputs?
 - hard
- Even if we know: How to get it?
- Manually?

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00
Running	Example					

- Which inputs belong to provenance of outputs?
 - hard
- Even if we know: How to get it?
- Manually?
 - Not reasonable for big data or complex query!

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00
Running	Example					

- Which inputs belong to provenance of outputs?
 - hard
- Even if we know: How to get it?
- Manually?
 - Not reasonable for big data or complex query!
- Need system that tracks it automatically!

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Outline

- 1 Origin of Term
- 2 Relational Algebra Primer
- **3** What is Provenance?
- 4 Types of Provenance Information
 - Data Provenance
 - Transformation Provenance
 - Other

5 Use Cases and Application Domains

6 Provenance Generation, Storage, and Querying

Types of Provenance Information

Provenance Types

- Data Provenance
- Transformation Provenance

Additional Information

Slide 29 of 69

Types of Provenance Information

Provenance Types

- Data Provenance
 - From which input data is which output data derived from
- Transformation Provenance

Additional Information

Types of Provenance Information

Provenance Types

- Data Provenance
 - From which input data is which output data derived from
- Transformation Provenance
 - Which transformations contributed in which way to which output data
- Additional Information

Types of Provenance Information

Provenance Types

- Data Provenance
 - From which input data is which output data derived from
- Transformation Provenance
 - Which transformations contributed in which way to which output data
- Additional Information
 - Execution environment (state of the world)
 - Involved Users

Origin	Algebra	Provenance?	Types ○●○○○○○	Use cases	Generate, store, query	Recap
Data Pr	rovenance					
Dat	a Provenanc	e				

- Data Granularity
 - Attribute value
 - Tuple
 - Relation

- Data Granularity
 - Attribute value
 - Tuple
 - Relation
- Transformation Granularity
 - Query with view unfolding
 - Query block
 - Algebra operator

Origin	Algebra	Provenance?	Types ○●○○○○○	Use cases	Generate, store, query	Recap			
Data Provenance									
Dat	a Provenanc	е							

- Data Granularity
 - Attribute value
 - Tuple
 - Relation
- Transformation Granularity
 - Query with view unfolding
 - Query block
 - Algebra operator
- "True" Data Dependencies?
 - Black-box: An output depends on all inputs
 - Fine-grained: Dependencies depending on how data is processed by transformation

GY

Origin 000	Algebra	Provenance?	Types ○○●○○○○	Use cases	Generate, store, query	Recap			
Data Provenance									
Data	a Granularity	/							

Example (Relation)				
	Rev	enueFir	stQ	
	Shop New Y	ork 22	enue 265	
	CREATE VIEW	RevenueFirstQ , sum(Revenue) yRevenue < 5	AS Revenue	
	Mo	nthlyReve	nue	
	Shop	Month	Revenue	
	ew York	1	2247	
N	ew York	3	18	
- V.	/uppertal	5	9	- File State
				OF TECHNOLO

Origin 000	Algebra	Provenance?	Types ○○●○○○○○	Use cases	Generate, store, query	Recap
Data Pr	ovenance					
Dat	a Granularity	/				

Example (Tuple)									
RevenueFirstQ									
		RevenueFirstQ , sum(Revenue) yRevenue < 5	enue 265 AS Revenue						
MonthlyRevenue									
	Shop	Month	Revenue						
	New York	1	2247						
	New York	3	18						
	Wuppertal	5	9	ſ					
				OF TECHNOLOG					

Origin 000	Algebra	Provenance?	Types ○○●○○○○	Use cases	Generate, store, query	Recap
Data Pr	ovenance					
Dat	a Granularity	/				

Transformation Granularity

Slide 32 of 69

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Origin Algebra **Provenance?** Types Generate, store, query Use cases Recap 0000000 Data Provenance

Transformation Granularity

Slide 32 of 69

CS 595 - Hot topics in database systems: Data Provenance

Transformation Granularity

Origin	Algebra	Provenance?	Types ○○○○●○○	Use cases	Generate, store, query	Recap
Data Pr	ovenance					
_						

Data Dependencies

Example (Black-box)			
Rev	enueFir	stQ	
Sho New Y		265	
	/ RevenueFirstQ >, sum(Revenue) LyRevenue < 5	AS Revenue	
Мо	nthlyReve	nue	
Shop	Month	Revenue	
New York	1	2247	
New York	3	18	
Wuppertal	5	9	

Origin 000	Algebra	Provenance?	Types ○○○○●○○	Use cases	Generate, store, query	Recap
Data Pro	ovenance					
Data	a Dependenc	cies				

Example (Fine-grai	ned)			
	Rev	enueFir	stQ	
	Sho New Y		enue 265	
		RevenueFirstQ , sum(Revenue) yRevenue < 5	AS Revenue	
	Mo	nthlyRever	nue	
	Shop	Month	Revenue	
		1	2247	
	Shop New York			

9

Wuppertal

OF TECHNOLOGY

Transformation Provenance

Which/How transformations contributed to output data

- Transformations that generated output (transitive?)
- Only the ones that had actual effect
- Workflow template/program vs. workflow run/execution

Additional Information

A small subset

• OS version

GY

Additional Information

A small subset

- OS version
- Version of library linked against

Additional Information

A small subset

- OS version
- Version of library linked against
- Environment variables

Additional Information

A small subset

- OS version
- Version of library linked against
- Environment variables
- User that executed the process

Additional Information

A small subset

- OS version
- Version of library linked against
- Environment variables
- User that executed the process
- Current main memory content

Additional Information

A small subset

- OS version
- Version of library linked against
- Environment variables
- User that executed the process
- Current main memory content
- Room temperature?

Additional Information

A small subset

- OS version
- Version of library linked against
- Environment variables
- User that executed the process
- Current main memory content
- Room temperature?
- Geographical location

Additional Information

A small subset

- OS version
- Version of library linked against
- Environment variables
- User that executed the process
- Current main memory content
- Room temperature?
- Geographical location
- . . .

Additional Information

A small subset

- OS version
- Version of library linked against
- Environment variables
- User that executed the process
- Current main memory content
- Room temperature?
- Geographical location
- . . .
- Butterfly that flapped in china

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Outline

- 1 Origin of Term
- 2 Relational Algebra Primer
- **3** What is Provenance?
- **4** Types of Provenance Information
- 5 Use Cases and Application Domains
 - Use Cases
 - Debugging
 - Annotation Propagation
 - Deletion Propagation

Origin 000	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap
Use Case	S					
Use	Cases					

- Debugging (tracking the sources of errors)
- Propagating annotations
- Gain deeper understanding of data and transformations
 - Estimate quality, trust
- Improvement of other data processing technologies
 - Probabilistic databases
 - Deletion propagation
 - Testing

- Complex database queries, e.g., datawarehousing
 - E-science and curated databases
 - Data integration/exchange
 - Workflow systems

Application Domains

- Complex database queries, e.g., datawarehousing
- E-science and curated databases
- Data integration/exchange
- Workflow systems
- → Application domain with complex, multi-stage data processing
 - Map-Reduce style processing and its "frontends" like Pig
 - Simulations
 - . . .

ILLINOIS INSTITUTE

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap 00
Debuggi	ng					
Deb	ugging					

Origin of Result Tuples

• Tuple in result suspicious/wrong/interesting

Example

Slide 38 of 69

Boris Glavic

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap 00
Debuggi	ng					
Deb	ugging					

Origin of Result Tuples

- Tuple in result suspicious/wrong/interesting
- Learn more by looking at relevant inputs (provenance)

Example

Slide 38 of 69

Boris Glavic

Origin 000	Algebra	Provenance?	Types 0000000	Use cases ○○○●○○○○○○○	Generate, store, query	Recap
Debuggi	ng					
Deb	ugging					

1 Identify tuples of interest (1)

Slide 39 of 69

Boris Glavic

Origin 000	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap
Debuggi	ng					
Deb	ugging					

- 1 Identify tuples of interest (1)
- Retrieve provenance
 - Need system that returns provenance for set I

Origin 000	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap
Debuggi	ng					
Deb	ougging					

- **1** Identify tuples of interest (*I*)
- Retrieve provenance
 - Need system that returns provenance for set I
 - How to represent this info?

Origin 000	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap
Debuggi	ng					
Deb	ougging					

- Identify tuples of interest (1)
- Retrieve provenance
 - Need system that returns provenance for set I
 - How to represent this info?
- 3 What if provenance large?
 - ⇒Query support? Visualization?

Annotation Propagation

Slide 40 of 69

Boris Glavic

Annotation Propagation

Which annotations in query result?

- Find provenance for tuple
- Attach union of annotations in provenance

Boris Glavic

Annotation Propagation

For Example

- First result tuple
- Provenance: first tuples from Gene and Enzyme
- Annotation: *a*₁, *a*₂, *a*₄

Boris Glavic

Annotation Propagation - Caveats

Potential Problems?

- What about negative influence?
- User should have control on propagation?
- What about annotations on
 - Attribute values
 - Spanning several tuples/relations/attributes

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap 00
Deletion	Propagation					
Dele	etion Propag	ation				

Problem

• Given a *materialized view*

Slide 43 of 69

Boris Glavic

 Origin
 Algebra
 Provenance?
 Types
 Use cases
 Generate, store, query
 Recap

 000
 00000000
 00000000
 00000000
 000000000
 000000000
 000

 Deletion Propagation
 Deletion Propagation
 00000000
 00000000
 000000000
 000000000

- Given a *materialized view*
 - Query result stored as a table

- Given a *materialized view*
 - Query result stored as a table
- How to update the view when input data changes

Deletion Propagation

- Given a materialized view
 - Query result stored as a table
- How to update the view when input data changes
 - Without recomputing the whole query

Deletion Propagation

- Given a materialized view
 - Query result stored as a table
- How to update the view when input data changes
 - Without recomputing the whole query
- **Deletion Propagation**: Update the view when input tuples are deleted?

Deletion Propagation Example

Example

```
CREATE VIEW ActiveCS AS
SELECT DISTINCT E.Name AS Emp
FROM Employee E, Project P, Assigned A
WHERE E.Id = A.Emp AND P.Name = A.Project
AND Dep = CS
```


Boris Glavic

Deletion Propagation Example

Boris Glavic

Deletion Propagation Example

Deletion Propagation Example

Deletion Propagation - Approach

Assumption

- Assume we have provenance for each tuple
 - For now a set of input tuples
 - $P(t_1) = \{e_1, p_1, a_1\}$

•
$$P(t_2) = \{e_2, p_1, p_2, a_2, a_3\}$$

• Set of deleted tuples
$$(D = \{p_1\})$$

 Origin
 Algebra
 Provenance?
 Types
 Use cases
 Generate, store, query
 Recap

 000
 0000000000000
 0000000
 0000000
 0000000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</td

Deletion Propagation - Approach

Assumption

- Assume we have provenance for each tuple
 - For now a set of input tuples
 - $P(t_1) = \{e_1, p_1, a_1\}$
 - $P(t_2) = \{e_2, p_1, p_2, a_2, a_3\}$
- Set of deleted tuples ($D = \{p_1\}$)

Approach

- **1** Remove *D* from provenance
- 2 Remove tuples without justification from view
 - Set provenance model to simple
 - Will learn later how this actually works

GY

 Origin
 Algebra
 Provenance?
 Types
 Use cases
 Generate, store, query
 Recap

 Doc
 Deletion Propagation
 Example
 Example
 Example
 Example

Example

• $P(t_2) = \{e_2, p_1, p_2, a_2, a_3\} \rightarrow \{e_2, p_2, a_2, a_3\}$

Slide 46 of 69

Boris Glavic

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Outline

- 1 Origin of Term
- 2 Relational Algebra Primer
- **3** What is Provenance?
- **4** Types of Provenance Information
- **5** Use Cases and Application Domains
- 6 Provenance Generation, Storage, and Querying
 - Provenance Generation
 - Provenance Storage
 - Provenance Querying

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap
Provena	nce Generation					
Gen	eration					

Manual vs. Automatic

- Manual: User has to provide provenance information
- Automatic: System generates provenance information automatically
- Design space: How much information has to be provided by the user or transformation developer?

Lazy vs. Eager

- **Eager**: Generate provenance while the transformation is running
- Lazy: Generate provenance later once it is requested
- Tradeoff: Retrieval time vs. execution overhead

GY

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query ○●○○○○○○○○○○○○○○○○○○○	Recap 00
Provena	nce Generation					
Gen	eration					

Approaches

- Run transformation in supervised environment that tracks provenance
- Instrument the transformations to produce provenance
- Record some information during execution and reconstruct provenance from this information

Supervised Environment

Idea

 Modify execution environment of transformations to capture provenance

Considerations

- What provenance to capture?
- Which parts of system ...
 - Are accessible?
 - Are modifiable?
- Supervision for all or only some transformations

ILLINOIS INSTITUTE V OF TECHNOLOGY

Supervised Environment - Example

- Hadoop Map/Reduce
- Modify the Hadoop system to
 - store relationships between input/output keys
 - for mappers and reducers
 - in HDFS?

Supervised Environment - Discussion

Advantages

- Can capture whatever provenance we want
- No modification to transformations

Disadvantages

- Intrusive May have to re-implement whole system
- Overhead for transformation execution
- Parts of the system may not be accessible (e.g., web-service composition)

ILLINOIS INSTITUTE

Instrument Transformations

Idea

Modify the transformation to track its own provenance

Considerations

- Transformation language expressive enough to compute its own provenance?
- How to represent provenance in the data model?

Instrument Transformations - Example

- SQL queries
- Rewrite queries to produce their output + provenance information
- Possible?

Instrument Transformations - Example

- SQL queries
- Rewrite queries to produce their output + provenance information
- Possible? yes, later in course

Instrument Transformations - Example

- SQL queries
- Rewrite queries to produce their output + provenance information
- Possible? yes, later in course
- Build a middleware that does that over standard DBMS

Instrument Transformations - Discussion

Advantages

- Non-intrusive: Possible without changes to system
 - If we can gather enough information about transformation from outside
 - E.g., DBMS client
- No overhead if no provenance computed
- Same data model ⇒Querying
- No manual changes to transformations

Disadvantages

- Performance optimizations may be limited (overhead provenance computation)
- Data model may limit the provenance representation

Slide 54 of 69

CS 595 - Hot topics in database systems: Data Provenance

DGY

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap 00
Provena	nce Generation					
Rec	onstruction					

Idea

• Recover provenance from input + output data and knowledge about transformation

Considerations

- Possible to know what's going on in the black box?
- Need to store extra information

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00
Browona	nco Constation					

Reconstruction - Example

Example

- Simple SQL query
- Write program to
 - Analyse query
 - Retrieve input and output data
 - Compute provenance

Provenance Generation

Reconstruction - Discussion

Advantages

- Non-intrusive: No changes to system
- No overhead for transformation
- No storage costs or almost no storage

Disadvantages

- Not possible for complex operations
- Provenance generation may be more expensive

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap
Provena	nce Generation					
Eag	er Generatio	n				

Approach

• Generate provenance during transformation execution

Considerations

- Overhead for transformation?
- How to trigger?

Approach

Generate provenance on request

Considerations

- Input/Output data still available?
- Transformation info available?

Origin 000	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap 00
Provena	nce Storage					
Stor	rage					

- Provenance data can be orders of magnitude larger than input/output data
- ullet \Rightarrow Be clever when to store what at which level of abstraction
- ullet \Rightarrow Specialized compression for provenance
- \Rightarrow Index structured for provenance specific retrieval patterns

Provenance Storage

Why is provenance large?

Simplified explanation:

Slide 61 of 69

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Provenance Storage

Why is provenance large?

Simplified explanation:

• Input data: size N

Slide 61 of 69

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

Provenance Storage

Why is provenance large?

Simplified explanation:

- Input data: size N
- Output data: size M

Slide 61 of 69

Provenance Storage

Why is provenance large?

Simplified explanation:

- Input data: size N
- Output data: size M
- Provenance is relationship between inputs and outputs

Slide 61 of 69

Provenance Storage

Why is provenance large?

Simplified explanation:

- Input data: size N
- Output data: size M
- Provenance is relationship between inputs and outputs
- \Rightarrow Worst case: $N \times M$

Slide 61 of 69

Provenance Storage

Why is provenance large?

Simplified explanation:

- Input data: size N
- Output data: size M
- Provenance is relationship between inputs and outputs
- \Rightarrow Worst case: $N \times M$
- Intermediate results?

Provenance Storage

Why is provenance large?

Simplified explanation:

- Input data: size N
- Output data: size M
- Provenance is relationship between inputs and outputs
- \Rightarrow Worst case: $N \times M$
- Intermediate results?
 - Transformation is tree with X nodes

Provenance Storage

Why is provenance large?

Simplified explanation:

- Input data: size N
- Output data: size M
- Provenance is relationship between inputs and outputs
- \Rightarrow Worst case: $N \times M$
- Intermediate results?
 - Transformation is tree with X nodes
 - $\Rightarrow \sim N \times M \times X$

Provenance Storage

What to store and when?

What?

- Only necessary level of detail
 - E.g., need attribute level provenance?
 - E.g., need provenance for intermediate results?

When?

- Provenance for all transformations?
- Only for specific type?
- Only when requested by user?
- Only when triggering event happend?

OF TECHNOLOGY

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap
Provena	nce Storage					
Con	npression					

Rationale

- Provenance large, but has overlap
 - Exploit overlap to compress
 - Information loss?
 - Access/querying without decompression
 - Tradeoff: speed vs. size

Approaches

- Generic compression algorithms
 - Small size, slow?, probably no query
- Methods exploiting overlap being aware of provenance structure
 - Size less predictable, fast?, query may be possible

GY

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	00000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00
Provena	nce Storage					

Index structures

Rationale

- Provenance querying needs efficient access to provenance data
- Traditional index structure useful?
- Can identify new access patterns?
 - Tree-path traversal?
- Static index or updates possible?

Approaches

• E.g., adapt IR retrieval index structures

ILLINOIS INSTITUTE

 Origin
 Algebra
 Provenance?
 Types
 Use cases
 Generate, store, query
 Recap

 000
 0000000000000
 0000000
 0000000
 0000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</t

Example Storage - Provenance tables

- Provenance Table
- input TID's \rightarrow output TID's

 Origin
 Algebra
 Provenance?
 Types
 Use cases
 Generate, store, query
 Recap

 000
 0000000000000
 0000000
 0000000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</

Example Storage - Provenance tables

- Provenance Table
- input TID's \rightarrow output TID's

Provenance

result	in
t_1	<i>s</i> ₁
t_1	<i>s</i> ₂
t_1	i_1
t_1	i ₃
<i>t</i> ₂	<i>s</i> ₃
<i>t</i> ₂	i ₃

Origin 000	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap
Provena	nce Querying					
Que	erying					

• Large amount of provenance information

Slide 66 of 69

Boris Glavic

CS 595 - Hot topics in database systems: Data Provenance

- Large amount of provenance information
- Query support to extract information
 - Focus on parts of interest
 - Backward: Which data contributed to output?
 - Forward: Which data is derived from input?
 - Transitive closure
 - Correlated with input/output data
 - Summarize, abstract

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query	Recap 00
Provena	nce Querying					
Que	erving					

- Large amount of provenance information
- Query support to extract information
 - Focus on parts of interest
 - Backward: Which data contributed to output?
 - Forward: Which data is derived from input?
 - Transitive closure
 - Correlated with input/output data
 - Summarize, abstract

Example

For a subset of erroneous sales totals, which ones have been derived from input sales data from a shop in New York with a amount sold bigger than 100.

GY

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00
Provena	nce Querying					
Que	erying					

Approaches

- Extend query language for "normal" data
- New query language

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00
Provena	nce Querying					
Que	erying					

Approaches

- Extend query language for "normal" data
 - Querying provenance in combination with "normal" data
 - Limitation on provenance representation
- New query language

Origin	Algebra	Provenance?	Types 0000000	Use cases	Generate, store, query ○○○○○○○○○○○○○○○○○○○○	Recap
Provena	nce Querying					
Que	erying					

Approaches

- Extend query language for "normal" data
 - Querying provenance in combination with "normal" data
 - Limitation on provenance representation
- New query language
 - Operations tailored for typical operations on provenance
 - "Re-inventing the wheel"

Querying Example

Example

Proven	ance
result	in
t ₁	<i>s</i> ₁
t ₁	<i>s</i> ₂
t ₁	<i>i</i> 1
t ₁	i3
t ₂	<i>s</i> 3
t ₂	i3

Example result shop rev t1 Migros 125 25 t₂ Coop SELECT shop, sum(price) AS rev FROM sales, items WHERE itemId = id **GROUP** BY shop

	\uparrow		\uparrow			
sales				it	ems	
	shop	itemld		id	price	
s_1	Migros	1	i1	1	100	1
s ₂	Migros	3	1 <i>i</i> 2	2	10	1
<i>s</i> 3	Соор	3	i3	3	25	1

Querying Example

```
SELECT DISTINCT shop
FROM result r,
    Provenance p,
    items i
WHERE r.tid = p.result
    AND p.in = i.tid
    AND i.price > 90
```

Provenanceresultin t_1 s_1 t_1 s_2
t_1 s_1
t1 50
1 52
t_1 i_1
t ₁ i ₃
t ₂ s ₃
t ₂ i ₃

CS 595 - Hot topics in database systems: Data Provenance

Slide 68 of 69

Boris Glavic

 Origin
 Algebra
 Provenance?
 Types
 Use cases
 Generate, store, query
 Recap

 000
 00000000
 00000000
 00000000
 000000000
 000

 Provenance
 Querying
 Verying
 Verying
 Verying

Querying Example

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Outline

- 1 Origin of Term
- 2 Relational Algebra Primer
- **3** What is Provenance?
- **4** Types of Provenance Information
- 5 Use Cases and Application Domains
- 6 Provenance Generation, Storage, and Querying

query Recap

GY

Types of Provenance

- Data
- Transformation
- Other
- Granularities

Generation, Storage, and Querying

Generation

- Manual vs. automatic
- Eager vs. lazy
- Supervised environment, instrumentation, reconstruction

• Storage

• Compression, Indices, What to keep?

Querying

- Extending transformation language
- Develop new query language

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	00

Surveys I

Boris Glavic and Renée J. Miller.

Reexamining Some Holy Grails of Data Provenance. In Tapp '11: 3rd usenix workshop on the theory and practice of provenance, 2011.

James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in Databases: Why, How, and Where. Foundations and Trends in Databases, 1(4):379–474, 2009.

Robert Ikeda and Jennifer Widom.

Data Lineage: A Survey. Technical report, Stanford University, 2009.

Juliana Freire, David Koop, Emanuele Santos, and Claudio T. Silva.

Provenance for Computational Tasks: A Survey. Computing in Science and Engineering, 10(3):11–21, 2008.

Boris Glavic and Klaus R. Dittrich.

Data Provenance: A Categorization of Existing Approaches. In Btw '07: proceedings of datenbanksysteme in buisness, technologie und web, 227-241, 2007.

Susan B. Davidson, Sarah Cohen-Boulakia, Anat Eyal, Bertram Ludscher, Timothy McPhillips, Shawn

Bowers, and Juliana Freire. Provenance in Scientific Workflow Systems. IEEE Data Engineering Bulletin, 32(4):44–50, 2007. ILLINOIS INSTITUTE

Origin	Algebra	Provenance?	Types	Use cases	Generate, store, query	Recap
000	000000000000000000000000000000000000000	000000000	0000000	00000000000	000000000000000000000000000000000000000	0•

Surveys II

